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Abstract

The performance of state-of-the-art speech recognition systems is still far
worse than that of humans. This is partly caused by the use of poor statistical mod-
els. In a general statistical pattern classi�cation task, the probabilistic models should
represent the statistical structure unique to and distinguishing those objects to be
classi�ed. In many cases, however, model families are selected without veri�cation
of their ability to represent vital discriminative properties. For example, Hidden
Markov Models (HMMs) are frequently used in automatic speech recognition sys-
tems even though they possess conditional independence properties that might cause
inaccuracies when modeling and classifying speech signals.

In this work, a new method for automatic speech recognition is developed
where the natural statistical properties of speech are used to determine the probabilis-
tic model. Starting from an HMM, new models are created by adding dependencies
only if they are not already well captured by the HMM, and only if they increase the
model's ability to distinguish one object from another. Based on conditional mutual
information, a new measure is developed and used for dependency selection. If depen-
dencies are selected to maximize this measure, then the class posterior probability is
better approximated leading to a lower Bayes classi�cation error. The method can be
seen as a general discriminative structure-learning procedure for Bayesian networks.
In a large-vocabulary isolated-word speech recognition task, test results have shown
that the new models can result in an appreciable word-error reduction relative to
comparable HMM systems.



iii

This thesis is dedicated to my parents, my sister, and all my nephews.



iv

Contents

List of Figures vii

List of Tables x

1 Introduction 1

1.1 Automatic Speech Recognition . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Essentials of Information Theory . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Graphical Models 11

2.1 Graphical Models for Density Estimation . . . . . . . . . . . . . . . . . . . 12
2.2 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Examples of Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Graphical Model Parameter Learning . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Graphical Model Structure Learning . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Bayesian Multinets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Hidden Markov Models 29

3.1 Stochastic Processes and Discrete-time Markov Chains . . . . . . . . . . . . 30
3.1.1 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 What HMMs Can Do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 i.i.d. observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.2 conditionally i.i.d. observations . . . . . . . . . . . . . . . . . . . . . 40
3.3.3 Viterbi i.i.d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.4 uncorrelated observations . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.5 no acoustic context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.6 piece-wise or segment-wise stationary . . . . . . . . . . . . . . . . . 42
3.3.7 within-frame stationary . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.8 geometric state distributions . . . . . . . . . . . . . . . . . . . . . . 45
3.3.9 �rst-order hidden Markov assumption . . . . . . . . . . . . . . . . . 45

3.3.10 synthesis vs. recognition . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.11 Necessary Conditions for HMM Accuracy . . . . . . . . . . . . . . . 48



v

3.4 What HMMs Can't Do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 How to Improve an HMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Towards Data-driven HMM Extensions . . . . . . . . . . . . . . . . . . . . . 60

4 Buried Markov Models 61

4.1 Conditional Mutual Information In Speech . . . . . . . . . . . . . . . . . . . 63
4.2 Likelihood Increasing Dependency Selection . . . . . . . . . . . . . . . . . . 67

4.3 Discriminability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Posterior Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 Mutual Information and Posterior Probability . . . . . . . . . . . . . 78
4.4.2 DCMI and Posterior Probability . . . . . . . . . . . . . . . . . . . . 81

4.4.3 Posterior-based Dependency Variable Selection . . . . . . . . . . . . 83

4.4.4 Relationship to HMM Posterior Probabilities . . . . . . . . . . . . . 85
4.5 Summary of Dependency Selection Rules . . . . . . . . . . . . . . . . . . . . 87

4.6 Approximation Algorithms for Dependency Selection . . . . . . . . . . . . . 87

4.7 Buried Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.7.1 BMM Structure Learning . . . . . . . . . . . . . . . . . . . . . . . . 93

4.7.2 BMM Instantaneous Speaker Adaptation . . . . . . . . . . . . . . . 94

4.7.3 BMMs and MRFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.7.4 BMM Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Switching Gaussian Mixtures for BMMs 99

5.1 Maximum-likelihood parameter estimation . . . . . . . . . . . . . . . . . . . 100

5.2 The EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3 The EM Algorithm for Gaussian Mixture Parameter Estimation . . . . . . 101

5.4 The EM Algorithm for Gaussian Mixture HMMs . . . . . . . . . . . . . . . 106

5.4.1 Fast HMM Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4.2 Estimation Formula Using the Q Function. . . . . . . . . . . . . . . 110

5.5 BMM Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.6 Mixture Gaussian Autoregressive Processes . . . . . . . . . . . . . . . . . . 113
5.7 Switching Gaussian Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.8 Switching Gaussian Mixture EM Update Equations . . . . . . . . . . . . . . 117

5.9 BMM Update Equations for SGM Observation Models . . . . . . . . . . . . 121
5.9.1 Fast Recursive Equations for BMMs with SGMs . . . . . . . . . . . 123

5.10 Simpli�cations with Diagonal Covariance Matrices . . . . . . . . . . . . . . 124

5.11 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6 BMM Word Error Results 126

6.1 Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2 BMM Bellcore Digits+ Results . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 BMM NYNEX Phonebook Results . . . . . . . . . . . . . . . . . . . . . . . 131

6.3.1 No Transition Matrix Training . . . . . . . . . . . . . . . . . . . . . 132
6.3.2 One Markov State per Phoneme . . . . . . . . . . . . . . . . . . . . 133

6.3.3 Two Markov States per Phoneme . . . . . . . . . . . . . . . . . . . . 135



vi

6.3.4 Three Markov States per Phoneme . . . . . . . . . . . . . . . . . . . 135
6.3.5 Four Markov States per Phoneme . . . . . . . . . . . . . . . . . . . . 136
6.3.6 Independent Test Set . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.4 Structural Discriminability . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7 Conclusions and Future Work 142

7.1 Discriminative Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.2 Simultaneous Multi-level Speech System Improvements . . . . . . . . . . . . 143
7.3 Sparse Inverse Covariance Matrices . . . . . . . . . . . . . . . . . . . . . . . 144
7.4 Iterative Re-estimation of Mutual Information . . . . . . . . . . . . . . . . . 145
7.5 Instantaneous Speaker Adaptation . . . . . . . . . . . . . . . . . . . . . . . 145
7.6 Switching Variable S > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.7 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A Embedded BMM Update Equations 148

A.1 Alpha computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.2 Beta computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
A.3 Update equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B Matrix Derivative 153

C Computation of MI and CMI 155
C.1 Mutual Information Computation Using EM . . . . . . . . . . . . . . . . . 155

Bibliography 157



vii

List of Figures

1.1 The general automatic speech recognition method. . . . . . . . . . . . . . . 5

1.2 Venn diagrams for entropy, conditional entropy, and mutual information (left)
and conditional mutual information (right). . . . . . . . . . . . . . . . . . . 9

2.1 A simple Markov random �eld . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 A is conditionally independent of C given B . . . . . . . . . . . . . . . . . . 16

2.3 A is conditionally dependent with C given B . . . . . . . . . . . . . . . . . . 17

2.4 The Bayes ball algorithm. A hypothetical ball starting from one node may
bounce over the graph using the rules illustrated above. Dashed arrows
indicate that the ball may either bounce through or bounce o� the given
node along the directed edges as shown. Hidden nodes are unshaded, and
observed nodes are shaded. The ball may pass through a hidden node if there
are any diverging arrows, and may pass through an observed node only if the
arrows are convergent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 On the left is the Bayesian network representation of the chain rule of prob-
ability. On the right, conditional independence assumptions have been made
(e.g., X3??X1jX2, X5??fX2; X3gjfX1; X4g, etc.) . . . . . . . . . . . . . . . 20

2.6 A Bayesian network model when p(X) is a mixture distribution and C is a
mixture variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 A Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 A Bayesian network model that could represent a multi-layered perceptron
with a softmax output non-linearity. . . . . . . . . . . . . . . . . . . . . . . 21

2.9 The naive Bayes classi�er. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Probability 
ow view of a stationary Markov chain. For the chain to be
stationary, the 
ow into state si (equal to �1a1i + �2a2i + �3a3i) must equal
the 
ow out of state si (equal to �iai4 + �iai5 + �iai6). . . . . . . . . . . . 34

3.2 Stochastic �nite-state automaton view of an HMM. In this case, only the
possible (i.e., non-zero probability) hidden Markov chain state transitions
are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Time-slice view of a Hidden Markov Model's state transitions. . . . . . . . . 37

3.4 A Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 A Mixture-Observation Hidden Markov Model . . . . . . . . . . . . . . . . 38



viii

3.6 Two types of objects that share a common attribute, a horizontal bar on the
right of each object. This attribute should not be modeled in a classi�cation
task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 The noisy channel view of Xt's dependence on X:t. . . . . . . . . . . . . . . 49

3.8 A noisy channel view of one of the HMM conditional independence property. 49

3.9 A factorial HMM with two underlying Markov chains Qt and Rt governing
the temporal evolution of the statistics of the observation vectors Xt. . . . . 54

3.10 An HMM augmented with direct dependencies between neighboring obser-
vations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 The conditional mutual information density of a randomly selected 2-hour
section of the Switchboard conversational-speech corpus (in bits per unit area). 64

4.2 The mutual information density of Gaussian white noise audio signals, pro-
cessed as compressed subband spectral envelopes. . . . . . . . . . . . . . . . 66

4.3 The conditional mutual information density of Switchboard using mel-frequency
cepstral coe�cients (left) and RASTA-PLP coe�cients (right). . . . . . . . 67

4.4 Improving an HMM by including additional direct dependencies on the rele-
vant portions of X:t depending on the value of Qt. . . . . . . . . . . . . . . 70

4.5 Evaluating the set of dependency variables Z(a) or Z(b) from the entire set Z. 70

4.6 Utility is maximized for two classes q and r since �
b!a

Lq(q) > �
b!a

Lr(q) and

�
b!a

Lr(r) > �
b!a

Lq(r), but discriminability is decreased in the q context. . . . 76

4.7 Discriminability increase condition for two classes q and r since �
b!a

Lq(q) >

�
b!a

Lq(r) and �
b!a

Lr(r) > �
b!a

Lr(q). . . . . . . . . . . . . . . . . . . . . . . . . 77

4.8 Conditional Mutual Information I(X ;ZjQ= q) for various q in Switchboard.
Plot are provided for plosives (d, k, b, p), fricatives (f, s, th, and v), vowels
(ae, ah, ih, and iy), liquids (l and r), and nasals (m and n). . . . . . . . . . 79

4.9 The distinctive features of the Switchboard phonemes as shown by utility
approximated as described in Section 4.6. The displayed phonemes are the
same as in Figure 4.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.10 Approximating I(X ;Z4jZ1; Z2; Z3) using only I(X ;Z4) and I(Z4;Zj) for j 2
f1; 2; 3g. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.11 Dependency selection heuristic: this algorithm chooses the dependency vari-
ables for the ith feature position of Xt and for class q. . . . . . . . . . . . . 90

4.12 Graphical Model view of a BMM . . . . . . . . . . . . . . . . . . . . . . . . 93

4.13 Decomposition of joint probability. . . . . . . . . . . . . . . . . . . . . . . . 95

4.14 BMM dependencies depend on the value of the hidden variables. . . . . . . 97

5.1 Graphical model showing a Switching Gaussian Mixture to represent the con-
ditional density p(X jQ;Z). Z is the set of continuous dependency variables,
S is a discrete switching variable, M is a discrete mixture variable, Q is the
hidden variable, and X is an observation variable. Continuous dependen-
cies are shown using solid arrows, and discrete dependencies are shown using
dashed arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



ix

5.2 Two-dimensional density for a Switching Gaussian Mixture for a particular z.
To sample from such a distribution given a q and z, �rst a Gaussian mixture
is randomly chosen according to the distribution p(sjz). Then an individual
mixture component in that mixture is chosen using p(mjs; q). Then, the
mean of that component is set to the vector Bqmsz which corresponds to a
translation of the chosen Gaussian component's mean. Finally, the resulting
Gaussian density is sampled as usual. . . . . . . . . . . . . . . . . . . . . . 117



x

List of Tables

4.1 Examples of di�erent parameter value and structure selection methods. . . 94

6.1 The results for the Bellcore digits+ corpus. The dependency selection pa-
rameters are �u = 5� 10�4; �q = 10�3, �g = 75%, �c = 5 � 10�2, Nq = 2 for
all q, and Cq is the set of all states except q. . . . . . . . . . . . . . . . . . . 130

6.2 Phone list used for phonebook experiments. . . . . . . . . . . . . . . . . . . 132
6.3 Phonebook development set lists and list sizes. . . . . . . . . . . . . . . . . 132
6.4 Phonebook results, one Markov state per phoneme, no transition training . 133
6.5 Phonebook results, one Markov state per phone, transition training . . . . . 134
6.6 Phonebook results, two Markov states per phoneme, transition training . . 135
6.7 Phonebook results, three Markov states per phoneme, transition training . . 135
6.8 Phonebook results, four Markov states per phone, transition training . . . . 136
6.9 Phonebook independent test set lists and list sizes. . . . . . . . . . . . . . . 137
6.10 Phonebook results, one Markov state per phoneme, independent test set . . 137
6.11 Phonebook results, two Markov states per phoneme, independent test set . 137
6.12 Phonebook results, three Markov states per phoneme, independent test set 138
6.13 Phonebook results, four Markov states per phoneme, independent test set . 138
6.14 75 Word Vocabulary Size Comparisons . . . . . . . . . . . . . . . . . . . . . 139
6.15 Number of speech frames per CMI estimate . . . . . . . . . . . . . . . . . . 141



xi

Acknowledgments

I would �rst like to thank my advisor and committee chairperson Nelson Morgan
who has been highly supportive during my stay at U.C. Berkeley and the International
Computer Science Institute (ICSI). His sincerity, integrity, intelligence, and latitude were
always extremely valuable.

The other members of my committee included Steven Greenberg, Michael I. Jor-
dan, and David Wessel. Many of the core ideas of this thesis originated during lively
discussions with Steve and in Steve's ear-group meetings. The group's fecundity was due in
no small part to Steve's creativity and intelligence. I would also like to thank Mike Jordan
for being a truly inspirational teacher and researcher, and for being on my committee for
two di�erent theses at two di�erent schools at two di�erent times. I would also like to thank
David Wessel whose knowledge, interest, and curiosity I have always admired.

It has been a pleasure working in the speech group at ICSI. I would like to thank
both past and current members: Takayuki Arai, Herve Bourlard, Barry Chen, Dan Ellis,
Eric Fosler-Lussier, Daniel Gildea, Ben Gold, Hynek Hermansky, Adam Janin, Dan Juraf-
sky, Brian Kingsbury, Katrin Kirchho�, Yochai Koenig, John Lazzaro, Nikki Mirghafori,
Michael Shire, Andreas Stolcke, Warner Warren, Gethin Williams, Chuck Wooters, and Su-
Lin Wu. Special mention goes to Geo� Zweig with whom many interesting and productive
discussions occurred.

The ICSI community and others at U.C. Berkeley and beyond have created an
overall environment that I found both very interesting and enjoyable. I would like to
acknowledge and thank Jim Beck, Chris Bregler, Sarah Coleman, Kathryn Crabtree, James
Demmel, Jane Edwards, Jerry Feldman, Nir Friedman, Erv Hafter, Joy Hollenback, Vijay
Iyer, David Johnson, Jitendra Malik, Kevin Murphy, Steve Omohundro, and Elizabeth
Weinstein. They have all in
uenced me in positive ways. I would also like to acknowledge
and thank my good friends Krste Asanovi�c and Rob Lonsdale, and the many musician
friends I have made while pursuing graduate study at U.C. Berkeley. A special thanks goes
to Katrin Kirchho�, both for her vast knowledge of speech, linguistic, and phonetic theory,
and for her invaluable emotional and inspirational support. Finally, I also must acknowledge
the parking lots where late at night much of this thesis was written, and last but not least,
the pmake utility.



1

Chapter 1

Introduction

Contents

1.1 Automatic Speech Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Essentials of Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

A human being perceives a sight, sound, touch, or taste and can immediately and
appropriately react to such information from the environment. How is it that a person
can categorize, di�erentiate, and gather information from the limitless collection of objects
existing in the natural world? And based solely on past ontogenic and phylogenic expe-
riences, a person can extract information from natural objects and natural scenes never
before encountered.

Our world consists of natural objects existing within natural scenes. Consider, for
example, trees against a landscape, a downtown city block, a sunset, or musical instruments
performing within an orchestra. Contrast such scenes with the noise and static of a television
set tuned to a non-existent station. One important and undeniable property of natural
objects is their non-randomness. Natural objects have structure and redundancy | one can
with high accuracy predict features that will exist in future instances of an object or predict
one part of an object using information gained from other parts. Structure allows objects
to stand out conspicuously from their background and allows them to be di�erentiated from
each other. Furthermore, the structure is consistent | properties of objects are consistent
throughout di�erent instances of a particular object type. Consistency allows one to identify
an object as what it is.

Perhaps humans use these structurally consistent patterns to recognize and cat-
egorize objects. To identify an object, perhaps we �rst identify an object's distinguishing
features and then categorize it if the features match some stored representation well enough.
These features, however, need not exist just at a high level (Tversky 1977). They could exist
at a \subconscious" level and consist of complex patterns of correlation between multiple
low-level deterministic feature detectors or receptive �elds.



2 CHAPTER 1. INTRODUCTION

How can one build a machine to recognize natural objects? One way is to build a
model of each object that represents its distinguishing features. The principle of parsimony
requires a model to explain only what is necessary, and no more. If only the most identify-
ing and distinguishing features of an object (those that are most consistent among di�erent
object instances) are represented, and the remaining attributes (those with greater variabil-
ity) are ignored, then the resulting model will be both accurate and simple, satisfying the
principle of parsimony.

This thesis is about automatically building computer models of natural objects
using statistical properties of those objects measured from a corpus of data. In this thesis,
however, the natural objects are human speech utterances, the models are statistical, and
the task is automatic speech recognition. Like the visual, tactile, and olfactory scenes, the
auditory scene (Bregman 1990) is �lled with natural objects. Human speech sounds are
one type of natural object in the auditory scene. Object recognition therefore becomes
the production of a textual transcription of the spoken utterance, or more generally the
identi�cation of the intended meaning of the speaker. And like any natural object, if only
the important and distinguishing properties of speech are represented by a model, perhaps
good automatic speech recognition performance can be achieved with minimal complexity.

Statistical pattern recognition (Duda & Hart 1973; Fukunaga 1990; Bishop 1995),
the method used in this thesis, provides one general framework within which such models
may be designed. In this case, given a particular object class identi�er M and a set of
signals or low-level deterministic features describing a natural auditory scene X , the goal
is to produce a model p(X jM) that provides a high probability score for instances of the
class.

This general approach of automatically developing models that accurately repre-
sent the statistical properties of natural objects has a number of attractions.

� Data-Discovery

The automatic identi�cation of models could produce winning yet unanticipated struc-
tures that might go unidenti�ed if the models are selected only by hand. This is
especially true if the objects are represented in a very high dimensional feature space.

� Language or Domain Speci�city

Each task might bene�t from its own customized set of models. This meta-level step
of �rst automatically deducing a model could allow di�erent problem domains (such
as di�erent spoken languages, di�erent types of speech such as isolated words, read
speech, conversational speech, etc.) to use a set of models that provide a domain-
speci�c performance increase.

� Mimics the Neural System's Encoding of Natural Scenes

In the neurobiology community, it has been known for some time that natural infor-
mation sources rarely if ever produce signals that are purely random. Their messages,
instead, are encoded within signals that contain signi�cant statistical structure and
redundancy and obey certain physical constraints (Dusenbery 1992). More inter-
estingly, it has been hypothesized that the neural system has evolved to accurately
represent the statistical patterns found in natural scenes (Field 1987; Linsker 1990;
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Atick 1992; Barinaga 1998; Rieke et al. 1997; Baddeley et al. 1997; Attias & Schreiner
1997). In these references, two general hypotheses have been advanced. First, it has
been found that neural response patterns are signi�cantly stronger for stimuli (usually
visual) that have statistical properties similar to natural objects. Stimuli that have
random properties (or properties that do not match those of natural objects) tend to
have only weak neural responses. Furthermore, those stimuli that possess statistical
properties resembling objects important for an organism's survival and reproduction
(e.g., predators or potential mates) evoke the strongest neural responses. Second, the
neural code in some instances has been accurately predicted based on information-
theoretic codings of natural scene stimuli. In this case, the neural system can be seen
as performing an entropy compression that is used to e�ciently encode objects from
natural scenes. Another interesting property of the human language system is that
high-level syllabic statistical structure of language can play an important role in infant
language learning (Sa�ran et al. 1996).

The above phenomena require some representation of the statistical properties of nat-
ural scenes. In other words, they require some form of joint probability distribution.
This is because it is necessary to know what signals are statistically natural and, in
those signals, where the patterns of redundancy typically exist.

To increase their chances of survival, natural organisms must make decisions about
natural signals very quickly. In other words, the organism must perform some form of
real-time causal signal encoding, and must have quick access to their \joint probability
distributions" with which to make encoding decisions. It would therefore be to the
organism's advantage if its model is simple and is optimized to represent only the
important statistical properties of natural objects. It does not seem unreasonable,
therefore, to predict (as is described in the above references) neural processing by
studying statistical properties of natural scenes.

But if neural processing can be predicted from statistical properties of natural scenes,
perhaps the statistical structure of probabilistic models can also be \predicted" in a
similar way. In other words, perhaps the underlying goal of statistical model selection
is similar to the process of evolutionary neurobiology.

� Noise Filters

It is probable that the human auditory system is highly tuned to statistics of speech
analogous to how the bat auditory system is tuned to its auditory environment (Suga
1988; Suga 1996). Such a specialization can help �lter out noise sources whose statis-
tical properties do not match that of speech. This is one of the approaches advocated
by (Greenberg 1996) where spectral properties of sub-band modulation envelopes are
band-pass �ltered, retaining only those modulation frequencies that are found to be
crucial for speech intelligibility. Generalizing on this approach, the hypothesis can be
made that when noise is presented simultaneously with speech, the degree of speech
intelligibility loss will be a function not just of the signal-to-noise ratio but also of the
similarity between the statistical properties of the noise and speech.

