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Abstract Classifier combination has repeatedly been
shown to provide significant improvements in perform-
ance for a wide range of classification tasks. In this paper,
we focus on the problem of combining probability distri-
butions generated by different classifiers. Specifically, we
present a set of new combination rules that generalize the
most commonly used combination functions, such as the
mean, product, min, and max operations. These new rules
have continuous and differentiable forms, and can thus
not only be used for combination of independently trained
classifiers, but also as objective functions in a joint clas-
sifier training scheme. We evaluate both of these schemes
by applying them to the combination of phone classifiers
in a speech recognition system. We find a significant per-
formance improvement over previously used combination
schemes when jointly training and combining multiple
systems using a generalization of the product rule.

Keywords Classifier combination · Combination rules
· Joint classifier training · Mixtures of experts · Neural
network ensembles · Neural networks · Products of
experts · Speech recognition

Introduction

An attractive approach to pattern recognition which has
received much attention is classifier combination [1]. The
underlying goal of classifier combination research is to
identify the conditions under which the combination of
an ensemble of classifiers yields improved performance
compared to the individual classifiers. Several empirical
and theoretical studies [2–5] have found that combination
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is most successful when the errors of the ensemble mem-
bers are as uncorrelated as possible. Producing ensemble
members with decorrelated errors can be achieved by a
variety of methods, e.g. by training classifiers with differ-
ent structures or varying the initial conditions from which
classifiers are trained.

Many studies on classifier combination have focused
on what we call single-level classification. A typical
single-level classification system consists of two compo-
nents: a feature-extraction component which maps the
input signal to feature vectors, and a classification compo-
nent which assigns a class label to each feature vector.
The desired classes are thus directly recognized from the
feature space without any intermediate representation. The
classification component may involve a combination of
several different classifiers, in which case the optimal
combination method is the one which yields the highest
classification accuracy on a test set, or in other words,
which produces the classifier which generalizes best to
unseen data.

Many real-world pattern recognition applications, how-
ever, require a multi-level classification procedure. In such
a case, the class label is related to the features indirectly
via some intermediate representation. For example, a
second level classification scheme might base its decisions
on the result of the first level classification scheme. Clas-
sifier combination in a multi-level classification system
must take into account the properties of this intermediate
representation and might therefore differ greatly from
those combination methods which have proved successful
for single-level classification.

One example of a multi-level classification system is
Automatic Speech Recognition (ASR). Except for systems
dealing with an extremely limited recognition vocabulary
(e.g. digits), ASR systems typically do not recognise
words directly from the preprocessed speech signal –
words are represented in terms of smaller, intermediate
units, such as phones.1 Phones are classified directly from
the speech signal; their scores are subsequently passed on
to a higher-level search component which selects the best

1 Other units can also be used such as syllables, demi-syllables, etc.
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path from the space of possible phone sequences. The
search component is often called Viterbi search, where
only the best path over time through the sequence of pho-
nemes is obtained by a dynamic programming recursion.

In recent years, classifier combination has been
attempted on the speech recognition task because of the
potentially large benefits to be gained. Robust speech rec-
ognition is a difficult task due to the variable nature of the
speech signal. Signal bandwidth, background noise and
speaker variability (such as different speaking rates and
foreign accents) are all examples of conditions which sev-
erely affect recognition accuracy. It is highly unlikely that
a monolithic ASR system using a single acoustic classifier
will exhibit consistently high performance across a variety
of recognition conditions.

In this paper, we address the problem of combining
classifiers in multi-level classification systems with appli-
cation to phone classifier combination in a speech recog-
nition system. Specifically, we present a set of new combi-
nation rules which are shown to be generalizations of the
well-known average, product, min and max rules. These
new combination rules have continuous and differentiable
forms. Therefore, they can not only be used for the combi-
nation of separately trained classifiers, but they can also
be used as objective functions in a joint classifier training
scheme. We discuss the properties of joint training and
present preliminary results with respect to word recog-
nition. While the techniques in this paper are applied to
multi-level classification and to speech recognition, our
methods are quite general and could be applied to any
form of classifier combination methodology for which
combination rules (such as min, sum, and so on) are
appropriate. We explore this case later in the paper when
we empirically analyse 4-class two-dimensional Gaus-
sian data.

The rest of this paper is organised as follows: in Sect.
2 we briefly review previous work on classifier combi-
nation in both the general machine learning field and in
automatic speech recognition. In Sect. 3 and 4 we present
new combination rules that generalize almost all of the
existing linear combination rules proposed in the classifier
combination literature. In Sect. 5 we provide the deri-
vation of a joint classifier training scheme using these new
rules. Experimental results are presented and discussed in
Sect. 6, relationships to other work are provided in Sect.
7, and a summary is given in Sect. 8.

