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Abstract

The performance of state-of-the-art speech recognition systems is still far
worse than that of humans. This is partly caused by the use of poor statistical mod-
els. In a general statistical pattern classification task, the probabilistic models should
represent the statistical structure unique to and distinguishing those objects to be
classified. In many cases, however, model families are selected without verification
of their ability to represent vital discriminative properties. For example, Hidden
Markov Models (HMMs) are frequently used in automatic speech recognition sys-
tems even though they possess conditional independence properties that might cause
inaccuracies when modeling and classifying speech signals.

In this work, a new method for automatic speech recognition is developed
where the natural statistical properties of speech are used to determine the probabilis-
tic model. Starting from an HMM, new models are created by adding dependencies
only if they are not already well captured by the HMM, and only if they increase the
model’s ability to distinguish one object from another. Based on conditional mutual
information, a new measure is developed and used for dependency selection. If depen-
dencies are selected to maximize this measure, then the class posterior probability is
better approximated leading to a lower Bayes classification error. The method can be
seen as a general discriminative structure-learning procedure for Bayesian networks.
In a large-vocabulary isolated-word speech recognition task, test results have shown
that the new models can result in an appreciable word-error reduction relative to
comparable HMM systems.
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Chapter 1

Introduction

Contents
1.1  Automatic Speech Recognition . . . . ... .. . ... L L L L. 4
1.2 Essentials of Information Theory . . . .. . ... ... ... ... ... ...... 7
1.3 Notation . . . . . . . oL o e e 9
1.4 Thesis Overview . . . . . . . . . oL o e e 10

A human being perceives a sight, sound, touch, or taste and can immediately and
appropriately react to such information from the environment. How is it that a person
can categorize, differentiate, and gather information from the limitless collection of objects
existing in the natural world? And based solely on past ontogenic and phylogenic expe-
riences, a person can extract information from natural objects and natural scenes never
before encountered.

Our world consists of natural objects existing within natural scenes. Consider, for
example, trees against a landscape, a downtown city block, a sunset, or musical instruments
performing within an orchestra. Contrast such scenes with the noise and static of a television
set tuned to a non-existent station. One important and undeniable property of natural
objects is their non-randomness. Natural objects have structure and redundancy — one can
with high accuracy predict features that will exist in future instances of an object or predict
one part of an object using information gained from other parts. Structure allows objects
to stand out conspicuously from their background and allows them to be differentiated from
each other. Furthermore, the structure is consistent — properties of objects are consistent
throughout different instances of a particular object type. Consistency allows one to identify
an object as what it is.

Perhaps humans use these structurally consistent patterns to recognize and cat-
egorize objects. To identify an object, perhaps we first identify an object’s distinguishing
features and then categorize it if the features match some stored representation well enough.
These features, however, need not exist just at a high level (Tversky 1977). They could exist
at a “subconscious” level and consist of complex patterns of correlation between multiple
low-level deterministic feature detectors or receptive fields.
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How can one build a machine to recognize natural objects? One way is to build a
model of each object that represents its distinguishing features. The principle of parsimony
requires a model to explain only what is necessary, and no more. If only the most identify-
ing and distinguishing features of an object (those that are most consistent among different
object instances) are represented, and the remaining attributes (those with greater variabil-
ity) are ignored, then the resulting model will be both accurate and simple, satisfying the
principle of parsimony.

This thesis is about automatically building computer models of natural objects
using statistical properties of those objects measured from a corpus of data. In this thesis,
however, the natural objects are human speech utterances, the models are statistical, and
the task is automatic speech recognition. Like the visual, tactile, and olfactory scenes, the
auditory scene (Bregman 1990) is filled with natural objects. Human speech sounds are
one type of natural object in the auditory scene. QObject recognition therefore becomes
the production of a textual transcription of the spoken utterance, or more generally the
identification of the intended meaning of the speaker. And like any natural object, if only
the important and distinguishing properties of speech are represented by a model, perhaps
good automatic speech recognition performance can be achieved with minimal complexity.

Statistical pattern recognition (Duda & Hart 1973; Fukunaga 1990; Bishop 1995),
the method used in this thesis, provides one general framework within which such models
may be designed. In this case, given a particular object class identifier M and a set of
signals or low-level deterministic features describing a natural auditory scene X, the goal
is to produce a model p(X|M) that provides a high probability score for instances of the
class.

This general approach of automatically developing models that accurately repre-
sent the statistical properties of natural objects has a number of attractions.

e Data-Discovery

The automatic identification of models could produce winning yet unanticipated struc-
tures that might go unidentified if the models are selected only by hand. This is
especially true if the objects are represented in a very high dimensional feature space.

¢ Language or Domain Specificity

Each task might benefit from its own customized set of models. This meta-level step
of first automatically deducing a model could allow different problem domains (such
as different spoken languages, different types of speech such as isolated words, read
speech, conversational speech, etc.) to use a set of models that provide a domain-
specific performance increase.

¢ Mimics the Neural System’s Encoding of Natural Scenes

In the neurobiology community, it has been known for some time that natural infor-
mation sources rarely if ever produce signals that are purely random. Their messages,
instead, are encoded within signals that contain significant statistical structure and
redundancy and obey certain physical constraints (Dusenbery 1992). More inter-
estingly, it has been hypothesized that the neural system has evolved to accurately
represent the statistical patterns found in natural scenes (Field 1987; Linsker 1990;



3

Atick 1992; Barinaga 1998; Rieke et al. 1997; Baddeley et al. 1997; Attias & Schreiner
1997). In these references, two general hypotheses have been advanced. First, it has
been found that neural response patterns are significantly stronger for stimuli (usually
visual) that have statistical properties similar to natural objects. Stimuli that have
random properties (or properties that do not match those of natural objects) tend to
have only weak neural responses. Furthermore, those stimuli that possess statistical
properties resembling objects important for an organism’s survival and reproduction
(e.g., predators or potential mates) evoke the strongest neural responses. Second, the
neural code in some instances has been accurately predicted based on information-
theoretic codings of natural scene stimuli. In this case, the neural system can be seen
as performing an entropy compression that is used to efficiently encode objects from
natural scenes. Another interesting property of the human language system is that
high-level syllabic statistical structure of language can play an important role in infant
language learning (Saffran et al. 1996).

The above phenomena require some representation of the statistical properties of nat-
ural scenes. In other words, they require some form of joint probability distribution.
This is because it is necessary to know what signals are statistically natural and, in
those signals, where the patterns of redundancy typically exist.

To increase their chances of survival, natural organisms must make decisions about
natural signals very quickly. In other words, the organism must perform some form of
real-time causal signal encoding, and must have quick access to their “joint probability
distributions” with which to make encoding decisions. It would therefore be to the
organism’s advantage if its model is simple and is optimized to represent only the
important statistical properties of natural objects. It does not seem unreasonable,
therefore, to predict (as is described in the above references) neural processing by
studying statistical properties of natural scenes.

But if neural processing can be predicted from statistical properties of natural scenes,
perhaps the statistical structure of probabilistic models can also be “predicted” in a
similar way. In other words, perhaps the underlying goal of statistical model selection
is similar to the process of evolutionary neurobiology.