Moreover, if the properties only of speech are represented by a model, that model
could act as a �lter, essentially ignoring aspects of a signal containing non-speech-like
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statistical properties. In other words, such a model might possess noise robustness
properties.

� Parsimony and Computation

As mentioned above, if models represent only the important and distinguishing sta-
tistical properties of objects, then accurate models can be produced with minimal
complexity.

� Generalization

A good statistical model should accurately describe objects that it has not yet en-
countered. If the important statistical properties of a class of objects are accurately
identi�ed, and if a model is designed to accurately and parsimoniously represent those
properties, the model should generalize better than if the model represented the less
important properties.

As is typical, there is a danger of \over-training" or \over-�tting" (Bishop 1995;
Burnham & Anderson 1998) a model to the corpus of data used to identify the sta-
tistical properties. Overtraining is a general problem that can occur anytime there
are too few constraints imposed on a system that has been trained using too small an
amount of training data. Therefore, one must be careful to avoid this phenomenon.

The overall goal of this thesis is to automatically produce statistical models that
represent those properties of speech that help to reduce recognition errors in automatic
speech recognition systems. This is done by exploiting statistical structure of speech as
measured using information theoretic constructs. As will be seen, this data-driven model
induction procedure is not dissimilar to the model selection methods found in the �eld of
statistics (Linhart & Zucchini 1986; Burnham & Anderson 1998).

Before getting into speci�cs, a brief overview is provided of automatic speech
recognition and of some basic concepts needed from information theory.

1.1 Automatic Speech Recognition

Figure 1.1 illustrates the general method used by most speech recognition systems.
The goal of a speech recognition system is to translate an acoustic spoken utterance into a
sequence of words. The general approach is based on statistical pattern recognition (Duda
& Hart 1973; Fukunaga 1990; Bishop 1995). This section will brie
y describe the main
components of a speech recognition system.

A speech signal is �rst digitized, and then converted by a deterministic feature
extraction transformation into a representation that is more amenable to later processing
stages. The goal of feature extraction is partially to modify the statistical properties of the
speech signal's representation to match the statistical model (see below) while preserving
the underlying message in the signal. There are standard types of \speech feature vectors"
that are commonly used including mel-frequency cepstral coe�cients (MFCCs) (Davis &
Mermelstein 1980), RASTA-PLP features (Hermansky 1990; Hermansky & Morgan 1994),



1.1. AUTOMATIC SPEECH RECOGNITION 5

Feature
Extraction

audio
speech
signal

X
Probability
Calculation

Likelihoods
p(X|M)

Select
Maximum

Priors
p(M)

“How to wreck
a nice beach”

Model Database
M1=“How to wreck a nice beach”
M2=“How to recognize speech”

M3 ...

Figure 1.1: The general automatic speech recognition method.

and linear-predictive coe�cients (Atal 1974; Makhoul 1975). An overview of the feature-
extraction process can be found in Deller et al. (1993). In this thesis, the set of features
will be referred to as X , which can be considered a random variable.

The next speech recognition stage involves the use of a database of models M
each one representing a possible speech utterance. The models are trained using a corpus
of labeled (i.e., transcribed, often at the word level) speech data. For each model M , a
probability score p(X jM) is produced for an unknown speech utterance. The quantity
p(X jM) is also called the likelihood of the model M given the data X . These likelihoods
are combined with prior probabilities of each utterance p(M) and the maximum is selected
and used for the hypothesized speech utterance.

Because in general there are many utterances possible, it is infeasible to produce
a distinct model for each one. Therefore, the speech models are hierarchically decomposed
into di�erent levels, the acoustic, phonetic, and linguistic. With this decomposition, models
of entire utterances can share sub-models. For example, sentence models can share word
models, and word models can share sub-word models. There are a variety of types of sub-
word model that are used including phoneme, bi-phone, syllable, or demi-syllable models
(Clark & Yallop 1995; Deller et al. 1993).

The acoustic models describe the structure of sound for each sub-word unit. In
other words, each sub-word unit has an associated probability distribution over a varying
length sequence of feature vectors. Acoustic models typically used to represent the distribu-
tion of each feature vector include parametric mixture densities (Titterington et al. 1985),
neural networks (Bishop 1995), and discrete distributions over vector quantized (Gray &
Gersho 1991) elements.

The phonetic (or word pronunciation) models describe the statistical structure of
words. For each possible word in the system, a probability distribution is de�ned on a set
of sequences of sub-word units (i.e., pronunciations) that can make up the word. Decision
trees (Breiman et al. 1984) are often used to produce word pronunciation models.

The linguistic models de�ne probability distributions over sequences of words in
an attempt to model language. First and second order Markov chains (referred to as bi-
and tri-grams) are often used to describe sequences of words but more complex models can
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also be used (Jelinek 1997).
The models at each of the above levels are combined and used to produce composite

models p(X jM), one for each possible utterance. The composite models are represented
using hidden Markov models (HMMs) which will be extensively discussed in Chapter 3.

These are the bare essentials of modern speech recognition systems. Many more
details will be described in later chapters of this work. How well does such a system do on
modern speech recognition tasks? At the time of this writing (May 1999), there are many
available commercial products that successfully recognize certain types of speech. On the
other hand, at the most recent DARPA Broadcast News workshop (DARPA Broadcast News
Workshop 1999), the best individual system achieved word-error performance1 of about 12
or 13 percent. Moreover, at the most recent LVCSR (LVCSR Workshop 1998) workshop,
the best results on the Switchboard corpus (Godfrey et al. 1992) was about 28 percent and
on the Call-Home (LVCSR Workshop 1998) corpus about 40 percent. Humans, on the other
hand, achieve about 3 percent on such corpora. Clearly, modern speech recognition systems
must be improved.

In a recent study (McAllaster et al. 1998), it was surmised that a large portion
of errors on such corpora can be accounted for by statistical modeling problems at the
acoustic and phonetic level. In their paper, they evaluate a speech recognition system
on synthesized as well as real speech and study how using perfect acoustic models can
in
uence word error. Perfect acoustic models are obtained by synthesizing speech data
using previously trained acoustic models which are then also used by the recognition system.
Pronunciation models are also varied either by 1) recognizing synthesized speech data using
a pronunciation dictionary that has also been used to generate the speech data, or 2)
including hand-transcribed test-data pronunciations in the test dictionary.

They found that if both the acoustic and pronunciation models of the speech recog-
nition system are perfect (synthesized data using the acoustic models and the dictionary
pronunciations), then recognition word error falls by an order of magnitude. If only the
acoustic models are perfect (i.e., synthesized data using the acoustic models and the hand-
transcribed pronunciations) and the pronunciation dictionary has been augmented with the
hand-transcribed test pronunciations, performance gets better but not by nearly as much.
And if only the pronunciations are improved by including the hand-transcribed test pro-
nunciations in the test dictionary (i.e., imperfect acoustic models since the real acoustic
data is used) then performance actually gets worse.

A conclusion of this paper is that, one way to signi�cantly improve speech recog-
nition performance is to simultaneously improve both the acoustic and the pronunciation
models. Generalizing their result somewhat, an additional hypothesis that can be made is
that, to signi�cantly improve a speech recognition system, components at all levels (feature
extraction and acoustic, pronunciation, and language modeling) of a speech recognition
system should be simultaneously improved (also see Section 7.2). Typically this is not
practical because of the combinatorially large set of possibilities implied by simultaneous
improvements | accordingly, the test results provided in this thesis (Chapter 6) evaluate
improvements applied only to the acoustic modeling component of an automatic speech
recognition system. This is done using a new technique to relax the HMM conditional in-

1Speech recognition systems are typically judged by their word-error performance which is de�ned as the
percentage of words incorrectly recognized by a system.
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dependence assumptions in a principled and data-driven way. As will be seen, however, the
general approach can be used to adapt the acoustic models to any type of improvements
performed simultaneously at other levels.

1.2 Essentials of Information Theory

Elements of information theory will be used extensively throughout this thesis.
This section provides a very brief overview of the information theoretic concepts relevant
to this work. More detailed coverage is provided in a number of excellent texts (Cover &
Thomas 1991; Gallager 1968; Kullback 1968).

Let X be a random variable, and fX = xg be the particular event that the random
variable X takes on the value x. This event has a probability p(X = x) or more concisely
just p(x). For notational convenience, the event fX = xg might simply be written as x.
In general, the smaller the probability p(x) is, the event fX = xg is viewed as being more
surprising. Each event can be thought of as conveying an amount of information that is
related to its surprise. One way of representing the amount of information provided by an
event, therefore, is using its probability. Improbable events provide much information since
they are unexpected, and probable events provide little information since they are expected.
The inverse of p(x) can be thought of as conveying the amount of information provided by
the event fX = xg as can the quantity log(1=p(x)). The amount of information provided
by an event is therefore de�ned as follows:

Information provided by the event fX = xg is equal to � log p(X = x)

Note that � log p(X) can be seen as a random variable which has an expected value. The
average of this random variable is the average information provided by X :

Average information provided by X is equal to H(X)
�
= �

X
x

p(x) log p(X = x)

The quantityH(X) is called the entropy of the random variable X . Entropy can be similarly
de�ned for continuous random variables.

The random variable X can be thought of as an information source providing
messages in some alphabet where each message has a certain probability. The entropy
H(X) is the minimum number of bits per message on average that have to be used to
losslessly represent messages generated from this source.

Let Y also be a random variable that might be randomly related to X . If it is
known that the event fY = yg occurred, this might a�ect the probability of the event
fX = xg as is re
ected by the conditional probability distribution p(xjy). Following an
analogous reasoning to the above, � log p(xjy) can be seen as the information provided by
the event x given y. Averaging over all x and y produces the conditional entropy:

H(X jY ) = �
X
xy

p(x; y) logp(xjy)

The quantity

log
1

p(x)
� log

1

p(xjy)
= log

p(xjy)

p(x)
= log

p(x; y)

p(x)p(y)



8 CHAPTER 1. INTRODUCTION

can be seen as the di�erence between the information provided by the event x and the
information provided by the event x given y. The average of this quantity over all x and y

is called mutual information and is de�ned as:

I(X ; Y ) =
X
xy

p(x; y) log
p(x; y)

p(x)p(y)

If X is thought of as an information source, and Y a receiver or a version ofX after
being sent through some transmission channel, I(X ; Y ) is the amount of information (in
bits) on average that is transmitted between X and Y through the channel. The quantity
I(X ; Y ) is sometimes referred to as the information transition rate between X and Y , i.e.,
it is the number of bits per symbol transmitted on average.

Finally, if Z is a random variable, the quantity

log
1

p(xjz)
� log

1

p(xjy; z)
= log

p(x; yjz)

p(xjz)p(yjz)

can be seen as the di�erence between the information provided by the event x given z and
the event x given y and z. Taking averages in this case de�nes the conditional mutual
information:

I(X ; Y jZ) =
X
xyz

p(x; y; z) log
p(x; yjz)

p(xjz)p(yjz)

The conditional mutual information may also be represented as:

I(X ; Y jZ) =
X
z

I(X ; Y jZ = z)p(Z = z)

where

I(X ; Y jZ = z) =
X
xy

p(x; yjz) log
p(x; yjz)

p(xjz)p(yjz)

is the conditional mutual information between X and Y under the event fZ = zg.

Entropy, conditional entropy, mutual information, and conditional mutual informa-
tion can be depicted using the Venn diagrams given in Figure 1.2. A variety of relationships
exist between these quantities (Cover & Thomas 1991), many of which can be easily \read
o�" from the Venn diagrams. For example, it is easy to see relationships such as

I(X ; Y ) = H(X)�H(X jY ) = H(Y )�H(Y jX);

I(X ; Y; Z) = I(X ; Y ) + I(X ;ZjY );

and

I(X ; Y ;Z) = I(X ; Y )� I(X ; Y jZ)
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Figure 1.2: Venn diagrams for entropy, conditional entropy, and mutual information (left)
and conditional mutual information (right).

where I(X ; Y ;Z) can be thought of as the mutual information common among the three
variables X , Y , and Z.

Another important quantity is the KL-distance (Kullback 1968) between two prob-
ability distributions p(x) and q(x) which is de�ned as:

D(pjjq) =
X
x

p(x) log
p(x)

q(x)

This distance is not a true metric since, for example, D(pjjq) is not in general equal to
D(qjjp), but it has the important property that it is always greater than or equal to zero
and that it is zero if and only if p(x) and q(x) are identical. Note that mutual information
can be de�ned as the KL-distance between a joint probability distribution and the product
of marginal distributions:

I(X ; Y ) = D
�
p(x; y)jjp(x)p(y)

�
:

1.3 Notation

This section brie
y reviews the notation used in this work. Capital letters such
as X and Y refer to random variables. Lower case letters such as x and y refer to possible
values of these random variables. If X is a random variable according to some probability
distribution p, it will be written X � p(X). Similarly, if x is a sample from that distri-
bution, it will be written x � p(X). For notational simplicity, p(X) will at di�erent times
represent either a continuous probability density or a discrete probability mass function.
The distinction will be clear from the context. The letter Q will typically indicate a discrete
random variable taking values in the set Q of size jQj. Q will often be used to represent
one variable in a Markov chain. The quantities X and x might represent either scalars or
vectors. The quantity Xt is the variable at time t. The quantity Xr:t is the set of vari-
ables fXr; Xr+1; : : : ; Xtg. The quantity X<t is the set fX1; X2; : : : ; Xt�1g. And X:t is the
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set of variables fX1; X2; : : : ; Xt�1; Xt+1; : : : ; XTg where an implicit length parameter T is
assumed.

1.4 Thesis Overview

This thesis is organized as follows. Chapter 2 presents an overview of graphical
models and Bayesian networks. Graphical models allow one to reason about the structure
of a statistical model without needing to consider any parameterization. Chapter 3 �rst
brie
y reviews stochastic processes and Markov chain theory. It then de�nes hidden Markov
models (HMMs) and argues that HMMs have more 
exibility then it is sometimes suggested.
At the end of this chapter, the principle of parsimony is used as a guideline to suggest ways
to produce models that could be better than HMMs. Chapter 4 describes a new type of
extension to the HMM, called the buried Markov model (BMM). In this chapter, it will be
shown how BMMs are derived by adapting the model's statistical structure to match the
natural properties of speech. In Chapter 5 an implementation of BMMs is described and in
Chapter 6 this implementation is tested on several isolated-word speech corpora. It is shown
that BMMs can produce a lower word-error rate than certain HMMs. Finally, Chapter 7
summarizes and then outlines a variety of future projects suggested by this thesis.
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In the previous chapter, it was argued that when choosing models to represent
objects originating from natural scenes, the models should somehow represent the distin-
guishing properties of the objects. If the objects are represented by a collection of features,
and if the models are probabilistic, then the models must somehow represent patterns of
redundancy inherent in the objects' feature representation.

There are three separate components to a probabilistic model: the structure, the
implementation, and the parameterization. The structure of a model corresponds to the set
of dependency relationships that a model is inherently able to represent. Bayesian networks
are discussed in this chapter. As will be seen, with a Bayesian network one may reason
about the structure of a probabilistic model as determined by the model's set of conditional
independence properties. The implementation of a model corresponds to the way in which
two random variables related by direct dependency can a�ect each other. For example,
given two random variables A and B that are directly related, their relationship could be
modeled by conditioning the mean of B as either a linear or a non-linear function of A |
the choice is determined by the implementation. Finally, the parameterization of a model
corresponds to the actual parameter values of a speci�c implementation of a particular
structure. In the above example, the parameterization of the conditional mean of A might
be such that E[A] = 4B, where the number 4 is the parameter.

In general, the properties represented by a probabilistic model are determined by
its structure, implementation, and parameterization. For example, consider the task of
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representing dependencies between elements of a multi-dimensional random vector. One
implementation choice is the set of multi-dimensional Gaussian distributions. Intra-vector
dependence is not represented if the o�-diagonal elements of the covariance matrix are zero
so the properties of the model are governed by the model's parameters. On the other hand,
a Gaussian distribution can not accurately represent a multi-modal distribution regardless
of the parameters. To represent such a distribution, a di�erent structure must be used.
A model space can be seen as the union of di�erent model structures, implementations,
and parameterizations. In this work it will be bene�cial to consider the selection of model
structure separately.

This chapter consists of a brief overview of graphical models and Bayesian net-
works. Among other advantages, a graphical model provides intuitive ways to reason about
the structure of statistical models without needing to consider either a particular implemen-
tation or a parameterization. While the graphical model literature is rich with mathematical
rigor (Lauritzen 1996; Pearl 1988), this chapter provides only the basic machinery necessary
to discuss the structures considered in the later chapters of this work.

2.1 Graphical Models for Density Estimation

In general, the task of density estimation can be seen as choosing the best p̂I� 2 P
where P is a space of all models under consideration, and p̂I� is a model with a partic-
ular structure, implementation I and parameterization �. This choice is typically made
empirically using a size T set of training samples consisting of N -dimensional data-vectors
or features D = fx1; x2; : : : ; xTg. The random samples are presumably drawn i.i.d. (see
De�nition 3.1) from some true underlying source probability distribution p for the random
vector X . The \true" p is typically unknown and does not necessarily live within P . The
choice of model structure p̂ and the particular implementation and parameterization can be
viewed as distinct aspects of the problem.

The simplest approach to this problem chooses a model that allows for statistical
dependencies to exist between all possible subsets of the elements of X . An N -dimensional
histogram is an example if the elements of X are discrete | choosing parameter values then
becomes a problem of counting. A naively chosen model such as this, however, will quickly
lead to estimation inaccuracies, computational intractabilities, and exorbitant demands on
the training set size as the dimensionality of X increases.

In general, the amount of training data needed to produce an accurate estimate
of a source grows exponentially with N . If the training data set is too small and the model
is too complex, over�tting will occur in which case the model represents the idiosyncrasies
of the particular training data sample rather than the actual properties of the underlying
source object. This data growth problem is often referred to as the curse of dimensionality
(Duda & Hart 1973; Bishop 1995).

In many cases, certain elements of X might be statistically independent of each
other and representing direct dependencies between these elements is irrelevant to the task
of producing an accurate model. An approximation that ignores those dependencies will
to some extent mollify the problems mentioned above. One way to ignore dependencies
is to change the structure of the model. A graphical model is one way of specifying a
subset of dependencies used for a density-estimation task. More precisely, a graphical
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model explicitly speci�es the conditional independence properties of a distribution over a
collection of random vectors.

It is said that a random variable X is conditionally independent of random variable
Y given random variable Z under a given probability distribution p(�), if the following
relation holds:

p(X = x; Y = yjZ = z) = p(X = xjZ = z)p(Y = yjZ = z)

for all x, y, and z. This is writtenX??Y jZ. The conditional independence ofX and Y given
Z has the following intuitive interpretation: if one has knowledge of Z, then knowledge
of Y does not increase one's knowledge of X and vice versa. Conditional independence
does not imply unconditional (or equivalently marginal) independence | X and Y can be
either conditionally dependent or independent given Z irrespective of X and Y 's marginal
independence. Many properties of conditional independence are provided in (Lauritzen
1996; Pearl 1988).

A graphical model for a collection of random variables is a graph G = (V;E) where
V is a set of vertices and the set of edges E is a subset of the set V � V . The vertex set V
is in one-to-one correspondence with the collection of random variables. One vertex can be
use for each scalar random variable or a vertex can correspond to an entire vector of random
variables. In the latter case, the vertex implicitly corresponds to a sub graphical model over
the individual elements of the vector. In general, the set V may refer both to the set of
vertices of the graph and to the set of corresponding random variables. Associated with a
graphical model is a probability distribution p(V ) over the set of random variables. The
edge set E of the model in one way or another speci�es a set of conditional independence
properties of the associated probability distribution.

A graphical model may posses one or more properties, called Markov properties.
A Markov property on a graph is a set of conditional independence assumptions about
collections of the graph's vertices. The collections of vertices for which a particular property
holds are determined using graph operations (such as subset selection, adjacency, closure,
disjointness, etc.). The graph's associated probability distribution may or may not obey
di�erent Markov properties with respect to the graph. If a certain Markov property does
hold for a graph and for a particular probability distribution, then the graph allows one to
reason about conditional independencies among the vertices without having to refer directly
to the distribution or its speci�c parameterization. To be complete, one should specify both
a graphical model and its Markov property. Typically, however, the exact Markov property
is not stated explicitly and a particular one is assumed by convention for each type of graph.

Di�erent types of graphical models may have di�erent Markov properties. A prob-
ability distribution obeying one Markov property with respect to one graphical model may
or may not obey a di�erent Markov property with respect to a di�erent graph | in general,
it depends on both on properties of the distribution and on the graph. A formal study of
these relationships is given in (Lauritzen 1996).

Because a graphical model is dissociated from its probability distribution, a graph-
ical model shows neither the implementation of the dependencies nor the particular param-
eterization. For example, two vertices connected by an edge could correspond to a variety
of implementations such as a conditional histogram or a Gaussian with a conditional mean.
Also, the values of the table (or the mean in the dependency matrix) are not speci�ed
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by a graphical model. An edge simply says that the two variables are somehow directly
related. A graphical model therefore provides an easy way to view the inherent structure
that a probability distribution imposes on a collection of random variables. Via the graph's
edges, a graphical model shows which variables are su�cient for determining the statistical
properties of other variables.

Graphical models provide a useful tool to reason about the statistical properties
of natural objects. For example, one may designate that one feature element should have
a strong a�ect on another element. In other words, one may �rst design a graphical model
that is known to adequately describe the statistical patterns in features representing a
type of natural object, and then afterwards specify a probability distribution that obeys
the conditional independence properties of that graph. The distribution will then have
the ability to represent the structure and redundancy of the object without using many
extraneous parameters. This can signi�cantly reduce the parameter estimation complexity
and cause only a small decrease in model accuracy.