Classifer combination in machine learning

The goal of classifier combination research is to identify
the conditions under which an ensemble of classifiers
yields the largest gain in performance compared to the
individual classifiers. One widely investigated combi-
nation method is the mean rule [1], i.e. a weighted average
of the outputs of the individual classifiers:

P(c�x1, …, xN) = �N
n=1

�nP(c�xn) (1)

where xn is a feature vector, P(c�xn) is the probability for
class c given by the nth classifier, and �n is the weight
for the nth classifier.

Classification is closely related to regression, and sev-
eral theoretical studies [2,7] have shown that mean-rule
combination is successful (i.e. has a lower mean-squared
error) when the errors of each system are independent.
Error reduction is related to ensemble bias (the degree to
which the averaged output of the ensemble of classifiers
diverges from the true target function) and variance (the
degree to which the ensemble members disagree) [3,6,7].
Generally, a low error requires both a low bias and vari-
ance, but since variance is reduced by averaging over a
greater number of classifiers, it is sufficient to combine
classifiers with a low bias. Tumer and Ghosh [8] have
related the degree of correlation of classifier outputs to
the ensemble error, and have quantified it in terms of
Bayes error. The total ensemble classification error Et can
be represented as the Bayes error Eb and the added
ensemble-incurred error Ēa, having the relationship Et =
Eb + Ēa. When combining unbiased correlated classifiers,
the added error can be shown to be

Ēa = Ea

1 + �(N � 1)
N

(2)

where N is the number of classifiers, � a measure of error
correlation, and Ea is the (common) added error of each
individual classifier. As can be seen, the added error
grows with the degree of classifier error correlation.

Producing ensemble members with decorrelated errors
can be achieved by a variety of methods, e.g. by training
classifiers with different structures [8], varying the initial
conditions from which classifiers are trained, training on
disjoint [9] or partially overlapping data sets, using differ-
ent input signals [9], or different feature representations
of the input [10]. Popular combination methods include
linear combinations of the output distributions (e.g. by
averaging over, or multiplying, the outputs) [1,11], com-
bining the outputs by a higher-level classifier, Dempster-
Shafer theory [12], and majority voting [13]. An alterna-
tive approach is to explicitly model the dependence
between classification errors [7,8,14].

Many studies on classifier combination focus on what
we call single-level classification. A typical single-level
classification system consists of two components: a fea-
ture-extraction component, which maps the input signal
to feature vectors, and a classification component, which
assigns a class label to each feature vector. The desired
classes are thus directly recognised from the feature space
without using any intermediate representation.

There are many pattern recognition tasks, however, that
require a multi-level classification scheme because, for
practical reasons, it is necessary to reuse classifier results
at a middle level. Essentially, the final resulting classes
are encoded using an intermediary class representation. A
class random variable C is related to the features x1, …,
xN indirectly via the intermediate representation Q, and the
system often makes simplifying conditional independence
assumptions as in:
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p(c�x1, …, xN) = �
q

p(c, q�x1, …, xN)

= �
q

p(c�q)p(q�x1, …, xN)

where Q itself can be a multi-dimensional vector, and
which itself might use a multi-level classification scheme.
Classifier combination can be applied at any of the inter-
mediate stages in a multi-level classification system. The
combination methods, however, should ideally take into
account the requirements of the last stage (i.e. the Bayes
error for the final desired class variable C). Successful
combination methods in a multi-level classification system
therefore might differ greatly from those combination
methods that have proved beneficial for single-level
classification.

Classifier combination in speech recognition

In speech recognition, it is more efficient for the class C
(which is often a sentence) to make use of a relatively
compact set of classifiers Q representing sub-phones,
phones, or even words, rather than attempting to discrimi-
nate directly between what would be an inordinate number
of classes (i.e. the number of possible sentences). The
interaction between the different levels crucially deter-
mines the overall performance and creates unique con-
ditions for classifier combination which differ from single-
level classification.

