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Abstract.

Graphical models provide a promising paradigm to study both existing and novel
techniques for automatic speech recognition. This paper first provides a brief overview
of graphical models and their uses as statistical models. It is then shown that the statis-
tical assumptions behind many pattern recognition techniques commonly used as part
of a speech recognition system can be described by a graph — this includes Gaussian dis-
tributions, mixture models, decision trees, factor analysis, principle component analysis,
linear discriminant analysis, and hidden Markov models. Moreover, this paper shows
that many advanced models for speech recognition and language processing can also
be simply described by a graph, including many at the acoustic-, pronunciation-, and
language-modeling levels. A number of speech recognition techniques born directly out
of the graphical-models paradigm are also surveyed. Additionally, this paper includes
a novel graphical analysis regarding why derivative (or delta) features improve hidden
Markov model-based speech recognition by improving structural discriminability. It also
includes an example where a graph can be used to represent language model smoothing
constraints. As will be seen, the space of models describable by a graph is quite large. A
thorough exploration of this space should yield techniques that ultimately will supersede
the hidden Markov model.
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1. Introduction. Since its inception, the field of automatic speech
recognition (ASR) [129, 39, 21, 164, 83, 89, 117, 80] has increasingly come
to rely on statistical methodology, moving away from approaches that were
initially proposed such as template matching, dynamic time warping, and
non-probabilistically motivated distortion measures. While there are still
many successful instances of heuristically motivated techniques in ASR, it
is becoming increasingly apparent that a statistical understanding of the
speech process can only improve the performance of an ASR system. Per-
haps the most famous example is the hidden Markov model [129], currently
the predominant approach to ASR and a statistical generalization of earlier
template-based practices.

A complete state-of-the-art ASR system involves numerous separate
components, many of which are statistically motivated. Developing a thor-
ough understanding of a complete ASR system, when it is seen as a collec-
tion of such conceptually distinct entities, can take some time. A impres-
sive achievement would be an over-arching and unifying framework within
which most statistical ASR methods can be accurately and succinctly de-
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scribed. Fortunately, a great many of the successful algorithms used by
ASR systems can be described in terms of graphical models.

Graphical models (GMs) are a flexible statistical abstraction that have
been successfully used to describe problems in a variety of domains rang-
ing from medical diagnosis and decision theory to time series prediction
and signal coding. Intuitively, GMs merge probability theory and graph
theory. They generalize many techniques used in statistical analysis and
signal processing such as Kalman filters [70], auto-regressive models [110],
and many information-theoretic coding algorithms [53]. They provide a
visual graphical language with which one may observe and reason about
some of the most important properties of random processes, and the un-
derlying physical phenomena these processes are meant to represent. They
also provide a set of computationally efficient algorithms for probability
calculations and decision-making. Overall, GMs encompass an extremely
large family of statistical techniques.

GMs provide an excellent formalism within which to study and under-
stand ASR algorithms. With GMs, one may rapidly evaluate and under-
stand a variety of different algorithms, since they often have only minor
graphical differences. As we will see in this paper, many of the existing
statistical techniques in ASR are representable using GMs — apparently
no other known abstraction possesses this property. And even though the
set of algorithms currently used in ASR is large, this collection occupies
a relatively small volume within GM algorithm space. Because so many
existing ASR successes lie within this under-explored space, it is likely that
a systematic study of GM-based ASR algorithms could lead to new more
successful approaches to ASR.

GMs can also help to reduce programmer time and effort. First, when
described by a graph, it is easy to see if a statistical model appropriately
represents relevant information contained in a corpus of (speech) data.
GMs can help to rule out a statistical model which might otherwise require
a large amount of programming effort to evaluate. A GM moreover can be
minimally designed so that it has representational power only where needed
[10]. This means that a GM-based system might have smaller computa-
tional demands than a model designed without the data in mind, further
easing programmer effort. Secondly, with the right set of computational
tools, many considerably different statistical algorithms can be rapidly eval-
uated in a speech recognition system. This is because the same underlying
graphical computing algorithms are applicable for all graphs, regardless of
the algorithm represented by the graph. Section 5 briefly describes the new
graphical models toolkit (GMTK)[13], which is one such tool that can be
used for this purpose.

Overall, this paper argues that it is both pedagogically and scientifi-
cally useful to portray ASR algorithms in the umbrage of GMs. Section 2
provides an overview of GMs showing how they relate to standard statistical
procedures. It also surveys a number of GM properties (Section 2.5), such
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as probabilistic inference and learning. Section 3 casts many of the meth-
ods commonly used for automatic speech recognition (ASR) as instances
of GMs and their associated algorithms. This includes principle compo-
nent analysis [44], linear discriminant analysis (and its quadratic and het-
eroscedastic generalizations) [102], factor analysis, independent component
analysis, Gaussian densities, multi-layered perceptrons, mixture models,
hidden Markov models, and many language models. This paper further
argues that developing novel ASR techniques can benefit from a GM per-
spective. In doing so, it surveys some recent techniques in speech recogni-
tion, some of which have been developed without GMs explicitly in mind
(Section 4), and some of which have (Section 5).

In this paper, capital letters will refer to random variables (such as X,
Y and @) and lower-case letters will refer to values they may take on. Sets
of variables may be referred to as X4 or Qg where A and B are sets of
indices. Sets may be referred to using a Matlab-like range notation, such
as 1: N which indicates all indices between 1 and N inclusive. Using this
notation, one may refer to a length 1" vector of random variable taking on
a vector of values as P(X1.7 = x1.7).

2. Overview of Graphical Models. This section briefly reviews
graphical models and their associated algorithms — those well-versed in
this methodology may wish to skip directly to Section 3.

Broadly speaking, graphical models offer two primary features to those
interested in working with statistical systems. First, a GM may be viewed
as an abstract, formal, and visual language that can depict important prop-
erties (conditional independence) of natural systems and signals when de-
scribed by multi-variate random processes. There are mathematically pre-
cise rules that describe what a given graph means, rules that associate with
a graph a family of probability distributions. Natural signals (those that
are not purely random) have significant statistical structure, and this can
occur at multiple levels of granularity. Graphs can show anything from
causal relations between high-level concepts [122] down to the fine-grained
dependencies existing within the neural code [5]. Second, along with GMs
come a set of algorithms for efficiently performing probabilistic inference
and decision making. Typically intractable, the GM inference procedures
and their approximations exploit the inherent structure in a graph in a way
that can significantly reduce computational and memory demands relative
to a naive implementation of probabilistic inference.

Simply put, graphical models describe conditional independence prop-
erties amongst collections of random variables. A given GM is identical to
a list of conditional independence statements, and a graph represents all
distributions for which all these independence statements are true. A ran-
dom variable X is conditionally independent of a different random variable
Y given a third random variable Z under a given probability distribution
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p(+), if the following relation holds:
pX =Y =y|Z=2)=pX =2[Z=2)pY =y|Z = =)

for all z, y, and z. This is written X 1LY |Z (notation first introduced
n [37]) and it is said that “X is independent of ¥ given Z under p(-)”.
This has the following intuitive interpretation: if one has knowledge of Z,
then knowledge of Y does not change one’s knowledge of X and vice versa.
Conditional independence is different from unconditional (or marginal) in-
dependence. Therefore, neither X 11'Y implies X 1L Y|Z nor vice versa.
Conditional independence is a powerful concept — using conditional inde-
pendence, a statistical model can undergo enormous changes and simplifi-
cations. Moreover, even though conditional independence might not hold
for certain signals, making such assumptions might yield vast improvements
because of computational, data-sparsity, or task-specific reasons (e.g., con-
sider the hidden Markov model with assumptions that obviously do not
hold for speech [10], but that nonetheless empirically appear benign, and
actually beneficial as argued in Section 3.9). Formal properties of condi-
tional independence are described in [159, 103, 122, 37].

A GM [103, 34, 159, 122, 84] is a graph § = (V, E) where V is a set
of vertices (also called nodes or random variables) and the set of edges
E is a subset of the set V x V. The graph describes an entire family
of probability distributions over the variables V. A variable can either
be scalar- or vector-valued, where in the latter case the vector variable
implicitly corresponds to a sub-graphical model over the elements of the
vector. The edges F, depending on the graph semantics (see below), encode
a set of conditional independence properties over the random variables. The
properties specified by the GM are true for all members of its associated
family.

Four items must be specified when using a graph to describe a particu-
lar probability distribution: the GM semantics, structure, implementation,
and parameterization. The semantics and the structure of a GM are inher-
ent to the graph itself, while the implementation and parameterization are
implicit within the underlying model.

2.1. Semantics. There are many types of GMs, each one with differ-
ing semantics. The set of conditional independence assumptions specified
by a particular GM, and therefore the family of probability distributions it
represents, can be different depending on the GM semantics. The seman-
tics specifies a set of rules about what is or is not a valid graph and what
set of distributions correspond to a given graph. Various types of GMs
include directed models (or Bayesian networks) [122, 84],! undirected net-
works (or Markov random fields) [27], factor graphs [53, 101], chain graphs

INote that the name “Bayesian network” does not imply Bayesian statistical infer-
ence. In fact, both Bayesian and non-Bayesian Bayesian networks may exist.
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[103, 133] which are combinations of directed and undirected GMs, causal
models [123], decomposable models (an important sub-family of models
[103]), dependency networks [76], and many others. In general, different
graph semantics will correspond to different families of distributions, but
overlap can exist (meaning a particular distribution might be describable
by two graphs with different semantics).

A Bayesian network (BN) [122, 84, 75] is one type of directed GM
where the graph edges are directed and acyclic. In a BN, edges point from
parent to child nodes, and such graphs implicitly portray factorizations
that are simplifications of the chain rule of probability, namely:

p(X1n) = HP(XHXl:z‘—l) = Hp(Xile).

The first equality is the probabilistic chain rule, and the second equality
holds under a particular BN, where 7; designates node i’s parents according
to the BN. A Dynamic Bayesian Network (DBN) [38, 66, 56] has exactly
the same semantics as a BN, but is structured to have a sequence of clusters
of connected vertices, where edges between clusters point in the direction
of increasing time. DBNs are particularly useful to describe time signals
such as speech, and as can be seen from Figure 2 many techniques for ASR
fall under this or the BN category.

Several equivalent schemata exist that formally define a BN’s condi-
tional independence relationships [103, 122, 84]. The idea of d-separation
(or directed separation) is perhaps the most widely known: a set of variables
A is conditionally independent of a set B given a set C' if A is d-separated
from B by C. D-separation holds if and only if all paths that connect any
node in A and any other node in B are blocked. A path is blocked if it
has a node v with either: 1) the arrows along the path do not converge
at v (i.e., serial or diverging at v) v € C; or 2) the arrows along the path
do converge at v, and neither v nor any descendant of v is in C. Note
that C can be the empty set in which case d-separation encodes standard
statistical independence.

From d-separation, one may compute a list of conditional indepen-
dence statements made by a graph. This set of probability distributions
for which this list of statements is true is precisely the set of distributions
represented by the graph. Graph properties equivalent to d-separation in-
clude the directed local Markov property [103] (a variable is conditionally
independent of its non-descendants given its parents), and the Bayes-ball
procedure [143] which is a simple algorithm that one can use to read condi-
tional independence statements from graphs, and which is arguably simpler
than d-separation. It is assumed henceforth that the reader is familiar with
either d-separation or some equivalent rule.

Conditional independence properties in undirected graphical models
(UGMs) are much simpler than for BNs, and are specified using graph
separation. For example, assuming that X 4, Xp, and X are disjoint
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sets of nodes in a UGM, X 41l Xg|X¢ is true when all paths from any
node in X4 to any node in Xp intersect some node in X¢. In a UGM,
a distribution may be described as the factorization of potential functions
where each potential function operates only on collections of nodes that
form a clique in the graph. A clique is a set of nodes that are pairwise
connected [84].

