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ABSTRACT

Classifier combination is a technique that often provides apprecia-
ble accuracy gains. In this paper, we argue that the underlying sta-
tistical model of classifier combination should be made explicit.
Using directed graphical models (DGMs), we provide representa-
tions of two common combination schemes, the mean and product
rules. We also introduce new DGMs that yield novel combination
rules. We find that these new DGM-inspired rules can achieve
significant accuracy gains on the TIMIT phone-classification task
relative to existing combination schemes.

1. INTRODUCTION

When multiple independently trained pattern classifiers are com-
bined, the resulting accuracy is often better than any of the in-
dividual classifiers. This has been demonstrated for automatic
speech recognition (ASR) [7, 10, 18] and for pattern classifica-
tion [12, 13, 20, 29].

Classifier combination can fuse together different information
sources to utilize their complementary information. The sources
can be multi-modal, such as speech and vision, but can also be
transformations [18] or (e.g., spectral) partitions [5, 25, 24] of the
same signal. In each case, combination can produce appreciable
gains, even when individual classifiers exhibit widely varying ac-
curacies.

Combination rules often operate directly on classifier probabili-
ties. One method (the mean rule) computes a weighted average of
classifier outputs. Another method (the product rule) multiplies
and then renormalizes these probabilities. Other techniques com-
pute the maximum, minimum, or median of the classifier outputs
[20]. Other methodologies [27, 19] jointly train separate classi-
fiers which are combined in various ways. In ASR, classifier com-
bination can occur at different levels including the feature stream
[2, 16, 10, 17], the HMM state [18], or at higher levels such as at
the syllable [31] or sentence [7].

It is often said that classifiers should be combined if they are dif-
ferent. Classification is related to regression, where several the-
oretical studies[13, 4] have shown that mean-rule combination is
successful (a lower mean-squared error) when the errors of each
system are independent. In this case, error reduction is related to
ensemble bias (the degree to which the averaged ensemble output
diverges from the true target function) and variance (the degree to
which the ensemble members disagree) [21, 29, 4]. Generally, a
low error requires both a low bias and variance, but since variance
is reduced by averaging, it is sufficient to combine classifiers with
low bias.

When working with probabilistic decision-making systems, it is
usually advantageous to explicitly state the assumed underlying
statistical model. For example, a hidden Markov model, easily

defined by its conditional independent properties [3], is often used
to represent speech for ASR. In a mixture model, it is assumed
that a hidden and unknown cause selects each mixture component.

A model may also be used to represent classifier combination.
Explicating the models leading to a given combination rule could
provide insight about when that rule best applies. If a model is
found that matches the data well, a combination rule derivable
from the model, also matching the data, can be selected. Alterna-
tively, a given model can be improved by relaxing the most glar-
ing simplifying assumptions, thereby leading to new combination
schemes.

This paper investigates directed graphical models (DGMs) for the
classifier combination problem. A useful way to understand a
given model, and to measure how well it matches data, is to make
explicit all of its conditional independence properties. DGMs are
a type of graphical model [22] where these properties may be vi-
sualized. This makes it easy to experiment with different mod-
els and produce novel combination schemes. The paper provides
DGMs for two popular schemes (the sum and product rules) and
evaluates new combination rules resulting from novel models of
combination.

Section 2 reviews conditional independence and DGMs. Sec-
tion 3 provides DGMs for the mean and product rules. Section 4
considers new DGMs and combination rules for classifier com-
bination. Section 5 evaluates these rules on the TIMIT phone-
recognition task. Finally, Section 6 concludes and discusses fu-
ture work.

Notation: In this paper, capital letters (X) represent random vari-
ables and lower case letters (x) refer to their possible values.
pX(X = x) = p(X = x) = p(x) is the probability of the
event X = x. Note that X can be a vector random variable. We
will use matlab-like notation to refer to ranges, so X1:t refers to
the set fX1; X2; : : : ; Xtg. If there are T random variables, and
A � 1 :T , then XA � X1:T is the subset of the random variables
X1:T indexed by elements within A.

2. CONDITIONAL INDEPENDENCE (CI) AND
DIRECTED GRAPHICAL MODELS (DGMS)

A random variable X is conditionally independent (CI) of a dif-
ferent random variable Y given a third random variable Z under a
given probability distribution p(�), if the following relation holds:

p(x; yjz) = p(xjz)p(yjz)

for all x, y, and z. This is written X??Y jZ. Many properties of
CI are given in [22, 26]. CI is a powerful property — when CI
assumptions are made, a model might undergo enormous simpli-
fications.