The goal of ASR is to extract the most likely word
sequence Ŵ= {w1, w2, …, wN} from a preprocessed speech
signal, i.e. sequence of observation vectors X = x1, …,
xT. This is done according to Bayes Rule:

Ŵ = argmaxW

P(X�W)P(W)
P(X)

(3)

The prior probability of the word sequence, P(W), is
approximated by a product of the conditional probabilities
of the individual words in the sequence given their pre-
ceding words (the language model). These quantities are
computed in advance on a training set and shall not con-
cern us any further here. The likelihood P(X�W) is
accumulated during recognition by the acoustic classi-
fication component, which we focus on in this study. As
mentioned before, P(X�W) is not computed directly on the
word sequence. Rather, words are represented as
sequences of smaller units, so-called phones, which rep-
resent individual speech sounds. The word sequence W
can thus be expressed as a phone sequence Q = q1, q2,
…, qM. The acoustic classification component then com-
putes, for each speech frame, the likelihood of a given
feature vector x given a statistical model for any given
phone q, P(x�q). In most ASR systems P(x�q) is modelled
by a mixture of Gaussian densities; however, Artificial
Neural Networks (ANNs) can also be used [15]. In this
study we employ Multi-Layer Perceptrons (MLPs) to esti-
mate P(q�x). For the purpose of decoding, P(q�x) is con-

verted into the required (scaled) likelihood P(x�q) by
dividing by the prior probability P(q).

Different partial recognition hypotheses can in principle
be combined at either the phone, word, or sentence level.
In this study, we concentrate on combination at the phone
level. Most approaches to phone-level combination have
used different acoustic preprocessing techniques to gener-
ate an ensemble of classifiers trained on different feature
spaces [16–18]; in some cases, the speech signal is split
into a number of narrower frequency bands and the
ensemble classifiers operate on individual sub-bands
[19,20]. Combination methods have in general used either
the mean rule (Eq. (1)) or the product rule.

P(c�x1, …, xN) =
�N

n=1
P(c�xn)

Z
(4)

where Z is a normalising constant. The mean rule is useful
for combining unimodal distributions into a single multi-
modal distribution. Since mixing can only increase
entropy of a distribution [22] relative to the mixture of
the individual distribution entropies, such a procedure is
poor for representing low-entropy distributions where
probability is concentrated in narrow input-space regions.
In such cases, the product rule is useful, where each clas-
sifier must supply probability to the correct class, but may
also supply probability to incorrect classes as long as one
or more of the other classifiers do not supply probability
to those incorrect classes. These are therefore called
‘AND’ style combination schemes [23] since only the
logical AND of each classifier’s probabilistic decision will
survive combination. It is also the case that such a combi-
nation scheme is useful when the underlying distributions
factorise over the probabilistic space of C [24].

Virtually all the aforementioned studies reported the
largest performance increases for the product rule. This
appears surprising since one may arrive at this rule by
making the assumption of conditional independence of the
input features given the output class [14]. This assumption
is certainly not true in general – neither different feature
representations derived from nor different spectral sub-
bands of the same signal are conditionally independent
given the class [25]. On the other hand, producing low-
entropy distributions over output classes from a product
of (sometimes incorrect) classifiers might outweigh this
inaccuracy. Alternatively, as argued in Bilmes [26], an
assumption that is incorrect for predictive accuracy does
not ensure discriminative inaccuracy.

In previous work [23], we additionally investigated
other rules such as the

max rule:

P(c�x1, …, xN) =
maxnP(c�xn)

�K

c=1

maxnP(c�xn)

(5)

and the min rule:
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Fig. 1 Architecture and notational
definitions used in this paper. Input
features xl are presented to the lth
classifier. These produce linear outputs
al which are then normalised using the
multiple logistic function. For each
output k of each of the L classifiers,
the values are combined using one of
the combination methods, and this
produces value Vk. The result is once
again normalised producing the final
probability mass function z at the
output of the combined system
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P(c�x1, …, xN) =
minnP(c�xn)

�K

c=1

minnP(c�xn)

(6)

We found that significant error reductions occurred with
the AND-style rules (product and min), whereas the sum
and the max rule (OR style rules) yielded only slight
improvements and sometimes even worsened global per-
formance.

In the following sections, we present new AND-style
combination rules which generalize the standard
combination rules, and can also be used as joint classifier
training schemes.

Basic combination architecture

This section describes our combination architecture. We
use L neural network classifiers, each of which is a multi-
layer perceptron (MLP). Each classifier uses the multiple
logistic2 nonlinearity in the final layer:

2 Often referred to as the ‘softmax’ function, but we call it the mul-
tiple logistic function in this paper to avoid any confusion with our
soft minimum and maximum functions defined in Sect. 4.

zl
k =

exp(al
k)

�
k�

exp(al
k�)

(7)

where al
k is the kth linear output of the lth classifier before

the multiple logistic function is applied, and zl
k is the kth

output of the lth classifier after applying the multiple
logistic function. The latter are combined using one of the
many possible and soon-to-be-defined combination rules:

Vk = combination rule(z1
k, z2

k, …, zL
k) (8)

The combined outputs are re-normalised, thereby produc-
ing the final combined system outputs

zk =
Vk

�
j

Vj

. (9)