BNs and DGMs are not the same. Despite the fact that BNs have
complicated semantics, they are useful for a variety of reasons. One is
that BNs can have a causal interpretation, where if node A is a parent
of B, A might be thought of as a cause of B. A second reason is that
the family of distributions associated with BNs is not the same as the
family associated with UGMs — there are some useful probability models
that are concisely representable with BNs but that are not representable
at all with UGMs (and vice versa). This issue will arise in Section 3.1
when discussing Gaussian densities. UGMs and BNs do have an overlap,
however, and the family of distributions corresponding to this intersection
is known as the decomposable models [103]. These models have important
properties relating to efficient probabilistic inference (see below).

In general, a lack of an edge between two nodes does not imply that
the nodes are independent. The nodes might be able to influence each other
indirectly via an indirect path. Moreover, the existence of an edge between
two nodes does not imply that the two nodes are necessarily dependent
— the two nodes could still be independent for certain parameter values
or under certain conditions (see later sections). A GM guarantees only
that the lack of an edge implies some conditional independence property,
determined according to the graph’s semantics. It is therefore best, when
discussing a given GM, to refer only to its (conditional) independence rather
than its dependence properties — it is more accurate to say that there is
an edge between A and B than to say that A and B are dependent.

Originally BNs were designed to represent causation, but more re-
cently, models with semantics [123] more precisely representing causality
have been developed. Other directed graphical models have been designed
as well [76], and can be thought of as the general family of directed graph-
ical models (DGMs).

2.2. Structure. A graph’s structure, the set of nodes and edges, de-
termines the set of conditional independence properties for the graph un-
der a given semantics. Note that more than one GM might correspond
to exactly the same conditional independence properties even though their
structure is entirely different (see the left two models in Figure 1). In this
case, multiple graphs will correspond to the same family of probability dis-
tributions. In such cases, the various GMs are said to be Markov equivalent
[153, 154, 77]. In general, it is not immediately obvious with complicated
graphs how to visually determine if Markov equivalence holds, but algo-
rithms are available that can determine the members of an equivalence class
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FIGURE 1. This figure shows four BNs with different arrow directions over the same
random variables, A, B, and C. On the left side, the variables form a three-variable
first-order Markov chain A — B — C. In the middle graph, the same conditional
independence statement is realized even though one of the arrow directions has been
reversed. Both these networks state that AL C|B. The right network corresponds to
the property AILC but not that AIC|B.

[153, 154, 114, 30].

Nodes in a graphical model can be either observed, or hidden. If a
variable is observed, it means that its value is known, or that data (or
“evidence”) is available for that variable. If a variable is hidden, it currently
does not have a known value, and all that is available is the conditional
distribution of the hidden variables given the observed variables (if any).
Hidden nodes are also called confounding, latent, or unobserved variables.
Hidden Markov models are so named because they possess a Markov chain
that, in some cases, contains only hidden variables. Note that the graphs in
GMs do not show the zeros that exist in the stochastic transition matrices of
a Markov chain — GMs, rather, encode statistical independence properties
of a model (see also Section 3.7).

A node in a graph might sometimes be hidden and at other times
be observed. With an HMM, for example, the “hidden” chain might be
observed during training (because a phonetic or state-level alignment has
been provided) and hidden during recognition (because the hidden variable
values are not known for test speech data). When making the query “is
AL B|C?”, it is implicitly assumed that C' is observed. A and B are the
nodes being queried, and any other nodes in the network not listed in the
query are considered hidden. Also, when a collection of sampled data exists
(say as a training set), some of the data samples might have missing values
each of which would correspond to a hidden variable. The EM algorithm
[40], for example, can be used to train the parameters of hidden variables.

Hidden variables and their edges reflect a belief about the underlying
generative process lying behind the phenomenon that is being statistically
represented. This is because the data for these hidden variables is either
unavailable, is too costly or impossible to obtain, or might not exist since
the hidden variables might only be hypothetical (e.g., specified based on
human-acquired knowledge about the underlying domain). Hidden vari-
ables can be used to indicate the underlying causes behind an information
source. In speech, for example, hidden variables can be used to represent
the phonetic or articulatory gestures, or more ambitiously, the originating
semantic thought behind a speech waveform. One common way of using
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GMs in ASR, in fact, is to use hidden variables to represent some condition
known during training and unknown during recognition (see Section 5).

Certain GMs allow for what are called switching dependencies [65,
115, 16]. In this case, edges in a GM can change as a function of other
variables in the network. An important advantage of switching dependen-
cies is the reduction in the required number of parameters needed by the
model. A related construct allows GMs to have optimized local probability
implementations [55] using, for example, decision trees.

It is sometimes the case that certain observed variables are used only
as conditional variables. For example, consider the graph B — A which
implies a factorization of the joint distribution P(A, B) = P(A|B)P(B). In
many cases, it is not necessary to represent the marginal distribution over
B. In such cases B is a “conditional-only” variable, meaning is always and
only to the right of the conditioning bar. In this case, the graph represents
P(A|B). This can be useful in a number of applications including classi-
fication (or discriminative modeling), where we might only be interested
in posterior distributions over the class random variable, or in situations
where additional observations (say Z) exist that are marginally indepen-
dent of a class variable (say C') but that are dependent conditioned on other
observations (say X ). This can be depicted by the graph C' — X «— Z,
where it is assumed that the distribution over Z is not represented.

Often, the true (or the best) structure for a given task is unknown.
This can mean that either some of the edges or nodes (which can be hid-
den) or both can be unknown. This has motivated research on learning
the structure of the model from the data, with the general goal to produce
a structure that accurately reflects the important statistical properties in
the data set. These can take a Bayesian [75, 77] or frequentist point of
view [25, 99, 75]. Structure learning is akin to both statistical model se-
lection [107, 26] and data mining [36]. Several good reviews of structure
learning are presented in [25, 99, 75]. Structure learning from a discrimina-
tive perspective, thereby producing what is called discriminative generative
models, was proposed in [10].

Figure 2 depicts a topological hierarchy of both the semantics and
structure of GMs, and shows where different models fit in, including several
ASR components to be described in Section 3.

2.3. Implementation. When two nodes are connected by a depen-
dency edge, the local conditional probability representation of that depen-
dency may be called its implementation. An edge between variable X and
Y can represent a lack of independence in a number of ways depending
on if the variables are discrete or continuous. For example, one might use
discrete conditional probability tables (CPTs) [84], compressed tables [55],
decision trees [22], or even a deterministic function (in which case GMs
may represent data-flow [1] graphs, or may represent channel coding algo-
rithms [53]). A node in a GM can also depict a constant input parameter
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FIGURE 2. A topology of graphical model semantics and structure

since random variables can themselves be constants. Alternatively, the
dependence might be linear regression models, mixtures thereof, or non-
linear regression (such as a multi-layered perceptron [19], or a STAR [149]
or MARS [54] model). In general, different edges in a graph will have
different implementations.

In UGMs, conditional distributions are not explicitly represented.
Rather a joint distribution over all the variables is constructed using a
product of clique potential functions as mentioned in Section 2.1. In gen-
eral the clique potentials can be arbitrary functions, although certain types
are commonly used such as Gibbs or Boltzmann distributions [79]. Many
such models fall under what are known as exponential models [44]. The
implementation of a dependency in an UGM, therefore, is implicitly spec-
ified via these functions in that they specify the way in which subsets of
variables, depending on their values, can influence the resulting probability

2.4. Parameterization. The parameterization of a model corre-
sponds to the parameter values of a particular implementation in a partic-
ular structure. For example, with linear regression, parameters are simply
the regression coeflicients; for a discrete probability table the parameters
are the table entries. Since parameters of random distributions can them-
selves be seen as nodes, Bayesian approaches are easily represented [75]
with GMs.

Many algorithms exist for training the parameters of a graphical
model. These include maximum likelihood [44] such as the EM algorithm
[40], discriminative or risk minimization approaches [150], gradient descent
[19], sampling approaches [109], or general non-linear optimization [50].
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The choice of algorithm depends both on the structure and implementa-
tion of the GM. For example, if there are no hidden variables, an EM
approach is not required. Certain structural properties of the GM might
render certain training procedures less crucial to the performance of the
model [16, 47].

2.5. Efficient Probabilistic Inference. A key application of any
statistical model is to compute the probability of one subset of random
variables given values for some other subset, a procedure known as proba-
bilistic inference. Inference is essential both to make predictions based on
the model and to learn the model parameters using, for example, the EM
algorithm [40, 113]. One of the critical advantages of GMs is that they offer
procedures for making exact inference as efficient as possible, much more
so than if conditional independence is ignored or is used unwisely. And
if the resulting savings is not enough, there are GM-inspired approximate
inference algorithms that can be used.

F—>E—>0)—20—>B)—>®)

FIGURE 3. The graph’s independence properties are used to move sums inside of
factors.

Exact inference can in general be quite computationally costly. For ex-
ample, suppose there is a joint distribution over 6 variables p(a, b, ¢, d, e, f)
and the goal is to compute p(a|f). This requires both p(a, f) and p(f), so
the variables b, ¢, d, e must be “marginalized”, or integrated away to form
p(a, f). The naive way of performing this computation would entail the
following sum:

p<a’f): Z p(a,b,c,d,e,f)

b,c,d,e

Supposing that each variable has K possible values, this computation re-
quires O(K®) operations, a quantity that is exponential in the number of
variables in the joint distribution. If, on the other hand, it was possible
to factor the joint distribution into factors containing fewer variables, it
would be possible to reduce computation significantly. For example, under
the graph in Figure 3, the above distribution may be factored as follows:

p(a, b,c,d,e, f) = p(a|b)p(b|c)p(c|d, e)p(d|e, f)p(e|f)p(f)

so that the sum

pla, f) =p(£) D _p(alb) Y pble) Y pleld,e) > p(dle, f)p(el f)
b c d e
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requires only O(K3) computation. Inference in GMs involves formally de-
fined manipulations of graph data structures and then operations on those
data structures. These operations provably correspond to valid operations
on probability equations, and they reduce computation essentially by mov-
ing sums, as in the above, as far to the right as possible in these equations.

The graph operations and data structures needed for inference are
typically described in their own light, without needing to refer back to the
original probability equations. One well-known form of inference proce-
dure, for example, is the junction tree (JT) algorithm [122, 84]. In fact,
the commonly used forward-backward algorithm [129] for hidden Markov
models is just a special case of the junction tree algorithm [144], which is
a special case of the generalized distributive law [2].

The JT algorithm requires that the original graph be converted into a
junction tree, a tree of cliques with each clique containing nodes from the
original graph. A junction tree possesses the running intersection property,
where the intersection between any two cliques in the tree is contained
in all cliques in the (necessarily) unique path between those two cliques.
The junction tree algorithm itself can be viewed as a series of messages
passing between the connected cliques of the junction tree. These messages
ensure that the neighboring cliques are locally consistent (i.e., that the
neighboring cliques have identical marginal distributions on those variables
that they have in common). If the messages are passed in a particular order,
called the message passing protocol [85], then because of the properties of
the junction tree, local consistency guarantees global consistency, meaning
that the marginal distributions on all common variables in all cliques are
identical, meaning that inference is correct. Because only local operations
are required in the procedure, inference can be fast.

For the junction tree algorithm to be valid, however, a decomposable
model must first be formed from the original graph. Junction trees exist
only for decomposable models, and a message passing algorithm can prov-
ably be shown to yield correct probabilistic inference only in that case. It
is often the case, however, that a given DGM or UGM is not decomposable.
In such cases it is necessary to form a decomposable model from a general
GM (directed or otherwise), and in doing so make fewer conditional inde-
pendence assumptions. Inference is then solved for this larger family of
models. Solving inference for a larger family still of course means that in-
ference has been solved for the smaller family corresponding to the original
(possibly) non-decomposable model.

Two operations are needed to transform a general DGM into a de-
composable model: moralization and triangulation. Moralization joins the
unconnected parents of all nodes and then drops all edge directions. This
procedure is valid because more edges means fewer conditional indepen-
dence assumptions or a larger family of probability distributions. Moral-
ization is required to ensure that the resulting UGM does not disobey any
of the conditional independence assumptions made by the original DGM. In
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other words, after moralizing, it is assured that the UGM will make no in-
dependence assumption that is not made by the original DGM. Otherwise,
inference might not be correct.