For the purposes of this thesis, it su�ces to quickly summarize four di�erent types
of graphical model, and then explore one of them in more detail. In each case, the model will
correspond to conditional independence assumptions over a collection of random variables
under some assumed distribution. Each graphical model will consists of a type of graph
and a particular Markov property.
Markov Random Field (MRF) Markov random �elds (Derin & Kelley 1989; Dubes
& Jain 1989; Chellappa 1985; Kashyap 1981; Pearl 1988) are also called undirected models
(Lauritzen 1996) since the corresponding graphs have undirected edges. Markov random
�elds satisfy what is known as the global Markov property, which states that a collection
of variables are independent of all other variables given all neighbors (or the boundary) of
that collection. It can be shown that the corresponding distribution over a collection of
random variables X1:N factorizes as follows:

p(X1:T) =
1

Z

Y
c=C

�c(Xc)

where C is the set of all cliques in the graph, where �c(�) are a set of clique potential
functions, and where Z is a global normalization constant. A clique is a set of nodes in a
graph that are fully connected.

An example MRF is given in Figure 2.1. In the �gure, the cliques are fA,Bg,
fA,Cg, fB,Dg, fC, Dg, and f D, E, Fg. Some of the conditional independence relationships
implied by this graph include: fE; Fg??fA;B;CgjfDg, fAg??fD;E; FgjfB;Cg, etc. The
joint probability distribution according to this graph can be represented as:

p(A = a; B = b; C = c;D = d; E = e; F = f)

= �A;B(a; b)�A;C(a; c)�B;D(b; d)�C;D(c; d)�D;E;F(d; e; f)

Computational e�ciency is one important consequence of the factorization prop-
erty. In general, one desires MRFs with small clique sizes because MRF complexity increases
exponentially with clique size. One example of a MRF is a Gibbs distribution (Derin &
Kelley 1989) where the overall joint distribution is a member of the exponential family. The
main di�culty with MRFs is the calculation of the global normalization constant.



2.2. BAYESIAN NETWORKS 15

A C E

B D F

Figure 2.1: A simple Markov random �eld

Bayesian Networks Bayesian networks are also called directed graphical models because
they use only directed edges that form directed acyclic graphs (DAGs). Bayesian networks
will be discussed in detail below.
Decomposable (triangulated) Models

The conditional independence properties of certain probability distributions are
not perfectly representable by both a MRF and a Bayesian network. Those distributions
that are perfectly representable by both can be represented using decomposable models.
Their corresponding undirected graphs are necessarily triangulated which means that any
cycle of length greater than three must have a chord between two non-adjacent vertices
along the cycle. Decomposable models, therefore, comprise the intersection of MRFs and
Bayesian networks.

In decomposable models, the cliques of the graph can form a tree called a Junction
tree. Between two cliques along the tree are separator sets which consist of the nodes in
the intersection of the two adjacent cliques. One of the advantages of decomposable models
is that the joint distribution over all variables can be factorized as a product of clique
marginals over a product of separator marginals, i.e.:

p(X1:N) =

Q
c=C �c(Xc)Q
s=S �s(Xs)

where C is the set of cliques and S is the set of separators.
This product representation has important computational implications since global

probabilistic inference can be performed by manipulating only local quantities. Speci�cally,
the marginal probability of the nodes in a clique can be speci�ed using just the clique
potential function. It su�ces to say that all models considered in this work will be de-
composable. More detail on decomposability is described in (Pearl 1988; Lauritzen 1996;
Jensen 1996).
Chain Graphs Chain graphs are the most general form of graphical model. Their edges
can be either directed or undirected. Chain graphs and their possible Markov properties
are described in (Lauritzen 1996) but are not discussed further in this work.

2.2 Bayesian Networks

Bayesian networks (or belief networks) are perhaps the most common type of
graphical model. Because Bayesian networks encompass both hidden Markovmodels (Chap-
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ter 3) which are widely used for automatic speech recognition and the HMM extensions
proposed in Chapter 4, they are discussed extensively in this section.

In a Bayesian network, it is said that if there is an edge going from node A to
node B, then A is a parent of B and B is a child of A. These notions are extended so
that one may talk of the ancestors, descendants, etc. of a node. The collection of nodes
and directed edges in a Bayesian network form a directed acyclic graph (DAG). Directed
cycles are not allowed in Bayesian networks since such cycles would suggest conditional
independence properties that only a more general graphical model could represent.

Directed edges are often used to depict causal reasoning. In this case, each node
represents some event which can, with some probability, a�ect the outcome of some other
event. To this end, Bayesian networks are used in a variety of real-world applications
(Heckerman et al. 1995) where causal reasoning, combined with a degree of uncertainty,
can be useful. Directed edges can also be used to depict \relevance," where the variables
most relevant for in
uencing a certain variable are given by the variable's neighborhood.

Like any graphical model, the directed edges in a Bayesian network represent
conditional independence properties over the corresponding variables. In this case, the
conditional independence properties of a network depend on the direction of the edges. Fig-
ure 2.2 shows two Bayesian networks with the property that A is conditionally independent
of C given B. On the left side, the variables form a standard three-variable �rst-order
Markov chain A! B ! C (also see Section 3.1.1). On the right side, the same conditional
independence property is represented although one of the arrows is pointing in the opposite
direction.

A B C

A

B

C

Figure 2.2: A is conditionally independent of C given B

Figure 2.3 depicts the case where variables A and C are marginally independent
but given B they no longer are independent. This can be seen by noting that:

p(A;B;C) = p(BjA;C)p(A)p(C)

so

p(A;C) =
X
b

p(A;B; b) = p(A)p(C)
X
b

p(bjA;C) = p(A)p(C)

which means that the variables A and C are marginally independent. On the other hand,
the quantity p(A;CjB) can not similarly be represented as a product of two factors. This
is the notion of \explaining away" described in Pearl's book (Pearl 1988) | suppose the
random variables are binary and suppose, as listed in Figure 2.3, that A probabilistically
implies B, and C implies B. If it is found that B is true, then B's cause could either be A
or C. Therefore, the probability of both A and C increases. If we then �nd that C is true,
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this in general makes A less probable, so A is said to have been explained away. If we �nd
that C is false, then we know A is true with high probability since it is the only remaining
explanation. The notion of explaining away extends to continuous random variables as well.

A

B

C

Figure 2.3: A is conditionally dependent with C given B

Each variable in a Bayesian network is independent of its non-descendants in the
graph given its parents. This is called the local Markov property which, for all distribu-
tions considered herein, is equivalent to the global Markov property (Lauritzen 1996) on
a corresponding undirected graph. Both of these properties are equivalent to the concept
of d-separation de�ned as follows: a group of variables A is conditionally independent of
another group of variables B given a third group of variables S if the set S d-separates A
from B (Jensen 1996). Two sets of variables A and B in a network are d-separated by a
third set of variables S if and only if all paths that connect any node in A and any other
node in B have the following property: there is a node v in the path such that either:

� v 2 S and the arrows along the path do not converge at v

� v 62 S, any descendant of v is not in S, and the arrows along the path converge at v

In other words, for any such path, there must be a node v along the path with a \YES" in
the following table:

v 2 S
�
v 62 S

�
^
�
de(v) \ S 6= ;

� �
v 62 S

�
^
�
de(v) \ S = ;

�

Arrows Converge at v NO NO YES

Arrows do Not Converge at v YES NO NO

where de(v) is the set of all descendants of v.
Variables in a Bayesian network can be either hidden, which means they have an

unknown value and represent a true random variable, or they can be observed, which means
that the values are known. When the question \is A??BjC?" is asked, it is implicitly
assumed that A and B are hidden and C is observed. In general, if the value is known
(or if \evidence" has been provided) for a particular node, then it is considered observed
| otherwise, it is considered hidden. Probabilistic inference using a network with hidden
variables must somehow \marginalize away" the hidden variables to produce the resulting
probability of the observed variables. A Bayesian network does not, however, require a
variable to always be either hidden or observed. Rather, a variable is either hidden or
observed depending on the question that is asked of a Bayesian network. For example, if
one asks \what is the probability p(C = cjA = a)?" for the graph in Figure 2.2, then B is
hidden and A is considered observed. If one asks \what is the probability p(C = cjB = b)
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or p(A = ajB = b)?" then B is considered observed. In this way, a variable in a Bayesian
network can be either an input (or observed) variable, a hidden variable, or an output (the
object of a query) variable.

There is a relatively easy way, known as the Bayes ball algorithm (Shachter 1998),
to determine if two variables are independent given some other set of variables. First, shade
in all the nodes of the graph that are observed (or conditioned against). Call this set S. To
answer the question \is A??BjS?," start a ball in A and bounce it along the nodes according
to the rules illustrated in Figure 2.4. If it is possible to reach B, then the answer to the
question is negative.

Figure 2.4: The Bayes ball algorithm. A hypothetical ball starting from one node may
bounce over the graph using the rules illustrated above. Dashed arrows indicate that the
ball may either bounce through or bounce o� the given node along the directed edges as
shown. Hidden nodes are unshaded, and observed nodes are shaded. The ball may pass
through a hidden node if there are any diverging arrows, and may pass through an observed
node only if the arrows are convergent.

For a given collection of random variables, one of the most important problems
is the computation of the probability distribution of one subset given values of some other
subset. This is called probabilistic inference. Probabilistic inference is essential both to
make predictions based on the network, and to learn the network parameters using, for
example, the EM algorithm (Dempster et al. 1977). One of the reasons Bayesian networks
are useful is because they permit a more e�cient inference procedure than would be ob-
tained by simply marginalizing away all unneeded or hidden variables ignoring conditional
independence properties.

There are two types of inference, exact and approximate. Exact inference proce-
dures are useful when the networks are not too complex because in the general case infer-
ence is NP-Hard (Cooper & Herskovits 1990). The most popular exact inference method
is the junction tree algorithm (Jensen 1996). Essentially, a Bayesian network is converted
into a decomposable model via moralization (a process that adds links between the un-
connected parents of a node) and triangularization (a process that adds edges to cycles
of length greater than three that do not possess a chord). The resulting decomposable
model represents a subset of the original conditional independence properties, but since it
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is decomposable it has the desirable properties described above. For a network consist-
ing of only discrete valued nodes, the complexity of this algorithm is O(

P
c2C

Q
v2c jvj)

where C is the set of cliques in the junction tree, c is the set of variables contained
within a clique, and jvj is the number of states (i.e., possible values) of variable v. It
can be seen that this algorithm is exponential in the size of the cliques, so when perform-
ing moralization and triangulation, minimizing the resulting clique sizes is desirable. It
turns out that the commonly used Forward-Backward algorithm (Rabiner & Juang 1993;
Huang et al. 1990) used to perform inference on and train HMMs is a special case of the
junction tree algorithm (Smyth et al. 1996).

Approximate inference procedures are used when the clique state space size is
too large. Several di�erent types of approximation methods exist including mean �eld and
variational techniques (Saul et al. 1996; Jaakkola & Jordan 1998; Jordan et al. 1998), Monte
Carlo sampling methods (MacKay 1998), and loopy belief propagation (Weiss Submitted).
Even approximate inference can be NP-Hard however (Dagum & Luby 1993). Therefore, it
is crucial to use a model with the smallest possible complexity.

2.3 Examples of Bayesian Networks

The following paragraphs provide various examples of Bayesian networks and de-
scribe how they might be used.

Given a collection of random variables X1:N , the chain rule of probability says
that:

p(X1:N) =
Y
n

p(XnjX1:n�1)

Each factor on the right hand side of this equation can be thought of as saying that Xn

depends on the previous variables X1:n�1 as shown on the left in Figure 2.5. If it is known
that for each n there is some set �n (the parents of Xn) such that Xn??fX1:n�1 n �ngj�n,
then the following is also an exact representation of the joint probability distribution:

p(X1:N) =
Y
t

p(Xnj�n)

This equation can be depicted by a Bayesian network, as shown on the right in Figure 2.5.
It turns out that this type of \factorization" is a general property of Bayesian networks and
is one of their main advantages: instead of computing the joint probability as a product
of a set of relatively complex factors, the joint probability is factored into the product of
much less complex and more pertinent quantities.

A Gaussian mixture model is a probability distribution that is a weighted sum of
Gaussians as follows:

p(x) =
X
i

cipi(xj�i;�i)

where pi(x) = N (x;�i;�i) is a Gaussian distribution with mean �i and covariance �i. This
distribution can be represented by the network shown in Figure 2.6.
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X1

X2 X3

X5

X4

X6

X1

X2 X3

X5

X4

X6

Figure 2.5: On the left is the Bayesian network representation of the chain rule of probability.
On the right, conditional independence assumptions have been made (e.g., X3??X1jX2,
X5??fX2; X3gjfX1; X4g, etc.)

C X

Figure 2.6: A Bayesian network model when p(X) is a mixture distribution and C is a
mixture variable.

A hidden Markov model (HMM) (Rabiner & Juang 1993; Huang et al. 1990) is
a Bayesian network with hidden variables Q1:T and observed variables X1:T . The hidden
variables form a �rst order Markov chain and each observed variable is conditionally inde-
pendent of everything else given its corresponding hidden variable. Figure 2.7 shows the
graphical model for an HMM. This is also the structure for the Kalman Filter (Haykin
1989), but in that case, all the variables are continuous single-component Gaussians. In
light of the previous discussion on conditional independence and directed models, it can be
seen that there are two conditional independence properties associated with an HMM:

Qt??fQ1:t�2; X1:t�1gjQt�1 (2.1)

Xt??fQ1:t�1; Qt+1:T ; X1:t�1; Xt+1:TgjQt (2.2)

Inference in HMMs is extremely e�cient because of very small clique sizes (i.e., two). HMMs
are a subset of a class of models often called Dynamic Bayesian networks (DBNs) (Dean
& Kanazawa 1998; Ghahramani & Jordan 1997; Ghahramani 1998) which are essentially
collections of identical Bayesian networks strung together with arrows pointing in the di-
rection of time (or space). HMMs, their capabilities, their de�ciencies, previously proposed
extensions, and their application to automatic speech recognition will all be discussed in
detail in Chapter 3. New extensions to HMMs will be introduced in Chapter 4

In a typical statistical pattern classi�cation task, the goal is to identify the object
class with the highest probability. That is, �nd:

c� = argmax
c

p(cjX) = argmax
c

p(X jc)p(c)

where c identi�es the object class and X is a random vector. A Bayesian network can
model this as well. The network can consist of the set of feature variables X1:N augmented
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Qt Qt 1+Qt 1– Qt 2+

Xt Xt 1+Xt 1– Xt 2+

Figure 2.7: A Hidden Markov Model

C X

Figure 2.8: A Bayesian network model that could represent a multi-layered perceptron with
a softmax output non-linearity.

with a class variable C. Computing the posterior probability p(cjX) for each value of c is a
standard probabilistic inference problem that can be solved using the methods mentioned
above. Alternatively, jCj distinct networks could be de�ned with di�erent parameters (and
perhaps di�erent structures) for each class c. The decision problem becomes:

c� = argmax
c

pc(X)p(c)

In the most general form, it can be seen that these approaches are equivalent | in the
second case there is an implicit link from a C variable to each class-conditional network.

A multi-layered perceptron (MLP) (Hertz et al. 1991; Bishop 1995) with a softmax
output nonlinearity can be seen as an implementation of the probability p(CjX) and there-
fore as an implementation of a particular Bayesian network. An MLP can be represented
by the Bayesian network shown in Figure 2.8. An MLP makes no conditional independence
assumptions about the elements of its input variables.

The \naive Bayes classi�er" (Langley et al. 1992) is depicted in Figure 2.9 where
the Xi variables are input features and C is a class variable. Data presented at the input Xi

determines a probability distribution over C which is used to make a classi�cation decision.
This classi�er makes the assumption that each variable is independent of other variables
given the class variable C, that is:

p(CjX1:N) = p(X1:N jC)p(C)=p(X1:N) / p(X1jC)p(X2jC) : : :p(XN jC)p(C);

which allows for very e�cient inference.

More examples of Bayesian networks may be found in the following references
(Machine Learning 1997; Jensen 1996; Pearl 1988; Heckerman et al. 1995; Jordan 1998;
Frey 1998; Zweig 1998).
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X1

C

X2 XN

Figure 2.9: The naive Bayes classi�er.

2.4 Graphical Model Parameter Learning

Once a given network structure has been speci�ed, the implementation of the local
conditional distributions for each node must be selected. There are many choices such as the
multinomial, a conditional Gaussian, a mixture of other distributions, etc. Accompanying
each choice is a set of parameters.

Letting X be the entire collection of variables in a network, one is typically given
a �nite sample of data D = fx1; : : : ; xTg drawn presumably i.i.d. from the corresponding
real distribution. From these samples, the goal is to optimally estimate the corresponding
real distribution by adjusting the network parameters. This can be formulated as a risk
minimization problem (Duda & Hart 1973; Vapnik 1998).

If the samples do not contain missing or hidden values (i.e., full observability) and
if the data items are discrete, for certain classes of distributions closed form solutions for
the optimal parameter settings may be found (Heckerman 1995). The meaning of optimal
depends on the training method. In the most general case, there are three choices: maximum
likelihood (ML), maximum a posteriori (MAP), and Bayesian. For ML training, the goal is
to �nd:

�� = argmax
�

p(Dj�)

where �� is the optimal parameter setting and p(Dj�) is the probability of the complete
data set under the model. Maximum a posteriori estimation assumes the existence of a
prior p(�) over the parameters �. The goal is to �nd the optimal posterior of � given the
data:

�� = argmax
�

p(�jD) = argmax
�

p(Dj�)p(�)

Finally, in the Bayesian approach, potentially all values of � are considered simultaneously
by weighing each one by the posterior of � given the data. For example, to compute the
probability of some arbitrary variable C given the data and some input feature variable X ,
the following method would be used:

p(CjX;D) =

Z
p(CjX;�)p(�jD)d�

As mentioned above, for certain classes of models, closed form solutions can be obtained
for these optimization problems (Heckerman 1995) using \conjugate priors." For example,



2.5. GRAPHICAL MODEL STRUCTURE LEARNING 23

a Dirichlet distribution constitutes a conjugate prior for the multinomial distribution. For
other densities, closed form solutions may or may not exist. In general, Bayesian network
decomposability decreases the parameter optimization complexity since in that case each
factor may be optimized independently.

When the data is partially observable (i.e., some elements of the sample are
missing) or the network contains intrinsically hidden variables, parameter learning be-
comes more di�cult. In such a case, optimization methods such as the Expectation
Maximization (EM) (Dempster et al. 1977) algorithm, gradient descent (Bishop 1995;
Russel & Norvig 1995), or some other iterative scheme must be used. The EM algorithm is
described in Chapter 5.

Bayes decision theory says that to minimize error (risk) one must choose the class
with the largest posterior probability p(cjX). Therefore, the ideal parameter optimization
procedure should somehow minimize Bayes risk or, alternatively, produce an accurate esti-
mate of the class posterior. The optimization schemes above suggest that one could learn
the full joint distribution p(X; c), but this might not be the best procedure for a classi-
�cation task. For example, consider a ML parameter estimate using a data set D that
consists of i.i.d. samples of p(X; c). The ith data sample contains both a feature vector
xi and a corresponding class label ci, so the data and class-label samples are given by
D = fDx; Dcg = f(x1; c1); (x2; c2); : : : ; (xT ; cT )g and the optimization procedure becomes:

�� = argmax
�

log p(Dj�) = argmax
�

log
�
p(DcjDx;�)p(Dxj�)

�
To reduce classi�cation error, one need only optimize (maximize) the term log p(DcjDx;�).
The other term log p(Dxj�) might penalize a parameter assignment that would result in an
accurate posterior-only approximation. This is especially true when the dimensionality of
the feature vector is large (Friedman et al. 1997).

Unfortunately, complexity often prevents the estimation of the class posterior
probability directly.1 Instead, one typically optimizes each class-speci�c likelihood term
p(X jc;�) individually. Of course, given a data set D which contains X samples from all of
the classes, it is necessary to produce likelihood function estimates p(X jc;�) that provide a
high score on samples from the correct class and a low score on samples from other classes.
To encourage such behavior, a collection of \discriminative" training methods for likelihood
models are often used in the automatic speech recognition community. These techniques
either optimize a cost function directly related to the Bayes risk (Juang & Katagiri 1992;
Juang et al. 1997) or optimize the mutual information between the class variable C and the
vector X (Bahl et al. 1986; Ephraim & Rabiner 1988; Ephraim et al. 1989). Discriminative
training will be discussed extensively in Chapter 4.

2.5 Graphical Model Structure Learning

In the Bayesian network literature, the phrase \learning Bayesian networks" often
refers both to learning the parameters of a network and learning the structure. The topic

1For certain implementations, the class posterior can be estimated fairly easily. For example, a multi-
layered perceptron with softmax output non-linearities can be seen as a posterior probability (Bishop 1995)
estimator. In this approach, however, it is impossible to marginalize away missing input feature elements as
would be possible with a di�erent implementation (Heckerman 1995).
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of this section is structure learning. For a given structure, assume that the implementation
has been chosen and parameters for each network are chosen optimally according to some
procedure (e.g., ML, MAP, etc.) so that bene�ts arising only from structural di�erences
may be evaluated.

Bayesian network structure learning (Heckerman 1995; Heckerman et al. 1994;
Buntine 1994; Friedman 1998; Krause 1998) can be crucial to the successful use of such
models. If a model is unable to accurately represent important regularities in the data, it
will lead to an inaccurate estimation of the probability distribution regardless of the training
method and regardless of how well the model is trained.

The most obvious method of structure learning is simple enumeration. In this
case, each possible structure is considered, trained, evaluated, and ultimately selected if it
results in the best score. Obviously, enumeration is infeasible because the set of possible
structures is enormous.

Structure learning is very similar to what statisticians typically call \model selec-
tion" (Linhart & Zucchini 1986; Burnham & Anderson 1998). Model selection is a technique
where one of a collection of statistical models is selected to best describe some phenom-
ena. For example, in a regression task, one might consider as candidate models a class of
polynomials of variable degree. Given a sampled data set D, one might choose the least
complex model from that collection which best matches the data according to some speci�c
criterion.

In general, a given training data set can be thought of as containing true informa-
tion that has been distorted by noise. The goal of model selection is to choose a model that
accurately represents the underlying information in the data while ignoring and �ltering
out any noise. Such a model will be less prone to errors when used for prediction. Often,
prior knowledge about a domain can be used to constrain the set of candidate models and
essentially \bootstrap" the model selection process (Burnham & Anderson 1998). In many
cases, prior knowledge can be crucial to the success of model selection | the alternative
is to blindly churn through all available models with the risk of �nding one that does not
represent the most important properties of the data.

