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Abstract

We introduce factored language models
(FLMs) and generalized parallel backoff
(GPB). An FLM represents words as bundles
of features (e.g., morphological classes, stems,
data-driven clusters, etc.), and induces a prob-
ability model covering sequences of bundles
rather than just words. GPB extends standard
backoff to general conditional probability
tables where variables might be heterogeneous
types, where no obvious natural (temporal)
backoff order exists, and where multiple
dynamic backoff strategies are allowed. These
methodologies were implemented during the
JHU 2002 workshop as extensions to the
SRI language modeling toolkit. This paper
provides initial perplexity results on both
CallHome Arabic and on Penn Treebank Wall
Street Journal articles. Significantly, FLMs
with GPB can produce bigrams with signif-
icantly lower perplexity, sometimes lower
than highly-optimized baseline trigrams. In a
multi-pass speech recognition context, where
bigrams are used to create first-pass bigram
lattices or N-best lists, these results are highly
relevant.

1 Introduction

The art of statistical language modeling (LM) is to create
probability models over words and sentences that trade-
off statistical prediction with parameter variance. The
field is both diverse and intricate (Rosenfeld, 2000; Chen
and Goodman, 1998; Jelinek, 1997; Ney et al., 1994),
with many different forms of LMs including maximum-
entropy, whole-sentence, adaptive and cache-based, to
name a small few. Many models are simply smoothed
conditional probability distributions for a word given its
preceding history, typically the two preceding words.

In this work, we introduce two new methods for lan-
guage modeling:factored language model(FLM) and
generalized parallel backoff(GPB). An FLM considers a

word as a bundle of features, and GPB is a technique that
generalized backoff to arbitrary conditional probability
tables. While these techniques can be considered in iso-
lation, the two methods seem particularly suited to each
other — in particular, the method of GPB can greatly fa-
cilitate the production of FLMs with better performance.

2 Factored Language Models

In a factored language model, a word is viewed as a vec-
tor of k factors, so thatwt ≡ {f1

t , f2
t , . . . , fK

t }. Fac-
tors can be anything, including morphological classes,
stems, roots, and other such features in highly in-
flected languages (e.g., Arabic, German, Finnish, etc.),
or data-driven word classes or semantic features useful
for sparsely inflected languages (e.g., English). Clearly,
a two-factor FLM generalizes standard class-based lan-
guage models, where one factor is the word class and
the other is words themselves. An FLM is a model over
factors, i.e.,p(f1:K

t |f1:K
t−1:t−n), that can be factored as a

product of probabilities of the formp(f |f1, f2, . . . , fN ).
Our task is twofold: 1) find an appropriate set of factors,
and 2) induce an appropriate statistical model over those
factors (i.e., the structure learning problem in graphical
models (Bilmes, 2003; Friedman and Koller, 2001)).

3 Generalized Parallel Backoff

An individual FLM probability model can be seen as a di-
rected graphical model over a set ofN + 1 random vari-
ables, with child variableF andN parent variablesF1

throughFN (if factors are words, thenF = Wt andFi =
Wt−i). Two features make an FLM distinct from a stan-
dard language model: 1) the variables{F, F1, . . . , FN}
can be heterogeneous (e.g., words, word clusters, mor-
phological classes, etc.); and 2) there is no obvious nat-
ural (e.g., temporal) backoff order as in standard word-
based language models. With word-only models, back-
off proceeds by dropping first the oldest word, then the
next oldest, and so on until only the unigram remains. In
p(f |f1, f2, . . . , fN ), however, many of the parent vari-
ables might be the same age. Even if the variables have
differing seniorities, it is not necessarily best to drop the
oldest variable first.
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Figure 1: A backoff graph forF with three parent vari-
ablesF1, F2, F3. The graph shows all possible single-
step backoff paths, where exactly one variable is dropped
per backoff step. The SRILM-FLM extensions, however,
also support multi-level backoff.