This architecture is depicted in Fig. 1.
Under normal circumstances, each classifier is trained

separately using the standard back-propagation algorithm.
During testing the outputs of each of the sub-classifiers
are combined using a combination rule, and then used in
subsequent stages of classification. In Sect. 5 we consider
methods to jointly train the different classifier systems.
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Generalized combination rules

This section presents new ‘soft’ continuous rules that gen-
eralise the often used ‘hard’ combination rules such as the
mean (Eq. (1)), product (Eq. (4)), min (Eq. (6)), max (Eq.
(5)). This is done by defining a variety of soft minimum
functions, and then by showing how they generalise other
rules. Each function is dependent on a softness parameter
�: the larger the absolute value of �, the harder the
function becomes. For notational convenience, we also
define single letter versions of the function using a
superscripted V.

We define the smin function as follows:

V(s)
k =

�
smin�(z1

k, z2
k, …, zL

k) =
� ��L

l=1

(zl
k)����1/�

(10)

A second rule useful when the arguments are probabilities
(0 � zk � 1 ∀k) is defined as follows:

V(p)
k =

�
psmin� (z1

k, z2
k, …, zL

k)

=
�

exp �� ��L
l=1

(ln 1/zl
k)��1/��

Note that psmin� (z1
k, z2

k, …, zL
k) = exp(�smin�� (�

ln(z1
k), �ln (z2

k), …, �ln (zL
k))).. We define a third min

function as follows:

V(e)
k =

�
esmin� (z1

k, z2
k, …, zL

k) = �L
l=1

zl
ke��zl

k

�L

l=1

e��zl
k

(11)

as well as a corresponding version when the input lies
within the range 0 � zk � 1:

V(q)
k =

�
qsmin� (z1

k, z2
k, …, zL

k) (12)

= exp ��L
l=1

ln (zl
k) (1/zl

k)�

�L

l=1

(1/zl
k)�

� (13)

Similar to the above, we have that

qsmin� (z1
k, z2

k, …, zL
k) = exp (� esmin�� (�ln (z1

k),

� ln (z2
k), …, �ln (zL

k))) (14)

For all of the above soft minimum functions, there
exists a dual ‘soft maximum’ function3 obtained by negat-
ing the value of �. For example, we may define a function
smax� (·) =

�
smin(� �) (·). Note that all the minimum func-

tions approach the true min function as � gets large since
for each soft min function:

min (z1, z2, …, zL) = lim
�→�

*min� (z1, z2, …, zL)
(15)

These soft functions are useful because they approxi-

3 Not to be confused with the standard softmax function used for
neural networks which, in this paper, we refer to as the multiple
logistic function.

mate the minimum (resp. maximum) functions as � gets
large and positive (resp. as � gets large and negative).
These functions are also continuous and differentiable
with respect to their arguments. And surprisingly, they
generalise most of the functions that are commonly used
in classifier combination systems. For example, smin�1 is
the sum rule, smin1 is a scaled harmonic mean, psmin1 is
the product rule, esmin0 is the mean, and so on. For certain
values of � and certain combination methods, some inter-
esting new rules result, such as a ‘harmonic product’ rule
using psmin with � = -1. Figure 2 depicts all the generalis-
ations made by the various soft combination rules for dif-
ferent � values.

Derivation of joint training algorithms

As mentioned above, unlike hard combination rules such
as min and max, the soft versions are continuous and dif-
ferentiable. Therefore, a new learning algorithm can be
defined that jointly trains the L networks. According to the
analysis presented in Sect. 2, a joint training rule should
encourage the classifiers to perform as well as possible,
but should also encourage any errors, if they must be
made, to be as statistically independent as possible.

It might at first seem counter-intuitive to jointly train
networks in an attempt to produce independent errors.
With separate training, however, there is no independence
guarantee, instead there is only the hope that the solution
arrived at by each classifier will have this property. On
the other hand, by using an appropriate joint training rule,
the error dependence may be adjusted in a controlled
fashion, encouraging the classifiers to arrive at different
solutions when it is advantageous to do so. The well-
known boosting technique, for example (described in
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Fig. 2 The soft minimum rules generalize many of the more common
combination rules (and specify some new ones) depending on the value
of �
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Sect. 7) creates multiple classifiers in which later classifi-
ers are trained using information gleaned from earlier
ones. A joint training algorithm can be defined for any
of our soft combination rules mentioned in Sect. 4. The
following analysis will be needed.