After moralization, or if starting from a UGM to begin with, trian-
gulation is necessary to produce a decomposable model. The set of all
triangulated graphs corresponds exactly to the set of decomposable mod-
els. The triangulation operation [122, 103] adds edges until all cycles in
the graph (of length 4 or greater) contain a pair of non-consecutive nodes
(along the cycle) that are connected by an edge (i.e., a chord) not part
of the cycle edges. Triangulation is valid because more edges enlarge the
set of distributions represented by the graph. Triangulation is necessary
because only for triangulated (or decomposable) graphs do junction trees
exists. A good survey of triangulation techniques is given in [98].

Finally, a junction tree is formed from the triangulated graph by, first,
forming all maximum cliques in the graph, next connecting all of the cliques
together into a “super” graph, and finally finding a maximum spanning tree
[32] amongst that graph of maximum cliques. In this case, the weight of an
edge between two cliques is set to the number of variables in the intersection
of the two cliques.

For a discrete-node-only network, junction tree complexity is
O e Ilyee [v]) where C' is the set of cliques in the junction tree, c is the
set of variables contained within a clique, and |v| is the number of possible
values of variable v — i.e., the algorithm is exponential in the clique sizes,
a quantity important to minimize during triangulation. There are many
ways to triangulate [98], and unfortunately the operation of finding the
optimal triangulation is itself NP-hard. For an HMM, the clique sizes are
N2, where N is the number of HMM states, and there are T cliques leading
to the well known O(T'N?) complexity for HMMs. Further information on
the junction tree and related algorithms can be found in [84, 122, 34, 85].

Exact inference, such as the above, is useful only for moderately com-
plex networks since inference is NP-hard in general [31]. Approximate
inference procedures can, however, be used when exact inference is not
feasible. There are several approximation methods including variational
techniques [141, 81, 86], Monte Carlo sampling methods [109], and loopy
belief propagation [156]. Even approximate inference can be NP-hard how-
ever [35]. Therefore, it is always important to use a minimal model, one
with least possible complexity that still accurately represents the important
aspects of a task.

3. Graphical Models and Automatic Speech Recognition. A
wide variety of algorithms often used in state-of-the-art ASR systems can
easily be described using GMs, and this section surveys a number of them.
While many of these approaches were developed without GMs in mind, they
turn out to have surprisingly simple and elucidating network structures.
Given an understanding of GMs, it is in many cases easier to understand the
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technique by looking first at the network than at the original algorithmic
description.

As is often done, the following sections will separate ASR algorithms
into three categories: acoustic, pronunciation, and language modeling.
Each of these are essentially statistical models about how the speech data
that we observe is generated. Different statistical models, and inference
within these models, leads us to the different techniques, but each are es-
sentially special cases of the more general GM techniques described above.

3.1. Acoustic Modeling: Gaussians. The most successful and
widely used density for acoustic modeling in ASR systems is the multi-
dimensional Gaussian. The Gaussian density has a deceptively simple
mathematical description that does not disclose many of the useful prop-
erties this density possesses (such as that first and second moments com-
pletely characterize the distribution). In this section, it will be shown how
Gaussians can be viewed as both undirected and directed GMs, and how
each of these views describe distinct properties of the Gaussian.

An N-dimensional Gaussian density has the form:

p(z) = p(z1.n) = N(z1.n5 1, 2) = \27T2|71/267%(%”)Tz_l(m*”)

where p is an N-dimensional mean vector, and X is an N x N covari-
ance matrix. Typically, K = ¥ ~! refers to the inverse covariance (or the
concentration) matrix of the density.

It will be useful to form partitions of a vector x into a number of parts.
For example, a bi-partition of = [z4 2] may be formed, where x4 and
x g are sub-vectors of z [68], and where the sum of the dimensions of z 4 and
xp equals N. Tri-partitions = [x4 p z¢] may also be formed. In this
way, the mean vector y = [ up|?, and the covariance and concentration
matrices can be so partitioned as

EAA EAB KAA KAB
E = d K = .
< Ypa XBB ) o ( Kpa Kpp )

Conventionally, ZZZ = (Xa4)7 1, so that the sub-matrix operator takes
precedence over the matrix inversion operator. A well known property of
Gaussians is that if ¥ 45 = 0 then x4 and xp are marginally independent

(xallzp).
A more interesting and less well-known property of a Gaussian is that
for a given tri-partition = [x4 zp x¢| of x, and corresponding tri-

partitions of p and K, then x4l xg|ze if and only if, in the corresponding
tri-partition of K, K p = 0, a property that may be proven quite readily.
For any distribution, the chain rule of probability says

p(x) = p(zalrp)p(zp).

When p(z) is a Gaussian density, the marginal distribution p(zpg) is also
Gaussian with mean pp and covariance ¥ pp. Furthermore, p(z4|zp) is a
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Gaussian having a “conditional” mean and covariance [111, 4]. Specifically,
the distribution for x4 given xp is a conditional Gaussian with an xp-
dependent mean vector

pas = pa+ XapXpp(es — 1p)
and a fixed covariance matrix
Yap =244 — SapXppiaa.

This means that, if the two vectors X 4 and Xp are jointly Gaussian, then
given knowledge of one vector, say X g, the result is a Gaussian distribution
over X 4 that has a fixed variance for all values of x5 but has a mean that
is an affine transformation of the particular value of z . Most importantly,
it can be shown that K44, the upper-left partition of the original concen-
tration matrix K, is the inverse of the conditional covariance, specifically
Kaa =X, [103, 159].

Let the partition X4 be further partitioned to form the sub-bi-
partition x4 = [Taq Zap], meaning that * = [x4, Tap xp]. A similar
sub-partition is formed of the concentration matrix

Kan = Kisaa Kaaa
Kaava Kaaw |-

Setting Kaaqp = 0 implies that za, 1l x4, but only when conditioning
on zp. This yields the result desired, but with the matrix and vector
partitions renamed. Therefore, zeros in the inverse covariance matrix result
in conditional independence properties for a Gaussian, or more specifically
if K;; = 0 then XilXj|X{1:N}\{i_’j}.

FIGURE 4. A Gaussian viewed as an UGM. On the left, there are no independence
assumptions. On the right, Xo Al X3|{X1, X4}.

This property of Gaussians corresponds to their view as an UGM. To
see this, first consider a fully connected UGM with N nodes, something that
represents all Gaussians. Setting an entry, say K;;, to zero corresponds
to the independence property above, which corresponds in the UGM to
removing an edge between variable x; and x; (see [103] for a formal proof
where the pairwise Markov property and the global Markov property are
related). This is shown in Figure 4. Therefore, missing edges in a Gaussian
UGM correspond exactly to zeros in the inverse covariance matrix.
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A Gaussian may also be viewed as a BN, and in fact many BNs. Unlike
with a UGM, to form a Gaussian BN a specific variable ordering must first
be chosen, the same ordering used to factor the joint distribution with the
chain rule of probability. A Gaussian can be factored

p(z1:n) Hp Tilzit1:n)

according to some fixed but arbitrarily chosen variable ordering. Each
factor is a Gaussian with conditional mean

-1
Mili+1:N = i + Yot t:N (Zig1:Ni+1:N) T (@ig1:N — Hit1:N)
and conditional covariance
—1
Zijir1:N = Bii — Biir 1N (Bir 1N 1:N) T Dit 1Ny

both of which are unique for a given ordering (these are an application
of the conditional Gaussian formulas above, but with A and B set to the
specific values {i} and {(i + 1): N} respectively). Therefore, the chain rule
expansion can be written:

p($1;N) _ H(27T2i|i+1:N)—1/26—%(Ii—ﬂz‘|i+1;N)2Zi|i1+1:N (31)
K3

An identical decomposition of this Gaussian can be produced in a
different way. Every concentration matrix K has a unique factorization
K = U7 DU where U is a unit upper-triangular matrix and D is diagonal
[111, 73]. A unit triangular matrix is a triangular matrix that has ones on
the diagonal, and so has a unity determinant (so is non-singular), therefore,
|K| = |D|. This corresponds to a form of Cholesky factorization K = RTR,
where R is upper triangular, D'/? = diag(R) is the diagonal portion of R,

and R = D'/2U. A Gaussian density can therefore be represented as:

p(x) _ (271_)—11/2|D|1/26—%(I—H)TUTDU(QU—M)

The unit triangular matrices, however, can be “brought” inside the squared
linear terms by considering the argument within the exponential

Uz = 1)) "DU(x — 1)

(x = w)"UT DUz — 1) = (
~ (U - )" DUz — fi)

— (I-B)a— )" D((I - B)a — i)
~ (@

— Br— )" D(x - Bx - i)

where U = I — B, I is the identity matrix, B is an upper triangular ma-
trix with zeros along the diagonal, and i = Up is a new mean. Again,
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this transformation is unique for a given Gaussian and variable ordering.
This process exchanges K for a diagonal matrix D, and produces a linear
auto-regression of x onto itself, all while not changing the Gaussian nor-
malization factor contained in D. Therefore, a full-covariance Gaussian
can be represented as a conditional Gaussian with a regression on z itself,
yielding the following:

Lo—Br—i) T D(z—Bx—ii
p(z1.n) = (21)"Y2|D| /22 (@ Ba—i)" D(@—Ba—p)

In this form the Gaussian can be factored where the i*" factor uses only
the i*" row of B:

pan) = T[2m) V2D 2 b Bonsmmian D (33)

i

When this is equated with Equation (3.1), and note is taken of the unique-
ness of both transformations, it is the case that

-1
Biit1:8 = i8N (Cig1Nit1:n) T

and that fi; = p; — Bjiy1.nti+1:n. This implies that the regression coef-
ficients within B are a simple function of the original covariance matrix.
Since the quantities in the exponents are identical for each factor (which
are each an appropriately normalized Gaussian), the variance terms D;;
must satisfy:
Di; = Ei\ilJrl:N

meaning that the D;; values are conditional variances.

Using these equations we can now show how a Gaussian can be viewed
as a BN. The directed local Markov property of BNs states that the joint
distribution may be factorized as follows:

p(zin) = Hp(%kﬂm)

where m; C {(i + 1): N} are parents of the variable ;. When this is con-
sidered in terms of Equation (3.2), it implies that the non-zero entries of
B; i11:n correspond to the set of parents of node ¢, and the zero entries
correspond to missing edges. In other words (under a given variable order-
ing) the B matrix determines the conditional independence statements for
a Gaussians when viewed as a DGM, namely X; 1L X¢(;11y.n}\r, | X7, if and
only if the entries B; ((j4+1):N}\x, are zero.

It is important to realize that these results depend on a particular
ordering of the variables X.n. A different ordering might yield a different

2Standard notation is used here, where if A and B are sets, A\ B is the set of
elements in A that are not in B.
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B matrix, possibly implying different independence statements (depending
on if the graphs are Markov equivalent, see Section 2.2). Moreover, a B
matrix can be sparse for one ordering, but for a different ordering the B
matrix can be dense, and zeros in B might or might not yield zeros in
K=(I-B)"D(I—-B)orX=K"! and vice versa.

This means that a full covariance Gaussian with N(N + 1)/2 non-
zero covariance parameters might actually employ fewer than N(N +1)/2
parameters, since it is in the directed domain where sparse patterns of
independence occur. For example, consider a 4-dimensional Gaussian with
a B matrix such that Bis = Bis = B1y = Bsy = B3y = 1, and along
with the other zero B entries, take Boz = 0. For this B matrix and when
D = I, neither the concentration nor the covariance matrix has any zeros,
although they are both full rank and it is true that X5 Il X3|X4. It must be
that K possesses redundancy in some way, but in the undirected formalism
it is impossible to encode this independence statement and one is forced to
generalize and to use a model that possesses no independence properties.

The opposite can occur as well, where zeros exist in K or ¥, and less
sparsity exists in the B matrix. Take, for example the matrix,

5 2 0 4
2910
K= 01 5 3
4 0 3 6

This concentration matrix states that X3 U X3/{X3, X4} and
Xo L Xy4|{X1, X3}, but the corresponding B matrix has only a single
zero in its upper portion reflecting only the first independence statement.