Noise Filters

It is probable that the human auditory system is highly tuned to statistics of speech
analogous to how the bat auditory system is tuned to its auditory environment (Suga
1988; Suga 1996). Such a specialization can help filter out noise sources whose statis-
tical properties do not match that of speech. This is one of the approaches advocated
by (Greenberg 1996) where spectral properties of sub-band modulation envelopes are
band-pass filtered, retaining only those modulation frequencies that are found to be
crucial for speech intelligibility. Generalizing on this approach, the hypothesis can be
made that when noise is presented simultaneously with speech, the degree of speech
intelligibility loss will be a function not just of the signal-to-noise ratio but also of the
similarity between the statistical properties of the noise and speech.

Moreover, if the properties only of speech are represented by a model, that model
could act as a filter, essentially ignoring aspects of a signal containing non-speech-like
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statistical properties. In other words, such a model might possess noise robustness
properties.

e Parsimony and Computation

As mentioned above, if models represent only the important and distinguishing sta-
tistical properties of objects, then accurate models can be produced with minimal
complexity.

¢ Generalization

A good statistical model should accurately describe objects that it has not yet en-
countered. If the important statistical properties of a class of objects are accurately
identified, and if a model is designed to accurately and parsimoniously represent those
properties, the model should generalize better than if the model represented the less
important properties.

As is typical, there is a danger of “over-training” or “over-fitting” (Bishop 1995;
Burnham & Anderson 1998) a model to the corpus of data used to identify the sta-
tistical properties. Overtraining is a general problem that can occur anytime there
are too few constraints imposed on a system that has been trained using too small an
amount of training data. Therefore, one must be careful to avoid this phenomenon.

The overall goal of this thesis is to automatically produce statistical models that
represent those properties of speech that help to reduce recognition errors in automatic
speech recognition systems. This is done by exploiting statistical structure of speech as
measured using information theoretic constructs. As will be seen, this data-driven model
induction procedure is not dissimilar to the model selection methods found in the field of
statistics (Linhart & Zucchini 1986; Burnham & Anderson 1998).

Before getting into specifics, a brief overview is provided of automatic speech
recognition and of some basic concepts needed from information theory.

1.1 Automatic Speech Recognition

Figure 1.1 illustrates the general method used by most speech recognition systems.
The goal of a speech recognition system is to translate an acoustic spoken utterance into a
sequence of words. The general approach is based on statistical pattern recognition (Duda
& Hart 1973; Fukunaga 1990; Bishop 1995). This section will briefly describe the main
components of a speech recognition system.

A speech signal is first digitized, and then converted by a deterministic feature
extraction transformation into a representation that is more amenable to later processing
stages. The goal of feature extraction is partially to modify the statistical properties of the
speech signal’s representation to match the statistical model (see below) while preserving
the underlying message in the signal. There are standard types of “speech feature vectors”
that are commonly used including mel-frequency cepstral coefficients (MFCCs) (Davis &
Mermelstein 1980), RASTA-PLP features (Hermansky 1990; Hermansky & Morgan 1994),
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Priors
audio p(M)
speech
signal Likelihoods

p(X|M)

Feature
Extractio

Model Database
M1="How to wreck a nice beac
M2=“How to recognize speech
M3 ...

“How to wreck
a nice beach”

Figure 1.1: The general automatic speech recognition method.

and linear-predictive coefficients (Atal 1974; Makhoul 1975). An overview of the feature-
extraction process can be found in Deller et al. (1993). In this thesis, the set of features
will be referred to as X, which can be considered a random variable.

The next speech recognition stage involves the use of a database of models M
each one representing a possible speech utterance. The models are trained using a corpus
of labeled (i.e., transcribed, often at the word level) speech data. For each model M, a
probability score p(X|M) is produced for an unknown speech utterance. The quantity
p(X|M) is also called the likelihood of the model M given the data X. These likelihoods
are combined with prior probabilities of each utterance p(M) and the maximum is selected
and used for the hypothesized speech utterance.

Because in general there are many utterances possible, it is infeasible to produce
a distinct model for each one. Therefore, the speech models are hierarchically decomposed
into different levels, the acoustic, phonetic, and linguistic. With this decomposition, models
of entire utterances can share sub-models. For example, sentence models can share word
models, and word models can share sub-word models. There are a variety of types of sub-
word model that are used including phoneme, bi-phone, syllable, or demi-syllable models
(Clark & Yallop 1995; Deller et al. 1993).

The acoustic models describe the structure of sound for each sub-word unit. In
other words, each sub-word unit has an associated probability distribution over a varying
length sequence of feature vectors. Acoustic models typically used to represent the distribu-
tion of each feature vector include parametric mixture densities (Titterington et al. 1985),
neural networks (Bishop 1995), and discrete distributions over vector quantized (Gray &
Gersho 1991) elements.

The phonetic (or word pronunciation) models describe the statistical structure of
words. For each possible word in the system, a probability distribution is defined on a set
of sequences of sub-word units (i.e., pronunciations) that can make up the word. Decision
trees (Breiman et al. 1984) are often used to produce word pronunciation models.

The linguistic models define probability distributions over sequences of words in
an attempt to model language. First and second order Markov chains (referred to as bi-
and tri-grams) are often used to describe sequences of words but more complex models can
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also be used (Jelinek 1997).

The models at each of the above levels are combined and used to produce composite
models p(X|M), one for each possible utterance. The composite models are represented
using hidden Markov models (HMMs) which will be extensively discussed in Chapter 3.

These are the bare essentials of modern speech recognition systems. Many more
details will be described in later chapters of this work. How well does such a system do on
modern speech recognition tasks? At the time of this writing (May 1999), there are many
available commercial products that successfully recognize certain types of speech. On the
other hand, at the most recent DARPA Broadcast News workshop (DARPA Broadcast News
Workshop 1999), the best individual system achieved word-error performance! of about 12
or 13 percent. Moreover, at the most recent LVCSR (LVCSR Workshop 1998) workshop,
the best results on the Switchboard corpus (Godfrey et al. 1992) was about 28 percent and
on the Call-Home (LVCSR Workshop 1998) corpus about 40 percent. Humans, on the other
hand, achieve about 3 percent on such corpora. Clearly, modern speech recognition systems
must be improved.

In a recent study (McAllaster et al. 1998), it was surmised that a large portion
of errors on such corpora can be accounted for by statistical modeling problems at the
acoustic and phonetic level. In their paper, they evaluate a speech recognition system
on synthesized as well as real speech and study how using perfect acoustic models can
influence word error. Perfect acoustic models are obtained by synthesizing speech data
using previously trained acoustic models which are then also used by the recognition system.
Pronunciation models are also varied either by 1) recognizing synthesized speech data using
a pronunciation dictionary that has also been used to generate the speech data, or 2)
including hand-transcribed test-data pronunciations in the test dictionary.