Directed graphical models (DGMs) [14, 26] are one type of



graphical model (GM) [22] where the graph is directed and
acyclic. A GM specifies a family of statistical models and a set of
computationally efficient algorithms for decision making. A par-
ticular graphical model is associated with a collection of random
variables and a set of probability distributions over that collection.
A GM’s edges in one way or another specifies a set of conditional
independence properties that are true under all the members of the
associated family.

Nodes in a graphical model can be either hidden, which means
they have an unknown value, or they can be observed, which
means that the values are known. Certain types of GMs allow
the dependencies to switch [9], and are often called multinets. In
this case, the edges in a GM can change as a function of other
variables in the network.

There are several equivalent schemas that can formally define the
CI relationships implied by a DGM. One simple method (equiv-
alent to d-separation [14, 22] and described in Figure 1) is called
the Bayes-ball procedure [28].

Figure 1: The Bayes-ball procedure makes it easy to answer ques-
tions about a DGM such as “isXA??XB jXC?”, where A, B, and
C are disjoint sets of node indices. First, shade all nodes having
indices inC and imagine a ball bouncing from node to node along
the edges in a graph. The answer to the above query is TRUE if
and only if a ball starting at some node in A can reach a node in
B, when the ball bounces according to the rules depicted in the
figure. The dashed arrows depict whether a ball, when attempting
to bounce through a given node, may bounce through that node or
if it must bounce back.

When using a DGM to represent a physical process, it is important
for the DGM to represent those properties needed to solve a given
task (such as prediction or classification). A mismatch can occur
in a variety of ways. For example, the model’s CI properties might
not be reflected by the data. Alternatively, the CI properties might
be correct, but the implementations could be wrong (e.g., repre-
senting a non-linear dependence using only linear regression).

A DGM can also represent classifier combination. Given the right
model, one need not assume that errors are independent since er-
ror interdependency can be modeled. Once a model is specified,
a combination rule, correct with respect to the model, can be de-
rived using the associated CI properties. Since it is possible to
check model accuracy with respect to the data, it is possible also
to check a corresponding combination scheme. While we do not
measure model accuracy in this paper, we investigate several new
models and their associated combination strategies.

3. MODELS FOR SUM AND PRODUCT RULES

In this section, we examine DGMs that can lead to the mean and
the product rule. Consider the left DGM in Figure 2, where C
is a class variable, X1:N is a feature vector, and H is a hidden

discrete random variable. Under this model, the following is a
valid expansion:

p(cjx) =
X
h

p(c; hjx) =
X
h

p(cjx; h)p(hjx)

As is well known, this is a mixture of experts [15] but several ad-
ditional simplifications can be made. If the edge from X1:N to H
is removed, this yields p(cjx) =

P
h p(cjx; h)p(h) which is the

weighted mean rule. If H is uniformly distributed, then p(cjx) =
1
N

P
h p(cjx; h) which is just the the average of each classifier.

If it is further assumed that C??XAh jfH = hg, then for appro-
priate Ah, the rule becomes p(cjx) = 1

N

P
h p(cjxAch ; h) where

xAc
h

is a subset of features.1 This last assumption is that certain
features are conditionally independent of C for a particular as-
signment to the hidden variable H . The result is a rule that can
combine heterogeneous feature vectors.

Mean rules are useful for combining uni-modal distributions into
a single multi-modal distribution. Since mixing increases entropy
[6], such a procedure is poor for representing low-entropy distri-
butions where probability is concentrated in narrow input-space
regions. In such cases, the product rule is useful, where each
classifier must supply probability to the correct class, but may
also supply probability to incorrect classes as long as one or more
of the other classifiers do not supply probability to those incor-
rect classes. These are therefore called “AND” style combination
schemes [18] since only the logical AND of each classifier’s prob-
abilistic decision will survive combination. It is also the case that
such a combination scheme is useful when the underlying distri-
butions factorize over the probabilistic space of C [11].

C

H

X1:N

X 1 X 2 X N

C

...

Figure 2: Models for Sum and Product Rules.