It was mentioned earlier that UGMs and DGMs represent different
families of probability distributions, and this is reflected in the Gaussian
case above by a reduction in sparsity when moving between certain B and
K matrices. It is interesting to note that Gaussians are able to repre-
sent any of the dependency structures captured either in a DGM (via an
appropriate order of the variables and zeros in the B matrix) or a UGM
(with appropriately placed zeros in the concentration matrix K). There-
fore, Gaussians, along with many other interesting and desirable theoretical
properties, are quite general in terms of their ability to possess conditional
independence relationships.

The question then becomes what form of Gaussian should be used, a
DGM or a UGM, and if a DGM, in what variable order. A common goal
is to minimize the total number of free parameters. If this is the case, the
Gaussian should be represented in a “natural” domain [10], where the least
degree of parameter redundancy exists. Sparse matrices often provide the
answer, assuming no additional cost exists to represent sparse matrices,
since the sparse pattern itself might be considered a parameter needing
a representation. This was exploited in [17], where the natural directed
Gaussian representation was solicited from data, and where a negligible
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penalty in WER performance was obtained with a factored sparse covari-
ance matrix having significantly fewer parameters.

Lastly, it is important to realize that while all UGM or DGM depen-
dency structures can be realized by a Gaussian, the implementations in
each case are only linear and the random components are only univariate
Gaussian. A much greater family of distributions, other than just a Gaus-
sian, can be depicted by a UGM or DGM, as we begin to see in the next
sections.

3.2. Acoustic Modeling: PCA /FA /ICA. Our second example of
GMs for speech consists of techniques commonly used to transform speech
feature vectors prior to being used in ASR systems. These include principle
component analysis (PCA) (also called the Karhunen-Loéve or KL trans-
form), factor analysis (FA), and independent component analysis (ICA).
The PCA technique is often presented without any probabilistic interpre-
tation. Interestingly, when given such an interpretation and seen as a
graph, PCA has exactly the same structure as both FA and ICA — the only
difference lies in the implementation of the dependencies.

The graphs in this and the next section show nodes both for random
variables and their parameters. For example, if X is Gaussian with mean
1, a p node might be present as a parent of X. Parameter nodes will be
indicated as shaded rippled circles. For our purposes, these nodes constitute
constant random variables whose probability score is not counted (they
are conditional-only variables, always to the right of the conditioning bar
in a probability equation). In a more general Bayesian setting [77, 75,
139], however, these nodes would be true random variables with their own
distributions and hyper-parameters.

or} o3 o} o L0 5
® ® ® ™

#ﬁ #ﬁi #ﬁ (e #ﬁi (e)
Q) Q) ) )

PCA: X=CY+u  PCA: X=I'Y+u PPCA: X=CY+u+e FA: X=CY+u+e

FIGURE 5. Left two graphs: two views of principle components analysis (PCA);
maddle: probabilistic PCA; right; factor analysis (FA). In general, the graph corresponds
to the equation X = CY + p+ ¢, where Y ~ N(0,A) and € ~ N(0,¥). X is a random
conditional Gaussian with mean CY + u and variance CACT + ¥. With PCA, ¥ =0
so that € = 0 with probability 1. Also, either (far left) A = I is the identity matrix
and C' is general, or (second from left) A is diagonal and C =T is orthonormal. With
PPCA, ¥ = 021 is a spherical covariance matriz, with diagonal terms o2. With FA, U
is diagonal. Other generalizations are of possible, but they can lead to an indeterminacy
of the parameters.

Starting with PCA, observations of a d-dimensional random vector X
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are assumed to be Gaussian with mean p and covariance ¥. The goal
of PCA is to produce a vector Y that is a zero-mean uncorrelated linear
transformation of X. The spectral decomposition theorem [146] yields the
factorization ¥ = T'AT'T, where T is an orthonormal rotation matrix (the
columns of T' are orthogonal eigenvectors, each having unit length), and
A is a diagonal matrix containing the eigenvalues that correspond to the
variances of the elements of X. A transformation achieving PCA’s goal is
Y = I'T(X — ). This follows since E[YYT] = TTE[(X — pu)(X — p)T]T
=T7TYTI = A. Alternatively, a spherically distributed ¥ may be obtained
by the following transformation: ¥ = (A=Y2I)7(X — p) = CT(X — p)
with C' = A~1/2T.
Solving for X as a function of Y yields the following:

X=TY +u

Slightly abusing notation, one can say that X ~ N(I'Y 4 p,0), meaning
that X, conditioned on Y, is a linear-conditional constant “Gaussian” —
i.e., a conditional-Gaussian random variable with mean I'Y 4 p and zero
variance.? In this view of PCA, Y consists of the latent or hidden “causes”
of the observed vector X, where Y ~ N(0,A), or if the C-transformation
is used above, Y ~ N(0, I) where I is the identity matrix. In either case,
the variance in X is entirely explained by the variance within Y, as X is
simply a linear transformation of these underlying causes. PCA transforms
a given X to the most likely values of the hidden causes. This is equal to
the conditional mean E[Y|X] = I'T(X — u) since p(y|z) ~ N(TT (x —p),0).

The two left graphs of Figure 5 show the probabilistic interpretations
of PCA as a GM, where the dependency implementations are all linear.
The left graph corresponds to the case where Y is spherically distributed.
The hidden causes Y are called the “principle components” of X. It is often
the case that only the components (i.e., elements of Y') corresponding to
the largest eigenvalues of ¥ are used in the model, the other elements of
Y are removed, so that Y is k-dimensional with £ < d. There are many
properties of PCA [111] — for example, using the principle k& elements of
Y leads to the smallest reconstruction error of X in a mean-squared sense.
Another notable property (which motivates factor analysis below) is that
PCA is not scale invariant — if the scale of X changes (say by converting
from inches to centimeters), both I' and A will also change, leading to
different components Y. In this sense, PCA explains the variance in X
using only variances found in the hidden causes Y.

Factor analysis (the right-most graph in Figure 5) is only a simple
modification of PCA — a single random variable is added onto the PCA
equation above, yielding:

X=CY+pu+e

3This of course corresponds to a degenerate Gaussian, as the covariance matrix is
singular.
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where Y ~ N(0,1), and € ~ N(0, ¥) with ¥ a non-negative diagonal matrix.
In factor analysis, C' is the factor loading matrix and Y the common factor
vector. Elements of the residual term e = X —C'Y —p, are called the specific
factors, and account both for noise in the model and for the underlying
variance in X. In other words, X possesses a non-zero variance, even
conditional on Y, and Y is constrained to be unable to explain the variance
in X since Y is forced to have I as a covariance matrix. C, on the other
hand, is compelled to represent just the correlation between elements of
X irrespective of its individual variance terms, since correlation can not
be represented by €. Therefore, unlike PCA, if the scale of an element of
X changes, the resulting Y will not change as it is € that will absorb the
change in X’s variance. As in PCA, it can be seen that in FA X is being
explained by underlying hidden causes Y, and the same graph (Figure 5)
can describe both PCA and FA.

Probabilistic PCA (PPCA) (second from the right in Figure 5)
[147, 140] while not widely used in ASR is only a simple modification
to FA, where U = ¢2] is constrained so that € is a spherically-distributed
Gaussian.

FIGURE 6. Left: A graph showing the explicit scalar variables (and therefore their
statistical dependencies) for PCA, PPCA, and FA. The graph also shows the parameters
for these models. In this case, the dependencies are linear and the random variables
are all Gaussian. Right: The graph for PCA/PPCA/FA (parameters not shown) which
is the same as the graph for ICA. For ICA, the implementation of the dependencies
and the random wvariable distributions can be arbitrary, different implementations lead
to different ICA algorithms. The key goal in all cases is to explain the observed vector
X with a set of statistically independent causes Y.

In all of the models above, the hidden causes Y are uncorrelated Gaus-
sians, and therefore are marginally independent. Any statistical depen-
dence between elements of X exist only in how they are jointly dependent
on one or more of the hidden causes Y. It is possible to use a GM to make
this marginal Y dependence explicit, as is provided on the left in Figure 6
where all nodes are now scalars. In this case, ¥; ~ N(0,1), €; ~ N(0,%;),
and p(x;) ~ N(3_; Cijy;j + pi, ¢;) where ¢p; = 0 for PCA.

The PCA/PPCA/FA models can be viewed without the parameter
and noise nodes, as shown on the right in Figure 6. This, however, is the
general model for independent component analysis (ICA) [7, 92], another
method that explains data vectors X with independent hidden causes. Like
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PCA and FA, a goal of ICA is to first learn the parameters of the model
that explain X. Once done, it is possible to find Y, the causes of X, that
are as statistically independent as possible. Unlike PCA and FA, however,
dependency implementations in ICA neither need to be linear nor Gaussian.
Since the graph on the right in Figure 6 does not depict implementations,
the vector Y can be any non-linear and/or non-Gaussian causes of X.
The graph insists only that the elements of Y are marginally independent,
leaving alone the operations needed to compute E[Y|X]. Therefore, ICA
can be seen simply as supplying the mechanism for different implementation
of the dependencies used to infer E[Y|X]. Inference can still be done using
the standard graphical-model inference machinery, described in Section 2.5.

FIGURE 7. Multi-level ICA

Further generalizations of PCA/FA/ICA can be obtained simply by
using different implementations of the basic graph given in Figure 6. Inde-
pendent factor analysis [6] occurs when the hidden causes Y are described
by a mixture of Gaussians. Moreover, a multi-level factor analysis algo-
rithm, shown in Figure 7, can easily be described where the middle hidden
layer is a possibly non-independent explanation for the final marginally in-
dependent components. The goal again is to train parameters to explain
X, and to compute E[Z|X]. With graphs it is therefore easy to understand
all of these techniques, and simple structural or implementation changes
can lead to dramatically different statistical procedures.

3.3. Acoustic Modeling: LDA/QDA/MDA/QMDA. When
the goal is pattern classification [44] (deciding amongst a set of classes
for X), it is often beneficial to first transform X to a space spanned nei-
ther by the principle nor the independent components, but rather to a
space that best discriminatively represents the classes. Let C be a variable
that indicates the class of X, |C] the cardinality of C. As above, a linear
transformation can be used, but in this case it is created to maximize the
between-class covariance while minimizing the within-class covariance in
the transformed space. Specifically, the goal is to find the linear transfor-
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%f%é*

HDA/QDA HMDA Semi-Tied

FIGURE 8. Linear discriminant analysis (left), and its generalizations.

mation matrix A to form Y = AX that maximizes tr(BW ~1) [57] where

W = 32p(C = ) Bpie=y (Y = i)Y = )]

and

B= ZP(O = i) (g — pay) (1t — pa))"

where u; is the class conditional mean and p, is the global mean in the
transformed space. This is a multi-dimensional generalization of Fisher’s
original linear discriminant analysis (LDA) [49].

LDA can also be seen as a particular statistical modeling assumption
about the way in which observation samples X are generated. In this case,
it is assumed that the class conditional distributions in the transformed
space P(Y|C = i) are Gaussians having priors P(C = i). Therefore, Y is
a mixture model p(y) = >, p(C = i)p(y|C = i), and classification of y is
optimally performed using the posterior:

p(yli)p(i)
PO =ily) = > p(yli)p(i)

For standard LDA, it is assumed that the Gaussian components p(y|j) =
N(y; 5, 2) all have the same covariance matrix, and are distinguished only
by their different means. Finally, it is assumed that there is a linear trans-
form relating X to Y. The goal of LDA is to find the linear transformation
that maximizes the likelihood P(X) under the assumptions given by the
model above. The statistical model behind LDA can therefore be graphi-
cally described as shown on the far left in Figure 8.

There is a intuitive way in which these two views of LDA (a statistical
model or simply an optimizing linear transform) can be seen as identi-
cal. Consider two class-conditional Gaussian distributions with identical
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covariance matrices. In this case, the discriminant functions are linear,
and effectively project any unknown sample down to an affine set?, in this
case a line, that points in the direction of the difference between the two
means [44]. It is possible to discriminate as well as possible by choosing a
threshold along this line — the class of X is determined by the side of the
threshold X'’s projection lies.