Similar to a parameter estimation task (discussed in Section 5.1), there is a bias-
variance trade-o� for model selection. The bias-variance trade-o� for parameter estimation
can be described as follows. It is assumed that there is some true parameter � to be
estimated from some training data set D. Each data set occurs with a certain probability
p(Dj�). The parameter estimate produced using that data set is ��(D). The mean squared
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error (MSE) is used to evaluate the quality of the parameter estimate. I.e.,

MSE =
X
D

p(Dj�)
�
�� ��(D)

�2

=
X
D

p(Dj�)
�
�� Ep(Dj�)(�

�(D)) +Ep(Dj�)(�
�(D))���(D)

�2

=
X
D

p(Dj�)

��
�� Ep(Dj�)(�

�(D))
�2

+
�
Ep(Dj�)(�

�(D))���(D)
�2

+
�
�� Ep(Dj�)(�

�(D))
��

Ep(Dj�)(�
�(D))���(D)

��

=
X
D

p(Dj�)
�
�� Ep(Dj�)(�

�(D))
�2

+
X
D

p(Dj�)
�
Ep(Dj�)(�

�(D))� ��(D)
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=
�
��Ep(Dj�)(�

�(D))
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+
X
D

p(Dj�)
�
Ep(Dj�)(�

�(D))���(D)
�2

= (bias)2 + (variance)

where

Ep(Dj�)(�
�(D)) =

X
D

��(D)p(Dj�)

Note that in going from the third to the forth step above, the cross-terms sum to zero. The
bias re
ects the degree to which the typical (or average) estimate is di�erent from the true
estimate. The variance re
ects the inherent sensitivity of the estimate to variability from
di�erent training sets.

Note that � need not represent a parameter. It could also represent a true model
and ��(D) could signify some structural estimate that has been selected using a �nite sized
training set from some model family. In such a case, a similar bias-variance trade-o� will
exist. If a model family is too simple, the model estimate will have a high bias (because
predictions made using the estimate will be inaccurate relative to the true model) but will
have a low variance (because the model selection procedure will typically produce the same
estimate for di�erent data sets). It the model family is too complex, it will have a low
bias (at data-points contained within the training data, the estimate will match the true
model), but will have large variance (the estimate will be very sensitive to noise contained
in the training data). Like any bias-variance trade-o�, it is important to select a class of
models which results in a good balance. Sometimes an overly simple model class is used,
accepting a high bias, just to explain the data in a simple way. Another desirable property
that applies both to a parameter and a structural estimate is the notion of consistency (if
a rich enough model class and large enough training set is used, will the resulting estimate
ultimately converge to the \right one").

Another aspect of model selection is the notion of \model selection uncertainty"
(Burnham & Anderson 1998): If the same data is used both to select the model and then
train the resulting model parameters, the resulting estimate of the model's variance must
take into account both the variance due to model selection and the variance due to parameter
estimation. Otherwise, it might be concluded that the variance is lower than it actually is.
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Bayesian network structure learning algorithms may thus be considered model
selection procedures. In general, however, learning the structure of a Bayesian network is
NP-complete (Chickering 1996). In many cases, domain restriction or approximations can
be made resulting in good network structures.

One of the earliest developed structure learning procedures was Chow-tree algo-
rithm (Chow & Liu 1968). For a collection of variables, a tree-dependent distribution is
one whose directed edges in a Bayesian network form a tree. Chow presented a method
where the best tree-dependent distribution over a set of random variables may be obtained
in a KL-distance sense. Chow proved that the best tree-dependent approximation is one
obtained using a maximal spanning tree algorithm, where edge weights are determined
using pair-wise mutual information between the corresponding random variables. Much
more recently, in (Meila 1999) it is shown how to produce a mixture of tree-dependent
distributions.

In (Friedman 1998), the EM algorithm was extended to be operable over network
structures. Essentially, the EM algorithm's auxiliary function (described in Section 5.2) ac-
quires arguments representing both the parameters and the structure at each EM iteration,
i.e., Q(M;�;M i;�i) | structure and then parameters are maximized alternatively. The
resulting optimization, however, can often be infeasible. A particular di�culty with this
approach is that the gradient with respect to a network is not de�ned so one must resort
to a search method, evaluating each candidate along the way.

Several approaches that augment the naive Bayes classi�er with intra-feature de-
pendencies have also been proposed. The �rst is an approximate algorithm (Sahami 1996)
that uses mutual information and conditional mutual information between features to choose
a good set of intra-feature edges. Similar to the Chow-tree algorithm, Friedman (Friedman
et al. 1997) also presented a method that uses conditional mutual information to produce
the best tree-dependent approximation over the feature variables. It is shown that this
optimizes the joint probability of the feature and class variables. Friedman also discusses
a method to directly optimize the posterior of the class variable given the feature variables
but it was not tested because of computational di�culties.

The most general form of structure learning is the Bayesian approach.2 In this
case, rather than choosing one �xed structure, one uses priors over structures and each
structure is used weighted by its prior in a Bayesian setting. To compute the probability
of some variable C given the data and input features X , a Bayesian approach over both
structures and parameters would be the following:

p(CjX;D) =
X
M

p(M jD)

Z
p(CjX;�M;M)p(�M jD;M)d�M

where M is a particular model and �M is a set of parameters for model M . Heckerman
(1995) provides a nice tutorial on learning both the parameters and the structure of a
Bayesian network in a Bayesian framework. The posterior of model M given the data D is
given by:

p(M jD) = p(M)p(DjM)=p(D)

2These are called Bayesian approaches for determining Bayesian networks.



2.6. BAYESIAN MULTINETS 27

In Heckerman's (1995) paper, p(DjM) is the likelihood of the model M under a particular
parameterization � determined again by Bayesian methods (MAP or ML estimation could
also be used). Of course, one must also de�ne priors over model structure p(M).

An advantage of the Bayesian approach is that it avoids the bias-variance issue. A
disadvantage is computational cost { \integrating" over all possible models and all possible
parameters is infeasible. An alternative approach is called \selective model averaging,"
where only a small subset of likely candidate models is used. Selective model averaging is
also similar to producing a mixture of models, where each \mixture component" corresponds
potentially to a completely di�erent structure. This is also similar to Bayesian multinets
as described below. Selecting a single model is also an option (as mentioned above) where
either MAP or some penalized likelihood such as BIC or MDL (Burnham & Anderson 1998)
can be used to score each model. In Heckerman's (1995) paper, methods are discussed that
search over the set of network variants to �nd one with a high score.

2.6 Bayesian Multinets

Consider a four-variable network A, B, C and a hidden variable Q. For some
values of Q, the conditional independencies among A, B, and C might be di�erent than for
other values of Q. For example, if Q is binary, and C??AjB;Q = 0 but C 6??AjB;Q = 1, the
joint probability can be written as:

p(A;B;C)

=
1X

q=0

p(A;B;C;Q= q)

=
1X

q=0

p(A;B;CjQ = q)p(Q = q)

= p(CjB;Q = 0)p(BjA;Q = 0)p(Q = 0) + p(CjB;A;Q = 1)p(BjA;Q = 1)p(Q = 1)

So the conditional dependency structure depends on the particular value of Q. Such a
scenario could be represented by multiple Bayesian networks but more generally this corre-
sponds to a Bayesian multinet (Geiger & Heckerman 1996). Examples of multinets include
a mixture of tree-dependent distributions each with di�erent sets of edges, as described
in Meila (1999). Also, Friedman et al. (1997) adds a di�erent collection of intra-feature
dependency edges for each value of the class variable to the naive Bayes classi�er

In general, the statistical dependencies in a multinet could be represented by a
regular Bayesian network via speci�c values of the parameters (e.g., certain parameters could
be zero). In practice, however, a multinet can result in a substantial savings in memory,
computation, and sample-size complexity relative to a Bayesian network. Furthermore, with
fewer parameters for a �xed size data set, a lower estimation variance can result. Bayesian
multinets, and dynamic versions thereof, will again be discussed in Chapter 4.
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2.7 Discussion

In this chapter, the basics of Graphical models and Bayesian networks were de-
scribed. In subsequent chapters, Bayesian networks will be used to reason about the con-
ditional independence properties of di�erent models. Many useful procedures have been
developed prior to the advent of Bayesian networks (e.g., HMMs, Kalman �lters (Haykin
1989), factor analysis (Mardia et al. 1979), etc.) that have more recently been shown to
possess very simple network structures. While Bayesian networks are not strictly necessary
for the discussions in this work, it is this author's belief that their intuitive and easy-to-
understand depictions of statistical dependencies justify their use as a tool to help select
good model structures.

As will be seen, Chapter 4 presents a procedure that can be viewed as Bayesian
multinet structure learning using a criterion related to Bayes error. Prior knowledge of the
domain, speech recognition, is obtained by starting (or booting) from models known already
to perform quite well on this task.
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Chapter 3

Hidden Markov Models
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The statistical model most widely used by automatic speech recognition systems
is the Hidden Markov model (HMM). HMMs are commonly used in other applications as
well including handwriting recognition, gene sequencing, and even rainfall and Old Faithful
geyser characterization (MacDonald & Zucchini 1997). In the speech community, HMMs
are used to represent the joint probability distribution of a collection of speech feature
vectors.

In this chapter, HMMs, their capabilities, and their limitations are explored in
detail. The conclusion of this chapter will be that, in general, there is no theoretical
limit to the ability of HMMs. Instead, a particular HMM used by a (speech recognition)
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system might su�er from the conditional independence properties that provide for tractable
algorithms. And while, given enough training data, it is possible to improve an HMM by
increasing the number of hidden Markov states and capacity of the observation distributions,
an alternative and potentially advantageous approach is to produce an inherently more
parsimonious model, one that achieves as good or better performance with comparable or
reduced complexity. As will be discussed in Chapter 4, one way of doing this is to examine
and extend a particular HMM only where it is found to be de�cient.

Before discussing HMMs, basic elements from stochastic processes and discrete
Markov chains needed for the HMM discussion will be brie
y reviewed.

3.1 Stochastic Processes and Discrete-time Markov Chains

A discrete-time stochastic process is a collection fXt : t 2 T g of random variables
ordered by the discrete index t. Although T could be any set, in this work T will consist
of the set of positive integers | t is considered a time index. The notation Xt will also
at times be used to refer to a stochastic process where the index set is implicitly assumed.
When the variables themselves take on values only from some discrete space, the process
will be designated using the notation fQt : t 2 T g where Qt 2 Q and where Q is a �nite set
that may be put in one-to-one correspondence with the positive integers. The cardinality
of Q will be denoted jQj. When variables are continuous or when a distinction between
continuous and discrete variables is not necessary, the notation Xt will be used.

In a general stochastic process, the distribution of each of the variables Xt could
be arbitrary and di�erent for each t. There also could be arbitrary interdependency rela-
tionships between di�erent subsets of variables of the process. Certain types of stochastic
processes are encountered particularly often because of their analytical or computational
simplicity.

One example is independent and identically distributed processes. A de�nition
follows:

De�nition 3.1. Independent and Identically Distributed (i.i.d.) The stochastic
process is said to be i.i.d. (Cover & Thomas 1991; Papoulis 1991) if the following condition
holds:

p(Xt = xt; Xt+1 = xt+1; : : : ; Xt+h = xt+h) =
hY
i=0

p(X = xt+i) (3.1)

for all t, for all h � 0, for all xt:t+h, and for some distribution p(X = x) that is independent
of the index t.

An i.i.d. process is therefore composed of an ordered collection of independent
random variables each one having the same distribution.

One may also characterize a stochastic process by the degree that statistical prop-
erties evolve over time. If the statistical properties of a stochastic process do not change
over time, the process is said to be stationary.
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De�nition 3.2. Stationary Stochastic Process The stochastic process fXt : t � 1g
is said to be (strongly) stationary (Grimmett & Stirzaker 1991) if the two collections of
random variables

fXt1 ; Xt2; : : : ; Xtng

and

fXt1+h; Xt2+h; : : : ; Xtn+hg

have the same joint probability distributions for all n and h.

In the continuous case, stationarity is equivalent to the condition that FXt1:n
(a) =

FXt1:n+h
(a) for all a where F (�) is a cumulative distribution function for the random variables

and a is any constant vector of length n. In the discrete case, stationarity is equivalent to
the condition that

P (Qt1 = q1; Qt2 = q2; : : : ; Qtn = qn) = P (Qt1+h = q1; Qt2+h = q2; : : : ; Qtn+h = qn)

for all t1; t2; : : : ; tn, for all n > 0, for all h > 0, and for all qi. All i.i.d. processes are
stationary.

It is sometimes stated that two random variables are either correlated or uncorre-
lated. The covariance between two random vectors X and Y is de�ned as;

cov(X; Y ) = E[(X � EX)(Y �EY )0] = E(XY 0)�E(X)E(Y )0

If X and Y are independent, then their covariance is the zero matrix but zero covariance
does not imply independence. It is said that X and Y are uncorrelated if cov(X; Y ) = ~0
(equivalently, if E(XY 0) = E(X)E(Y )0) where ~0 is again the zero matrix.

3.1.1 Markov Chains

The collection of discrete-valued random variables fQt : t � 1g form a nth-order
Markov chain (Grimmett & Stirzaker 1991) if

P (Qt = qtjQt�1 = qt�1; Qt�2 = qt�2; : : : ; Q1 = q1)

= P (Qt = qtjQt�1 = qt�1; Qt�2 = qt�2; : : : ; Qt�n = qt�n)

for all t � 1, and all q1; q2; : : : ; qt 2 Q. In other words, conditioned on the previous n states,
the current state is independent of earlier states. One often refers to the quantity p(Qt = i)
as the probability that the Markov chain is \in" state i at time t. In general, a Markov
chain may have an in�nite number of states, but in the current work Markov chains with
only a �nite number of states are considered.

An nth-order Markov chain may always be converted to a �rst-order Markov chain
(Jelinek 1997) by the following construction:

Q0t = fQt; Qt�1; : : : ; Qt�ng
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where Qt is an nth-order Markov chain. Then Q0t is a �rst-order Markov chain because

P (Q0t = q0tjQ
0
t�1 = q0t�1; Q

0
t�2 = q0t�2; : : : ; Q

0
1 = q01)

= P (Qt�n:t = qt�n:tjQ1:t = q1:t)

= P (Qt�n:t = qt�n:tjQt�n�1:t = qt�n�1:t)

= P (Q0t = q0tjQ
0
t�1 = q0t�1)

Therefore, given a large enough state space, a �rst-order Markov chain may represent any
nth-order Markov chain.1 In this work, therefore, Markov chains will always be �rst-order.

The statistical evolution of a Markov chain is determined by the state transition

probabilities aij(t)
�
= P (Qt = jjQt�1 = i). In general, the transition probabilities can be

a function both of the states at successive time steps and of the current time t. In most
cases, it is assumed that there is no such dependence on t. Such a time-independent chain
is called time-homogeneous or just homogeneous because aij(t) = aij regardless of t. For
our purposes, it is su�cient to consider only homogeneous Markov chains.

The transition probabilities in a homogeneous Markov chain are determined by a
transition matrix A where (A)ij = aij . The rows of A form potentially di�erent probability
mass functions over the states of the chain. For this reason, A is also called a stochastic
transition matrix (or just a transition matrix).

A state of a Markov chain may be categorized into one of three distinct categories
(Grimmett & Stirzaker 1991). A state i is said to be transient if, after visiting the state, it
is possible the state will never again be visited. That is, state i is transient if

p(Qn = i for some n > tjQt = i) < 1

A state is said to be null-recurrent if it is not transient but the expected return time is
in�nite. Finally, a state is positive-recurrent if

p(Qn = i for some n > tjXt = i) = 1

and the expected return time to that state is �nite. For a Markov chain with a �nite
cardinality, a state can only be transient or positive-recurrent.

Like any stochastic process, a homogeneous Markov chain might or might not be a
stationary stochastic process. In other words, homogeneity and stationarity are orthogonal
properties of the Markov chain. The stationarity condition of a homogeneous Markov
chain, however, is determined by both the transition matrix and the current probability
distribution over the states. If Qt is a time-homogeneous stationary Markov chain then:

P (Qt1 = q1; Qt2 = q2; : : : ; Qtn = qn)

= P (Qt1+h = q1; Qt2+h = q2; : : : ; Qtn+h = qn)

1In speech recognition systems, Markov states have meaning and often correspond to sub-word units. In
this case, representing an nth-order Markov chain as a �rst-order Markov chain would require a re-de�nition
of the meaning of each state. This is not required in the general case where the meanings of the hidden
states are not speci�ed.
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for all ti, h, n, and qi. Using the �rst order Markov property, the above can be written as:

P (Qtn = qnjQtn�1 = qn�1)P (Qtn�1 = qn�1jQtn�2 = qn�2) : : :

P (Qt2 = q2jQt1 = q1)P (Qt1 = q1)

= P (Qtn+h = qnjQtn�1+h = qn�1)P (Qtn�1+h = qn�1jQtn�2+h = qn�2) : : :

P (Qt2+h = q2jQt1+h = q1)P (Qt1+h = q1)

Therefore, a Markov chain is stationary only when P (Qt1 = q) = P (Qt1+h = q) = P (Qt = q)
for all q 2 Q. Such a distribution over the states is called a stationary distribution of the
Markov chain and is designated by the vector � where �i = P (Qt = i). According to the
de�nition of the transition matrix, a stationary distribution has the property that �A = �.
In other words, � is a left eigenvector of the transition matrix A.

In general, there can be more than one stationary distribution for a given Markov
chain. The stationarity of the chain, however, is completely determined by whether or not
the chain \admits" a stationary distribution, and if it does, whether the current marginal
distribution over the states is one of the stationary distributions. If a chain does admit
a stationary distribution �, then �j = 0 for all j that are transient and null-recurrent
(Grimmett & Stirzaker 1991); i.e., a stationary distribution has positive probability only
for positive-recurrent states.

One way of determining if a Markov chain admits a stationary distribution is to
use \probability 
ow." If � is a stationary distribution, then �A = �. This implies that for
all i

�i =
X
j

�jaji

or equivalently,

�i(1� aii) =
X
j 6=i

�jaji

which is the same as X
j 6=i

�iaij =
X
j 6=i

�jaji

The left side of this equation can be interpreted as the probability 
ow out of state i and the
right side can be interpreted as the 
ow into state i. A stationary distribution requires that
the in
ow and out
ow in all states cancel each other out. This is described in Figure 3.1.

3.2 Hidden Markov Models

As discussed in Section 2.3, a hidden Markov model is collection of random vari-
ables, the \hidden" variables Q1:T and the \observed" variables X1:T , along with a set
of accompanying conditional independence properties. The hidden variables Q1:T form a
discrete-time, discrete-valued, �rst-order Markov chain | each Qt may take on one of a
set of �nite values Qt 2 Q where Q is called the state space. The number of states in



34 CHAPTER 3. HIDDEN MARKOV MODELS

si

s6

s5

s4

s3

s2

s1

Figure 3.1: Probability 
ow view of a stationary Markov chain. For the chain to be sta-
tionary, the 
ow into state si (equal to �1a1i + �2a2i + �3a3i) must equal the 
ow out of
state si (equal to �iai4 + �iai5 + �iai6).

this space is indicated by jQj. The observed variables X1:T form a discrete time stochastic
process and can be either discrete or continuous valued. Each observed variable may also
be either scalar or vector valued. In this chapter, the observed variables will be considered
continuous and vector-valued except where noted. There are two conditional independence
assumptions associated with an HMM. The �rst one states that the hidden variables form
a �rst-order Markov chain:

Qt??fQ1:t�2; X1:t�1gjQt�1

In other words, given the value of Qt�1, the distribution of Qt does not depend on any of
Qt's non-descendants (See Section 2.2). The second conditional independence assumption
states that:

Xt??fQ1:t�1; Qt+1:T ; X1:t�1; Xt+1:TgjQt

which means that given the assignment to Qt, the distribution of Xt is independent of all
other variables in the HMM.

Formally, the de�nition of an HMM will be taken as follows:

De�nition 3.3. Hidden Markov Model A hidden Markov model (HMM) is collection of
random variables, the \hidden" variables Q1:T which are discrete and the \observed" vari-
ables X1:T which may be either discrete or continuous, that possess the following conditional
independence properties.

Qt??fQ1:t�2; X1:t�1gjQt�1

Xt??fQ1:t�1; Qt+1:T ; X1:t�1; Xt+1:TgjQt

This de�nition does not specify the number of states in the hidden Markov chain,
does not mention if the observation variables are discrete or continuous, does not designate
the implementation of the dependencies (e.g., general regression, probability table, neural
network, etc.), does not �x the model families used for each of the variables, and does not
determine the parameterization or any tying mechanism.
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Under an HMM, one observes only the collection of values X1:T = x1:t which
have presumably been produced by some unknown assignment to the hidden variables. A
given observation assignment with unknown hidden variable values could, with di�erent
probabilities, have been produced from one of many di�erent assignments to the hidden
variables. To compute the probability of the event X1:t = x1:t, one must marginalize (or
integrate) away the hidden variables as in the following:

p(x1:T ) =
X
q1:T

p(x1:T ; q1:T )

=
X
q1:T

p(xT jx1:T�1; q1:T)p(x1:T�1; q1:T )

=
X
q1:T

p(xT jqT )p(x1:T�1; q1:T)

=
X
q1:T

p(xT jqT )p(xT�1jx1:T�2; q1:T)p(x1:T�2; q1:T)

=
X
q1:T

p(xT jqT )p(xT�1jqT�1)p(x1:T�2; q1:T )

: : :

=
X
q1:T

Y
t

p(xtjqt)p(q1:T)

=
X
q1:T

Y
t

p(xtjqt)p(qtjqt�1)

where it is assumed that p(q1jq0) = � which is some (not necessarily stationary) initial
distribution over the hidden Markov chain at the starting time.