The product rule can be derived using the right DGM in Figure 2.
This is the graph for a naive Bayes classifier [8], which states that
features are independent given the class (Xi:j??Xl:mjC for all
i; j; l; m such that i :j \ l :m = ;). Given this this graph, the
product rule may be derived as follows:
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This rule has been successful for HMM state combination in ASR
[16, 10, 18]. This appears surprising since the corresponding as-
sumptions are certainly not true — e.g., neither different feature

1The notation Ach means the complement of the set Ah and can be

defined as Ach
�
= 1:N n Ah.



representations derived from nor different spectral sub-bands of
the same signal are CI given the class [1]. On the other hand, pro-
ducing low-entropy distributions over HMM states from a product
of sometimes incorrect classifiers might outweigh this inaccuracy.
Alternatively, as argued in [3], an assumption that is incorrect for
predictive accuracy does not ensure discriminative inaccuracy.

4. NEW DGM COMBINATION MODELS AND THEIR
RULES

It is possible to model classifier combination using distinct hid-
den random variables for each classifier output and the target. A
specific form of this has been called stacked generalization [30],
where a random relationship is learned between classifier out-
puts and the true target. In general, different DGMs over these
random variables lead to distinct and potentially novel combina-
tion schemes. Interestingly, we find that certain relatively simple
schemes do not require some of the seemingly egregious indepen-
dence assumptions such as feature independence.
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Figure 3: Eight (out of many) possible models for combination.

Figure 3 provides eight out of many possible models for two-
classifier combination. The differences between them are the
edges, and therefore the CI assumptions. Each model uses five
random variables, C, the target class, C1, C2, hidden variables
indicating the classifier outputs, and X1, and X2, different input
features. These models can be generalized to N classifiers, but
the number of possible rules considerably grows in that case.

Under all models, a valid expansion is:

p(cjx1; x2) =
X
c1;c2

p(cjc1; c2; x1; x2)p(c1; c2jx1; x2):

Other than the obvious chain-rule expansions, each model al-
lows for further simplifications to be made about the quantities
p(cjc1; c2; x1; x2) and p(c1; c2jx1; x2), as described below.

Under Model I, implications include X1??X2 and C1??C2

but it is not implied that X1??X2jC. Also, since
C??fX1; X2gjfC1; C2g, C1??fC2; X2gjX1 , and C2??X1, the
combination rule becomes

p(cjx1; x2) =
X
c1;c2

p(cjc1; c2)p(c1jx1)p(c2jx2) (1)

Note that p(cjc1; c2) could be represented either using a neural
network, or using a 3-dimensional table “trained” by counting
from the list of classifier outputs and targets for each feature.

For model II, it is neither the case that X1??X2 nor that
C1??C2 (use Bayes-ball to see this). It is still true that
C??fX1; X2gjfC1; C2g, and C1??fC2; X2gjX1 , and now
C2??X1jX2. Interestingly, this model results in the same com-
bination scheme as case I even though in case II the features are
not assumed to be independent. Also, this rule still requires a 3D
table for p(cjc1; c2)

Under model III, it is no longer the case that C1??C2jX1 but
since C2??X1jfC1; X2g and C1??X2jX1,

p(cjx1; x2) =
X
c1;c2

p(cjc1; c2)p(c2jc1; x2)p(c1jx1): (2)

The output of the first classifier must be given as input to the sec-
ond classifier. An potential benefit of this scheme is that the sec-
ond classifier might detect and then correct mistakes made by the
first classifier. Again, p(cjc1; c2) requires a 3D table.

In model IV, it is no longer true that C??fX1; X2gjfC1; C2g
leading to

p(cjx1; x2) =
X
c1;c2

p(cjc1; c2; x1; x2)p(c2jc1; x2)p(c1jx1):

Model V reverses arrow directions and can be seen as genera-
tive model of X1:2 — one first generates C according to p(c),
then produces noisy versions C1 and C2 of the class variable, and
each of those produce X1 and X2 respectively. In this model,
fC1; X1g??fC2; X2gjC and C1??X2jC2 but it is not the case
that C2??X1jX2 . This leads to the rule

p(cjx1; x2) =
X
c1;c2

p(cjc1; c2)p(c1jc2; x1)p(c2jx1; x2): (3)

The first classifier uses the first feature stream and the output of
the second classifier which uses both features. Under this rule,
one need not use a 3D table for p(cjc1; c2) since C1??C2jC.
Bayes rule yields p(cjc1; c2) = p(c1; c2jc)p(c)=p(c1; c2) which
also equals p(c1jc)p(c2jc)p(c)=p(c1; c2). It is therefore possi-
ble to represent p(cjc1; c2) using three 2-dimensional and one 1-
dimensional tables, significantly reducing parameters.