We introduce the notion of abackoff graph(Figure 1)
to depict this issue, which shows the variousbackoff
paths from the all-parents case (top graph node) to the
unigram (bottom graph node). Many possible backoff
paths could be taken. For example, when all variables
are words, the pathA− B− E−H corresponds to tri-
gram with standard oldest-first backoff order. The path
A− D−G−H is a reverse-time backoff model. This
can be seen as a generalization of lattice-based language
modeling (Dupont and Rosenfeld, 1997) where factors
consist of words and hierarchically derived word classes.

In our GPB procedure, either a single distinct path
is chosen for each gram or multiple parallel paths are
used simultaneously. In either case, the set of back-
off path(s) that are chosen are determined dynamically
(at “run-time”) based on the current values of the vari-
ables. For example, a path might consist of nodes
A− (BCD)− (EF)−G where nodeA backs off in par-
allel to the three nodesBCD, nodeB backs off to nodes
(EF), C backs off to(E), andD backs off to(F).

This can be seen as a generalization of the standard
backoff equation. In the two parents case, this becomes:

pGBO(f |f1, f2) =

{
dN(f,f1,f2)pML(f |f1, f2) if N(f, f1, f2) > τ

α(f1, f2)g(f, f1, f2) otherwise

where dN(f,f1,f2) is a standard discount (determining
the smoothing method),pML is the maximum likeli-
hood distribution,α(f1, f2) are backoff weights, and
g(f, f1, f2) is an arbitrary non-negativebackoff function
of its three factor arguments. Standard backoff occurs
with g(f, f1, f2) = pBO(f |f1), but the GPB procedures
can be obtained by using differentg-functions. For exam-
ple,g(f, f1, f2) = pBO(f |f2) corresponds to a different
backoff path, and parallel backoff is obtained by using an
appropriateg (see below). As long asg is non-negative,
the backoff weights are defined as follows:

α(f1, f2) =
1 −

∑
f:N(f,f1,f2)>τ dN(f,f1,f2)pML(f |f1, f2)∑

f:N(f,f1,f2)<=τ g(f, f1, f2)

This equation is non-standard only in the denominator,
where one may no longer sum over the factorsf only
with counts greater thanτ . This is becauseg is not nec-
essarily a distribution (i.e., does not sum to unity). There-
fore, backoff weight computation can indeed be more ex-
pensive for certaing functions, but this appears not to be
prohibitive as demonstrated in the next few sections.

Table 1: CallHome Arabic Results.
LM parents backoff function/path(s) ppl
3-gram w1, w2 - / temporal[2, 1] 173
FLM 3-gram w1, w2, m1, s1 - / [2, 1, 4, 3] 178
GPB-FLM 3-gram w1, w2, m1, s1 g1 / [2, 1, (3, 4), 3, 4] 166
2-gram w1 - / temporal[1] 175
FLM 2-gram w1, m1 - / [2, 1] 173
FLM 2-gram w1, m1, s1 - / [1, 2, 3] 179
GPB-FLM 2-gram w1, m1, s1 g1 / [1, (2, 3), 2, 3] 167

4 SRILM-FLM extensions

During the recent 2002 JHU workshop (Kirchhoff et al.,
2003), significant extensions were made to the SRI lan-
guage modeling toolkit (Stolcke, 2002) to support arbi-
trary FLMs and GPB procedures. This uses a graphical-
model like specification language, and where many dif-
ferent backoff functions (19 in total) were implemented.
Other features include: 1) all SRILM smoothing methods
at every node in a backoff graph; 2) graph level skipping;
and 3) up to 32 possible parents (e.g., 33-gram). Two of
the backoff functions are (in the three parents case):

g(f, f1, f2, f3) = pGBO(f |f`1 , f`2)

where

(`1, `2) = argmax
(m1,m2)∈{(1,2),(1,3),(2,3)}

pGBO(f |fm1 , fm2)

(call thisg1) or alternatively, where

(`1, `2) = argmax
(m1,m2)∈{(1,2),(1,3),(2,3)}

N(f, fm1 , fm2 )

|{f : N(f, fm1 , fm2 ) > 0}|

(call this g2) whereN() is the count function. Imple-
mented backoff functions include maximum/min (nor-
malized) counts/backoff probabilities, products, sums,
mins, maxs, (weighted) averages, and geometric means.