They found that if both the acoustic and pronunciation models of the speech recog-
nition system are perfect (synthesized data using the acoustic models and the dictionary
pronunciations), then recognition word error falls by an order of magnitude. If only the
acoustic models are perfect (i.e., synthesized data using the acoustic models and the hand-
transcribed pronunciations) and the pronunciation dictionary has been augmented with the
hand-transcribed test pronunciations, performance gets better but not by nearly as much.
And if only the pronunciations are improved by including the hand-transcribed test pro-
nunciations in the test dictionary (i.e., imperfect acoustic models since the real acoustic
data is used) then performance actually gets worse.

A conclusion of this paper is that, one way to significantly improve speech recog-
nition performance is to simultaneously improve both the acoustic and the pronunciation
models. Generalizing their result somewhat, an additional hypothesis that can be made is
that, to significantly improve a speech recognition system, components at all levels (feature
extraction and acoustic, pronunciation, and language modeling) of a speech recognition
system should be simultaneously improved (also see Section 7.2). Typically this is not
practical because of the combinatorially large set of possibilities implied by simultaneous
improvements — accordingly, the test results provided in this thesis (Chapter 6) evaluate
improvements applied only to the acoustic modeling component of an automatic speech
recognition system. This is done using a new technique to relax the HMM conditional in-

!Speech recognition systems are typically judged by their word-error performance which is defined as the
percentage of words incorrectly recognized by a system.
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dependence assumptions in a principled and data-driven way. As will be seen, however, the
general approach can be used to adapt the acoustic models to any type of improvements
performed simultaneously at other levels.

1.2 Essentials of Information Theory

Elements of information theory will be used extensively throughout this thesis.
This section provides a very brief overview of the information theoretic concepts relevant
to this work. More detailed coverage is provided in a number of excellent texts (Cover &
Thomas 1991; Gallager 1968; Kullback 1968).

Let X be arandom variable, and {X = 2} be the particular event that the random
variable X takes on the value x. This event has a probability p(X = z) or more concisely
just p(z). For notational convenience, the event {X = 2} might simply be written as x.
In general, the smaller the probability p(z) is, the event {X = 2} is viewed as being more
surprising. Each event can be thought of as conveying an amount of information that is
related to its surprise. One way of representing the amount of information provided by an
event, therefore, is using its probability. Improbable events provide much information since
they are unexpected, and probable events provide little information since they are expected.
The inverse of p(z) can be thought of as conveying the amount of information provided by
the event {X = 2} as can the quantity log(1/p(«)). The amount of information provided
by an event is therefore defined as follows:

Information provided by the event {X = z} is equal to —logp(X = z)

Note that —logp(X) can be seen as a random variable which has an expected value. The
average of this random variable is the average information provided by X:

Average information provided by X is equal to H(X) 2 _ zp(w) logp(X = z)

The quantity H(X)is called the entropy of the random variable X. Entropy can be similarly
defined for continuous random variables.

The random variable X can be thought of as an information source providing
messages in some alphabet where each message has a certain probability. The entropy
H(X) is the minimum number of bits per message on average that have to be used to
losslessly represent messages generated from this source.

Let Y also be a random variable that might be randomly related to X. If it is
known that the event {Y = y} occurred, this might affect the probability of the event
{X = =z} as is reflected by the conditional probability distribution p(z|y). Following an
analogous reasoning to the above, —log p(z|y) can be seen as the information provided by
the event z given y. Averaging over all  and y produces the conditional entropy:

H(X|[Y)==> p(x,y)logp(z|y)

The quantity

—og P g

p(x)

— log

1
8 ) T8 bl
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can be seen as the difference between the information provided by the event x and the
information provided by the event x given y. The average of this quantity over all z and y
is called mutual information and is defined as:

I(X:Y) = Zp(wv@/)bg%

If X is thought of as an information source, and Y a receiver or a version of X after
being sent through some transmission channel, [(X;Y') is the amount of information (in
bits) on average that is transmitted between X and Y through the channel. The quantity
I(X;Y) is sometimes referred to as the information transition rate between X and VY, i.e.,
it is the number of bits per symbol transmitted on average.

Finally, if Z is a random variable, the quantity

. L paylz)
log p(z]2) ~log plaly,z) gp($|Z)P(3/|Z)

can be seen as the difference between the information provided by the event x given z and
the event z given y and z. Taking averages in this case defines the conditional mutual
information:

1I(X;Y|7) = Ep(w’y’z)logz%

Yz

The conditional mutual information may also be represented as:

I(X;Y)2) =) I(X;Y|Z = 2)p(Z = 2)

where

I(X3Y|Z=2)= Zp(x’ymlogl%

ry

is the conditional mutual information between X and Y under the event {Z = z}.

Entropy, conditional entropy, mutual information, and conditional mutual informa-
tion can be depicted using the Venn diagrams given in Figure 1.2. A variety of relationships
exist between these quantities (Cover & Thomas 1991), many of which can be easily “read
off” from the Venn diagrams. For example, it is easy to see relationships such as

[(X:Y) = H(X) - HX|Y) = H(Y) - HY|X),

I(X3Y, 7) = I(X;Y) + I(X; Z]Y),
and

I(X:Y;2)=I(X;Y) - [(X;Y]Z)
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H(2)

H(X) H(Y)

H(X) H(Y)

Figure 1.2: Venn diagrams for entropy, conditional entropy, and mutual information (left)
and conditional mutual information (right).

where I(X;Y;Z) can be thought of as the mutual information common among the three
variables X, Y, and Z.

Another important quantity is the KL-distance (Kullback 1968) between two prob-
ability distributions p(z) and ¢(«) which is defined as:

$
1
D(pllg) = zﬁ % )

This distance is not a true metric since, for example, D(pl||¢) is not in general equal to
D(q||p), but it has the important property that it is always greater than or equal to zero
and that it is zero if and only if p(z) and ¢(z) are identical. Note that mutual information
can be defined as the KL-distance between a joint probability distribution and the product
of marginal distributions:

I(X;Y) = D(p(x,9)||p(e)p(y))-

1.3 Notation

This section briefly reviews the notation used in this work. Capital letters such
as X and Y refer to random variables. Lower case letters such as x and y refer to possible
values of these random variables. If X is a random variable according to some probability
distribution p, it will be written X ~ p(X). Similarly, if 2 is a sample from that distri-
bution, it will be written @ ~ p(X ). For notational simplicity, p(X ) will at different times
represent either a continuous probability density or a discrete probability mass function.
The distinction will be clear from the context. The letter ) will typically indicate a discrete
random variable taking values in the set Q of size |Q|. @ will often be used to represent
one variable in a Markov chain. The quantities X and 2 might represent either scalars or
vectors. The quantity X; is the variable at time ¢. The quantity X,., is the set of vari-
ables {X,, X,41,...,X¢}. The quantity X, is the set {Xy, Xo,..., X;—1}. And X_; is the
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set of variables { Xy, Xo, ..., X¢—1, X¢q1,..., X7} where an implicit length parameter 7' is
assumed.