First, we need the derivatives of the soft minimum
functions. The first one is as follows:4

∂V(s)
k

∂zl
j

= �Vj

zl
j
�1+�

�jk (16)

Note that when � 	 1, the derivative with respect to the
smallest argument of smin has the largest value. When �
gets large, this gradient approaches unity, while the
derivative with respect to larger arguments approaches
zero. The exact opposite is true when � � 1 and gets
smaller, i.e. the derivative with respect to the largest
element has the largest value. This behaviour is as
expected, since for the smin function, the outputs of the
networks other than the minimum do not survive combi-
nation when � is large enough. Therefore, they need not
change. Only the network with the smallest output should
have a non-zero gradient.

The derivatives for the other three soft-min rules are
as follows:

∂V(e)
k

∂zl
j

=
Vj

zl
j

(ln zl
j/ln Vj)��1 �jk (17)

∂V(p)
k

∂zl
j

=
e��zl

j

�
l

e��zl
j

(1 � �zl
j + �Vj)�jk (18)

and

∂V(q)
k

∂zl
j

=
Vj

(zl
j)�+1 �

l

(zl
j)��

(1 � � ln zl
j + � ln Vj)�jk (19)

These derivatives have interpretations similar to Eq. (16),
i.e. when � gets large, the derivatives approach unity only
when j corresponds to the index for the smallest argument.

For a cost function, we use the relative entropy between
the targets tk and the final combined network outputs zk

(i.e. J = 
k ln tk ln tk/zk). As in normal back-propagation

[7], we compute
∂J
∂w

for each weight w in all of the net-

works, and perform gradient descent. When the classifiers
are MLP-based, the difference between independent train-
ing and joint training is that each network has an output-
layer ‘delta’ [7] dependent on the other networks (the hid-
den-layer deltas and the remaining update steps are
identical). This can be seen by noting that

∂J
∂zl

j

= �
k

∂J
∂zk

∂zk

∂zl
j

=
1
Vj

∂Vj

∂zl
j

(zj � tj) (20)

4 Here, �ij is the Dirac delta.

which leads to the definition of the output delta for the
kth output of the lth network:

�l
k =

∂J
∂al

j

= �
j

∂zl
j

∂al
k

∂J
∂zl

j

= �
j

(�jk � zl
k)

zl
j

Vj

∂Vj

∂zl
j

(zj � tj)

In this form, the derivative of the appropriate soft mini-
mum rule (or in fact, any rule possessing a derivative)
may be substituted in place of (∂Vj/∂zl

j) in the above to
obtain the final output layer deltas. First, define
�jk =� (�jk � zl

k) (zj � tj). For each of the soft minimum
functions, we get the following output layer deltas:

�l(s)
k = �

j

�jk �Vj

zl
j
��

(21)

�l(p)
k = �

j

�jk (ln zl
j/ln Vj)��1 (22)

�l(e)
k = �

j

�jk

zl
je��zl

j

�
l

zl
je��zl

j

(1 � �zl
j + �Vj) (23)

�l(q)
k = �

j

�jk

1

(zl
j)� �

l

(zl
j)��

(1 � �zl
j + �Vj) (24)

We provide an intuitive explanation of Eq. (21) which
can be expanded as follows:

�l(s)
k = �Vk

zl
k
��

(zk � tk) � zl
k �

j

(zj � tj) �Vj

zl
k
��

(25)

This equation says that �l(s)
k is the difference of two terms.

First, if there is a single network (L = 1), one obtains the
normal delta for relative entropy, zk � tk. In the general
case where L 	 1, the first term is similar to the normal
delta term for single network training (weights are
decreased if zk 	 tk) except that the difference is weighted
according to how close the output zl

k is to the determining
element. The determining element, in this case, is defined
as the minimum (respectively, maximum) if � 	 1
(respectively, if � � 1). The second term measures how
well the combined classifier system is doing overall on
this training pattern, but this score is an average over all
output units, each weighted according to the proximity of
that unit to the determining element.

Note that with this rule delta, if one network classifier
is right and the other is in error, both networks will be
encouraged to produce the right solution. However, if �
	 0, then the network that was in error will be allowed
to pursue a more relaxed solution (i.e. other outputs will
be encouraged to increase) because during the minimum-
like combination, those additions will not influence the
final result. This delta rule then, in some sense, corrects
both networks in response to errors, but allows (and per-
haps encourages) them to come up with quite different
solutions to the problem.
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Fig. 3 Example classifier combination using psmin rule and � = 1. Top left: 8000 samples from four classes. Top right: The response regions for a
single network classifier. Middle left and right, and bottom left: The response regions for single network classifiers used in the joint classifier. Bottom
right: the final joint classifier, combining the previous three