The parameters of an HMM can be characterized as follows. First, there is the
initial state distribution � which is a vector of length jQj and where �i, the ith element of
�, is such that p(Q1 = i) = �i. Second, there are a collection of observation probability
distributions bj(x) = p(Xt = xjQt = j) and the associated parameters which depend
on the family of probability distribution functions used for bj(x). Finally, there are the
transition probabilities represented by the homogeneous stochastic matrix A where (A)ij =
p(Qt = jjQt�1 = i) for all t.

There are three ways that one can graphically depict an HMM. In the �rst view,
an HMM is seen as a graph with directed edges as shown in Figure 3.2. Each node in
the graph corresponds to one of the states in Q, and an edge going from node i to node
j indicates that aij > 0. The lack of such an edge indicates that aij = 0. The transition
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Figure 3.2: Stochastic �nite-state automaton view of an HMM. In this case, only the possible
(i.e., non-zero probability) hidden Markov chain state transitions are shown.

matrix associated with Figure 3.2 is as follows:

A =

0
BBBBBBBBBB@

a11 a12 a13 0 0 0 0 0
0 a22 0 a24 a25 0 0 0
0 0 a33 a34 0 0 a37 0
0 0 0 a44 a45 a46 0 0
0 0 0 0 0 0 a57 0
0 0 0 0 0 0 0 a68
0 0 0 0 0 0 0 a78
a81 0 0 0 0 0 0 a88

1
CCCCCCCCCCA

where it is assumed that all explicitly mentioned aij are non-zero. In this view, an HMM
can be seen as a stochastic �nite state automaton (FSA). Using such a graph, one can
envisage being in a particular state j at a certain time, producing an observation sample
from the observation distribution corresponding to that state bj(x), and then advancing to
the next state according to the allowable non-zero transitions. This view of an HMM does
not depict either the output distributions or the HMM conditional independence properties.
Only the topology, in the form of the non-zero entries of A, of the underlying Markov chain
is depicted.

The second way one may view an HMM (shown in Figure 3.3) shows the collection
of states at di�erent time steps and the set of possible transitions from states at one time
step to states at the next time step. Again, this view depicts only the transition structure
of the underlying Markov chain. In this case, however, the transitions that are possible
at di�erent slices of time are shown explicitly as the chain evolves. Unlike Figure 3.2,
the transition structure of a non-homogeneous Markov chain could be displayed by having
di�erent transition edges at each time step.

The third view of an HMM is displayed in Figure 2.7 and is given again in Fig-
ure 3.4. This illustration is also a graph with directed edges but it shows the Bayesian
network view of an HMM. In this case, the Markov-chain topology is not speci�ed | only
the HMM conditional independence properties are shown. Since an HMM is characterized
by a set of random variables with conditional independence properties, this third view of an
HMM is preferable when discussing the statistical dependencies (or lack thereof) directly
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t1 t2 t3

Figure 3.3: Time-slice view of a Hidden Markov Model's state transitions.

represented by an HMM. The stochastic FSA view in Figure 3.2 is useful primarily to an-
alyze the underlying hidden Markov chain topology. At the very least, it should be clear
that Figure 3.2 and Figure 3.4 display completely di�erent properties of an HMM.

Qt Qt 1+Qt 1– Qt 2+

Xt Xt 1+Xt 1– Xt 2+

Figure 3.4: A Hidden Markov Model

Samples from an HMM are obtained in the following way:

qt = i with prob. p(Qt = ijqt�1)

xt � bqt(x)

The �rst line uses the fact that the hidden variable sample at time t is obtained from a
distribution that, given the state assignment at time t � 1, is conditionally independent of
the previous hidden and observation variables. The second line uses the fact that only the
hidden state assignment at time t is used to determine the observation distribution at that
time.

It can be seen that to sample from an HMM, one may �rst obtain a complete
sample from the hidden Markov chain (i.e., sample from all the random variables Q1:T ),
and then at each time point t produce an output observation sample using the observation
distribution corresponding to the hidden state at time t.
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One important fact to realize about an HMM is that each new sample of observa-
tions requires a completely new sample from the hidden Markov chain. In other words, two
di�erent observation samples from an HMM will typically comes from two di�erent under-
lying state assignments to the hidden chain. Put yet another way, a sample from an HMM
is obtained using the marginal distribution p(X1:T) =

P
q1:T

p(X1:T ; q1:T) and not from the
conditional distribution p(X1:T jq1:t) for some �xed set of hidden variable assignments q1:T .
As will be seen, this marginal distribution p(X1:T) can be quite 
exible.

There are many di�erent choices of state-conditioned observation distribution that
may be used (MacDonald & Zucchini 1997; Rabiner & Juang 1993). When the observation
vectors are discrete, the observation probability distributions bj(x) form a probability mass
function. When the observations are continuous, the observation distributions are often
speci�ed using some parametric model family. The most commonly used family for speech
recognition are Gaussian mixtures where

bj(x) =

NjX
k=1

cjkN (xj�jk ;�jk)

and where N (xj�jk;�jk) is a Gaussian distribution with mean vector �jk and covariance
matrix �jk. The values cjk are mixing coe�cients for hidden state j with cjk � 0 andP

k cjk = 1. With such a distribution, an HMM is often referred to as a Gaussian Mixture
HMM (GMHMM). A Bayesian network can once again be used to describe HMMs that use
mixtures of some component distribution to model the observations (Figure 3.5). Other
choices for observation distributions including discrete probability tables (Rabiner & Juang
1993), neural networks (i.e., hybrid systems) (Bourlard & Morgan 1994), auto-regressive
distributions (Poritz 1982; Poritz 1988) or mixtures thereof (Juang & Rabiner 1985), the
standard set of named distributions (MacDonald & Zucchini 1997), etc.

Qt Qt 1+Qt 1– Qt 2+

Xt Xt 1+Xt 1– Xt 2+

Figure 3.5: A Mixture-Observation Hidden Markov Model

3.3 What HMMs Can Do

For reasons resembling the HMM conditional independence properties, it is some-
times said that HMMs are poor at representing speech signals. The HMM conditional
independence properties are sometimes portrayed rather imprecisely, however, and improve-
ments to HMMs are occasionally proposed to correct problems stated as such.
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In order to develop a clearer understanding of HMMs, this section compiles a list
of HMM de�ciencies, as they are sometimes portrayed, and analyzes them in detail. It
will be concluded that in general, HMMs are more capable than is sometimes intimated.
Furthermore, some HMM extensions might not best correct the problems that ultimately
cause errors in a pattern classi�cation or speech recognition system. Chapter 4 will then
focus on measuring de�ciencies of particular HMMs. That chapter will present a method
to automatically derive new potentially more parsimonious models in an attempt to correct
only the measured de�ciencies.

HMMs have been criticized as a framework to represent speech for the following
reasons:

� 3.3.1 they assume the observation variables are i.i.d.

� 3.3.2 they assume the observation variables are i.i.d. conditioned on the state sequence
or are \locally" i.i.d.

� 3.3.3 they assume the observation variables are i.i.d. under the most likely hidden
variable assignment (i.e., the Viterbi path)

� 3.3.4 they assume the observation variables are uncorrelated over time

� 3.3.5 HMMs do not capture acoustic context

� 3.3.6 HMMs correspond to segmented or piece-wise stationary distributions (this is
sometimes called the \beads on a string" problem)

� 3.3.7 when using an HMM, speech is represented as a sequence of feature vectors, or
\frames", within which the speech signal is assumed to be stationary

� 3.3.8 when sampling from an HMM, the time distribution of the duration when a
particular observation distribution is active corresponds to a geometric probability
distribution

� 3.3.9 the �rst-order hidden Markov assumption is not as good as an nth order chain

� 3.3.10 an HMM represents only p(X jM) (a synthesis model) but to minimize Bayes
error, one must represent p(M jX) (a production model)

For reasons that will be enumerated in the following sections, these statements do not point
to inherent problems with HMMs in the general case.

3.3.1 i.i.d. observations

Given De�nition 3.1 of an i.i.d. process (Section 3.1), it can easily be shown that
an HMM is not in general an i.i.d. stochastic process. Under an HMM, the joint probability
over the feature vectors Xt:t+h is represented as follows:

p(Xt:t+h = xt:t+h) =
X
qt:t+h

t+hY
j=t

p(Xj = xj jQj = qj)aqjqj�1 :
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Unless only one state in the hidden Markov chain has non-zero probability for all times in
the segment t : t + h, this quantity can not in general be represented as the product formQt+h

j=t f(xj) for some time-independent distribution f(�) as would be required for an i.i.d.
process.

3.3.2 conditionally i.i.d. observations

It has been said that HMMs are i.i.d. conditioned on the state sequence.2 This is
because

p(Xt:t+h = xt:t+hjQt:t+h = qt:t+h) =
t+hY
�=t

p(X� = x� jQ� = q� ):

and if for t � � � t + h, q� = j for some �xed j then

p(Xt:t+h = xt:t+hjQt:t+h = qt:t+h) =
t+hY
�=t

bj(x�)

which is an i.i.d. sequence for this particular state assignment over this time segment t : t+h.
While this is true, it was previously noted that each sample from an HMM requires

a potentially di�erent assignment to the hidden Markov chain. Unless one and only one
state assignment during the segment t : t + h has non-zero probability, the hidden state
sequence will change for each HMM sample and there will be no i.i.d. property. To say
that an HMM is i.i.d. conditioned on a state sequence is not a property that applies to
HMMs as they are actually used. An HMM is used to model the joint distribution of
feature vectors p(X1:T ) which is obtained by marginalizing away (summing over) the hidden
variables. HMMs are not in general used to model the joint distribution of feature vectors
p(X1:T jQ1:T ) conditioned on one and only one particular state sequence.

3.3.3 Viterbi i.i.d.

The Viterbi (maximum likelihood) path (Rabiner & Juang 1993; Huang et al.
1990) of an HMM is de�ned as follows:

q�1:T = argmax
q1:T

p(X1:T = x1:T ; q1:T)

where p(X1:T = x1:T ; q1:T) is the joint probability of an observation sequence x1:T and
hidden state assignment q1:T for an HMM.

When using an HMM, it is often the case that the joint probability distribution of
features is taken according to the Viterbi path:

pvit(X1:T = x1:T )

= cp(X1:T = x1:T ; Q1:T = q�1:T )

= cmax
q1:T

p(X1:T = x1:T ; Q1:T = q1:T )

= cmax
q1:T

TY
t=1

p(Xt = xtjQt = qt)p(Qt = qtjQt�1 = qt�1) (3.2)

2or that they are locally i.i.d., if \locally" means conditioned on the state sequence.
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where c is some normalizing constant. This can be di�erent than the complete probability
distribution:

p(X1:T = x1:T ) =
X
q1:T

p(X1:T = x1:T ; Q1:T = q1:T ):

Even under a Viterbi approximation, however, the resulting distribution is not necessarily
i.i.d. unless the Viterbi paths for all observation assignments are identical. But because the
Viterbi path will be di�erent for each observation sequence, and the max operator does not
in general commute with the product operator in Equation 3.2, the product representation
required for an i.i.d. process is not in general attainable.

3.3.4 uncorrelated observations

Two observations at di�erent times might not be independent, but are they cor-
related? If Xt and Xt+h are uncorrelated, then E[XtX

0
t+h] = E[Xt]E[Xt+h]

0. For simplic-
ity, consider an HMM that has single component Gaussian observation distributions, i.e.,
bj(x) � N (xj�j ;�j) for all states j. Also assume that the hidden Markov chain of the HMM
is currently a stationary process with some stationary distribution �. For such an HMM,
the covariance can be computed explicitly. In this case, the mean value of each observation
is a weighted sum of the Gaussian means:

E[Xt] =

Z
xp(Xt = x)dx

=

Z
x
X
i

p(Xt = xjQt = i)�idx

=
X
i

E[XtjQt = i]�i

=
X
i

�i�i

Similarly,

E[XtX
0
t+h] =

Z
xy0p(Xt = x;Xt+h = y)dxdy

=

Z
xy0
X
ij

p(Xt = x;Xt+h = yjQt = i; Qt+h = j)p(Qt+h = jjQt = i)�idxdy

=
X
ij

E[XtX
0
t+hjQt = i; Qt+h = j](Ah)ij�idxdy

=
X
ij

E[XtX
0
t+hjQt = i; Qt+h = j](Ah)ij�idxdy

The above equations used the fact that p(Qt+h = jjQt = i) = (Ah)ij by the Chapman-

Kolmogorov equations (Grimmett & Stirzaker 1991) where (Ah)ij is the i; j
th element of
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the matrix A raised to the h power. Because of the conditional independence properties, it
follows that:

E[XtX
0
t+hjQt = i; Qt+h = j] = E[XtjQt = i]E[X 0

t+hjQt+h = j] = �i�
0
j

yielding

E[XtX
0
t+h] =

X
ij

�i�
0
j(A

h)ij�i

The covariance between feature vectors may therefore be expressed as:

cov(Xt; Xt+h) =
X
ij

�i�
0
j(A

h)ij�i �

 X
i

�i�i

! X
i

�i�i

!0

It can be seen that this quantity is not in general the zero matrix and therefore HMMs, even
with a simple Gaussian observation distribution and a stationary Markov chain, can repre-
sent correlation between feature vectors. Similar results for other observation distributions
have been derived in MacDonald & Zucchini (1997).

3.3.5 no acoustic context

It is sometimes argued that HMMs do not represent the dependency between a
variable Xt and the surrounding acoustic context. The reason given is that the observation
vector Xt is independent of the acoustic context given the corresponding hidden variable
Qt. This issue is a variant of the one described in Section 3.3.4. HMMs can represent
information in the acoustic context indirectly via the hidden variable. The hidden variable
encodes information about the acoustic context and in general as the number of hidden
states increases, so does the amount of information that can be encoded. This point will
be further explored in Section 3.3.11 and Chapter 4.

3.3.6 piece-wise or segment-wise stationary

The condition of stationarity for an HMM may be discovered by �nding explicit
conditions that must hold for an HMM to be a stationary process.

According to De�nition 3.2, an HMM is stationary when:

p(Xt1+h = x1; : : : ; Xtn+h = xn) = p(Xt1 = x1; : : : ; Xtn = xn)

or equivalently when

p(Xt1:n+h = x1:n) = p(Xt1:n = x1:n)

for all n, h, t1:n, and x1:n. The quantity P (Xt1:n+h = x1:n) can be expanded as follows:

p(Xt1:n+h = x1:n)

=
X
q1:n

p(Xt1:n+h = x1:n; Qt1:n+h = q1:n)
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=
X
q1:n

p(Qt1+h = q1)p(Xt1+h = x1jQt1+h = q1)

nY
i=2

p(Xti+h = xijQti+h = qi)p(Qti+h = qijQti�1+h = qi�1)

=
X
q1

p(Qt1+h = q1)p(Xt1+h = x1jQt1+h = q1)

X
q2:T

nY
i=2

p(Xti+h = xijQti+h = qi)p(Qti+h = qijQti�1+h = qi�1)

=
X
q1

p(Qt1+h = q1)p(Xt1+h = x1jQt1+h = q1)

X
q2:T

nY
i=2

p(Xti = xijQti = qi)p(Qti = qijQti�1 = qi�1)

=
X
q1

p(Qt1+h = q1)p(Xt1+h = x1jQt1+h = q1)f(x2:n; q1)

where f(x2:n; q1) is a function that is independent of the variable h. If the condition

p(Xt1:n+h = x1:n) = p(Xt1:n = x1:n)

is to be true for all h (i.e., for stationarity to hold), then it is required that p(Qt1+h =
q1) = p(Qt1 = q1) for all h. This means that the HMM is stationary only when the
underlying hidden Markov chain is under a stationary distribution. An HMM therefore
does not necessarily correspond to a stationary stochastic process.

The HMMs used for speech recognition systems commonly have left-to-right Markov
chain topologies. This means that the transition matrices are upper triangular where
aij = 0 8j > i. The Markov graph of such a topology corresponds to a DAG over all
the states where each state (node) can also potentially have a self transition (loop). In such
graphs, all states with children (i.e., non-zero exit transition probabilities) will have de-
creasing occupancy probability over time. This can be seen inductively by �rst considering
the start states, the states without any parents. Such states will have decreasing occu-
pancy probability over time because there are no input transitions to create in
ow. These
states will correspondingly have decreasing out
ow over time. Next, consider any state with
a parent that has decreasing out
ow. Such a state will therefore have decreasing in
ow,
decreasing occupancy probability, and also decreasing out
ow. Only the �nal states, the
states with only parents and with no children, have the potential to retain their occupancy
probability over time. Since any stationary distribution must have zero net probability 
ow
through all states, a stationary distribution for a DAG topology must have zero occupancy
probability for any states with children.

Another way to see this is to observe that all such states have a less than unity
return probability, and therefore may be classi�ed as transient. Any stationary distribution
over those states must have a zero probability (Grimmett & Stirzaker 1991). Therefore, any
left-to-right HMM (e.g., the HMMs used in speech recognition systems) is not a stationary
stochastic process.
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One might agree with the above, but still claim that the HMM is \piece-wise"
stationary, saying that for the \piece" of time during which an HMM is in a particular
state, the observations are i.i.d. and therefore stationary. It was established above that
each sample from an HMM results from a potentially di�erent assignment to the hidden
Markov chain. Therefore, what could be called a segment (a sequence of identical state
assignments to successive hidden variables) in the hidden chain of one HMM sample will
not necessarily be a segment in the chain of a di�erent sample. Therefore, there is no
corresponding stationary property unless either 1) all samples from an HMM always result
in the same hidden assignment for some segment at a �xed time position, or 2) the hidden
chain is stationary over that segment. In the general case, however, an HMM does not
produce samples from piece-wise stationary segments.

It should be noted that the notions of stationarity and i.i.d. are properties of the
random processes, or equivalently, of the complete ensemble of samples from such a random
process. The concepts of stationarity and i.i.d. do not apply to a single sample from an
HMM. A perhaps more appropriate characteristic of a single sample from a process is that
of \steady state," where the short-time spectrum of a signal is constant over a region of
time.

It has been known for some time that the information in a speech signal necessary
to convey an intelligent message to the listener is contained in the speech sub-band modu-
lation envelopes (Dudley 1939; Drullman et al. 1994b; Drullman et al. 1994a) and that the
spectral energy in the sub-band modulation envelope signals is temporally band-limited. A
very liberal estimate of this upper limit is 50 Hz. This fact is deliberately used in speech
coding algorithms which achieve signi�cant compression ratios with little or no loss of in-
telligibility. One way such compression is achieved is by band-pass �ltering the sub-band
modulation envelopes. Similarly, any stochastic process that represents the information in a
speech signal containing the intelligible message need only possess dynamic non-stationary
(or non-steady-state) properties at rates no higher than a certain rate.

The Nyquist sampling theorem states that any band-limited signal may be accu-
rately represented by a discrete-time signal sampled at a su�ciently high rate (at least twice
the highest frequency in the signal). A signal that describes the statistics of speech as they
evolve over time may therefore be accurately represented by a discrete time signal sampled
at a suitably high rate.

It has been argued that HMMs are a poor model of speech because samples from
an HMM are piece-wise steady-state, whereas real speech does not contain such steady-state
segments. In an HMM, however, the hidden Markov chain controls the temporal evolution
of the process's statistical properties. Therefore, any band-limited non-stationary or non-
steady-state signal can be represented by a Markov chain having a state change at a fast
enough rate on average and having enough states to represent all the variability inherent
in the signal. It will be argued below that only a �nite number of states are necessary for
real-world signals.

3.3.7 within-frame stationary

Speech (or any natural signal) is a continuous time signal. A feature extraction
process is used to extract frames of speech at some regular time interval (such as 10 ms)
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where each frame has some window width (such as 20 ms). An HMM is then used to
characterize the distribution over the discrete-time set of frames. It has been argued that
HMMs are inherently 
awed because, within a particular frame, the speech signal might
vary but the information provided by that variation is lost via the framing of speech.

Again because the properties of speech that convey the message are band-limited,
if the sample rate (rate of hidden state change) is high enough, and if the window-width of
measurement is small enough, such a framing of speech will not result in loss of information
about the actual message.

3.3.8 geometric state distributions

In a hidden Markov chain, the random state-occupancy duration is determined
by a geometric distribution with parameter aii. It has therefore been said that HMMs are
a poor model because their state durations are inherently geometric and that geometric
distributions do not have the capability to precisely model the optimal durational distribu-
tions.

HMMs do not necessarily su�er from such a problem. Di�erent states of an HMM
may share the same observation probability distributions. If a sequence of n states that each
use same observation distribution are strung together in series, and each of the states has
self transition probability �, then the resulting distribution will be the sum of n geometric
distributions. The distribution of a sum of n independent geometric random variables has a
negative binomial distribution (Stirzaker 1994). Unlike a geometric distribution, a negative
binomial distribution has a mode located at a point greater than zero. In general, a large
collection of HMM states may be combined in a variety of series and parallel connections.
This can create a very general class of distributions that can characterize the interval of
time over which a particular shared observation distribution is used.

3.3.9 �rst-order hidden Markov assumption

As was demonstrated in Section 3.1.1 and as described in (Jelinek 1997), any nth-
order Markov chain may be transformed into a �rst-order chain. Therefore, assuming the
�rst-order Markov chain possess enough states, there is no inherent accuracy loss when
using a �rst-order as opposed to an nth-order HMM. 3

3.3.10 synthesis vs. recognition

It is sometimes said that HMMs are impaired because they represent the distri-
bution of feature vectors for a given model, i.e., the likelihood p(X jM). Accordingly, this
can viewed as a synthesis model because sampling from this distribution should produce
(or synthesize) a set of features representing the objectM (e.g., a synthesized speech utter-
ance). To minimize Bayes error, however, one must instead model the posterior probability
p(M jX) which is more like a recognition model; given an instance of X , a sample from
p(M jX) will produce a source utterance and the true identity of the source utterance is the
goal of a recognition system.

3Again, in speech recognition systems, any \meanings" of the hidden states might need to change when
moving to a higher-order Markov chain.
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There are several reasons why the synthesis/recognition division is not a de�ciency.
First, by Bayes rule, p(M jX) = p(X jM)p(M)=p(X) so if an HMM accurately represents
the likelihood p(X jM) and given accurate priors P (M) then the posterior will also be
accurate. Maximum-likelihood training will adjust the parameters of a model so that the
resulting distribution best matches the training-data empirical distribution. It is said that
maximum-likelihood training is asymptotically optimal, so given enough training data and
a rich enough model, an accurate estimate of the posterior will be found just by producing
an accurate likelihood p(X jM) and prior p(M).