1.4 Thesis Overview

This thesis is organized as follows. Chapter 2 presents an overview of graphical
models and Bayesian networks. Graphical models allow one to reason about the structure
of a statistical model without needing to consider any parameterization. Chapter 3 first
briefly reviews stochastic processes and Markov chain theory. It then defines hidden Markov
models (HMMs) and argues that HMMs have more flexibility then it is sometimes suggested.
At the end of this chapter, the principle of parsimony is used as a guideline to suggest ways
to produce models that could be better than HMMs. Chapter 4 describes a new type of
extension to the HMM, called the buried Markov model (BMM). In this chapter, it will be
shown how BMMs are derived by adapting the model’s statistical structure to match the
natural properties of speech. In Chapter 5 an implementation of BMMs is described and in
Chapter 6 this implementation is tested on several isolated-word speech corpora. It is shown
that BMMs can produce a lower word-error rate than certain HMMs. Finally, Chapter 7
summarizes and then outlines a variety of future projects suggested by this thesis.
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Chapter 2

Graphical Models
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In the previous chapter, it was argued that when choosing models to represent
objects originating from natural scenes, the models should somehow represent the distin-
guishing properties of the objects. If the objects are represented by a collection of features,
and if the models are probabilistic, then the models must somehow represent patterns of
redundancy inherent in the objects’ feature representation.

There are three separate components to a probabilistic model: the structure, the
implementation, and the parameterization. The structure of a model corresponds to the set
of dependency relationships that a model is inherently able to represent. Bayesian networks
are discussed in this chapter. As will be seen, with a Bayesian network one may reason
about the structure of a probabilistic model as determined by the model’s set of conditional
independence properties. The implementation of a model corresponds to the way in which
two random variables related by direct dependency can affect each other. For example,
given two random variables A and B that are directly related, their relationship could be
modeled by conditioning the mean of B as either a linear or a non-linear function of A —
the choice is determined by the implementation. Finally, the parameterization of a model
corresponds to the actual parameter values of a specific implementation of a particular
structure. In the above example, the parameterization of the conditional mean of A might
be such that F[A] = 4B, where the number 4 is the parameter.

In general, the properties represented by a probabilistic model are determined by
its structure, implementation, and parameterization. For example, consider the task of
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representing dependencies between elements of a multi-dimensional random vector. One
implementation choice is the set of multi-dimensional Gaussian distributions. Intra-vector
dependence is not represented if the off-diagonal elements of the covariance matrix are zero
so the properties of the model are governed by the model’s parameters. On the other hand,
a Gaussian distribution can not accurately represent a multi-modal distribution regardless
of the parameters. To represent such a distribution, a different structure must be used.
A model space can be seen as the union of different model structures, implementations,
and parameterizations. In this work it will be beneficial to consider the selection of model
structure separately.

This chapter consists of a brief overview of graphical models and Bayesian net-
works. Among other advantages, a graphical model provides intuitive ways to reason about
the structure of statistical models without needing to consider either a particular implemen-
tation or a parameterization. While the graphical model literature is rich with mathematical
rigor (Lauritzen 1996; Pearl 1988), this chapter provides only the basic machinery necessary
to discuss the structures considered in the later chapters of this work.

2.1 Graphical Models for Density Estimation

In general, the task of density estimation can be seen as choosing the best prg € P
where P is a space of all models under consideration, and prg is a model with a partic-
ular structure, implementation 7 and parameterization ©. This choice is typically made
empirically using a size T set of training samples consisting of N-dimensional data-vectors
or features D = {#1,23,...,27}. The random samples are presumably drawn i.i.d. (see
Definition 3.1) from some true underlying source probability distribution p for the random
vector X. The “true” p is typically unknown and does not necessarily live within 7. The
choice of model structure p and the particular implementation and parameterization can be
viewed as distinct aspects of the problem.

The simplest approach to this problem chooses a model that allows for statistical
dependencies to exist between all possible subsets of the elements of X. An N-dimensional
histogram is an example if the elements of X are discrete — choosing parameter values then
becomes a problem of counting. A naively chosen model such as this, however, will quickly
lead to estimation inaccuracies, computational intractabilities, and exorbitant demands on
the training set size as the dimensionality of X increases.

In general, the amount of training data needed to produce an accurate estimate
of a source grows exponentially with N. If the training data set is too small and the model
is too complex, overfitting will occur in which case the model represents the idiosyncrasies
of the particular training data sample rather than the actual properties of the underlying
source object. This data growth problem is often referred to as the curse of dimensionality
(Duda & Hart 1973; Bishop 1995).

In many cases, certain elements of X might be statistically independent of each
other and representing direct dependencies between these elements is irrelevant to the task
of producing an accurate model. An approximation that ignores those dependencies will
to some extent mollify the problems mentioned above. One way to ignore dependencies
is to change the structure of the model. A graphical model is one way of specifying a
subset of dependencies used for a density-estimation task. More precisely, a graphical
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model explicitly specifies the conditional independence properties of a distribution over a
collection of random vectors.

It is said that a random variable X is conditionally independent of random variable
Y given random variable Z under a given probability distribution p(-), if the following
relation holds:

pX=aY=ylZ=z)=pX =z|Z=2)pY =y|Z =2)

for all z, y, and z. This is written X 1LY |Z. The conditional independence of X and Y given
Z has the following intuitive interpretation: if one has knowledge of Z, then knowledge
of Y does not increase one’s knowledge of X and vice versa. Conditional independence
does not imply unconditional (or equivalently marginal) independence — X and Y can be
either conditionally dependent or independent given Z irrespective of X and Y’s marginal
independence. Many properties of conditional independence are provided in (Lauritzen
1996; Pearl 1988).

A graphical model for a collection of random variables is a graph § = (V, F') where
V' is a set of vertices and the set of edges F is a subset of the set V' x V. The vertex set V
is in one-to-one correspondence with the collection of random variables. One vertex can be
use for each scalar random variable or a vertex can correspond to an entire vector of random
variables. In the latter case, the vertex implicitly corresponds to a sub graphical model over
the individual elements of the vector. In general, the set ¥V may refer both to the set of
vertices of the graph and to the set of corresponding random variables. Associated with a
graphical model is a probability distribution p(V') over the set of random variables. The
edge set I of the model in one way or another specifies a set of conditional independence
properties of the associated probability distribution.

A graphical model may posses one or more properties, called Markov properties.
A Markov property on a graph is a set of conditional independence assumptions about
collections of the graph’s vertices. The collections of vertices for which a particular property
holds are determined using graph operations (such as subset selection, adjacency, closure,
disjointness, etc.). The graph’s associated probability distribution may or may not obey
different Markov properties with respect to the graph. If a certain Markov property does
hold for a graph and for a particular probability distribution, then the graph allows one to
reason about conditional independencies among the vertices without having to refer directly
to the distribution or its specific parameterization. To be complete, one should specify both
a graphical model and its Markov property. Typically, however, the exact Markov property
is not stated explicitly and a particular one is assumed by convention for each type of graph.

Different types of graphical models may have different Markov properties. A prob-
ability distribution obeying one Markov property with respect to one graphical model may
or may not obey a different Markov property with respect to a different graph — in general,
it depends on both on properties of the distribution and on the graph. A formal study of
these relationships is given in (Lauritzen 1996).