More generally, consider the affine set spanned by the means of |C|
class-conditional Gaussians with identical covariance matrices. Assum-
ing the means are distinct, this affine set has dimensionality min{|C| —
1,dim(X)}. Discriminability is captured entirely within this set since the
decision regions are hyperplanes orthogonal to the lines containing pairs of
means [44]. The linear projection of X onto the |C| — 1 dimensional affine
set Y spanned by the means leads to no loss in classification accuracy, as-
suming Y indeed is perfectly described with such a mixture. If fewer than
C — 1 dimensions are used for the projected space (as is often the case with
LDA), this can lead to a dimensionality reduction algorithm that has a
minimum loss in discriminative information. It is shown in [102] that the
original formulation of LDA (Y = AX above) is identical to the maximum
likelihood linear transformation from the observations X to Y under the
model described by the graph shown on the left in Figure 8.

When LDA is viewed as graphical model, it is easy to extend it to
more general techniques. The simplest extension allows for different co-
variance matrices so that p(z|i) = N(z; ps, X;), leading to the GM second
from the left in Figure 8. This has been called quadratic discriminant
analysis (QDA) [44, 113], because decision boundaries are quadratic rather
than linear, or heteroscedastic discriminant analysis (HDA) [102], because
covariances are not identical. In the latter case, it is assumed that only a
portion of the mean vectors and covariance matrices are class specific —
the remainder corresponds in the projected space to the dimensions that
do not carry discriminative information.

Further generalizations to LDA are immediate. For example, if the
class conditional distributions are Gaussians mixtures, every component
sharing the same covariance matrix, then mixture discriminant analysis
(MDA) [74] is obtained (3rd from the left in Figure 8). A further gen-
eralization yields what could be called be called heteroscedastic MDA,
as described 2nd from the right in Figure 8. If non-linear dependencies
are allowed between the hidden causes and the observed variables, then
one may obtain non-linear discriminant analysis methods, similar to the
neural-network feature preprocessing techniques [51, 95, 78] that have re-
cently been used.

Taking note of the various factorizations one may perform on a
positive-definite matrix [73], a concentration matrix K within a Gaussian
distribution can be factored as K = ATTA. Using such a factorization,

4An affine set is simply a translated subspace [135].
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each Gaussian component in a Gaussian mixture can use one each from a
shared pool of As and I's, leading to what are called semi-tied covariance
matrices [62, 165]. Once again, this form of tying can be described by a
GM as shown by the far right graph in Figure 8.

3.4. Acoustic Modeling: Mixture Models. In speech recognition,
hidden Markov model observation distributions rarely use only single com-
ponent Gaussian distributions. Much more commonly, mixtures of such
Gaussians are used. A general mixture distribution for p(z) assumes the
existence of a hidden variable C' that determines the active mixture com-
ponent as in:

plz) = Zp(w,C =i)= ZP(C = i)p(z|C = i)

where p(z|C' = i) is a component of the mixture. A GM may simply
describe a general mixture distribution as shown in the graph C — X.
Conditional mixture generalizations, where X requires Z, are quite easy to
obtain using the graph Z — C' — X, leading to the equation:

p(zfz) = Zp(x,C =i,2) = ZP(C = ilz)p(z|C = 1)

Many texts such as [148, 112] describe the properties of mixture distribu-
tions, most of which can be described using graphs in this way.

3.5. Acoustic Modeling: Acoustic Classifier Combination. It
has often been found that when multiple separately trained classifiers are
used to make a classification decision in tandem, the resulting classification
error rate often decreases. This has been found in many instances both
empirically and theoretically [82, 100, 124, 160, 19]. The theoretical results
often make assumptions about the statistical dependencies amongst of the
various classifiers, such as that their errors are assumed to be statistically
independent. The empirical results for ASR have found that combination
is useful at the acoustic feature level [12, 94, 72, 95], the HMM state level
[96], the sub-word or word level [163], and even at the utterance level [48].

Assume that p;(c|z) is a probability distribution corresponding to
the i*" classifier, where ¢ is the class for feature set . A number of
classification combination rules exist such as the sum rule [97] where
plclz) = >, p(i)pi(c|x), or the product rule where p(clz) o< [[, pi(c|x).
Each of these schemes can be explained statistically, by assuming a sta-
tistical model that leads to the particular combination rule. Ideally, the
combination rule that performs best will correspond to the model that
best matches the data. For example, the sum rule corresponds to a mix-
ture model described above, and the product rule can be derived by the
independence assumptions corresponding to a naive Bayes classifier [18].
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Additional combination schemes, moreover, can be defined under the as-
sumption of different models, some of which might not require the errors
to be statistically independent.

FIGURE 9. A GM to describe the process of classifier combination. The model does
not require in all cases that the errors are statistically independent.

More advanced combination schemes can be defined by, of course, as-
suming more sophisticated models. One such example is shown in Figure 9,
where a true class variable C drives several error-full (noisy) versions of the
class C;, each of which generates a (possibly quite dependent) set of feature
vectors. By viewing the process of classifier combination as a graph, and
by choosing the right graph, one may quickly derive combination schemes
that best match the data available and that need not make assumptions
which might not be true.

3.6. Acoustic Modeling: Adaptation. It is typically the case that
additional ASR WER improvements can be obtained by additional adap-
tation of the model parameters after training has occurred, but before the
final utterance hypothesis is decided upon. Broadly, these take the form
of vocal-tract length normalization (VITLN) [91], and explicit parameter
adaptation such as maximum-likelihood linear regression (MLLR) [104]. Tt
turns out that these procedures may also be described with a GM.

TN

FIGURE 10. A GM to describe various adaptation and global parameter transfor-
mation methods, such as VTLN, MLLR, and SAT. The variable A indicates that the
parameters of the entire model can be adapted.
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VTLN corresponds to augmenting an HMM model with an additional
global hidden variable that indicates the vocal tract length. This variable
determines the transformation on the acoustic feature vectors that should
be performed to “normalize” the affect of vocal-tract length on these fea-
tures. It is common in VTLN to perform all such transformations, and
the one yielding the highest likelihood of the data is ultimately chosen to
produce a probability score. The graph in Figure 10 shows this model,
where A indicates vocal-tract length and that can potentially affect the en-
tire model as shown (in this case, the figure shows a hidden Markov model
which will be described in Section 3.9). In a “Viterbi” approach, only the
most probable assignment of A is used to form a probability score. Also,
A is often a conditional-only variable (see Section 2.2) so the prior P(A) is
not counted. If a prior is available, it is also possible to integrate over all
values to produce the final probability score.

MLLR [104], or more generally speaker adaptation [164], corresponds
to adjusting parameters of a model at test time using adaptation data that
is not available at training time. In an ASR system, this takes the form of
training on a speaker or an acoustic environment that is not (necessarily)
encountered in training data. Since supervised training requires supervi-
sory information, either that is available (supervised speaker adaptation),
or an initial recognition pass is performed to acquire hypothesized answers
for an unknown utterance (unsupervised speaker adaptation) — in either
case, these hypotheses are used as the supervisory information to adjust
the model. After this is done, a second recognition pass is performed. The
entire procedure may also be repeated. The amount of novel adaptation
information is often limited (typically a single utterance), so rather than
adjust all the parameters of the model directly, typically a simple global
transformation of those parameters is learned (e.g., a linear transformation
of all of the means in a Gaussian-mixture HMM system). This procedure is
also described in Figure 10, where A in this case indicates the global trans-
formation. During adaptation, all of the model parameters are held fixed
except for A which is adjusted to maximize the likelihood of the adaptation
data.

Finally, speaker adaptive training (SAT) [3] is the dual of speaker
adaptation. Rather than learn a transformation that maps the parameters
from being speaker-independent to being speaker-dependent and doing so
at recognition time, in SAT such a transformation is learned at training
time. With SAT, the speaker-independent parameters of a model along
with speaker-specific transformations are learned simultaneously. This pro-
cedure corresponds to a model that possesses a variable that identifies the
speaker, is observed during training, and is hidden during testing. The
speaker variable is the parent of the transformation mapping from speaker-
independent to speaker-dependent space, and the transformation could po-
tentially affect all the remaining parameters in the system. Figure 10 once
again describes the basic structure, with A the speaker variable. During
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recognition, either the most likely transformation can be used (a Viterbi
approach), or all speaker transformations can be used to form an integrative
score.

In the cases above, novel forms of VTLN, MLLR, or SAT would arise
simply by using different implementations of the edges between A and the
rest of the model.

3.7. Pronunciation Modeling. Pronunciation modeling in ASR
systems involves examining each word in a lexicon, and finding sets of
phone strings each of which describes a valid instance of the corresponding
word [28, 134, 45, 52, 89]. Often these strings are specified probabilistically,
where the probability of a given phone depends on the preceding phone (as
in a Markov chain), thus producing probabilities of pronunciation variants
of a word. The pronunciation may also depend on the acoustics [52].

(o) (o) ()

FIGURE 11. A simple first-order Markov chain. This graph encodes the relationship

Qi Q1:t—2|Qt—1.

Using the chain rule, the probability of a string of T" phones Vi.p,
where V; is a phone, can be written as:

P(Vir) = Hp(‘/tlvl:t—l)~

If it is assumed that only the previous K phones are relevant for determin-
ing the current phone probability, this yields a K*"-order Markov chain.
Typically, only a first-order model is used for pronunciation modeling, as
is depicted in Figure 11.

Phones are typically shared across multiple words. For example, in the
two words “bat” and “bag”, the middle phone /ae/ is the same. Therefore,
it is advantageous in the acoustic Gaussian model for /ae/ to be shared
between these two words. With a first-order model, however, it is possible
only to select the distribution over the next state given the current one.
This seems to present a problem since P(V;|/ae/) should choose a /t/ for
“bat” and a /g/ for “bag”. Clearly, then, there must be a mechanism, even
in a first order case, to specify that the following V; might need to depend
on more than just the current phone.

Fortunately, there are several ways of achieving this issue. The easiest
way is to expand the cardinality of V; (i.e., increase the state space in the
Markov chain). That is, the set of values of V; represents not only the
different phones, but also different positions of different words. Different
values of v;, corresponding to the same phone in different words, would
then correspond to the same acoustic Gaussians, but the distribution of
ve1 given vy would be appropriate for the word containing v; and the
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position within that word. This procedure is equivalent to turning a K*-
order Markov chain into a first-order chain [83].

Another way to achieve this effect is rather than condition on the pre-
vious phone, condition instead on the word W; and the sequential position
of a phone in the word S;, as in P(V;|W;,S;). The position variable is
needed to select the current phone. A Markov chain can be used over the
two variables Wy and S;. This approach corresponds to expanding the
graph in Figure 11 to one that explicitly mentions the variables needed to
keep track of and use each phone, as further described in Section 5.

A GM view of a pronunciation model does not explicitly mention the
non-zero entries in the stochastic matrices in the Markov chain. Stochastic
finite state automata (SFSA) [130] diagrams are ideally suited for that
purpose. A GM, rather, explains only the independence structure of a
model. It is important to realize that while SFSAs are often described
using graphs (circles and arrows), SFSA graphs describe entirely different
properties of a Markov chain than do the graphs that are studied in this
text.

01 [0} O3 O4 Os Og 07 Og

FIGURE 12. Left: A GM view of a decision tree, which is a probabilistic general-
ization of the more familiar decision tree on the right.

Pronunciation modeling often involves a mapping from base-forms
(isolated word dictionary-based pronunciations) to surface forms (context-
dependent and data-derived pronunciations more likely to correspond to
what someone might say). Decision trees are often used for this purpose
[28, 134], so it is elucidative at this point to see how they may be described
using GMs [86]°. Figure 12 shows a standard decision tree on the right,
and a stochastic GM version of the same decision tree on the left. In the
graphical view, there is an input node I, an output node O, and a series

5These GMs also describe hierarchical mixtures of experts [87].
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of decision random variables D;. The cardinality of the decision variables
D; is equal to the arity of the corresponding decision tree node (at roughly
the same horizontal level in the figure) — the figure shows that all nodes
have an arity of two (i.e., correspond to binary random variables).