Under Model VI, it is no longer the case that X1??X2jC but it is
still true that C1??C2jC, so 2-dimensional tables can be used to
represent p(cjc1; c2). This can therefore lead to the same rule as
in case V. Model VII can produce the same rule as does model VI,
but requires a 3-dimensional table for p(cjc1; c2). Finally, model
VIII results in the came rule as does models I and II.

In general, different models can lead to exactly the same combi-
nation rule — the rule is valid with respect to multiple statistical
models. It is therefore not always the case that removing CI as-
sumptions leads to more powerful rules or that adding CI assump-
tions leads to simplifications. Since an edge in a DGM does not
necessarily imply a dependency (only a lack of an edge implies
a conditional independency), it can be seen that a single model
might lead to more than one combination rule.

5. EXPERIMENTAL RESULTS

In this section, we empirically evaluate some of the rules given in
the preceding sections. We use the TIMIT speech corpus (the



MFCC LPC Sum Prod Min Max
69.56% 66.92% 70.43% 70.49% 70.43% 70.13%

Table 1: Results for MFCC and LPC base systems, product, sum,
min, and max rule combination.

I (tbl) I (MLP) III(tbl) III(MLP)
69.90% 70.25% 72.93% 72.46%

Table 2: Results for DGM combination schemes.

standard training and core test set); the accuracy rates we re-
port are for frame-level phone classification (as opposed to phone
recognition). The two base classifiers which we combine using a
combination rule are three-layer Multi-Layer-Perceptrons (MLP)
trained using MFCC or LPC input feature representations. Both
feature streams consist of 12 basic coefficients, energy and first
derivatives, resulting in 26 input features. The MLPs use a context
window of nine frames. In each case, the number of hidden units
in the classifiers were adjusted to equalize the number of parame-
ters between the different cases. Combination using p(cjc1; c2) is
implemented either using discrete probability tables (tbl), or when
appropriate by another MLP.

Table 1 shows the baseline performance and the results of sum and
product rule combination and for comparison also provides results
using the min and max rules [20]. The accuracy rates obtained by
the DGM schemes are shown in Table 2.

Not unexpectedly, we find that performance improves as indepen-
dence assumptions are relaxed (from I to III). More interestingly,
we find that no improvement is found over the sum and prod-
uct rules when individual classifier outputs are independent (i.e.,
C1??C2jX1) but significant improvements are found when this
assumption no longer holds. Moreover, we observe that using an
MLP instead of a conditional probability table has a negligible
affect on performance.

Overall, the best scheme attempted (model III) achieves a statis-
tically significant improvement (at the p < 0:0001 level using a
difference of proportions test) both over our baseline systems and
over the product and sum schemes.

6. DISCUSSION

This paper argues that 1) since classifier combination is a statis-
tical process, the underlying assumed statistical model should be
precisely stated, and that 2) directed graphical models (DGMs)
are a rich and flexible language which can be used to reason about
different classifier combination schemes. When deciding from
among a collection of combination rules, one can consider the
corresponding set of underlying statistical models. By choosing
the model most accurately reflected by the data, one can select an
correspondingly appropriate combination rule. Selecting a com-
bination rule can therefore be seen as a model selection [23] pro-
cedure.

It has been shown that multiple different models might lead to ex-
actly the same combination rule, with shared rule being valid with
respect to multiple models. Also, a single model can lead to more
than one valid combination rule. In the later case, the simplest
model could be chosen. This paper listed the models for the prod-
uct and sum rules, and presented some novel models and rules,
some of which have lead to appreciable accuracy gains relative to
the product or sum rules for the TIMIT phone classification task.

In the future, we will evaluate the other models for combination,
and develop and evaluate ways to automatically check combina-
tion model accuracy, and thereby select an appropriate rule. We
also intend to evaluate these new rules in large vocabulary speech
recognition tasks.
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