On the other hand, modeling a distribution such as p(X jM) might be a more
ambitious task than is necessary to achieve good classi�cation performance. In a clas-
si�cation task, one of a set of di�erent models Mi is chosen as the target class for a
given X . In this case, only the decision boundaries, or sub-spaces in the feature space
fx : p(xjMi) = p(xjMj)g for all i 6= j, a�ect classi�cation performance (Duda & Hart
1973). An attempt to model the entire distribution, including the regions between the de-
cision boundaries, is potentially an attempt to solve a more di�cult task that needs more
training data than necessary to achieve good performance.

There are three reasons why this still is not necessarily a limitation. First, the
degree to which boundary information is represented by an HMM (or any model for that
mater) depends on the training method. Discriminative training methods have been devel-
oped which adjust the parameters of each model to increase not the individual likelihood
of each model but rather increase the posterior probability. Methods such as maximum
mutual information (MMI) (Bahl et al. 1986; Brown 1987), minimum discrimination infor-
mation (MDI) (Ephraim et al. 1989; Ephraim & Rabiner 1990), and minimum classi�cation
error (MCE) (Juang & Katagiri 1992; Juang et al. 1997) essentially attempt to optimize
p(M jX) = p(X jM)p(M)=p(X) by adjusting the parameters of p(X jM) for all M simulta-
neously. In this case, the parameters of an HMM are adjusted so that the resulting distri-
butions when sampled will not necessarily lead to accurately synthesized speech. Instead,
the goal is that the resulting distributions will be accurate only at the decision boundaries.

Second, when training using a maximum likelihood procedure, the degree to which
boundary information is represented by an HMM depends on the relative penalty on the
likelihood criterion caused by samples close to the boundary region vs. the penalty on the
likelihood criterion owing to samples away from the boundary regions. A modi�ed training
procedure, for example, could be used which adjusts the penalty on the likelihood of each
sample according to the degree that a sample is confusable with other samples of di�erent
classes. The degree of confusability of a sample could be determined by its proximity to a
decision region (or by how similar a likelihood score the sample gets from di�erent competing
models). Admittedly, this becomes a new training procedure, but the complexity in this
case is not much worse than the standard maximum likelihood based training procedure.

Third, the degree to which boundary information is represented also depends on
each model's ability to represent the probability distribution at the decision boundaries vs.
its ability to represent the distribution between the boundaries. This can be thought of as
how inherently discriminative the structure of the model is independent of its parameters.
Models with such properties could be termed structurally discriminative.

This idea can be motivated using a simple example. Consider the two classes of
objects shown in Figure 3.6. Objects of class A consist of an annulus with an extruding



3.3. WHAT HMMS CAN DO 47

Objects of class A Objects of class B

Figure 3.6: Two types of objects that share a common attribute, a horizontal bar on the
right of each object. This attribute should not be modeled in a classi�cation task.

horizontal bar on the right. Objects of class B consist of a diagonal bar with an extruding
horizontal bar on the right.

Consider a probability distribution family in this space that is only good at rep-
resenting horizontal bars | the average length, width, smoothness, etc. could for example
be parameters that determine a particular distribution. When such a family is used to
represent the distribution of objects from each of these classes, the resulting class speci�c
models will not be capable of representing the di�erences between objects of class A vs.
class B. The models will be blind to the di�erences between the classes regardless of how
well the models are trained or even the type of training method used, discriminant or not.
These models are structurally indiscriminate.

Consider instead two probability distribution families in this space. The �rst family
accurately represents only annuli of various radii and distortions, and the second family
accurately represents only diagonal bars. When each model family is used to represent
objects of the corresponding class, the resulting models will easily represent the di�erences
between the two classes. These models are inherently blind to the commonalities between
the two classes regardless of the training method used since the resulting models are able
to represent only the distinctive features of each class. In other words, even if each model
is trained using a maximum likelihood procedure using samples only from its own class, the
models will not represent the commonalities between the classes because they are incapable
of doing so. The model families are structurally discriminative. Sampling from a model of
one class will produce an object containing attributes that only distinguish it from samples
of the other class's model. The sample will not necessarily resemble the class of objects
its model represents. This, however, is of no consequence to a classi�cation procedure's
error rate. This idea, of course, can be generalized to multiple classes each with distinctive
attributes.

An HMM is sometimes said to be de�cient because it does not synthesize a valid (or
even recognizable) spoken utterance. But synthesis is not the goal of a classi�cation task. A
valid synthesized speech utterance should correspond to something that could be uttered by
an identi�able speaker. When used for speech recognition, HMMs attempt to describe the
probability distribution of speech in general, a distribution which corresponds to the average
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over many di�erent speakers (or at the very least, many di�erent instances of an utterance
spoken by the same speaker). Ideally, any idiosyncratic speaker-speci�c information, which
might result in a more accurate synthesis, but not more accurate discrimination, should not
be represented by a probabilistic model | such information can only cause a parameter
increase without a corresponding classi�cation performance increase. As mentioned above,
an HMM should represent the distinctive properties of a particular speech utterance rel-
ative to other rival speech utterances. Such a model would not necessarily produce good
synthesized speech.

The question then becomes, how structurally discriminative are HMMs when at-
tempting to model the distinctive attributes of speech utterances? In an HMM, a di�erent
Markov chain topology is used to model each speech utterance. It could be argued that
HMMs are not structurally indiscriminate because, even when trained using a simple maxi-
mum likelihood procedure, HMM-based speech recognition systems can perform reasonably
well. Sampling from such an HMM might not produce a realistic speech utterance, but the
corresponding model distribution might be accurate around the decision boundaries. This
topic will arise again in Chapter 4 where a procedure is presented that can automatically
produce new more structurally discriminative models.

3.3.11 Necessary Conditions for HMM Accuracy

Suppose that p(X1:T) is the \true" underlying distribution of the collection of
observation random variables X1:T . In this section, it will be shown that if an HMM
represents this distribution accurately, necessary conditions on the number of hidden states
and the necessary complexity of the observation distributions may be found. Let ph(X1:T)
be the joint distribution over the observation variables under an HMM. If the HMM is
completely accurate, then the KL-distance between the two distributions will be zero, i.e.:

D(p(X1:T)jjph(X1:T )) = 0

If this condition is true, the mutual information between any subset of variables under each
distribution will be equal. That is,

I(XS1 ;XS2) = Ih(XS1 ;XS2)

where I(�; �) is the mutual information between two random vectors under the true distri-
bution, Ih(�; �) is the mutual information under the HMM, and Si is any subset of 1 : T .

Consider the two sets of variables Xt, the observation at time t, and X:t, the
collection of observations at all times other than t. The variable Xt may be viewed as the
output of a noisy channel that has input X:t as shown in Figure 3.7. The information
transmission rate between X:t and Xt is therefore equal to the mutual information between
the two I(X:t;Xt).

The KL-distance equality condition implies that for an HMM to be an accurate
representation of the true distribution p(XtjX:t), its corresponding noisy channel repre-
sentation must have the same transmission rate. Because of the conditional independence
properties, an HMM's hidden variable Qt separates Xt from its context X:t and the condi-
tional distribution becomes

ph(XtjX:t) =
X
q

ph(XtjQt = q)ph(Qt = qjX:t)



3.3. WHAT HMMS CAN DO 49

X XtChannelt¬

Figure 3.7: The noisy channel view of Xt's dependence on X:t.

An HMM, therefore, attempts to compress the information about Xt contained in X:t into
a single discrete variable Qt. A noisy channel view of an HMM is depicted in Figure 3.8.

X Xt

QtChannel Channel
A Bt¬

Figure 3.8: A noisy channel view of one of the HMM conditional independence property.

For an accurate HMM representation, the composite channel in Figure 3.8 must
have at least the same information transmission rate as that of Figure 3.7. Note that
Ih(X:t;Qt) is the information transmission rate between X:t and Qt, and that Ih(Qt;Xt)
is the information transmission rate between Qt and Xt. The maximum information trans-
mission rate through the HMM composite channel is no greater than to the minimum of
Ih(X:t;Qt) and Ih(Qt;Xt). Intuitively, HMM accuracy requires Ih(X:t;Qt) � I(Xt;X:t)
and Ih(Qt;Xt) � I(Xt;X:t). This is because, if one of these inequalities does not hold for
an HMM, then channel A and/or channel B in Figure 3.8 will become a bottle-neck. This
would result in restricting the composite channel's transmission rate to be less than the true
rate of Figure 3.7. An additional requirement is that the variable Qt have enough storage
capacity (i.e., states) to encode the information typically 
owing between the two channels.
This last condition should take the form of a lower bound on the number of hidden states.
This is formalized by the following theorem.

Theorem 3.1. Necessary conditions for HMM accuracy. An HMM as de�ned above
(De�nition 3.3) with joint observation distribution ph(X1:T ) will accurately model the true
distribution p(X1:T ) only if the following three conditions hold:

� Ih(X:t;Qt) � I(Xt;X:t),

� Ih(Qt;Xt) � I(Xt;X:t), and

� jQj � 2I(Xt;X:t)

where Ih(X:t;Qt) (resp. Ih(Qt;Xt)) is the information transmission rate between X:t and
Qt (resp. Qt and Xt) under an HMM, and I(Xt;X:t) is the true information transmission
rate between I(Xt;X:t).

Proof. If an HMM is accurate (i.e., has zero KL-distance from the true distribution), then
I(X:t;Xt) = Ih(X:t;Xt). As for the data-processing inequality (Cover & Thomas 1991),
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the chain rule of mutual information can be used to expand the quantity Ih(X:t;Qt; Xt) in
two ways as follows:

Ih(X:t;Qt; Xt) (3.3)

= Ih(X:t;Qt) + Ih(X:t;XtjQt) (3.4)

= Ih(X:t;Xt) + Ih(X:t;QtjXt) (3.5)

= I(X:t;Xt) + Ih(X:t;QtjXt) (3.6)

The conditional independence properties of an HMM say that Ih(X:t;XtjQt) = 0. This
implies that

Ih(X:t;Qt) = I(X:t;Xt) + Ih(X:t;QtjXt)

or that

Ih(X:t;Qt) � I(X:t;Xt)

since Ih(X:t;QtjXt) � 0. This is the �rst condition. Similarly, the quantity Ih(Xt;Qt; X:t)
may be expanded as follows:

Ih(Xt;Qt; X:t) (3.7)

= Ih(Xt;Qt) + Ih(Xt;X:tjQt) (3.8)

= I(Xt;X:t) + Ih(Xt;QtjX:t) (3.9)

By the same reasoning as above, this leads to

Ih(Xt;Qt) � I(Xt;X:t)

the second condition. The following sequence of inequalities establishes the third condition:

log jQj � H(Qt) � H(Qt)�H(QtjXt) = Ih(Qt;Xt) � I(Xt;X:t)

so jQj � 2I(Xt;X:t).

There are two implications of this theorem. First, it says that an insu�cient
number of hidden states can lead to an inaccurate model. This has been known for some
time in the speech recognition community, but a lower bound on the required number
of states has not been established. With an HMM, the information about Xt contained
in X<t is squeezed through the hidden state variable Qt. Depending on the number of
hidden states, this can overburden Qt and result in an inaccurate probabilistic model. But
if there are enough states, and if the information in the acoustic context is appropriately
encoded in the hidden states, the required information about the surrounding context of
an observation may be compressed and represented by Qt. An appropriate encoding of the
contextual information is essential since just adding states does not guarantee accuracy will
increase.

To achieve accuracy, it is likely that only a �nite number of states is required
for any real task since signals representing natural objects will have only �nite mutual
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information. Recall that the �rst order Markov assumption in the hidden Markov chain is
not necessarily a problem since a �rst-order chain may represent an nth order chain (see
Section 3.1.1 and (Jelinek 1997)).

The second implication of this theorem is that each of the two channels in Fig-
ure 3.8 must be su�ciently powerful. HMM inaccuracy can result from using a poor obser-
vation distribution family which corresponds to using a channel with too small a capacity.
The power of an observation distribution is, for example, controlled by the number of Gaus-
sian components in a Gaussian mixture HMM (Young 1996), or the number of hidden units
in an HMM with MLP observation distributions (Bourlard & Morgan 1994).

In any event, just increasing the number of components in a Gaussian mixture
system or increasing the number of hidden units in an MLP system will not necessarily
improve HMM accuracy because the bottle-neck ultimately becomes the �xed number of
hidden states (i.e., value of jQj). Correspondingly, just increasing the number of hidden
states in an HMM might not increase accuracy if too poor an observation model is used.
Of course, any increase in the number of parameters of a model should be accompanied
with a corresponding increase in the amount of training data so that reliable low-variance
parameter estimates may be found.

Can su�cient conditions for HMM accuracy be found? Assume for the moment

that Xt is a discrete random variable with �nite cardinality. Recall that X<t
�
= X1:t�1.

Suppose that Hh(QtjX<t) = 0 for all t (a weak condition on an HMM for this property
is that every observation sequence have its own unique Markov chain state assignment).
This implies that Qt is a deterministic function of X<t (i.e., Qt = f(X<t) for some f(�)).
Consider the HMM approximation:

ph(xtjx<t) =
X
qt

ph(xtjqt)ph(qtjx<t) (3.10)

but because H(QtjX<t) = 0, the approximation becomes

ph(xtjx<t) = ph(xtjqx<t)

where qx<t = f(x<t) since all other terms in the sum in Equation 3.10 are zero. The
variable Xt is discrete, so for each value of xt and for each hidden state assignment qx<t ,
the distribution ph(Xt = xtjqx<t) can be set as follows:

ph(Xt = xtjqx<t) = p(Xt = xtjX<t = x<t)

This last condition assumes that the number of hidden states might be as big as the cardi-
nality of the entire discrete observation space, i.e., jX1:T j which can be very large. In any
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event, it follows that for all t:

D(p(XtjX<t)jjph(XtjX<t))

=
X
x1:t

p(x1:t) log
p(xtjx<t)

ph(xtjx<t)

=
X
x1:t

p(x1:t) log
p(xtjx<t)P

qt
ph(xtjqt)ph(qtjx<t)

=
X
x1:t

p(x1:t) log
p(xtjx<t)

ph(xtjqx<t)

=
X
x1:t

p(x1:t) log
p(xtjx<t)

p(xtjx<t)

= 0

It then follows, using the above equation, that:

0 =
X
t

D(p(XtjX<t)jjph(XtjX<t))

=
X
t

X
x1:t

p(x1:t) log
p(xtjx<t)

ph(xtjx<t)

=
X
t

X
x1:T

p(x1:T) log
p(xtjx<t)

ph(xtjx<t)

=
X
x1:T

p(x1:T ) log

Q
t p(xtjx<t)Q
t ph(xtjx<t)

=
X
x1:T

p(x1:T ) log
p(x1:T)

ph(x1:T)

= D(p(X1:T)jjph(X1:T))

In other words, the HMM is a perfect representation of the true distribution. This proves
the following theorem.

Theorem 3.2. Su�cient conditions for HMM accuracy. An HMM as de�ned above
(De�nition 3.3) with a joint discrete distribution ph(X1:T) will accurately model a true
discrete distribution p(X1:T) if the following conditions hold for all t:

� H(QtjX<t) = 0

� ph(Xt = xtjqx<t) = p(Xt = xtjX<t = x<t).

It remains to be seen if simultaneously necessary and su�cient conditions can be
derived to achieve HMM accuracy and if it is possible to derive su�cient conditions for
continuous observation vector HMMs under some reasonable conditions (e.g., �nite power,
etc.).
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3.4 What HMMs Can't Do

Given the results of the previous section, is there anything that an HMM is unable
to do? If under the true probability distribution two random variables possess in�nite
mutual information, an HMM approximation will fail because an in�nite number of states
would be required. In�nite mutual information is unlikely, however, from distributions
representing objects contained in a natural scene.

The main problems with HMMs lie in how they are used; the conditional indepen-
dence properties become problematic when there are too few hidden states, or when the
observation distributions are too weak. Another potential problem is that a demonstration
of the generality of HMMs says nothing about other inherently more parsimonious models
which might perform as well or better. This is explored in the next section.

3.5 How to Improve an HMM

One of the conceptually easiest ways to increase an HMM's accuracy is by in-
creasing the number of hidden states and perhaps also the capacity of the observation
distributions. This approach seems to be very e�ective. In speech recognition systems,
it is not uncommon to have multiple states per phoneme and to use collections of states
corresponding to tri-phones, quad-phones, or even penta-phones. State-of-the-art speech
recognition systems have achieved their performance on di�cult speech corpora partially
increasing the number of hidden states. For example, in the 1999 DARPA Broadcast News
Workshop (DARPA Broadcast News Workshop 1999), the best performing systems used
penta-phone (a state representing a phoneme in the context of two preceding and two follow-
ing phonemes) and multiple hidden states for each penta-phone. At the time of this writing,
some advanced systems condition on both the preceding and following �ve phonemes leading
to what could be called \unodeca-phones." Given limits of training data size, such systems
must use methods to reduce what otherwise would be an enormous number of parameters
| this is done by automatically tying parameters of di�erent states together.

How many hidden states are needed? From the previous section, the conditions
for HMM accuracy might require a very large number of states. HMM computations are
e�cient because of small clique sizes (i.e., size two). The cost of probabilistic inference in
HMMs grows as O(TN2) where T is the number of time steps and N is the number of
states, so increasing the number of states quadratically increases computational cost.

In general, given enough hidden states and a su�ciently rich class of observation
distributions, an HMM can accurately model any real-world probability distribution. HMMs
therefore constitute a very powerful class of probabilistic model families. In theory, at least,
there is no limit to their ability to model a distribution over signals representing natural
scenes.

Any attempt, therefore, to correct problems with HMMs should start by asking the
following question: is there a class of models that inherently leads to a more parsimonious
representation (i.e., fewer parameters, lower complexity, or both) of the relevant aspects
of speech, and that also provides the same or better speech recognition (or more generally,
classi�cation) performance?
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Many alternatives have been proposed for use in speech recognition systems. Some
of them are discussed in the following paragraphs.

One HMM alternative very similar to adding more hidden states factors the hidden
state representation into multiple independent Markov chains. This type of representation
is shown in Figure 3.9. Factored hidden state representations have been called HMM decom-
position (Varga & Moore 1990; Varga & Moore 1991), and factorial HMMs (Ghahramani
& Jordan 1997). A related method that estimates the parameters of a composite HMM
given a collection of separate, independent, and already trained HMMs is called parallel
model combination (Gales & Young 1995). A factorial HMM can represent the combina-
tion of multiple signals produced independently, the characteristics of each described by a
distinct Markov chain. For example, one chain might represent speech and another could
represent some dynamic noise source (Kadirkamanathan & Varga 1991). Alternatively, one
chain could represent the speech to be recognized and the other chain could represent con-
founding background speech (Varga & Moore 1991), or the two chains might each represent
two underlying concurrent and independent sub-processes governing the realization of the
observation vectors (Logan & Moreno 1998). A modi�ed form of factorial HMMs used for
speech recognition couples each Markov chain using a cross-chain dependency at each time
step (Zweig 1998). In this case, the �rst chain represents the typical phonetic constituents
of speech and the second chain is encouraged to represent articulatory attributes of the
speaker (e.g., the voicing condition).

Rt Rt 1+Rt 1– Rt 2+

Qt Qt 1+Qt 1– Qt 2+

Xt Xt 1+Xt 1– Xt 2+

Figure 3.9: A factorial HMM with two underlying Markov chains Qt and Rt governing the
temporal evolution of the statistics of the observation vectors Xt.

The factorial HMMs described above are all special cases of HMMs. That is, they
are HMMs with tied parameters and state transition restrictions made according to the
factorization. Starting with a factorial HMM consisting of two hidden chains Qt and Rt,
an equivalent HMM may be constructed by using jQjjRj states and by restricting the set
of state transitions and parameter assignments to be those only allowed by the factorial
model. A factorial HMM using M hidden Markov chains each with K states that all span
over T time steps will have time complexity O(TMKM+1) (Ghahramani & Jordan 1997). If
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one translates the factorial HMM into an HMM having KM states, the complexity becomes
O(TK2M). The underlying complexity of an factorial HMM therefore is signi�cantly smaller
than that of an equivalent HMM. An unrestricted HMM with KM states will, however, have
more expressive power than a factorial HMM with M chains each with K states because
in the HMM there are no required state transition restrictions and correlation may be
represented between the separate chains.

More generally, dynamic Bayesian networks (DBNs) are Bayesian networks con-
sisting of a sequence of Bayesian sub-networks strung together with arrows pointing in the
direction of time (or space). Factorial HMMs are an example of DBNs. DBNs were inves-
tigated for speech recognition by Zweig (1998). The general class of DBNs that are not
reducible to an HMM representation, however, have not been systematically explored for
speech recognition. The models introduced in Chapter 4 are also examples of DBNs, as are
many of the HMM extensions described in the following paragraphs.

Qt Qt 1+Qt 1– Qt 2+

Xt Xt 1+Xt 1– Xt 2+

Figure 3.10: An HMM augmented with direct dependencies between neighboring
observations.

Another type of HMM extension uses a neural network as a discriminatively trained
phonetic posterior probability estimator (Bourlard & Morgan 1994; Morgan & Bourlard
1995). The posterior probabilities p(qjx) are converted to scaled likelihoods via a division
by the priors p(q) (the resulting scaled likelihoods are written as p(xjq)=p(x)). The scaled
likelihoods are then used for the HMM's observation distributions. Typically, a multi-
layered perceptron (MLP) (Bishop 1995) is used to produce the posterior probabilities. The
size of the hidden-layer of the network controls the capacity of the observation distributions.
The input layer of the network typically spans a number of temporal frames both into the
past and into the future.

A remark that can be made about an HMM is that additional information might
exist about an observation Xt in an adjacent frame (say Xt�1) that is not provided by
the hidden variable Qt. One may correspondingly de�ne correlation (Wellekens 1987) or
conditionally Gaussian (Ostendorf et al. 1996) HMMs, where an additional dependence
is added to the HMM Bayesian network graph between adjacent observation vectors. In
general, the variable Xt might have as a parent not only the variable Qt but also the variables
Xt�l for l = 1; 2; : : : ; K for some K. The case where K = 1 is shown in Figure 3.10.