To further understand our combination rules, we
explore the case of simple Gaussian-mixture classification
data in two dimensions. We compare a single classifier
with that of a combination of three classifiers trained and
then combined using the psmin rule. The results are
presented in Fig. 3. The upper left figure shows the data,
where there are four classes in two-dimensional space,
each class consisting of a mixture of two equally weighted
Gaussians. Note that each class contains two non-contigu-

ous regions in this space. The upper right figure shows
the solution obtained by a three-layer MLP with seven
hidden units and four outputs (one for each class) trained
on this data using the KL-divergence [22] cost function
and a multiple logistic output layer. There is one image
per output unit, each one showing in 2 dimensions the
degree to which that output is active. The shading depicts
log (base 10) probability, and darker shading indicates
higher probability. As can be seen, the four units carve
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up the space so as to classify the data seen in the upper
left. The bottom right plot shows the result of simul-
taneously training and then combining with three (L = 3)
networks using the psmin rule with � = 1.5 Each pixel for
a given two-dimensional location shows zk in Eq. (9),
where k is the class number. As can be seen, the response
regions for the combined system are similar to the single
system (upper right). The middle left and right, and the
lower left plots show the response regions of the three
individual networks, each of which has two hidden units.
Each pixel shows zl

k in Eq. (7), where k is the network
output and l is the network number. The product of these
three response regions (after normalisation as in Eq. (8))
result in the response regions given in the lower right. As
mentioned earlier, psmin with positive beta is like an
AND function, and it can be seen that the lower right
takes a form of intersection of its constituent network out-
puts. The final response, however, is more than just the
intersection because of the effect of the final normalisation
(Eq. (8)).

The delta rules for the other soft minimum functions
and beta values can be understood in an analogous
manner.

Experiments and results

In this section, we evaluate the above combination
schemes on speech data as follows. We report results for
(1) a baseline system using standard combination rules,
(2) the new combination rules applied to independently
trained networks, and (3) jointly trained networks.

We use the OGI Numbers95 telephone-speech continu-
ous numbers corpus [21] with 3233 utterances (610,148
frames) for training, 357 utterances (65,029 frames) for
cross-validation, and 1206 (226,166 frames) for testing.

The classifiers are trained on manual annotations of
phone classes at the frame level; each speech frame in the
training set serves as a training sample. We use an ensem-
ble of two (L = 2) three-layer MLP classifiers each of
which is trained on a different feature representations of
the speech wave-form, viz. ‘RASTA-PLP’ features [27]
and Mel-Frequency Cepstral Coefficients (MFCCs). The
dimensionality of the RASTA-PLP feature space is 18,
that of the MFCC feature space is 26. We use a window
of nine frames at the input level, which corresponds to
approximately 115 ms of speech. The number of input
units in each network is 234 (26 � 9) and 162 (18 � 9),
respectively. The number of hidden units in the MFCC
network is 400; this number was optimised in various
development experiments. To compensate for the different
dimensionalities of the feature spaces the RASTA-PLP
network has 578 hidden units. The number of output units

5 This therefore corresponds to the product rule. We use this rule
and beta value because of visual simplicity. In this simple case, the
error performance of each of the systems is comparable.

Table 1 Results (in % word error rate) for baseline combination experi-
ments using the product, sum, min and max rules

MFCC RASTA min max prod sum

WER 7.0% 8.4% 6.0% 6.7% 5.9% 7.1%

Table 2 Word error rates for combination of individually trained classifiers
with different soft min rules

smin psmin esmin qsmin

WER 5.1% 5.1% 5.3% 5.2%

in both networks is 32 (which equals the number of
phones in the system).

In the baseline system, the MLPs are independently
trained using back-propagation, a KL-divergence [22]
based cost function, and the multiple logistic function in
the output layer. We trained two bootstrap networks and
combined their outputs using the four combination rules
(max, min, product and sum) described above before pass-
ing the acoustic classifier scores to the search component.
The results are shown in Table 1.

Similar to our previous studies [18,23], we found that
the product rule achieves the lowest word error rate.6

After several more (using only product combination of
acoustic scores) training iterations, the best baseline sys-
tem achieved a minimum word error rate of 5.1%.

We then evaluated the combination of individually
trained classifiers using the new combination rules with a
variety of � values in the range �20 to +20 (note again
that negative � values result in soft maximum rules).
Results are reported for the best-performing cases (see
Table 2). The � values for these cases ranged from 1–10,
so that all best-performing combination schemes are min-
like rules. We can see, however, that there is no improve-
ment over the result obtained by the standard product rule
mentioned above.