In the GM view, the answer to a question at each level of the tree
is made with a certain probability. All possible questions are considered,
and a series of answers from the top to the bottom of the tree provides
the probability of one of the possible outputs of the decision tree. The
probability of an answer at a node is conditioned on the set of answers
higher in the tree that lead to that node. For example, D1 = 0 means the
answer is 0 to the first question asked by the tree. This answer occurs with
probability P(D; = i|I). The next answer is provided with probability
P(Dy = j|D1,I) based on the first decision, leading to the graph on the
left of the figure.

In a normal decision tree, only one decision is made at each level in the
tree. A GM can represent such a “crisp” tree by insisting that the distribu-
tions at each level D, (and the final decision O) of the tree are Dirac-delta
functions, such as P(Dy = ilI) = 6; f,(1,d,.,_,) Where f¢(I,dy.¢—1) is a de-
terministic function of the input I and previously made decisions dy.4_1,
where dyp = fo(I,dy.o—1). Therefore, with the appropriate implementation
of dependencies, it can be seen that the GM-view is a probabilistic gener-
alization of normal decision trees.

3.8. Language Modeling. Similar to pronunciation modeling, the
goal of language modeling is to provide a probability for any possible string
of words Wy.r in a language. There are many varieties of language models
(LMs) [83, 136, 118, 29], and it is beyond the scope of this paper to describe
them all. Nevertheless, the following section uses GMs to portray some of
the more commonly and successfully used LMs.

At this time, the most common and successful language model is the
n-gram. Similar to pronunciation modeling, the chain rule is applied to
a joint distribution over words p(Wi.p). Within each conditional factor
p(Wi|W1.4-1), the most distant parent variables are dropped until an (n —
1)t order Markov chain results p(Wy|W;_p11.4—1) = p(Wi|H;), where H;
is the length n — 1 word history. For a bi-gram (n = 2), this leads to a
graph identical to the one shown in Figure 11. In general, tri-grams (i.e.,
2nd-order Markov chains) have so far been most successful for language
modeling among all values n [29].

While a graphical model showing an (n — 1)**-order Markov chain
accurately depicts the statistical independence assumptions made by an
n-gram, it does not portray how the parameters of such a model are typi-
cally obtained, a procedure that can be quite involved [29]. In fact, much
research regarding m-grams involves methods to cope with data-sparsity
— because of insufficient training data, “smoothing” methodology must
be employed, whereby a K*" order model is forced to provide probability
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for length K + 1 strings of words that did not occur in training data. If
a purely maximume-likelihood procedure was used, these strings would be
given zero probability.

FIGURE 13. A GM view of a LM. The dashed arcs indicate that the parents are
switching. The hidden switching parents St switch between the word variables Wy form-
ing either a zeroth (S = 1), first (St = 2), or second (St = 3) order Markov chain.
The switching parents also possess previous words as parents so that the probability of
the Markov-chain order is itself context dependent.

Often, smoothing takes the form of mixing together higher- and lower-
order sub-models, with mixing weights determined from data not used for
training any of the sub-models [83, 29]. In such a case, a language model
mixture can be described by the following equation:

plwe|wi—1,wi—2) = ag(wi—1, w—2) f(we|wi—1,we—2)
+ o (wi—1, we—2) f(wi|we—1)

+ al(wt—la wt—Q)f(wt)

where ). o; = 1 for all word histories, and where the « coefficients are some
(possibly) history-dependent mixing values that determine how much each
sub-model should contribute to the total probability score. Figure 13 shows
this mixture using a graph with switching parents (see Section 2.2). The
variables S; correspond to the « coefficients, and the edges annotated with
values for S; exist only in the case that S; has those values. The dashed
edges between S; and W; indicate that the S; variables are switching rather
than normal parents. The graph describes the statistical underpinnings of
many commonly used techniques such as deleted interpolation [83], which
is a form of parameter training for the Sy variables. Of course, much of the
success of a language model depends on the form of smoothing that is used
[29], and such methods are not depicted by Figure 13 (but see Figure 15).

A common extension to the above LM is to cluster words together and
then form a Markov chain over the word group clusters, generally called a
class-based LM [24]. There are a number of ways that these clusters can be
formed, such as by grammatical category or by data-driven approaches that
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e =

FIGURE 14. A class-based language model. Here, a Markov chain is used to model
the dynamics of word classes rather than the words themselves.

might use decision trees (as discussed in [83, 24]). Whatever the method,
the underlying statistical model can also be described by a GM, as shown in
Figure 14. In this figure, a Markov chain exists over a (presumably) much
lower dimensional class variables C rather than the high-dimensional word
variables. This representation can therefore considerably decrease model
complexity and therefore lower parameter estimation variance.

The class-based language model can be further extended to impose
certain desirable constraints with respect to words that do not occur in
training material, or the so-called unknown words. It is common in a
language model to have a special token called unk indicating the unknown
word. Whenever a word is encountered in a test set that has not occurred in
the training set, the probability of unk should be given as the probability of
the unknown word. The problem, however, is that if maximum likelihood
estimates of the parameters of the language model are obtained using the
training set, the probability of unk will be zero. It is therefore typical to
force this token to have a certain non-zero probability and in doing so,
essentially “steal” probability mass away from some of the tokens that do
indeed occur in the training set. There are many ways of implementing such
a feature, generally called language model back-off [83]. For our purposes
here, it will be sufficient to provide a simple model, and show how it can
be enforced by an explicit graph structure.®

Suppose that the vocabulary of words W can be divided into three
disjoint sets: W = {unk} J 8 |JM, where unk is the token representing the
unknown word, § is the set of items that have occurred only one time in
the training set (the singletons), and M is the set of all other lexical items.
Let us suppose also that we have a maximume-likelihood distribution p,y
over words in 8§ and M, such that > pm(w) = 1, ppy(unk) = 0, and in

general
N(w
poafur) = 2

where N(w) is the number of times word w occurs in the training set,
and N is the total number of words in the training set. This means, for

6Thanks to John Henderson who first posed the problem to me of how to represent
this construct using a graphical model, in the context of building a word-tagger.
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example, that N(w) =1,w € 8.

One possible assumption is to force the probability of unk to be 0.5
times the probability of the entire singleton set, i.e., p(unk) = 0.5%p,;(8) =
0.5 % >, cs Pmi(w). This requires that probability be taken away from
tokens that do occur in the training set. In this case probability is removed
from the singleton words, leading to the following desired probability model

pa(w) :

0.5p(8) if w = unk
pa(w) =< 0.5p(w) fwesS (3.3)
Dt (W otherwise

This model, of course, can easily be modified so that it is conditioned on
the current class pg(w|c) and so that it uses the conditional maximum
likelihood distribution p,;(w|c). Note that this is still a valid probability
model, as >, pa(w|c) = 1.

The question next becomes how to represent the constraints imposed
by this model using a directed graph. One can of course produce a large
conditional probability table that stores all values as appropriate, but the
goal here is to produce a graph that explicitly represents the constraints
above, and that can be used to train such a model. It might seem at first
not to be possible because the variable W must be used both to switch in
different distributions and, once a given distribution has been selected, as
a probabilistic query variable. The variable W can not exist both on the
left of the conditioning bar (where it is possible to produce a probability
of W = w) and also on the right of the conditioning bar (where it can be
used to select the current distribution).

FIGURE 15. A class-based language model that forces the probability of unk to be a
times the probability of all singleton words. The Vi variables are shaded, indicating that
they are observed, and have value Vi = 1,Vt. The K: and Bt variables are switching
parents of Wy.

Surprisingly, there exists a solution within the space of directed graphi-
cal models shown in Figure 15. This graph, a modified class-based language
model, includes a child variable V; at each time that is always observed



Graphical Models for ASR, 33

to be V; = 1. This means, rather than compute p(w;|c;) at each time
step, we compute p(wy, Vi = 1|er). The goal is to show that it is possi-
ble for p(w, Vi = 1|¢;) = pa(wi|er). The variables B; and K; are both
binary valued for all ¢, and these variables are also switching parents (see
Section 2.2) of W;. From the graph, we see that there are a number of
conditional distributions that need to be defined. Before doing that, two
auxiliary distributions are defined so as to make the definitions that follow
simpler:

pml(u"C) 3
puule) & 4 F0m T wEN (34)
0 else
where p(M|c) = > went Pri(wle), and
pml(w‘c) 3
ps(w]c) A Sl HweES (3.5)
0 else

where p(8]c) = > wes Pmi(wlc). Note that both pas and pg are valid nor-
malized distributions over all words. Also, p(8|c) + p(M|c) = 1 since these
two quantities together use up all the probability mass contained in the
maximum likelihood distribution.

The remaining distributions are as follows. First, B; has a binary
uniform distribution:

p(Bi=0)=p(B;=1)=05 (3.6)

The observation variable V; = 1 simply acts as in indicator, and has a
distribution that produces probability one only if certain conditions are
met, and otherwise produces probability zero:

p(Ve = Hwe, ki) = L e8,k,21) OF (wi €M ki=0) OF (wi=unk k,=1)} (3-7)

where 14 is a binary indicator function that is unity only when the event
A is true, and is zero otherwise. Next, the word distribution will switch
between one of three distributions depending on the values of the switching
parents K; and By, as follows:

pM(wt\ct) lf kt =0
plwelke, by ce) = 9 ps(weler) ifky=1and by =1 (3.8)
§{w,,:unk} if kt =1 and bt =0

Note that the third distribution is simply a Dirac-delta distribution, giving
probability one only when w; is the unknown word. Last, the distribution
for K; is as follows:

_ pSle)  ifk=1
P(k’t|ct> = { 1—p(8le;) otherwise (39)
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This model correctly produces the probabilities that are given in Equa-
tion 3.3. First, when w; = unk:

p(wy = unk, v, = 1) = p(ve = 1|kt = 1, wy = unk) X p(w; = unk|k: = 1,b, = 0,¢4)
X p(be = 0) X p(ke = 1lct)
=1x1x0.5xp(8|ct)
= 0.5p(8|ct)

as desired. This follows because the other terms, for different values of the
hidden variables, are all zero. Next, when w; € 8§,

plwe,ve = 1) = p(vy = Lkt = 1, wr € 8) X plwe|kr = 1,br = 1, ¢r)
x p(by = 1) X p(ky = 1]ct)
=1 X ps(we|er) x 0.5 x p(8ler)
= 0.5 * pyu(wi|ct)

again as desired. Lastly, when w; € M,

plwe,ve = 1) = p(ve = 1lke = 0, wr € M) x Z p(wilke = 0,br, ct)p(be)
be€{0,1}
X p(kt = 0|Ct)
=1 x py(welee) X p(M]ee)

= Pmi (wt|ct)-

In this last case, B; has no influence as it is marginalized away — this
is because the event K; = 0 removes the parent B; from W;. Once the
graph structures and implementations are set up, standard GM learning
algorithms can be used to obtain smoothed parameters for this distribution.

Many other such models can be described by directed graphs in a
similar way. Moreover, many language models are members of the family
of exponential models[44]. These include those models whose parameters
are learned by maximum entropy methods [126, 83, 9, 137], and are de-
rived by establishing a number of constraints that the underlying proba-
bility distribution must possess. The goal is to find a distribution satisfy-
ing these constraints and that otherwise has maximum entropy (or mini-
mum KL-divergence with some desired distribution [126]). Note that such
an approach can also be used to describe the distribution over an entire
sentence[138] at a time, rather than a conditional distribution of the cur-
rent word w;y given the current history h;. Such maximum entropy models
can be described by UGMs, where the edges between words indicate that
there is some dependency induced by the constraint functions. In many
cases, the resulting graphs can become quite interesting.
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Overall, however, it is clear that there are a multitude of ways to depict
language models with GMs, and this section has only begun to touch upon
this topic.

3.9. GMs for basic speech models. The Hidden Markov model
(HMM) is still the most successful statistical technique used in ASR. The
HMM encompasses standard acoustic, pronunciation, and most language
modeling into a single unified framework. This is because pronunciation
and language modeling can be seen as a large finite-state automata that
can be “flattened” down to a single first-order Markov chain [116, 83]. This
Markov chain consists of a sequence of serially connected discrete hidden
variables during recognition, thus the name HMM.