A Kth-order Gaussian vector auto-regressive process (Grimmett & Stirzaker 1991)
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may be represented as:

xt =
KX
k=1

Akxt�k + �

where Ak is a matrix that controls the dependence of xt on the k
th previous observation, and

� is a Gaussian random variable with some mean and variance. As described in Section 3.2,
a Gaussian mixture HMM may also be described using similar notation. Using this scheme,
a general Kth order conditionally mixture Gaussian HMM may be described as follows:

qt = i with prob. p(Qt = ijqt�1)

xt �
KX
k=1

Aqtn
k xt�k +N (�qtn;�qtn) with prob. cqtn for i = f1; 2; : : : ; Ng

where K is the auto-regression order, Ain
k is the regression matrix and cin is the mixture

coe�cient for state i and mixture n (with
P

n cin = 1 for all i), and N is the number of
mixture components per state. In this case, the mean of the variable Xt is determined using
previous observations and the mean of the randomly chosen Gaussian component �qtn.

Note that although these models are sometimes called vector-valued auto-regressive
HMMs, they are not to be confused with auto-regressive, linear predictive, or hidden �lter
HMMs (Poritz 1982; Poritz 1988; Juang & Rabiner 1985; Rabiner & Juang 1993) which
are HMMs that, inspired from the use of linear-predictive coe�cients for speech (Rabiner
& Juang 1993), use the observation distribution that arises from coloring a random source
with a hidden-state conditioned AR �lter.

Gaussian vector auto-regressive processes have been considered for speech recog-
nition with K = 1 and N = 1. The �rst investigation was by (Wellekens 1987) who only
provided EM update equations for maximum-likelihood parameter estimation. Results on
a speech task were not presented in that work, although an implementation apparently was
tested and it was found not to improve on the case without the additional dependencies
(Bourlard 1999). Both Brown (1987) and Kenny et al. (1990) tested implementations of
such models with mixed success. Namely, improvements were found only when \delta fea-
tures" (to be described shortly) were not used. Similar results were found by Digalakis et al.
(1989) but for segment models (also described below). In (Paliwal 1993), the dependency
structure in Figure 3.10 was used with discrete rather than with Gaussian observation den-
sities. And in (Noda & Shirazi 1994), a parallel algorithm was presented that can e�ciently
perform inference with such models.

The use of dynamic or delta features (Elenius & Blomberg 1982; Furui 1981;
Furui 1986a; Furui 1986b) has become standard in state-of-the-art speech recognition sys-
tems. Dynamic features provide information similar to what is provided by conditionally
Gaussian HMMs and are obtained by computing an estimate of the time derivative of each
feature d

dtXt = _Xt and then augmenting the feature stream with those estimates, i.e.,

X 0
t = fXt;

d
dtXtg. Acceleration, or delta-delta, features may similarly be de�ned and are

sometimes found to be additionally bene�cial (Wilpon et al. 1991; Lee et al. 1991).

Most often, estimates of the feature derivative are obtained (Rabiner & Juang
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1993) using linear regression, i.e.,

_xt =

KX
k=�K

kxt

KX
k=�K

k2

where K in this case is the number of points used to �t the regression. Delta (or delta-delta)
features are therefore similar to auto-regression, but where the regression is over samples
not just from the past but also from the future. That is, consider a process de�ned by

xt =
KX

k=�K

akxt�k + �

where the �xed regression coe�cients ak are de�ned by ak = k=
PK

l=�K l2 for k 6= 0 and
a0 = 1. This is equivalent to

xt �
KX

k=�K

akxt�k =

PK
k=�K kxt�kPK

l=�K l2
= �

which is the same as modeling delta features with a single Gaussian component.

The addition of delta features to a feature stream is therefore similar to additionally
using a separate conditionally Gaussian observation model. Observing the HMM Bayesian
network (Figure 3.4), delta features add dependencies between observation nodes and their
neighbors from both the past and the future (the maximum range determined by K).
Of course, this would create a directed cycle in a Bayesian network. To be theoretically
accurate, one would have to perform a global re-normalization as is done by a Markov
random �eld. Nevertheless, it can be seen that the use of delta features corresponds in
some sense to a relaxation of the conditional independence properties of an HMM.

As mentioned above, conditionally Gaussian HMMs often do not provide an im-
provement when delta features are included in the feature stream. Improvements were
reported with the use of delta features in Woodland (1992) where discriminative output
distributions (Woodland 1991) were used. In (Levin 1990; Levin 1992), successful results
were obtained using delta features but where the conditional mean, rather than being lin-
ear, was non-linear and was implemented using a neural network. Also, in (Takahashi et al.
1993), bene�ts were obtained using mixture of discrete distributions. As will be seen in
Chapter 6, improvements when using delta features will be reported for models that are
similar to the mixture Gaussian auto-regressive case with N > 1 and K > 1, but where the
dependencies are sparse, data-derived, and hidden variable dependent.

In general, one can consider the model

qt = i with prob. p(Qt = ijqt�1)

xt = Ft(xt�1; xt�1; : : : ; xt�k)
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where Ft is an arbitrary random function of the previous k observations. In (Deng et al.
1994; Deng & Rathinavelu 1995), a model of the form

xt =
KX
k=1

�qt;t;kxt�k + gqt;t + �qt

was used where �i;t;k is a dependency matrix for state i and time lag k and is a polynomial
function of t, gi;t is a �xed mean for state i and time t, and �i is a state dependent Gaussian.
Improvements using this model were also found with feature streams that included delta
features.

Another general class of models that extend HMMs are called segment or trajectory
models (Ostendorf et al. 1996). In a segment model, the underlying hidden Markov chain
governs the evolution not of the statistics of individual observation vectors. Instead, the
Markov chain governs the evolution of sequences (or segments) of observation vectors where
each sequence may be described using an arbitrary distribution. More speci�cally, a segment
model uses the joint distribution of a variable length segment of observations conditioned
on the hidden state for that segment. In a segment model, the joint distribution of features
is described as follows:

p(X1:T = x1:T ) (3.11)

=
X
�

X
q1:�

X
`1:�

�Y
i=1

p(xt(q1:� ;`1:� ;i;1); xt(q1:� ;`1:� ;i;2); : : : ; xt(q1:� ;`1:� ;i;`i); `ijqi; �)p(qijqi�1; �)p(�)

There are T time frames and � segments where the ith segment is of a hypothesized length `i.
The collection of lengths are constrained so that

P�
i=1 `i = T . For a general hypothesized

segmentation and collection of lengths, the ith segment starts at time frame t(q1:� ; `1:� ; i; 1)
and ends at time frame t(q1:� ; `1:� ; i; `i). In this general case, the time variable t could
be a function of the complete Markov chain assignment q1:� , the complete set of currently
hypothesized segment lengths `1:� , the segment number i, and the frame position within
that segment 1 through `i. It is assumed that t(q1:� ; `1:� ; i; `i) = t(q1:� ; `1:� ; i+ 1; 1)� 1 for
all values of all quantities.

Renumbering the time sequence for a hypothesized segment starting at one, the
joint distribution over the observations of a segment is given by:

p(x1; x2; : : : ; x`; `jq) = p(x1; x2; : : : ; x`j`; q)p(`jq)

where p(x1; x2; : : : ; x`j`; q) is the joint segment probability for length ` and for hidden
Markov state q, and where p(`jq) is the explicit duration model for state q.

A plain HMM may be represented using this framework if p(`jq) is a geometric
distribution in ` and if

p(x1; x2; : : : ; x`j`; q) =
Ỳ
j=1

p(xjjq)

for a state speci�c distribution p(xjq). The stochastic segment model (Ostendorf et al. 1992)
is a generalization which allows observations in a segment to be additionally dependent on
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a region within a segment

p(x1; x2; : : : ; x`j`; q) =
Ỳ
j=1

p(xj jrj; q)

where rj is one of a set of �xed regions within the segment. A more general model is called
a segmental hidden Markov model (Gales & Young 1993)

p(x1; x2; : : : ; x`j`; q) =

Z
p(�jq)

Ỳ
j=1

p(xjj�; q)d�

where � is the multi-dimensional conditional mean of the segment and where the result-
ing distribution is obtained by integrating over all possible state-conditioned means in a
Bayesian setting. More general still, in trended hidden Markov models (Deng et al. 1994;
Deng & Rathinavelu 1995), the mean trajectory within a segment is described by a polyno-
mial function over time. Equation 3.11 generalizes many models including the conditional
Gaussian methods discussed above. A nice summary of segment models and their learning
equations, and a complete bibliography is given by Ostendorf et al. (1996).

Markov Processes on Curves (Saul & Rahim 1998) is a recently proposed dynamic
model used to represent speech at various speaking rates. Certain measures on continu-
ous trajectories are invariant to some transformations, such as monotonic non-linear time
warping. The arc-length, for example, of a trajectory x(t) from time t1 to time t2 is given
by:

` =

Z t2

t1

[ _x(t)g(x(t)) _x(t)]1=2 dt

where _x(t) = d
dtx(t) is the time derivative of x(t), and g(x) is an arc-length metric. The en-

tire trajectory x(t) is segmented into a collection of discrete segments. Associated with each
segment of the trajectory is a particular state of a hidden Markov chain. The probability of
staying in each Markov state is controlled by the arc-length of the observation trajectory.
The resulting Markov process on curves is set up by de�ning a di�erential equation on pi(t)
which is the probability of being in state i at time t. This equation takes the form:

dpi
dt

= ��ipi [ _x(t)gi(x(t)) _x(t)]
1=2 +

X
j 6=i

�jpjaji [ _x(t)gj(x(t)) _x(t)]
1=2

where �i is the rate at which the probability of staying in state i declines, aji is the transition
probability of the underlying Markov chain, and gj(x) is the length metric for state j. From
this equation, a maximum likelihood update equations and segmentation procedures can be
obtained (Saul & Rahim 1998).

Can changes in speaking rate can be modeled by a non-linear warping in time?
Faster speech is often associated with missed articulatory targets, referred to as undershoot
(Clark & Yallop 1995), in which case not only the time axis is warped but the trajectory
itself can be completely di�erent. Nevertheless, continuous-time inspired models such as
these have the potential to yield properties very di�erent than an HMM with the same
number of parameters.
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3.6 Towards Data-driven HMM Extensions

The approaches described above, which extend HMMs, all potentially provide a
more attractive model for a �xed number of parameters. Given the generality of an HMM as
described in Section 3.3.11, it is not certain, however, that these models provide additional
capability. If they do, it is not clear where that extra ability lies or how useful it might be
for the speech recognition, or more generally, the pattern classi�cation task.

Since HMMs already work fairly well for many tasks, one bene�cial approach might
be to examine a particular HMM, discover if and where it is de�cient for a particular task
(namely classi�cation), and then explicitly correct for any de�ciency by adding capability
only where a de�ciency is found. The resulting corrected model will have all the capability
of the original model, will have been customized to perform better on the particular task,
but will have been augmented in a minimal way. This would be one attempt to reach the
ultimate goal, which is to �nd a model that performs as well or better than an HMM with
the same or fewer parameters and using comparable or less computation.

In the next section, a new method to extend an HMM will be proposed. It will be
argued that the de�ciency of a particular HMM can be measured using conditional mutual
information. If the HMM is accurate, then I(Xt;X<tjQt) will be zero. The degree to
which I(Xt;X<tjQt) > 0 or more generally I(Xt;X:tjQt) > 0 can be seen as a measure
of a particular HMM's loss. Based on training data, this loss measure, and discriminative
variations thereof, will be used to produce new statistical models that attempt to minimize
the loss.
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In the analysis of Chapter 3, it was found that HMMs have no inherent theoretical
inadequacy for the task of representing the probability distribution of speech. To improve
upon an HMM, it was argued, one should somehow seek an inherently more parsimonious
representation that also leads to better speech recognition performance.

Like all objects originating from natural auditory scenes, speech has unique sta-
tistical properties that distinguish it from random noise and other sounds. Furthermore,
examples of a particular speech utterance have statistical properties that distinguish it
from examples of di�erent utterances. As discussed in Chapter 1, it is these patterns of
redundancy that distinguish signals from each other and from noise. Furthermore, certain
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(perhaps statistical) properties of natural objects must be consistent from one object in-
stance to another, for otherwise di�erent instances of a class would not be recognizable as
being examples of the same class.

Statistical models that represent only the important statistical properties of ob-
jects will perhaps provide accurate representations without either a large computational
expense or a large number of parameters. The problem then is to automatically identify
the inherent statistical structure of natural objects and produce models which accurately
re
ect such structure. If the models are probabilistic and are evaluated in terms of their
conditional independence properties, such a procedure becomes structure learning as de-
scribed in Chapter 2. The result will hopefully be models that are both parsimonious and
accurate.

HMMs are known to work reasonably well for the speech recognition task. While
a theoretical inadequacy can not be found with HMMs, perhaps instead de�ciencies of a
particular HMM can be identi�ed. If de�ciencies can be found, perhaps that particular
HMM can be adjusted in ways that speci�cally address only the problems and do not cause
a large increase in either complexity or the number of parameters. One way, therefore, to
extend HMMs is to start with a working HMM (the boot HMM), measure how and where
it is inaccurate according to some structural loss function, and then augment that HMM's
statistical dependencies to reduce the loss.

To this end, a quantitative measure can be obtained of the validity of a particular
HMM's conditional independence. In any HMM (see De�nition 3.3), the assumption is
made that Xt??X:tjQt for all t. This property is true if and only if the conditional mutual
information I(Xt;X:tjQt) is zero. The degree to which the conditional mutual information
for a particular HMM is greater than zero corresponds directly to the degree to which the
conditional independence property is false for that HMM.

If the conditional mutual information is greater than zero, than that particu-
lar HMM can not accurately represent the underlying probability distribution in the KL-
distance sense because information exists about Xt in the acoustic context of Xt that is
not provided by Qt. This is because, regardless of the actual true value of I(Xt;X:tjQt),
an HMM makes the assumption that Xt??X:tjQt. Again using the chain rule of mutual
information (Cover & Thomas 1991), the following expansion may be obtained:

I(X:t;Qt; Xt) (4.1)

= I(X:t;Qt) + I(X:t;XtjQt) (4.2)

= I(X:t;Xt) + I(X:t;QtjXt) (4.3)

Therefore, the true amount of information transmitted between X:t and Xt can be repre-
sented as:

I(X:t;Xt) = I(X:t;XtjQt) + I(X:t;Qt)� I(X:t;QtjXt)

An HMM makes the assumption that I(X:t;XtjQt) = 0, so at best the amount of informa-
tion transmitted between X:t and Xt with an HMM, represented as Ih(X:t;Xt), is:

Ih(X:t;Xt) = I(X:t;Qt)� I(X:t;QtjXt)
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And therefore

Ih(X:t;Xt) = I(X:t;Xt)� I(X:t;XtjQt) (4.4)

From this equation, if it is true that I(X:t;XtjQt) = 0, then it is possible for an HMM to
be accurate. If on the other hand I(X:t;XtjQt) > 0, then Ih(X:t;Xt) 6= I(X:t;Xt) and
the HMM can not be KL-distance accurate. In Equation 4.4, I(X:t;XtjQt) can be seen as
the amount of information lost when transmitting from X:t to Xt using an HMM relative
to the true transmission rate. Conditional mutual information therefore can be viewed as
a measure of a particular HMM's de�ciency or its loss.

In this chapter, conditional mutual information, and discriminative variants thereof,
is used to methodologically extend the structure of HMMs to reduce loss. In particular,
the observation probability model becomes p(X jQ;Z) where Z is a set of useful additional
dependency variables.

4.1 Conditional Mutual Information In Speech

Given a collection of data vectors X1:T representing samples from some underlying
distribution, and given an HMM that has been developed and trained on that data sample,
does additional information typically exist about the feature vector Xt in the surrounding
context X:t given the hidden state variable Qt? If not, then there is no reason to add
additional dependency relationships to an HMM, and the reason for any errors made when
using an HMM in a classi�cation task must exist elsewhere. The data should of course
represent some natural signal evolving over time or space such as speech, audio, hand-
writing, video, etc. If the data actually originated from an HMM or some i.i.d. random
process, the conditional mutual information would be zero.

Figure 4.1 shows a conditional mutual information density plot in bits per unit
area (more precisely, bits per an area of size one quarter octave by 12.5 ms) computed
from a two-hour portion of randomly selected utterances obtained from the Switchboard
conversational-speech corpus (Godfrey et al. 1992).1 The horizontal axis shows the time-lag
in milliseconds, and the vertical axis shows frequency di�erence in octaves.

The plot shows the mutual information between cube-root-compressed spectral
sub-band envelopes. More precisely, the speech signal was �rst processed by a 22-channel
constant-Q sub-band �lter bank using FIR �lters (designed by windowing the ideal impulse
response with a Kaiser window). Each sub-band channel was then full-wave recti�ed and
low-pass �ltered (again using a Kaiser FIR �lter) using a �lter cut-o� frequency of about 30
Hz. The sub-band channels were then cube-root compressed to reduce the dynamic range
and thereby decrease the chance of numerical over
ow problems (note that mutual infor-
mation is una�ected by monotonic functions applied to the random variables arguments,
i.e., I(X ; Y ) = I(f(X); g(Y )) where f() and g() are monotonic (Cover & Thomas 1991;
Haykin 1999)). Finally, the signals were down-sampled to recover full bandwidth and sig-
ni�cantly reduce the otherwise enormous amount of computation required. Spectral sub-
band envelopes were used to evaluate the mutual information of speech for several reasons:

1At the most recent LVCSR workshop (LVCSR Workshop 1998), the best performing system achieved
only about 28% word error rate on this speech corpus.
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1) computational tractability, 2) similarity to feature vectors typically used by automatic
speech recognition systems, 3) easy and intuitive to visually display, and 4) the resulting
signals do not contain �ne speech structure, they contain only modulation envelopes that,
since the time of Dudley's Vocoder (Dudley 1939), have been known to contain the infor-
mation necessary for speech intelligibility (Drullman et al. 1994b; Drullman et al. 1994a;
Drullman 1995). The actual computation of Mutual information is described in Appendix C
and in Bilmes (1998).
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Figure 4.1: The conditional mutual information density of a randomly selected 2-hour
section of the Switchboard conversational-speech corpus (in bits per unit area).

In the plot, the hidden variable Q represents decision-tree clustered tri-phones (for
these plots, the number of resulting separate clusters and therefore the number of distinct
observation distributions is 83). A Viterbi path was used to label each speech frame | the
conditional mutual information was estimated using only those appropriately labeled frames
for each condition Q = q. Also, the plot shows only the conditional mutual information
between individual feature elements. That is, let Xti be the i

th scalar element of the random
feature vector Xt at time t. Then I(Xti;X�jjQ) is the mutual information between two
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variables having a time di�erence of �t = t � � and a frequency di�erence of �f = i� j.2

The plot shows the average for a constant frequency di�erence, i.e., I(�f;�tjQ) where:

I(�f;�tjQ) = avgi�j=�f I(Xti;Xt��t;jjQ)

As can be seen, additional information (or loss) does exist on average throughout
the entire acoustic context. A higher luminance in the plot corresponds to a greater amount
of information that is lost by the HMM. The information increases signi�cantly as spectro-
temporal distance decreases. This plot does not look dissimilar to the spatial co-information
plots representing the correlation between two points in a visual scene (Ruderman 1994;
Field 1987; Ripley 1981; Baddeley 1997). The plot seems to display a 1=f -like distribution
that is common in many natural occurring signals.

To estimate the integrity of the information displayed in Figure 4.1, the same
process (i.e., compressed spectral sub-band envelope processing and mutual information
computation) was applied to 1 hour of Gaussian white-noise audio signals. The result
is displayed in Figure 4.2. By comparing the two �gures, and in particular observing
the di�ering luminance scales, at least two observations can be made. First, the mutual
information is on average smaller in the random case. The average value of the information
in Figure 4.1 is about 1 � 10�1 bits whereas in the random case it is about 8 � 10�4

bits. This suggests that the mutual information values obtained from the speech signals
are signi�cant.3 Second, there is no apparent structure in the random case other than a
small amount of information in the same frequency channel over a small temporal extent.
In the speech plot there is a general trend, namely that mutual information decreases
with spectro-temporal distance. This suggests that Figure 4.1 is showing actual statistical
structure extant in the speech signal itself. Any statistical coloration induced by the feature
extraction process, which is seen in the random plot, does not have an appreciable a�ect
on the mutual information shown in the speech plot.

Figure 4.3 shows a similar procedure applied to mel-frequency cepstral coe�cients
(MFCCs) (Rabiner & Juang 1993) and RASTA-PLP coe�cients (Hermansky & Morgan
1994), two common types of features used by speech recognition systems. The MFCC plot
shows data obtained from 13 coe�cients (c0 through c12) and their deltas. The RASTA-
PLP plot shows data from 9 coe�cients and their deltas. Both of these coe�cient types
undergo a �nal discrete cosine transformation (DCT), a transformation that produces co-
e�cients representing the untransformed vectors with an orthogonal sinusoidal basis. The
DCT is sometimes thought to produce uncorrelated features, but this is not true as or-
thogonality does not imply lack of correlation. Nevertheless, the plots do indicate that the
features tend to have relatively small mutual information across feature position, and the
temporal extent of information is longer for the same feature than across di�erent features.
There is signi�cant mutual information between features and their corresponding deltas

2Spectral features were sampled with a 12.5 ms period and span a time range of �200 ms, so there are
16 frames in each direction. There are 22 features per frame. The zero-lag frame has a symmetric mutual-
information matrix. In total, there are 32 � 22 � 22 + 22 � 21=2 = 15; 719 combinations of pairs of features
displayed in these plots.

3In purely random data (i.e., when the mutual information computation is performed between random
vectors not derived from the spectral sub-band envelope process), the same calculation on the 15719 pairs
produces mutual information values with quartiles of 0.005, 0.006, and 0.008 and has a maximum value of
0:014 bits which can be used as a signi�cance level with very high con�dence.
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Figure 4.2: The mutual information density of Gaussian white noise audio signals, processed
as compressed subband spectral envelopes.