5 Results

GPB-FLMs were applied to two corpora and their per-
plexity was compared with standard optimized vanilla bi-
and trigram language models. In the following, we con-
sider as a “bigram” a language model with a temporal
history that includes information from no longer than one
previous time-step into the past. Therefore, if factors are
deterministically derivable from words, a “bigram” might
include both the previous words and previous factors as
a history. From a decoding state-space perspective, any
such bigram would be relatively cheap.

In CallHome-Arabic, words are accompanied with de-
terministically derived factors: morphological class (M),



Table 2: Penn Treebank WSJ Results.

LM parents Backoff function/path(s) ppl (±std. dev.)
3-gram w1, w2 - / temporal[2, 1] 258(±1.2)
2-gram w1 - / temporal[1] 320(±1.3)
GPB-FLM 2-gram A w1, d1, t1 g2 / [(1, 2, 3), (1, 2), (2, 3), (3, 1), 1, 2, 3] 266(±1.1)
GPB-FLM 2-gram B w1, d1, f1 g2 / [2, 1] 276(±1.3)
GPB-FLM 2-gram C w1, d1, c1 g2/ [1, (2, 3), 2, 3] 275(±1.2)

stems (S), roots (R), and patterns (P). Training data con-
sisted of official training portions of the LDC CallHome
ECA corpus plus the CallHome ECA supplement (100
conversations). For testing we used the official 1996 eval-
uation set. Results are given in Table 1 and show perplex-
ity for: 1) the baseline 3-gram; 2) a FLM 3-gram using
morphs and stems; 3) a GPB-FLM 3-gram using morphs,
stems and backoff functiong1; 4) the baseline 2-gram;
5) an FLM 2-gram using morphs; 6) an FLM 2-gram us-
ing morphs and stems; and 7) an GPB-FLM 2-gram using
morphs and stems. Backoff path(s) are depicted by listing
the parent number(s) in backoff order. As can be seen, the
FLM alone might increase perplexity, but the GPB-FLM
decreases it. Also, it is possible to obtain a 2-gram with
lower perplexity than the optimized baseline 3-gram.

The Wall Street Journal (WSJ) data is from the Penn
Treebank 2 tagged (’88-’89) WSJ collection. Word
and POS tag information (Tt) was extracted. The sen-
tence order was randomized to produce 5-fold cross-
validation results using (4/5)/(1/5) training/testing sizes.
Other factors included the use of a simple determinis-
tic tagger obtained by mapping a word to its most fre-
quent tag (Ft), and word classes obtained using SRILM’s
ngram-class tool with 50 (Ct) and 500 (Dt) classes.
Results are given in Table 2. The table shows the baseline
3-gram and 2-gram perplexities, and three GPB-FLMs.
Model A uses the true by-hand tag information from the
Treebank. To simulate conditions during first-pass de-
coding, Model B shows the results using the most fre-
quent tag, and Model C uses only the two data-driven
word classes. As can be seen, the bigram perplexities
are significantly reduced relative to the baseline, almost
matching that of the baseline trigram. Note that none of
these reduced perplexity bigrams were possible without
using one of the novel backoff functions.

6 Discussion

The improved perplexity bigram results mentioned above
should ideally be part of a first-pass recognition step of a
multi-pass speech recognition system. With a bigram, the
decoder search space is not large, so any appreciable LM
perplexity reductions should yield comparable word er-
ror reductions for a fixed set of acoustic scoresin a first-
pass. For N-best or lattice generation, the oracle error
should similarly improve. The use of an FLM with GPB

in such a first pass, however, requires a decoder that sup-
ports such language models. Therefore, FLMs with GPB
will be incorporated into GMTK (Bilmes, 2002), a gen-
eral purpose graphical model toolkit for speech recogni-
tion and language processing. The authors thank Dimitra
Vergyri, Andreas Stolcke, and Pat Schone for useful dis-
cussions during the JHU’02 workshop.
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