Qz‘—l Ql Qz‘+1 Qz‘+2 Qt—l QI Ot+1 Ot+2
Xt—l XZ Xt+1 Xt+2 erl XI Xr+1 Xr+2

FIGURE 16. A hidden Markov model (HMM), viewed as a graphical model. Note
that an HMM may be equivalently viewed either as a directed (left) or an undirected
(right) model, as in this case the conditional independence properties are the same.

Most generally, a hidden Markov model (HMM) is collection of T' dis-
crete scalar random variables Q1.7 and T other variables X;.7 that may be
either discrete or continuous (and either scalar- or vector-valued). These
variables, collectively, possess the following conditional independence prop-
erties:

Qur L Q1:4—2]Qr—1 (3.10)

and

X L {Q—s, X} Qs (3.11)

foreacht € 1:T. (Q—; refers to all variables Q- except for the one at time
7 = t. The length T of these sequences is itself an integer-valued random
variable having a complex distribution. An HMM consists of a hidden
Markov chain of random variables (the unshaded nodes) and a collection
of nodes corresponding to the speech utterance (the shaded nodes). In
most ASR systems, the hidden chain corresponds to sequences of words,
phones, and sub-phones.

This set of properties can be concisely described using the GM shown
in Figure 16. The figure shows two equivalent representations of an HMM,
one as a BN and another as an UGM. They are equivalent because moral-
izing the BN introduces no edges, and because the moralized HMM graph
is already triangulated and therefore decomposable. The UGM on the
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right is the result of moralizing the BN on the left. Interestingly, the same
graph describes the structure of a Kalman filter [70] where all variables are
continuous and Gaussian and all dependency implementations are linear.
Kalman filter operations are simply applications of the formulas for con-
ditional Gaussians (Section 3.1), used in order to infer conditional means
and covariances (the sufficient statistics for Gaussians).

@ @ @ @ (C)—=) @
0 @
@ 0 @ @
FIGURE 17. An HMM with mizture observation distributions (left) and a semi-
continuous HMM (right).

In a standard HMM with Gaussian mixture observation densities, each
value of the hidden variable (i.e., each state) corresponds to a separate
(possibly tied) mixture distribution (Figure 17). Other forms of HMM also
exist, such as when there is a single global pool of Gaussians, and each
state corresponds to a particular mixture over this global pool. This is
often called a semi-continuous HMM (similar to vector quantization [69]),
and corresponds to the state-conditional observation equation:

p(2|Q = q) Zp =i|Q = ¢)p(z|C =)

In other words, each state uses a mixture with components from this glob-
ally shared set of distributions. The GM for such an HMM loses an edge
between @ and X as shown on the right in Figure 17. In this case, all of
the represented dependence occurs via the hidden mixture variable at each

time.
)
O—O—E—©®
FIGURE 18. An Auto-regressive HMM as a GM

Still another modification of HMMs relaxes one of the HMM condi-
tional independence statements, namely that successive feature vectors are
conditionally independent given the state. Auto-regressive, or correlation
HMMs [157, 23, 120], place an additional edges between successive obser-
vation vectors. In other words, the variable X; might have as a parent not
only the variable Q; but also the variables X;_; for [ =1,2,..., K for some
K. The case where K =1 is shown in Figure 18. When the additional de-
pendencies are linear and Gaussian, these are sometimes called conditional
Gaussian HMMs [120].
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Note that although these models are sometimes called vector-valued
auto-regressive HMMs, they are not to be confused with auto-regressive,
linear predictive, or hidden filter HMMs [127, 128, 88, 129]. These latter
models are HMMSs that have been inspired from the use of linear-predictive
coefficients for speech [129]. They use the observation distribution that
arises from random Gaussian noise sources passed through a hidden-state
dependent auto-regressive filter. The filtering occurs at the raw acoustic
(signal) level rather than on the observation feature vector (frame) level.
These earlier models can also be described by an GM that depicts state-
conditioned auto-regressive models at the speech sample level.

Our last example of an augmented HMM is something often called an
input-output HMM [8] (See Figure 20). In this case, there are variables
at each time frame corresponding both to the input and the output. The
output variables are to be inferred. Given a complete input feature stream
X1.7, one might want to find E[Y|X], the most likely values for the output.
These HMMs can therefore be used to map from a continuous variable
length input feature streams to output stream. Such a model shows promise
for speech enhancement.

While HMMs account for much of the technology behind existing ASR,
GMs include a much larger space of models. It seems quite improbable
that within this space, it is the HMM alone that is somehow intrinsically
superior to all other models. While there are of course no guarantees to the
following, it seems reasonable to assume that because the space of GMs is
large and diverse, and because it includes HMMs, that there exists some
model within this space that will greatly outperform the HMM. Section 4
begins to explore more advanced speech models as viewed from a GM
perspective.

3.10. Why Delta Features Work. State-of-the-art ASR systems
augment HMM feature vectors X; with approximations to their first and
second order time-derivatives (called delta- and delta-delta- features [46, 58,
59, 60], or just “dynamic” features). Most often, estimates of the derivative
are obtained using linear regression [129], namely:

K
Z k(ﬁt
k=—K
=%
> K
k=—K

where K in this case is the number of points used to fit the regression. This
can be viewed as a regression because

Ty

K
Ty = E apTi_) + €
k=—K
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where ai are defined accordingly, and e can be seen as a Gaussian error
term. A new feature vector is then produced that consists of x; and
appended together.

T ? ? ?‘ T ? ? §‘

FIGURE 19. An GM-based explanation of why delta features work in HMM-based
ASR systems. The left figure gives a GM that shows the generative process of HMMs
with delta features. The right figure shows how delta features are typically used in an
HMM system, where the information between X; and Qy is greatly increased relative to
the left figure.

It is elucidating to expand the joint distribution of the features and the

deltas, namely p(z1.r,i1.7) = >, P(@rr,@1rlqur)p(qir). The state
conditioned joint distribution within the sum can be expanded as:

p($1:T, i’l:T|Q1:T) = P(i"lzT\iEl:T, Q1:T)p($1:T|Q1:T)-

The conditional distribution p(z1.7|g1.7) can be expanded as is normal for
an HMM [129, 11], but

plarr|err, qrr) = | [ p(é|parents(i)).
t

This last equation follows because, observing the process to generate delta
features, X, is independent of everything else given its parents. The parents
of Xt are a subset of Xi.r and they do not include the hidden variables
@:. This leads to the GM on the left in Figure 19, a generative model
for HMMs augmented with delta features. Note that the edges between
the feature stream X;, and the delta feature stream X; correspond to de-
terministic linear implementations. In this view, delta-features appear to
be similar to fixed-dependency auto-regressive HMMs (Figure 18), where
each child feature has additional parents both from the past and from the
future. In this figure, however, there are no edges between X; and Q,
because X, 1L Q;|parents(X,). This means that parents(X;) contain all the
information about X;, and Q; is irrelevant.

It is often asked why delta features help ASR performance as much
as they do. The left of Figure 19 does not portray the model typically
used with delta features. A goal of speech recognition is for the features
to contain as much information as possible about the underlying word
sequence as represented via the vector Q1.7. The generative model on the
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left in Figure 19 shows, however, that there is zero information between
the X; and Q;. When the edges between X, and its parents parents(Xt)
are removed, the mutual information [33] between X, and Q; can only
increase (from zero to something greater) relative to the generative model.
The right of Figure 19 thus shows the standard model used with deltas,
where it is not the case that X; 11 Q,. Since in the right model, it is the case
that more information about X; and Q exist, it might be said that this
model has a structure that is inherently more discriminative (see Section
5).

Interestingly, the above analysis demonstrates that additional condi-
tional independence assumptions (i.e., fewer edges) in a model can increase
the amount of mutual information that exists between random variables.
When edges are added between the delta features and the generative par-
ents Xy, the delta features become less useful since there is less (or zero)
mutual information between them and Q.

Therefore, the very conditional independence assumptions that are
commonly seen as a flaw of the HMM provide a benefit when using delta
features. More strongly put, the incorrect statistical independence proper-
ties made by the HMM model on the right of Figure 19 (relative to truth, as
shown by the generative model on the left) are the very thing that enable
delta features to decrease recognition error. The standard HMM model
with delta features seem to be an instance of a model with an inherently
discriminative structure [16, 47] (see also Section 5).

In general, can the removal of edges or additional processing lead to
and overall increase in the information between the entire random vectors
X117 and Q1.77 The data processing inequality [33] says it can not. In the
above, each feature vector (Xt,Xt) will have more information about the
temporally local hidden variable @J; — this can sometimes lead to better
word error scores. This same analysis can be used to better understand
other feature processing strategies derived from multiple frames of speech,
such as PCA or LDA preprocessing over multiple windows [71] and other
non-linear generalizations [51, 95, 78].

It has often been found that conditionally Gaussian HMMs (as in
Figure 18) often do not provide an improvement when delta features are
included in the feature stream [20, 23, 93, 158]. The above provides one
possible explanation, namely that by having a delta feature X, include as
its parent say X;_1, the mutual information between X, and Q; decreases
(perhaps to zero). Note, however, that improvements were reported with
the use of delta features in [161, 162] where discriminative output distri-
butions were used. In [105, 106], successful results were obtained using
delta features but where the conditional mean, rather than being linear,
was non-linear and was implemented using a neural network. Furthermore,
Buried Markov models [16] (to be described below) also found an improve-
ment with delta features and additional dependencies, but only when the
edges were added discriminatively.
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FIGURE 20. An input-output HMM. X1.1 the input is transformed via integration
over a Markov chain Q1.7 into the output Y7.1.

4. GMs for advanced speech models. Many non-HMM models
for speech have been developed outside the GM paradigm but turn out
to be describable fairly easily as GMs — this section to describe some of
them. While each of these models are quite different from one another,
they can all be described with only simple modifications of an underlying
graph structure.

% %

FIGURE 21. A factorial HMM where there are multiple hidden Markov chains.

The first example presented is a factorial HMM [67]. In this case,
rather than a single Markov chain, multiple Markov chains are used to
guide the temporal evolution of the probabilities over observation distribu-
tions (see Figure 21). The multiple hidden chains can be used to represent
a number of real-world phenomena. For example, one chain might rep-
resent speech and another could represent an independent and dynamic
noise source [90]. Alternatively, one chain could represent the speech to
be recognized and the other chain could represent confounding background
speech [151, 152]7, or the two chains might each represent two underlying
concurrent and independent sub-processes governing the realization of the
observation vectors [61, 155, 108]. Such factored hidden state representa-
tions have also been called HMM decomposition [151, 152] in the past.

One can imagine many modifications of this basic structure, where
edges are added between variables at each time step. Often, these sepa-
rate Markov chains have been used for modeling separate loosely coupled

7A related method to estimate the parameters of a composite HMM given a collection
of separate, independent, and already trained HMMs is called parallel model combination
[64].
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streams of hidden articulatory information [131, 132] or to represent a cou-
pling between phonetic and articulatory information [167, 145].

It is interesting to note that the factorial HMMs described above are
all special cases of HMMs. That is, they are HMMs with tied parame-
ters and state transition restrictions made according to the factorization.
Starting with a factorial HMM consisting of two hidden chains @; and Ry,
an equivalent HMM may be constructed by using |Q||R| states and by re-
stricting the set of state transitions and parameter assignments to be those
only allowed by the factorial model. A factorial HMM using M hidden
Markov chains each with K states that all span T' time steps can have time
complexity O(TMK™M*1) [67]. If one translates the factorial HMM into
an HMM having K™ states, the complexity becomes O(TK?M) which is
significantly larger. An unrestricted HMM with K™ states will, however,
have more expressive power than a factorial HMM with M chains each
with K states because in the HMM there are no required state transition
restrictions and any form of correlation may be represented between the
separate chains. It is possible, however, that such an expanded state space
would be more flexible than needed for a given task. Consider, as an exam-
ple, the fact that many HMMSs used for ASR have only simple left-to-right
Markov chain structures.

FIGURE 22. The GM corresponding to a switching Kalman filter (SKM). The Q
variables are discrete, but the Y and X wariables are continuous. In the standard
SKM, the implementations between continuous variables are linear Gaussian, other
implementations can be used as well and have been applied to the ASR problem.