Because a graphical model is dissociated from its probability distribution, a graph-
ical model shows neither the implementation of the dependencies nor the particular param-
eterization. For example, two vertices connected by an edge could correspond to a variety
of implementations such as a conditional histogram or a Gaussian with a conditional mean.
Also, the values of the table (or the mean in the dependency matrix) are not specified
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by a graphical model. An edge simply says that the two variables are somehow directly
related. A graphical model therefore provides an easy way to view the inherent structure
that a probability distribution imposes on a collection of random variables. Via the graph’s
edges, a graphical model shows which variables are sufficient for determining the statistical
properties of other variables.

Graphical models provide a useful tool to reason about the statistical properties
of natural objects. For example, one may designate that one feature element should have
a strong affect on another element. In other words, one may first design a graphical model
that is known to adequately describe the statistical patterns in features representing a
type of natural object, and then afterwards specify a probability distribution that obeys
the conditional independence properties of that graph. The distribution will then have
the ability to represent the structure and redundancy of the object without using many
extraneous parameters. This can significantly reduce the parameter estimation complexity
and cause only a small decrease in model accuracy.

For the purposes of this thesis, it suffices to quickly summarize four different types

of graphical model, and then explore one of them in more detail. In each case, the model will
correspond to conditional independence assumptions over a collection of random variables
under some assumed distribution. FEach graphical model will consists of a type of graph
and a particular Markov property.
Markov Random Field (MRF) Markov random fields (Derin & Kelley 1989; Dubes
& Jain 1989; Chellappa 1985; Kashyap 1981; Pearl 1988) are also called undirected models
(Lauritzen 1996) since the corresponding graphs have undirected edges. Markov random
fields satisfy what is known as the global Markov property, which states that a collection
of variables are independent of all other variables given all neighbors (or the boundary) of
that collection. It can be shown that the corresponding distribution over a collection of
random variables X.n factorizes as follows:

p(Xim) = - [T oe(x0)
c=C

where C' is the set of all cliques in the graph, where ¢.(-) are a set of clique potential
functions, and where Z is a global normalization constant. A clique is a set of nodes in a
graph that are fully connected.

An example MRF is given in Figure 2.1. In the figure, the cliques are {A,B},
{A,C}, {B,D}, {C, D}, and { D, E, F}. Some of the conditional independence relationships
implied by this graph include: {F, F}1{A, B,C}{D},{A}L{D, FE, F}|{B,C},etc. The

joint probability distribution according to this graph can be represented as:

p(A=a,B=bC=c,D=d,E=¢,F = f)
= ¢apla,b)pacla,c)ppplb,d)écplc,d)éprr(d,e, f)

Computational efficiency is one important consequence of the factorization prop-
erty. In general, one desires MRF's with small clique sizes because MRF complexity increases
exponentially with clique size. One example of a MRF is a Gibbs distribution (Derin &
Kelley 1989) where the overall joint distribution is a member of the exponential family. The
main difficulty with MRFs is the calculation of the global normalization constant.
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Figure 2.1: A simple Markov random field

Bayesian Networks Bayesian networks are also called directed graphical models because
they use only directed edges that form directed acyclic graphs (DAGs). Bayesian networks
will be discussed in detail below.

Decomposable (triangulated) Models

The conditional independence properties of certain probability distributions are
not perfectly representable by both a MRF and a Bayesian network. Those distributions
that are perfectly representable by both can be represented using decomposable models.
Their corresponding undirected graphs are necessarily triangulated which means that any
cycle of length greater than three must have a chord between two non-adjacent vertices
along the cycle. Decomposable models, therefore, comprise the intersection of MRFs and
Bayesian networks.

In decomposable models, the cliques of the graph can form a tree called a Junction
tree. Between two cliques along the tree are separator sets which consist of the nodes in
the intersection of the two adjacent cliques. One of the advantages of decomposable models
is that the joint distribution over all variables can be factorized as a product of clique
marginals over a product of separator marginals, i.e.:

[To—c 0c(Xe)
[T ¢s(Xs)

where (' is the set of cliques and 5 is the set of separators.
This product representation has important computational implications since global

p(XlzN) =

probabilistic inference can be performed by manipulating only local quantities. Specifically,
the marginal probability of the nodes in a clique can be specified using just the clique
potential function. It suffices to say that all models considered in this work will be de-
composable. More detail on decomposability is described in (Pearl 1988; Lauritzen 1996;
Jensen 1996).

Chain Graphs Chain graphs are the most general form of graphical model. Their edges
can be either directed or undirected. Chain graphs and their possible Markov properties
are described in (Lauritzen 1996) but are not discussed further in this work.

2.2 Bayesian Networks

Bayesian networks (or belief networks) are perhaps the most common type of
graphical model. Because Bayesian networks encompass both hidden Markov models (Chap-
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ter 3) which are widely used for automatic speech recognition and the HMM extensions
proposed in Chapter 4, they are discussed extensively in this section.

In a Bayesian network, it is said that if there is an edge going from node A to
node B, then A is a parent of B and B is a child of A. These notions are extended so
that one may talk of the ancestors, descendants, etc. of a node. The collection of nodes
and directed edges in a Bayesian network form a directed acyclic graph (DAG). Directed
cycles are not allowed in Bayesian networks since such cycles would suggest conditional
independence properties that only a more general graphical model could represent.

Directed edges are often used to depict causal reasoning. In this case, each node
represents some event which can, with some probability, affect the outcome of some other
event. To this end, Bayesian networks are used in a variety of real-world applications
(Heckerman et al. 1995) where causal reasoning, combined with a degree of uncertainty,
can be useful. Directed edges can also be used to depict “relevance,”
most relevant for influencing a certain variable are given by the variable’s neighborhood.

Like any graphical model, the directed edges in a Bayesian network represent
conditional independence properties over the corresponding variables. In this case, the
conditional independence properties of a network depend on the direction of the edges. Fig-
ure 2.2 shows two Bayesian networks with the property that A is conditionally independent
of C' given B. On the left side, the variables form a standard three-variable first-order
Markov chain A — B — ' (also see Section 3.1.1). On the right side, the same conditional
independence property is represented although one of the arrows is pointing in the opposite

direction.
(B)
(&) ©

Figure 2.2: A is conditionally independent of C given B

where the variables

Figure 2.3 depicts the case where variables A and C are marginally independent
but given B they no longer are independent. This can be seen by noting that:

p(A, B,C) = p(B|A,C)p(A)p(C)

S50

P(A,C) =" p(A, B,b) = p(A)p(C) Y p(b|A,C) = p(A)p(C)
b b

which means that the variables A and C are marginally independent. On the other hand,
the quantity p(A, C|B) can not similarly be represented as a product of two factors. This
is the notion of “explaining away” described in Pearl’s book (Pearl 1988) — suppose the
random variables are binary and suppose, as listed in Figure 2.3, that A probabilistically
implies B, and C implies B. If it is found that B is true, then B’s cause could either be A
or C'. Therefore, the probability of both A and (' increases. If we then find that C' is true,
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this in general makes A less probable, so A is said to have been explained away. If we find
that ' is false, then we know A is true with high probability since it is the only remaining
explanation. The notion of explaining away extends to continuous random variables as well.