In our next set of experiments, we jointly trained and
combined the acoustic classifiers using the soft combi-
nation schemes. The results are shown in Table 3. We
notice a marked drop in word error rate for the psmin
rule – the � values in this case was 1, so that this combi-
nation scheme is equivalent to the product rule, as men-
tioned above (see Fig. 2). This reduction in word error
rate is significant with (p � 0.002) and was stable across
a range of experimental conditions.7

6 Word error rate is a standard evaluation measure in speech recog-
nition and is defined as 100 � (1 � (N � I � D � S)/N), where
N is the number of words, I is the number of word insertions, D is
the number of word deletions, and S is the the number of word
substitutions, all determined according to a dynamic programming
alignment between the recogniser output and the correct
transcription.
7 Specifically, conditions where a varying exponential weight factor
was applied to the language model in order to simulate various
degrees of acoustic reliability. This is typically called a language
model weight factor in the speech recognition field.
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Table 3 Word error rates for combination of jointly trained classifiers with
different soft min rules

smin psmin esmin qsmin

WER 5.2% 4.8% 5.2% 5.3%

Table 4 Correlation coefficients for classifier outputs under individual and
joint training schemes

Training scheme smin psmin esmin qsmin

Individual training 0.71 0.68 0.70 0.70
Joint training 0.31 0.07 0.59 0.31

Table 5 Phone classification accuracy rates under individual and joint train-
ing schemes

Training scheme smin psmin esmin qsmin

Individual training 80.13% 80.65% 79.06% 80.07%
Joint training 79.55% 78.22% 78.32% 79.53%

The most natural explanation for this drop in word error
rate would be to assume that the joint training process
reduces the correlation among the networks’ errors, which
improves phone classification accuracy, and thereby word
error rate. To verify this assumption we computed the
error correlation on the outputs of the individually-trained
networks and the jointly-trained networks, as well as the
phone classification accuracies.

The correlation coefficients (see Table 4) indeed show
that error correlation is much lower for the jointly trained
classifiers. However, phone classification (Table 5) does
not improve but even decreases through joint training. The
observation that improvements in phone classification
accuracy does not necessarily lead to a lower word error
rate has in fact often been made in the speech recog-
nition community.

The reason why lower error correlation leads to an
improvement in word recognition stem from the interac-
tions between the phone probability distributions gener-
ated by joint training/combination and the higher-level
search component. A cursory analysis of the average
entropy values of the phone probability distributions
shows that a reduction in word error rate is often achieved
when the average entropy for correctly classified speech
frames is low and the average entropy for incorrectly
classified frames is relatively high. When the frames are
correctly classified and the distributions have low entropy,
the search component is less likely to confuse correct
states with incorrect states (since the correct state gets
almost all of the probability mass). When the frames are
incorrectly classified and the distributions have high
entropy, these local incorrect phone classification
decisions do not result in the correct path being pruned
(or significantly reduced in probability) from the search
space. This is because the set of alternative states receive
probabilities close to that of the top-scoring state.

In our system, both individual classifiers already achi-
eve reasonable phone classification accuracy (77.18% for
the MFCC-based classifier, 78.74% for the RASTA-based
classifier), so much of the time both classifiers will pro-
duce the correct result. The low error correlation, how-
ever, implies that a product-like combination should
improve our results. Specifically, combination using the
product rule will reduce the entropy of the combined out-
put distribution when the individual classifiers agree. Con-
sider, for example, a ternary distribution with probability
values p1 = 0.1, p2 = 0.8, p3 = 0.1 which has entropy H
= 0.92. The normalised product of this distribution with
itself will have the much lower entropy H = 0.23. On the
other hand, in those cases where systems make errors and
assign most of the probability mass to different phone
classes, the entropy of the product distribution will
increase compared to those of the individual classifiers.
Consider, for example, two ternary distributions pA

and pB with values pA
1 = 0.1, pA

2 = 0.8, pA
3 = 0.1 and

pB
1 = 0.8, pB

2 = 0.1, pB
3 = 0.1, each distribution again hav-

ing entropy H = 0.92. In this case, the normalised product
results in an increase in entropy, to H = 1.26.

This leads to the desired kind of interaction between
classifier output and search component described above,
or, more generally, for any pattern recognition system
which performs search over a state space with the goal of
finding the globally optimal path. The classifier training
and combination schemes described in this paper might
therefore also improve the performance of recognition
systems for similar tasks, such as HMM-based hand-
writing recognition.