As mentioned earlier, the GM for an HMM is identical to that of a
Kalman filter — it is only the nodes and the dependency implementations
that differ. Adding a discrete hidden Markov chain to a Kalman filter
allows it to behave in much more complex ways than just a large joint
Gaussian. This has been called a switching Kalman filter, as shown in
Figure 22. A version of this structure, applied to ASR, has been called
a hidden dynamic model [125]. In this case, the implementations of the
dependences are such that the variables are non-linearly related.

Another class of models well beyond the boundaries of HMMs are
called segment or trajectory models [120]. In such cases, the underlying
hidden Markov chain governs the evolution not of the statistics of individual
observation vectors. Instead, the Markov chain determines the allowable
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sequence of observation segments, where each segment may be described
using an arbitrary distribution. Specifically, a segment model uses the joint
distribution over a variable length segment of observations conditioned on
the hidden state for that segment. In the most general form, the joint
distribution for a segment model is as follows:

p(XlzT = xl:T) (41)

= Z Z Z Hp(xt(i,l)v Ty(3,2)s - > Te(iey)s Lilds, T)P(qilqi—1, 7)p(T)

T qur 1. i=1

There are T time frames and 7 segments where the i*" segment is of a
hypothesized length ¢;. The collection of lengths are constrained such that
>i_, 4 = T. For a particular segmentation and set of lengths, the ith
segment starts at time frame ¢(i,1) = f(q1.r,¥41.7,%,1) and ends at time
frame t(¢,4;) = f(q1.7,41.7,%,¢;). In this general case, the time variable ¢
could be a general function f() of the complete Markov chain assignment
q1.+, the complete set of currently hypothesized segment lengths ¢;.,, the
segment number ¢, and the frame position within that segment 1 through
¢;. Tt is assumed that f(q1.r,41.7,%,4;) = f(q1.r,l1.7,8 + 1,1) — 1 for all
values of all quantities.

Renumbering the time sequence for a segment starting at one, an ob-
servation segment distribution is given by:

p(x17x27 s ,Z’[,ﬂ(]) = p(xlvaa cee 7xf|€aq)p(£‘q)

where p(x1,xa, ..., z¢ll, q) is the length ¢ segment distribution under hid-
den Markov state ¢, and p(f|q) is the explicit duration model for state
q.

A plain HMM may be represented using this framework if p(¢|q) is a
geometric distribution in ¢ and if

¢
p(.’I}h{L’Q, e 7$[|€, q) = Hp(l.J'q)
j=1

for a state specific distribution p(x|q). One of the first segment models [121]
is a generalization that allows observations in a segment to be additionally
dependent on a region within a segment

plar, 2, . 2ol q) = [ [ p(jlrs )

where r; is one of a set of fixed regions within the segment. A more general
model is called a segmental hidden Markov model [63]

14
pla1,@a, .2l q) = / (ela) [ ] (sl a)du
Jj=1
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where p is the multi-dimensional conditional mean of the segment and
where the resulting distribution is obtained by integrating over all pos-
sible state-conditioned means in a Bayesian setting. More general still,
in trended hidden Markov models [41, 42], the mean trajectory within a
segment is described by a polynomial function over time. Equation 4.1
generalizes many models including the conditional Gaussian methods dis-
cussed above. A summary of segment models, their learning equations, and
a complete bibliography is given in [120].

FIGURE 23. A Segment model viewed as a GM.

One can view a segment model as a GM as shown in Figure 23. A
single hidden variable 7 is shown that determines the number of segments.
Within each segment, additional dependencies exist. The segment model
allows for the set of dependencies within a segment to be arbitrary, so it is
likely that many of the dependencies shown in the figure would not exist in
practice. Moreover, there may be additional dependencies not shown in the
figure, since it is the case that there must be constraints on the segment
lengths. Nevertheless, this figure quickly details the essential structure
behind a segment model.

5. GM-motivated speech recognition. There have been several
cases where graphical models have themselves been used as the cruxes of
speech recognition systems — this section explores several of them.

Perhaps the easiest way to use a graphical model for speech recognition
is to start with the HMM graph given in Figure 16, and extend it with
either additional edges or additional variables. In the former case, edges
can be added between the hidden variables [43, 13] or between observed
variables [157, 23, 14]. A crucial issue is how should the edges be added, as
mentioned below. In the latter case, a variable might indicate a condition
such as noise level or quality, gender, vocal tract length, speaking mode,
prosody, pitch, pronunciation, channel quality, microphone type, and so
on. The variables might be observed during training (when the condition
is known), and hidden during testing (when the condition can be unknown).
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FIGURE 24. A BN used to explicitly represent parameter tying. In this figure,
the straight edges correspond to deterministic implementations and the rippled edges
correspond to stochastic implementations.

In each case, the number of parameters of the system will typically increase
— in the worst of cases, the number of parameters will increase by a factor
equal to the number of different conditions.

In Section 3.7 it was mentioned that for an HMM to keep track of the
differences that exist between a phone that occurs in multiple contexts, it
must expand the state space so that multiple HMM states share the same
acoustic Gaussian mixture corresponding to a particular phone. It turns
out that a directed graph itself may be used to keep track of the necessary
parameter tying and to control the sequencing needed in this case [167].
The simplest of cases is shown in Figure 24, which shows a sequence of
connected triangles — for each time frame a sequence variable S;, a phone
variable ¢, and a transition variable R, is used. The observation variable
X; has as its parent only Q; since it is only the phone that determines the
observation distribution. The other variables are used together to appro-
priately sequence through valid phones for a given utterance.

In this particular figure, straight lines are used to indicate that the
implementations of the dependencies are strictly deterministic, and rippled
lines are used to indicate that the implementations correspond to true
random dependencies. This means, for example, that p(S;y1 = i| Ry, S¢) =
i f(R,,s;) 18 a Dirac-delta function having unity probability for only one
possible value of Sy given a particular pair of values for R; and S;.

In the figure, S; is the current sequence number (i.e., 1, 2, 3, etc.) and
indicates the sub-word position in a word (e.g., the first, second, or third
phone). S; does not determine the identity of the phone. Often, S; will
be a monotonically increasing sequence of successive integers, where either
Sir1 = Sy (the value stays the same) or Sy = S;+1 (an increment occurs).
An increment occurs only if R, = 1. R; is a binary indicator variable that
has unity value only when a transition between successive phone positions
occurs. Ry is a true random variable and depending on the phone (Q:),
R; will have a different binary distribution, thereby yielding the normal
geometric duration distributions found in HMMs. @; is a deterministic
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function of the position S;. A particular word might use a phone multiple
times (consider the phone /aa/ in the word “yamaha”). The variable S;
sequences, say, from 1 through to 6 (the number of phones in “yamaha”),
and @ then gets the identity of the phone via a deterministic mapping
from S; to Q; for each position in the word (e.g., 1 maps to /y/, 2 maps to
/aa/, 3 maps to /m/, and so on). This general approach can be extended
to multiple hidden Markov chains, and to continuous speech recognition
to provide graph structures that explicitly represent the control structures
needed for an ASR system [167, 13, 47].

FIGURE 25. A mized-memory hidden Markov model. The dashed edges indicate
that the S and the W nodes are switching parents.

As mentioned above, factorial HMMs require a large expansion of the
state space and therefore a large number of parameters. A recently pro-
posed system that can model dependencies in a factorial HMM using many
fewer parameters are called mixed memory Markov models [142]. Viewed
as a GM as in Figure 25, this model uses an additional hidden variable for
each time frame and chain. Each normal hidden variables possesses an ad-
ditional switching parent (as depicted by dotted edges in the figure, and as
described in Section 2.2). The switching conditional independence assump-
tions for one time slice are that Q; L R;_1]S; = 0, Q: LQ¢—1|S: = 1 and
the symmetric relations for R;. This leads to the following distributional
simplification:

p(Q¢|Qi—1, Ri—1) = p(Q¢|Q¢—1,S: = 0)P(S; = 0)
+ p(Qi|Ri—1, 8 = 1)P(S; = 1)

which means that, rather than needing a single three-dimensional table
for the dependencies, only two two-dimensional tables are required. These
models have been used for ASR in [119].

A Buried Markov model (BMM) [16, 15, 14] is another recently pro-
posed GM-based approach to speech recognition. A BMM is based on the
idea that one can quantitatively measure where the conditional indepen-
dence properties of a particular HMM are poorly representing a corpus of
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FIGURE 26. A Buried Markov Model (BMM) with two hidden Markov chain as-

signments, Q1.7 = q1.7 on the left, and Q1.7 = inT on the right.

data. Wherever the model is found to be most lacking, additional edges
are added (i.e., conditional independence properties are removed) relative
to the original HMM. The BMM is formed to include only those data-
derived, sparse, hidden-variable specific, and discriminative dependencies
(between observation vectors) that are most lacking in the original model.
In general, the degree to which X;_; 1l X;|@; is true can be measured us-
ing conditional mutual information I(X;_1;X:|Q:) [33]. If this quantity
is zero, the model needs no extension, but if it is greater than zero, there
is a modeling inaccuracy. Ideally, however, edges should be added dis-
criminatively, to produce a discriminative generative model, and when the
structure is formed discriminatively, the notion has been termed structural
discriminability [16, 47, 166, 47]. For this purpose, the “EAR” (explaining
away residual) measure has been defined that measures the discriminative
mutual information between a variable X and its potential set of parents
Z as follows:

EAR(X, Z) £ I(X: Z|Q) — I(X; Z)

It can be shown that choosing Z to optimize the EAR measure can be
equivalent to optimizing the posterior probability of the class @ [16]. Since
it attempts to minimally correct only those measured deficiencies in a par-
ticular HMM, and since it does so discriminatively, this approach has the
potential to produce better performing and more parsimonious models for
speech recognition.

It seems apparent at this point that the set of models that can be
described using a graph is enormous. With the options that are available
in choosing hidden variables, the different sets of dependencies between
those hidden variables, the dependencies between observations, choosing
switching dependencies, and considering the variety of different possible
implementations of those dependencies and the various learning techniques,
it is obvious that the space of possible models is practically unlimited.
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Moreover, each of these modeling possibilities, if seen outside of the GM
paradigm, requires a large software development effort before evaluation
is possible with a large ASR system. This effort must be spent without
having any guarantees as to the model’s success.

In answer to these issues, a new flexible GM-based software toolkit has
been developed (GMTK) [13]. GMTK is a graphical models toolkit that has
been optimized for ASR and other time-series processing tasks. It supports
EM and GEM parameter training, sparse linear and non-linear dependen-
cies between observations, arbitrary parameter sharing, Gaussian vanish-
ing and splitting, decision-tree implementations of dependencies, sampling,
switching parent functionality, exact and log-space inference, multi-rate
and multi-stream processing, and a textual graph programming language.
The toolkit supports structural discriminability and arbitrary model selec-
tion, and makes it much easier to begin to experiment with GM-based ASR
systems.

6. Conclusion. This paper has provided an introductory survey of
graphical models, and then has provided a number of examples of how
many existing ASR techniques can be viewed as instances of GMs. It is
hoped that this paper will help to fuel the use of GMs for further speech
recognition research. While the number of ASR models described in this
document is large, it is of course the case that many existing ASR tech-
niques have not even been given a mention. Nevertheless, it is apparent
that ASR collectively occupies a relatively minor portion of the space of
models representable by a graph. It therefore seems quite improbable that
a thorough exploration of the space of graphical models would not ulti-
mately yield a model that performs better than the HMM. The search
for such a novel model should ideally occur on multiple fronts: on the
one hand guided by our high-level domain knowledge about speech and
thereby utilize phonetics, linguistics, psycho-acoustics, and so on. On the
other hand, the data should have a strong say, so there should be signifi-
cant data-driven model selection procedures to determine the appropriate
natural graph structure [10]. And since ASR is inherently an instance of
pattern classification, the notion of discriminability (parameter training)
and structural discriminability (structure learning) might play a key role
in this search. All in all, graphical models opens many doors to novel
speech recognition research.
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