(&) ©
(B)

Figure 2.3: A is conditionally dependent with C given B

Each variable in a Bayesian network is independent of its non-descendants in the
graph given its parents. This is called the local Markov property which, for all distribu-
tions considered herein, is equivalent to the global Markov property (Lauritzen 1996) on
a corresponding undirected graph. Both of these properties are equivalent to the concept
of d-separation defined as follows: a group of variables A is conditionally independent of
another group of variables B given a third group of variables S if the set S d-separates A
from B (Jensen 1996). Two sets of variables A and B in a network are d-separated by a
third set of variables $ if and only if all paths that connect any node in A and any other
node in B have the following property: there is a node » in the path such that either:

e v € 5 and the arrows along the path do not converge at v
e v ¢S5, any descendant of v is not in 9, and the arrows along the path converge at v

In other words, for any such path, there must be a node v along the path with a “YES” in
the following table:

vES (v&S)/\(de(u)ﬂS;ﬁ@) (v&S)/\(de(u)ﬂSZQ)
Arrows Converge at v NO NO YES
Arrows do Not Converge at v | YES NO NO

where de(v) is the set of all descendants of v.

Variables in a Bayesian network can be either hidden, which means they have an
unknown value and represent a true random variable, or they can be observed, which means
that the values are known. When the question “is AL B|C'?” is asked, it is implicitly
agsumed that A and B are hidden and C' is observed. In general, if the value is known
(or if “evidence” has been provided) for a particular node, then it is considered observed
— otherwise, it is considered hidden. Probabilistic inference using a network with hidden
variables must somehow “marginalize away” the hidden variables to produce the resulting
probability of the observed variables. A Bayesian network does not, however, require a
variable to always be either hidden or observed. Rather, a variable is either hidden or
observed depending on the question that is asked of a Bayesian network. For example, if
one asks “what is the probability p(C' = ¢|A = a)?” for the graph in Figure 2.2, then B is
hidden and A is considered observed. If one asks “what is the probability p(C' = ¢|B = b)
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or p(A = a|B = b)?” then B is considered observed. In this way, a variable in a Bayesian
network can be either an input (or observed) variable, a hidden variable, or an output (the
object of a query) variable.

There is a relatively easy way, known as the Bayes ball algorithm (Shachter 1998),
to determine if two variables are independent given some other set of variables. First, shade
in all the nodes of the graph that are observed (or conditioned against). Call this set S. To
answer the question “is AL B|S?,” start a ball in A and bounce it along the nodes according
to the rules illustrated in Figure 2.4. If it is possible to reach B, then the answer to the
question is negative.

vi

. . .
5 [N 5
. vaun®

H . -

Figure 2.4: The Bayes ball algorithm. A hypothetical ball starting from one node may
bounce over the graph using the rules illustrated above. Dashed arrows indicate that the
ball may either bounce through or bounce off the given node along the directed edges as
shown. Hidden nodes are unshaded, and observed nodes are shaded. The ball may pass
through a hidden node if there are any diverging arrows, and may pass through an observed
node only if the arrows are convergent.

For a given collection of random variables, one of the most important problems
is the computation of the probability distribution of one subset given values of some other
subset. This is called probabilistic inference. Probabilistic inference is essential both to
make predictions based on the network, and to learn the network parameters using, for
example, the EM algorithm (Dempster et al. 1977). One of the reasons Bayesian networks
are useful is because they permit a more efficient inference procedure than would be ob-
tained by simply marginalizing away all unneeded or hidden variables ignoring conditional
independence properties.

There are two types of inference, exact and approximate. Exact inference proce-
dures are useful when the networks are not too complex because in the general case infer-
ence is NP-Hard (Cooper & Herskovits 1990). The most popular exact inference method
is the junction tree algorithm (Jensen 1996). Essentially, a Bayesian network is converted
into a decomposable model via moralization (a process that adds links between the un-
connected parents of a node) and triangularization (a process that adds edges to cycles
of length greater than three that do not possess a chord). The resulting decomposable
model represents a subset of the original conditional independence properties, but since it
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is decomposable it has the desirable properties described above. For a network consist-
ing of only discrete valued nodes, the complexity of this algorithm is O(3_ cc [1,e.|?])
where (' is the set of cliques in the junction tree, ¢ is the set of variables contained
within a clique, and |v| is the number of states (i.e., possible values) of variable v. It
can be seen that this algorithm is exponential in the size of the cliques, so when perform-
ing moralization and triangulation, minimizing the resulting clique sizes is desirable. It
turns out that the commonly used Forward-Backward algorithm (Rabiner & Juang 1993;
Huang et al. 1990) used to perform inference on and train HMMs is a special case of the
junction tree algorithm (Smyth et al. 1996).

Approximate inference procedures are used when the clique state space size is
too large. Several different types of approximation methods exist including mean field and
variational techniques (Saul et al. 1996; Jaakkola & Jordan 1998; Jordan et al. 1998), Monte
Carlo sampling methods (MacKay 1998), and loopy belief propagation (Weiss Submitted).
Even approximate inference can be NP-Hard however (Dagum & Luby 1993). Therefore, it
is crucial to use a model with the smallest possible complexity.

2.3 Examples of Bayesian Networks

The following paragraphs provide various examples of Bayesian networks and de-
scribe how they might be used.

Given a collection of random variables Xy.n, the chain rule of probability says
that:

p(XlzN) = Hp(Xn|X1:n—1)

Each factor on the right hand side of this equation can be thought of as saying that X,
depends on the previous variables X7., 1 as shown on the left in Figure 2.5. If it is known
that for each n there is some set 7, (the parents of X,,) such that X, 1L{X1.,—1 \ 7. }|7n,
then the following is also an exact representation of the joint probability distribution:

p(Xin) = [T p(Xalma)

This equation can be depicted by a Bayesian network, as shown on the right in Figure 2.5.
It turns out that this type of “factorization” is a general property of Bayesian networks and
is one of their main advantages: instead of computing the joint probability as a product
of a set of relatively complex factors, the joint probability is factored into the product of
much less complex and more pertinent quantities.

A Gaussian mixture model is a probability distribution that is a weighted sum of
Gaussians as follows:

ple) = E cipi( iy Xo)

K3

where p;(2) = N(x; pi, X;) is a Gaussian distribution with mean y; and covariance ;. This
distribution can be represented by the network shown in Figure 2.6.
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Figure 2.5: On the left is the Bayesian network representation of the chain rule of probability.
On the right, conditional independence assumptions have been made (e.g., X3l X1]|X2,

X5l {Xq, Xa}|[{X1, Xa}, etc.)
© >

Figure 2.6: A Bayesian network model when p(X) is a mixture distribution and C' is a
mixture variable.