Comparison with related work

In this section we compare our approach to other tech-
niques previously proposed in the literature. As mentioned
above, a relatively simple way of creating ensembles of
dissimilar classifiers (i.e. classifiers whose errors are
independent) is to employ different randomly selected
training sets, different initial conditions or different types
of classifiers. These methods are somewhat ad hoc and
do not guarantee that the resulting classifiers will in fact
differ in their classification errors. More principled
ensemble training methods include Bagging and Boosting.
Bagging [28] uses different training sets for each classifier
in the ensemble. Each training set is generated by ran-
domly re-sampling the original training set. The outputs
of the resulting classifiers are then combined by simple
averaging. In this method, classifiers are trained indepen-
dently. Boosting [29,30] also uses a re-sampling tech-
nique; here, however, the training samples are chosen
based on the performance of previously trained classifiers.
The probability of selecting a sample for the next training
set is proportional to the number of times it was misclassi-
fied by previously trained classifiers. The outputs of all
classifiers are combined by weighted voting, where the
weights are dependent on the classifiers’ accuracies on the
training set. In this method, classifiers are trained jointly
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only in the sense that the latter classifiers are trained based
on information obtained from earlier already trained clas-
sifiers. The boosting technique has been previously
applied to the same task presented in this work. In that
case, boosting achieved a word error rate of 5.3% [31].
Our best joint training and combination result presented
herein, however, is 4.8% using a system with significantly
fewer parameters.

In Rosen [32] an ensemble of neural network classifiers
is trained using an objective function which includes a
penalty term for correlated network outputs in addition to
the normal mean squared error term. During training, the
correlation penalty term is minimised. This technique was
tested on learning the three-parity problem, a noisy sine
function, and a noisy nonlinear function. Performance,
measured in terms of mean squared error between the net-
works’ outputs and the targets, was shown to improve
when the decorrelation term is included in the objective
function. It should be noted that under this approach, net-
works are also trained sequentially: the modified training
criterion is applied after at least one member of the neural
network ensemble has been trained using a standard train-
ing criterion. The goal is to minimise the correlation
between the current network’s output and that of pre-
viously trained networks. Our technique is different, in
that it trains all ensemble members concurrently rather
than sequentially.

Another explicit attempt at minimising the error corre-
lation in a neural network ensemble is described in [33].
Here, a genetic algorithm is employed to search the space
of possible networks with the objective of finding ensem-
ble member that are both accurate and diverse. From an
initial population of networks, new networks are created
using genetic operators. Those networks are retained in
the population which maximise a combined fitness cri-
terion consisting of an accuracy and a diversity term. This
algorithm was tested on the task of gene sequence localis-
ation and outperformed ensembles created by Bagging or
randomly choosing network structures. The best perform-
ance was obtained by combining genetic search for opti-
mal ensemble members with a training procedure which,
at each iteration, emphasised the training samples which
were misclassified by the current ensemble.

Summary

In this paper, we have presented new classifier
combination techniques that generalise previously used
combination rules, such as the mean, product, min and
max functions. These new continuous and differentiable
forms can be used both for combination of independently
trained classifiers and as objective functions in new joint
classifier training schemes. We demonstrated the appli-
cation of these rules to both combination and joint training
of acoustic classifiers in a speech recognition system and
analysed their effect on word recognition performance.
We found a significant word error rate improvement over
previous combination schemes when training and combin-

ing classifiers with a version of the product rule. An analy-
sis of this result suggests that the improvement is due to
the fact that the joint training scheme produces output
probability distributions which more favourably interact
with the higher-level recognition component that performs
a search for the globally optimal path. In the future, we
shall investigate training the � exponent in addition to the
network weights and extending these schemes to various
other tasks beside speech recognition, such as single
level classification.
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Originality and Contribution

Linear combination rules such as the product, sum, min or max
rule are well-known and widely used in the classifier combination
community. In this paper, we present a set of four new combination
rules which can be interpreted as soft versions of a min (or max)
rule. Depending on the value of the ‘softness’ parameter, these rules
also generalise the other aforementioned rules, as well as a range
of other functions. The new combination rules have a continuous
and differentiable form and can therefore be used not only for the
combination of individually trained classifiers, but they can also be
employed as objective functions for jointly training classifiers. In
this paper we provide both the rules and their derivatives needed
for a joint training scheme. To our knowledge, an analysis of these
or similar trainable rules for combining probability distributions has
not been published before. The mathematical background provided
in this paper is sufficient to enable other researchers to use these
combination schemes for any pattern classification task of their
choice.

We evaluate these rules by applying them to phone classifiers in
a speech recognition system. Our results show a significant
improvement in word recognition performance when using classi-
fiers trained jointly with a soft version of the product rule. Analysis
of these results indicates that the gain in performance stems from
the improved interaction of sequential classification components in
the recognition system due to the joint training approach. A further
contribution of this paper is the analysis of optimal conditions for
classifier combination in a multi-level as opposed to a single-level
classification system.