A hidden Markov model (HMM) (Rabiner & Juang 1993; Huang et al. 1990) is
a Bayesian network with hidden variables (J1.7 and observed variables Xi.7. The hidden
variables form a first order Markov chain and each observed variable is conditionally inde-
pendent of everything else given its corresponding hidden variable. Figure 2.7 shows the
graphical model for an HMM. This is also the structure for the Kalman Filter (Haykin
1989), but in that case, all the variables are continuous single-component Gaussians. In
light of the previous discussion on conditional independence and directed models, it can be
seen that there are two conditional independence properties associated with an HMM:

Qul{Q1:—2, X1u—1} Qi1 (2.1)
X {Q1:t—1, Q1.7 X1:t—1, Xey1.7}H Q4 (2.2)

Inference in HMMs is extremely efficient because of very small clique sizes (i.e., two). HMMs
are a subset of a class of models often called Dynamic Bayesian networks (DBNs) (Dean
& Kanazawa 1998; Ghahramani & Jordan 1997; Ghahramani 1998) which are essentially
collections of identical Bayesian networks strung together with arrows pointing in the di-
rection of time (or space). HMMs, their capabilities, their deficiencies, previously proposed
extensions, and their application to automatic speech recognition will all be discussed in
detail in Chapter 3. New extensions to HMMs will be introduced in Chapter 4

In a typical statistical pattern classification task, the goal is to identify the object
class with the highest probability. That is, find:

¢® = argmax p(c|X ) = argmax p(X |c)p(c)

where ¢ identifies the object class and X is a random vector. A Bayesian network can
model this as well. The network can consist of the set of feature variables X.y augmented
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Qi_1 Q; Qi+1 Qis2

Xt -1 Xt Xt +1 Xt +2
Figure 2.7: A Hidden Markov Model

(< O

Figure 2.8: A Bayesian network model that could represent a multi-layered perceptron with
a softmax output non-linearity.

with a class variable C'. Computing the posterior probability p(c|.X ) for each value of ¢ is a
standard probabilistic inference problem that can be solved using the methods mentioned
above. Alternatively, |C| distinct networks could be defined with different parameters (and
perhaps different structures) for each class ¢. The decision problem becomes:

¢* = argmax p.(X )p(c)

C

In the most general form, it can be seen that these approaches are equivalent — in the
second case there is an implicit link from a ' variable to each class-conditional network.

A multi-layered perceptron (MLP) (Hertz et al. 1991; Bishop 1995) with a softmax
output nonlinearity can be seen as an implementation of the probability p(C|X ) and there-
fore as an implementation of a particular Bayesian network. An MLP can be represented
by the Bayesian network shown in Figure 2.8. An MLP makes no conditional independence
assumptions about the elements of its input variables.

The “naive Bayes classifier” (Langley et al. 1992) is depicted in Figure 2.9 where
the X; variables are input features and C'is a class variable. Data presented at the input X;
determines a probability distribution over (' which is used to make a classification decision.
This classifier makes the assumption that each variable is independent of other variables
given the class variable ', that is:

p(C1X1.n) = p(X1.n]C)p(C)/p(X1:n) o< p(Xq]|C)p(X2|C) ... p(XN|C)p(C),

which allows for very efficient inference.

More examples of Bayesian networks may be found in the following references
(Machine Learning 1997; Jensen 1996; Pearl 1988; Heckerman et al. 1995; Jordan 1998;
Frey 1998; Zweig 1998).
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Figure 2.9: The naive Bayes classifier.

2.4 Graphical Model Parameter Learning

Once a given network structure has been specified, the implementation of the local
conditional distributions for each node must be selected. There are many choices such as the
multinomial, a conditional Gaussian, a mixture of other distributions, etc. Accompanying
each choice is a set of parameters.

Letting X be the entire collection of variables in a network, one is typically given
a finite sample of data D = {y,...,27} drawn presumably i.i.d. from the corresponding
real distribution. From these samples, the goal is to optimally estimate the corresponding
real distribution by adjusting the network parameters. This can be formulated as a risk
minimization problem (Duda & Hart 1973; Vapnik 1998).

If the samples do not contain missing or hidden values (i.e., full observability) and
if the data items are discrete, for certain classes of distributions closed form solutions for
the optimal parameter settings may be found (Heckerman 1995). The meaning of optimal
depends on the training method. In the most general case, there are three choices: maximum
likelihood (ML), maximum a posteriori (MAP), and Bayesian. For ML training, the goal is
to find:

O" = argmax p(D|0O)
©

where ©* is the optimal parameter setting and p(D|@) is the probability of the complete
data set under the model. Maximum a posteriori estimation assumes the existence of a
prior p(@) over the parameters ©. The goal is to find the optimal posterior of © given the
data:

0" = argmax p(0©|D) = argmax p(D|0)p(O)
(C] (C]

Finally, in the Bayesian approach, potentially all values of @ are considered simultaneously
by weighing each one by the posterior of @ given the data. For example, to compute the
probability of some arbitrary variable (' given the data and some input feature variable X,
the following method would be used:

P(CIX. D) = / P(CX,0)p(0]D)dO

As mentioned above, for certain classes of models, closed form solutions can be obtained
for these optimization problems (Heckerman 1995) using “conjugate priors.” For example,
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a Dirichlet distribution constitutes a conjugate prior for the multinomial distribution. For
other densities, closed form solutions may or may not exist. In general, Bayesian network
decomposability decreases the parameter optimization complexity since in that case each
factor may be optimized independently.

When the data is partially observable (i.e., some elements of the sample are
missing) or the network contains intrinsically hidden variables, parameter learning be-
comes more difficult. In such a case, optimization methods such as the Expectation
Maximization (EM) (Dempster et al. 1977) algorithm, gradient descent (Bishop 1995;
Russel & Norvig 1995), or some other iterative scheme must be used. The EM algorithm is
described in Chapter 5.

Bayes decision theory says that to minimize error (risk) one must choose the class
with the largest posterior probability p(¢|X ). Therefore, the ideal parameter optimization
procedure should somehow minimize Bayes risk or, alternatively, produce an accurate esti-
mate of the class posterior. The optimization schemes above suggest that one could learn
the full joint distribution p(X,¢), but this might not be the best procedure for a classi-
fication task. For example, consider a MI parameter estimate using a data set D that
consists of i.i.d. samples of p(X,c). The ith data sample contains both a feature vector
x; and a corresponding class label ¢;, so the data and class-label samples are given by
D=AD;,D.} ={(z1,¢1),(22,¢2),...,(x7,c7)} and the optimization procedure becomes:

0" = argmax log p(D|0) = argmax log(p(D.|D.,0)p(D.|0))
© ©

To reduce classification error, one need only optimize (maximize) the term log p(D.|D,, ©).
The other term log p(D,|©) might penalize a parameter assignment that would result in an
accurate posterior-only approximation. This is especially true when the dimensionality of
the feature vector is large (Friedman et al. 1997).

Unfortunately, complexity often prevents the estimation of the class posterior
probability directly.! Instead, one typically optimizes each class-specific likelihood term
p(X|e, ©) individually. Of course, given a data set D which contains X samples from all of
the classes, it is necessary to produce likelihood function estimates p(X|c, @) that provide a
high score on samples from the correct class and a low score on samples from other classes.
To encourage such behavior, a collection of “discriminative” training methods for likelihood
models are often used in the automatic speech recognition community. These techniques
either optimize a cost function directly related to the Bayes risk (Juang & Katagiri 1992;
Juang et al. 1997) or optimize the mutual information between the class variable C' and the
vector X (Bahl et al. 1986; Ephraim & Rabiner 1988; Ephraim et al. 1989). Discriminative
training will be discussed extensively in Chapter 4.

2.5 Graphical Model Structure Learning

In the Bayesian network literature, the phrase “learning Bayesian networks” often
refers both to learning the parameters of a network and learning the structure. The topic

1For certain implementations, the class posterior can be estimated fairly easily. For example, a multi-
layered perceptron with softmax output non-linearities can be seen as a posterior probability (Bishop 1995)
estimator. In this approach, however, it is impossible to marginalize away missing input feature elements as
would be possible with a different implementation (Heckerman 1995).
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of this section is structure learning. For a given structure, assume that the implementation
has been chosen and parameters for each network are chosen optimally according to some
procedure (e.g., ML, MAP, etc.) so that benefits arising only from structural differences
may be evaluated.

Bayesian network structure learning (Heckerman 1995; Heckerman et al. 1994;
Buntine 1994; Friedman 1998; Krause 1998) can be crucial to the successful use of such
models. If a model is unable to accurately represent important regularities in the data, it
will lead to an inaccurate estimation of the probability distribution regardless of the training
method and regardless of how well the model is trained.

The most obvious method of structure learning is simple enumeration. In this
case, each possible structure is considered, trained, evaluated, and ultimately selected if it
results in the best score. Obviously, enumeration is infeasible because the set of possible
structures is enormous.

Structure learning is very similar to what statisticians typically call “model selec-
tion” (Linhart & Zucchini 1986; Burnham & Anderson 1998). Model selection is a technique
where one of a collection of statistical models is selected to best describe some phenom-
ena. For example, in a regression task, one might consider as candidate models a class of
polynomials of variable degree. Given a sampled data set D, one might choose the least
complex model from that collection which best matches the data according to some specific
criterion.

In general, a given training data set can be thought of as containing true informa-
tion that has been distorted by noise. The goal of model selection is to choose a model that
accurately represents the underlying information in the data while ignoring and filtering
out any noise. Such a model will be less prone to errors when used for prediction. Often,
prior knowledge about a domain can be used to constrain the set of candidate models and
essentially “bootstrap” the model selection process (Burnham & Anderson 1998). In many
cases, prior knowledge can be crucial to the success of model selection — the alternative
is to blindly churn through all available models with the risk of finding one that does not
represent the most important properties of the data.

Similar to a parameter estimation task (discussed in Section 5.1), there is a bias-
variance trade-off for model selection. The bias-variance trade-off for parameter estimation
can be described as follows. It is assumed that there is some true parameter © to be
estimated from some training data set D. Fach data set occurs with a certain probability
p(D|0). The parameter estimate produced using that data set is ©*(D). The mean squared
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error (MSE) is used to evaluate the quality of the parameter estimate. Le.,

MSE = Y p(nje)(e - 07(D))’
D

2

= " (D10)(0 = Eypjey(07(D)) + Eypje)(07(D)) - 07(D))
D

2

= S u010)|(0 - o (@ (0D) + (Euoe©" (D) -0 (1)

+(® B Ep(D|®)(®*(D))) (EP(DIG)(G)*(D)) B 6*(D))]

= Zp (D10)(0 ~ Eypje)(07(D)’ +Ep DI0)(Ey(pje)(©7(D)) - ©°(D))’

2

- (® Ep(pley(07(D) ) ‘|‘EPD|®( (Dje)(© (D))—@*(D))

= (bias)® + (variance)
where

E,(pje)(© E@ p(D|O)

Note that in going from the third to the forth step above, the cross-terms sum to zero. The
bias reflects the degree to which the typical (or average) estimate is different from the true
estimate. The variance reflects the inherent sensitivity of the estimate to variability from
different training sets.

Note that © need not represent a parameter. It could also represent a true model
and ©*(D) could signify some structural estimate that has been selected using a finite sized
training set from some model family. In such a case, a similar bias-variance trade-off will
exist. If a model family is too simple, the model estimate will have a high bias (because
predictions made using the estimate will be inaccurate relative to the true model) but will
have a low variance (because the model selection procedure will typically produce the same
estimate for different data sets). It the model family is too complex, it will have a low
bias (at data-points contained within the training data, the estimate will match the true
model), but will have large variance (the estimate will be very sensitive to noise contained
in the training data). Like any bias-variance trade-off, it is important to select a class of
models which results in a good balance. Sometimes an overly simple model class is used,
accepting a high bias, just to explain the data in a simple way. Another desirable property
that applies both to a parameter and a structural estimate is the notion of consistency (if
a rich enough model class and large enough training set is used, will the resulting estimate
ultimately converge to the “right one”).

Another aspect of model selection is the notion of “model selection uncertainty”
(Burnham & Anderson 1998): If the same data is used both to select the model and then
train the resulting model parameters, the resulting estimate of the model’s variance must
take into account both the variance due to model selection and the variance due to parameter
estimation. Otherwise, it might be concluded that the variance is lower than it actually is.
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Bayesian network structure learning algorithms may thus be considered model
selection procedures. In general, however, learning the structure of a Bayesian network is
NP-complete (Chickering 1996). In many cases, domain restriction or approximations can
be made resulting in good network structures.

One of the earliest developed structure learning procedures was Chow-tree algo-
rithm (Chow & Liu 1968). For a collection of variables, a tree-dependent distribution is
one whose directed edges in a Bayesian network form a tree. Chow presented a method
where the best tree-dependent distribution over a set of random variables may be obtained
in a KL-distance sense. Chow proved that the best tree-dependent approximation is one
obtained using a maximal spanning tree algorithm, where edge weights are determined
using pair-wise mutual information between the corresponding random variables. Much
more recently, in (Meila 1999) it is shown how to produce a mixture of tree-dependent
distributions.

In (Friedman 1998), the EM algorithm was extended to be operable over network
structures. Essentially, the EM algorithm’s auxiliary function (described in Section 5.2) ac-
quires arguments representing both the parameters and the structure at each EM iteration,
ie., Q(M,0; M, @i) — structure and then parameters are maximized alternatively. The
resulting optimization, however, can often be infeasible. A particular difficulty with this
approach is that the gradient with respect to a network is not defined so one must resort
to a search method, evaluating each candidate along the way.

Several approaches that augment the naive Bayes classifier with intra-feature de-
pendencies have also been proposed. The first is an approximate algorithm (Sahami 1996)
that uses mutual information and conditional mutual information between features to choose
a good set of intra-feature edges. Similar to the Chow-tree algorithm, Friedman (Friedman
et al. 1997) also presented a method that uses conditional mutual information to produce
the best tree-dependent approximation over the feature variables. It is shown that this
optimizes the joint probability of the feature and class variables. Friedman also discusses
a method to directly optimize the posterior of the class variable given the feature variables
but it was not tested because of computational difficulties.

The most general form of structure learning is the Bayesian approach.? In this
case, rather than choosing one fixed structure, one uses priors over structures and each
structure is used weighted 