(which suggests that features are informative about their derivatives, and vice versa) as
there is for a feature over time.

Note that the mutual information dynamic range for the MFCC features is lower
than for the RASTA-PLP or CSSE features. The lower range might indicate that the
HMM's hidden variables are better at representing information for the MFCC acoustic
environment, at least for this labeling scheme. This could have resulted from the fact that
the tri-phone class labels were developed using MFCC coe�cients. Alternatively, it could
be that MFCCs are particularly well suited to HMMs with Gaussian mixture distributions
(a conjecture sometimes made by members of the speech recognition community). The
mutual information range, in general, might indicate how well a particular feature set will
perform for a particular HMM | the lower the better. Such notions about using the range
of conditional mutual information values to measure the match between features and models
are not explored further in this thesis.

To obtain an estimate of the signi�cance levels of the MFCC and RASTA-PLP
plots, it would be required to perform the MFCC or RASTA-PLP procedure on noise signals.
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In other words, the signi�cance level suggested by Figure 4.2 does not apply to the MFCC
and RASTA-PLP plots.

All of the speech-based conditional mutual information plots show averages of
averages, i.e., they show the prior-weighted average over all conditions (using priors p(Q =
q)), and for each class the average is taken over all pairs of features with a �xed feature
position di�erence (or frequency di�erence in the case of Figures 4.1 and 4.2). Therefore,
any idiosyncratic and more complex class- and feature- speci�c patterns are not visible.
Since the actual data is four-dimensional (feature position, time-lagged feature position,
time-lag, and class), a reduction to two dimensions is an unfortunate necessity for the
purpose of visual display.

Results similar to these have also been found using di�erent labeling schemes (e.g.,
mono-phones and syllables), feature sets such as LPC coe�cients (Rabiner & Juang 1993),
and speech corpora (Pitrelli et al. 1995; Bellcore Digits+ Database 1990's).
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Figure 4.3: The conditional mutual information density of Switchboard using mel-frequency
cepstral coe�cients (left) and RASTA-PLP coe�cients (right).

The above plots con�rm the suspicion that the hidden variables in an HMM might
not account for all the information available in the acoustic environment, or another words,
that the HMM's loss is not necessarily zero. Apparently, using decision-tree clustered tri-
phones for Qt is not su�cient to represent all the information contained in Xt's acoustic
environment. It therefore seems safe to assume that more information capable of decreasing
Xt's entropy is available. The problem remaining is to decide what part is relevant and
non-redundant.

4.2 Likelihood Increasing Dependency Selection

The previous section suggests that using an observation model of the form p(XtjQt)
is de�cient to the extent that the HMM loss I(Xt;X:tjQt) is greater than zero. The condi-
tional mutual information I(Xt;X:tjQt) represents the quantity of additional information
X:t provides about Xt not already provided by Qt. Therefore, it might be possible to
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increase the accuracy of an HMM without increasing the number of hidden states by aug-
menting the HMM with additional cross-observation dependencies. In this section and those
that follow, a series of di�erent rules will be proposed for automatically determining the
set of additional cross-observation dependencies using a variety of information theoretic
measures.

One suggestion might be to use the quantity p(XtjQt; X:t) as an acoustic model.
The probability of X1:T under an HMM is:

p(X1:T) =
X
q1:T

p(X1:T ; q1:T)

=
X
q1:T

p(X1:T jq1:T )p(q1:T)

=
X
q1:T

Y
t

p(XtjX1:t�1; qt)p(qtjqt�1)

=
X
q1:T

Y
t

p(Xtjqt)p(qtjqt�1)

The last equality is obtained using the HMM assumption that Xt is independent of X1:t�1

given qt. Therefore, using just the probability model p(XtjX<t; Qt) is su�cient.
There are obvious di�culties with this approach. Including a dependency on all

X<t adds an enormous number of parameters to the system. Furthermore, the information
contained in X<t is surely redundant and could either be compressed or could be represented
by a subset of delegates. In this work, the latter approach is taken.

The problem then is to choose the best �xed-size collection of variables Z � X<t,
to choose the size jZj, and to de�ne the meaning of \best." At times, Z might also be chosen
from the larger collection Z � X:t which would potentially lead to a Markov random �eld.
This will be discussed in the context where it is used.

One solution might be to simply pick a particular subset ofX<t for Z. For example,
one could choose Z = Xt�` for some ` or for a combination of `'s. This is the approach used
by correlation models (Wellekens 1987) and vector auto-regressive HMMs (Kenny et al.
1990; Woodland 1992). This method, however, chooses dependency variables regardless of
their usefulness. Dependency variables should be chosen only if they are relevant, i.e., only
if they provide new information not already provided by Qt or I(Xt;ZjQt) > 0.

Another solution might be to choose Z = X<t, train the resulting model, and
delete individual entries from Z that do not show a strong dependence. The strength of
a dependence in this case would be determined from the parameters of the model. A
parameter close to zero, say, might indicate a lack of dependence. This in theory might
work but it is problematic for a variety of reasons. First, the amount of computer memory
and/or computation required to train the full system could be prohibitive. Second, the
full system will model dependencies between variables that have little or no probabilistic
dependence (i.e., that have a purely random relationship). Training a system that contains
an overabundance of dependencies (and therefore contains an overabundance of parameters)
would require a much larger training corpus. Without su�cient training data, over-training
could occur and a random relationship between two variables could be confused with a
proper dependency. Finally, with a system that contains many irrelevant parameters, it
could be di�cult to properly estimate the parameters governing the important dependencies.
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A third approach might be to choose a random subset of variables from X<t for Z,
train the resulting system, and then prune. While this approach avoids the high memory,
computational, and training data costs of the previous approach, the selection of good initial
dependencies is not guaranteed.

Another potential drawback of these pruning approaches is that they posses a
dependency on the parameter training method. If the training method does not, after
training, leave the parameters for the undesirable dependencies in an identi�able state
(e.g., close to zero, etc.), then these approaches will fail. Even a discriminative training
method is not guaranteed to work | the parameters for two dependency variables might
cancel each other out on average but still have large absolute values.

The approach used in this work starts from a simple model, compute the model's
loss, and add dependencies that are found to be missing. If the quantity I(Xt;ZjQ) is
maximized for a given size of Z (i.e., for jZj = k for some k), then the uncertainty about Xt

reducible from the unused remaining acoustic environment is minimized. This follows from
the chain rule of mutual information (Cover & Thomas 1991), which states that:

I(Xt;X1:t�1jQ) = I(Xt;ZjQ) + I(Xt;X1:t�1 n ZjQ;Z)

where n is the set di�erence operator. Choosing Z to maximize I(Xt;ZjQ) will therefore
minimize I(Xt;X1:t�1 n ZjQ;Z) which can be seen as the remaining loss of the new model.

This leads to the following dependency selection rule:

Selection Rule 4.1. Maximize Conditional Mutual Information. Choose the size
jZj set of random variables Z � X<t such that the quantity I(Xt;ZjQ) is maximized.

The conditional mutual information may be expanded as:

I(Xt;ZjQt) =
X
q

I(Xt;ZjQt = q)p(Qt = q)

which is a sum of prior weighted entropy reductions, each for a particular class q. For
di�erent values of q, X given q might have strong dependencies only on a particular subset
of Z. Another possibility, therefore, is to choose a di�erent set of variables Zq for each q,
that maximize I(Xt;ZqjQt = q). Here, Zq is de�ned as a subset of X<t such that X is
essentially independent of X<t n Zq given Q = q and Zq. In other words, Zq is chosen so
that I(X ;X<t n Zqjq;Zq) � 0. This leads to the following new criterion for the selection of
Zq:

Selection Rule 4.2. Maximize q-speci�c Conditional Mutual Information. For
each q, choose the size jZqj set of random variables Zq � X<t such that the quantity
I(Xt;ZqjQ = q) is maximized.

Compared to rule 4.1, this criterion is desirable to the degree that Zq 6= Zr for
q 6= r. It also might be useful because the prior probabilities p(q) are subject to change
between training and testing environments. Assuming that the statistical properties of
the class conditional observation variables are not subject to change between training and
testing environments (e.g., instances of the same phones have similar statistical properties),
minimizing a training-data determined prior weighed sum, as in rule 4.1, might not minimize
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Figure 4.4: Improving an HMM by including additional direct dependencies on the relevant
portions of X:t depending on the value of Qt.

a test-data determined prior weighted sum. Rule 4.2 chooses Zq individually using only the
class conditional statistics without considering the priors.

The selection of q-speci�c dependency variables is depicted in Figure 4.4. As
compared to the corresponding �gure for an HMM (Figure 3.8), the potential for information
transmission between X<t and Xt has increased. Therefore, less burden is placed on the
hidden state to encode all relevant information about the observation environment.

From here on, the t subscript on Xt and other variables will be dropped unless it
is needed for clarity. Without t, the problem may be abstracted as follows: given a data
random variable X , a class random variable Q, and a set of all possible candidate auxiliary
random variables Z = fZ1; Z2; : : : ; ZNg for some N , choose the best �xed size subset of
Z � Z such that the probability model p(X jQ;Z) is optimized for a classi�cation task. This
problem is depicted in Figure 4.5, where Z(a) and Z(b) are (both size four) candidate subsets
of Z and where Z(a) = fZ1; Z2; Z3; Z4g and Z

(b) = fZ4; Z5; Z6; Z7g.

Z4

Z2

Q

X

Z5

Z6

Z7

Z8

Z1Z9
Z3

(a) (b)

Figure 4.5: Evaluating the set of dependency variables Z(a) or Z(b) from the entire set Z .

In this abstracted form, why is conditional mutual information a useful selection
criterion? Intuitively, if only one of the two random variables Z1 and Z2 could be used as
an information source about X (i.e., the model could either be p(X jZ1) or p(X jZ2) but
not p(X jZ1:2)), Z1 is chosen if I(X ;Z1) > I(X ;Z2) because Z1 provides more information
about X . Choosing the variables Z1 will increase the likelihood of the data under the
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new model relative to either the unconditional model or to the model that uses Z2. A
higher likelihood results because the typical probability values of the sharper (lower entropy)
distribution p(X jZ1) are larger than those of the duller p(X) or p(X jZ2). More formally,
consider the following theorem.

Theorem 4.1. Mutual Information and Likelihood. Given a random variable X,
and two context variables Z(a) and Z(b), where I(X ;Z(a)) > I(X ;Z(b)), the likelihood of
data sampled from X is higher given data sampled from Z(a) than given data sampled from
Z(b), for n, the sample size, large enough. That is,

1

n

nX
i=1

log p(xijz
(a)
i ) >

1

n

nX
i=1

log p(xijz
(b)
i )

Proof. Suppose

I(X ;Z(a)) > I(X ;Z(b))

for two di�erent random vectors Z(a) and Z(b). It immediately follows that:

H(X)�H(X jZ(a)) > H(X)�H(X jZ(b))

or equivalently

H(X jZ(a)) < H(X jZ(b)):

Expanding into integral form, gives

�

Z
p(x; z(a)) log p(xjz(a))dxdz(a) < �

Z
p(x; z(b)) log p(xjz(b))dxdz(b)

or in limit form,

lim
n!1

1

n

nX
i=1

log p(xijz
(a)
i ) > lim

n!1

1

n

nX
i=1

log p(xijz
(b)
i )

where (xi; z
(k)
i ) � p(X;Z(k)). By the de�nition of the limit, the equivalence of the two

previous inequalities require that 8� > 0; 9 n1 and n2 such that for n > max(n1; n2),����� 1n
nX
i=1

log p(xijz
(a)
i ) +H(X jZ(a))

����� < �

and ����� 1n
nX
i=1

log p(xijz
(b)
i ) +H(X jZ(b))

����� < �

If we choose � < jH(X jZ(a))�H(X jZ(b))j=2 to get n, this implies:

1

n

nX
i=1

log p(xijz
(a)
i ) >

1

n

nX
i=1

log p(xijz
(b)
i )

which are the log likelihoods for a size n sampled data set.
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In practice, the actual probability distribution p(xjz) is not available. Instead,
an approximation p̂(xjz;�) is used where the parameters � are often estimated using a
maximum likelihood parameter estimation procedure. A maximum likelihood procedure
is, in the limit, equivalent to a minimization of the KL-distance between p̂ and p (Bishop
1995). This can be seen by viewing the likelihood function as a cross entropy. In other
words,

� lim
n!1

1

n

nX
i=1

log p̂(xijzi;�) = �

Z
p(x; z) log p̂(xjz;�)dxdz

but

�

Z
p(x; z) log p̂(xjz;�)dxdz�H(X jZ) = D(p(xjz)jjp̂(xjz;�))

Since H(X jZ) is a constant with respect to �, a maximum likelihood procedure decreases
D(p(xjz)jjp̂(xjz)) again if n is large enough. If p̂ is close enough to p, then the theorem
above still holds. For the remainder of this thesis, it is assumed that p̂ is close enough to p
so that any di�erences are negligible.

In light of the above theorem, phrases such as \maximize the mutual information
between X and Z," \minimize the conditional entropy of X given Z," and \maximize the
likelihood of X given Z" will be used interchangeably. Also, other law-of-large-numbers-
like equivalences for su�ciently large n will at times be assumed without proof. It should
be noted that the phrase \maximize the likelihood" does not in this context mean \adjust
parameters to maximize the likelihood." Instead, it means to adjust the statistical structure
(as controlled by the set of edges in a probabilistic network) that maximize the potential
likelihood of the model when optimally trained using a maximum likelihood procedure.

The above theorem is also true for conditional mutual information (i.e., I(X ;ZjQ)
or for a particular value of q, I(X ;ZjQ = q).). In other words, if I(X ;Z(a)q jQ = q) >

I(X ;Z(b)q jQ = q), then:

1

n

TX
t=1

log p(xtjz
(a)
qt;t; Qt = qt) >

1

n

TX
t=1

log p(xtjz
(b)
qt;t; Qt = qt)

These quantities can be viewed as likelihoods of the data given Viterbi paths qt of modi�ed
HMMs. In the left case, the Viterbi path likelihood is higher. Note that using a similar
argument as in the theorem, and because H(X)� H(X jZ),

1

n

TX
t=1

log p(xtjz
(a)
rt;t; Qt = rt) �

1

n

TX
t=1

log p(xtjQt = rt)

for some non-Viterbi path rt and for n large enough. In other words, relative to an HMM,
the likelihood of the data for paths other than the Viterbi path do not decrease when adding
conditioning variables. It has therefore just been shown that the modi�ed HMM probability
will provide a higher likelihood score than the unmodi�ed HMM. The following theorem
therefore holds.
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Theorem 4.2. An HMM with dependency variables added according to condi-
tional mutual information produces a higher likelihood score on sampled data

than the original HMM.

The resulting modi�ed HMMs represent statistical relationships contained in the
data that produce higher likelihood models. Increasing the likelihood of a model via param-
eter estimation is one technique that often leads to better performance (Rabiner & Juang
1993; Bishop 1995). As will be shown in the next section, however, this is not necessarily
the best dependency selection criterion.

4.3 Discriminability

The selection methods above are su�cient to increase the descriptive power (i.e.,
lead to a higher likelihood) of a model but they do not necessarily decrease classi�cation
error. To decrease classi�cation error, one must instead minimize Bayes error (equivalently
Bayes risk) (Duda & Hart 1973; Vapnik 1998), or optimize the posterior probability of
a class given the data. This follows from Bayes decision theory which states that the
minimum probability of error is achieved when a class is chosen that has the highest posterior
probability.

In general, there are two types of class-conditional density training methods,
likelihood-based and discriminative.4 Likelihood-based training adjusts the parameters of a
model for each class using only samples from that class. The primary goal is for the model
to report a high probability for typical samples. Samples from classes other than the one
the model represents, however, are not used for training. Therefore, if two di�erent classes
have similar prominent attributes, the models trained for those classes might each report a
high probability for samples from both classes. In the worst case, a competing model could
report a higher probability for a sample than the correct model reports. In this case, even
with large likelihood scores from each model, discriminability (the ability for the models to
distinguish one class from another) decreases.

Let x be a particular data sample. Then p(xjq) is the likelihood of the sample
according to the model for class q, and p(x) =

P
r p(r)p(xjr) is the likelihood of a sample

x according to the average over all models. If x is drawn according to the q model, then
p(xjq) should report a higher score for x than does p(x). The di�erence between the two
is a measure of discriminability, and so is the log ratio of likelihoods log[p(xjq)=p(x)]. The
average log ratio over samples drawn according to q is the average discriminability of the q
model, i.e.:

Discriminability of q model =

Z
p(xjq) log

p(xjq)

p(x)
dx

which is equal to the KL-distance D(p(xjq)jjp(x)). Averaging over all classes, the discrim-

4The distinction made here is di�erent from the distinction between ML, MAP, and Bayesian parameter
estimation procedures. These three methods, described in Section 2.4, all estimate a parameter � for a single
joint model. The main di�erence between ML, MAP, and Bayesian parameter estimation is the existence of
a prior or a cost over � and how that cost is used (multiplied or integrated).
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inability of a set of models is informally de�ned as the following:

Discriminability of a set of models =
X
q

p(q)D(p(xjq)jjp(x)):

In Section 4.4.1, it is shown how this quantity is related to the posterior probability.

Discriminative training, as does likelihood training, adjusts the model parameters
for a class based on samples from that class. Unlike likelihood training, however, it also
adjusts the model to produce a low probability score for samples from competing classes.
Therefore, if there are similar attributes between classes, the importance of those attributes
in contributing to the probability of each of the models will diminish (also see Section 3.3.10).
Assuming the models have the ability to represent the unique attributes of each class, a
discriminative training method will produce models where only the unique attributes of a
class have strong a�ects on the probability scores,

In the preceding sections, procedures were presented to optimize the structure of
an HMM (parameter optimization methods have not yet been speci�ed). Nevertheless, a
procedure that optimizes model structure to increase the potential likelihood could su�er
the same problems as likelihood-based training. In this case, the dependency variables
chosen for one class might also be chosen for a di�erent class, the resulting probabilities of
data sampled from both classes could be high for both models, and discriminability could
decrease. This problem can occur even when choosing a di�erent Zq for each q; it depends
on the statistical properties of the data from each class. Therefore, a procedure is needed
that chooses the unique entropy reducing dependency variables for each class, or in other
words, that increases the model's structural discriminability. The approach taken here is
to derive discriminative versions of an HMM's loss.

The conditional mutual information can be seen as reducing X 's entropy in a
particular context. That is,

I(X ;Zjq) =

Z
p(x; zjq)

�
log

1

p(xjq)
� log

1

p(xjq; z)

�
dxdz

where p(x; zjq) is the probability of x and z in the q context, and
h
log 1

p(xjq) � log 1
p(xjq;z)

i
is

the individual event-wise entropy reduction of x provided by z under the q model. Condi-
tional mutual information can be seen as the entropy reduction of x provided by z averaged
in the q context.

Discriminability can also be viewed from an information-theoretic perspective.
While the chosen dependency variables Z might reduce the entropy of X under the q-model
in the q-context, Z might also reduce \entropy" in a di�erent and incorrect context, say r,
under the q-model. To increase the discriminability between di�erent classes, dependencies
should be chosen that both 1) decrease entropy of a model in its correct context and 2) do
not decrease the entropy in other contexts.

A measure of this second concept can be obtained by changing the context where
the entropy reduction of a model is evaluated.

De�nition 4.1. Cross-Context Conditional Mutual Information (CCCMI). The
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cross-context conditional mutual information is de�ned as:

Ir(X ;Zjq)
4
=

Z
p(x; zjr)

�
log

1

p(xjq)
� log

1

p(xjq; z)

�
dxdz

=

Z
p(x; zjr) log

p(x; zjq)

p(xjq)p(zjq)
dxdz

where r is the context class, and q is the model class.

The CCMI can be viewed as event-wise entropy reductions of the model for q but
averaged over the context of the probability model r. When r = q, standard conditional
mutual information is obtained (i.e., Iq(X ;Zjq) = I(X ;Zjq)). When r 6= q, it represents
the typical situation in a classi�cation when evaluating the q-model in the r context.

It is now apparent that a goal for a chosen Zq should be that conditional mutual
information is large, and CCCMI is small. The following quantity will be useful when
developing approximation algorithms to the above dependency selection rule.

De�nition 4.2. Utility. The utility of a set of commentary variables Zq is de�ned as:

U(X ;Zqjq) = I(X ;Zqjq)�
X
r

p(r)Ir(X ;Zqjq)

As de�ned, utility uses the priors p(r), but this is not necessary | since the priors
can change between training and testing conditions, uniform or some other estimate of the
test condition priors could be used.

Some sets of classes might be more confusable with each other than other sets of
classes. If certain classes are known to be highly confusable (e.g., in speech, vowels with
other vowels, or plosives with other plosives), confusability clusters can be used to produce
a modi�ed form of utility:

De�nition 4.3. Confusability Re�ned Utility. The confusability re�ned utility of a set
of commentary variables Zq is de�ned as:

Uc(X ;Zqjq) = I(X ;Zqjq)�
1

Kq

X
r2Cq

p(r)Ir(X ;Zqjq)

where Cq is the set of classes that are potentially confusable with the class q, and where
Kq =

P
r2Cq

p(r) is a normalizing constant.

If Cq contains all classes in de�nition 4.3, then it is equivalent to de�nition 4.2.
From Theorem 4.1, it can be seen that the utility of a set of dependency variables

Zq measures how much Zq will increase the q-model's likelihood in the context of q relative
to how much Zq will increase the q-model's likelihood averaged in other contexts. Given

two possible dependency variable sets Z(a)q and Z(b)q , de�ne �
b!a

Lr(q) as the average change in

likelihood that occurs using Z(a)q instead of Z(b)q when evaluating the q model in the context

of r-sampled data. If U(X ;Z(a)q jq) > U(X ;Z(b)q jq) for all q, then

I(X ;Z(a)q jq)� I(X ;Z(b)q jq) >
X
r

p(r)Ir(X ;Z(a)q jq)�
X
r

p(r)Ir(X ;Z(b)q jq)
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q without considering all of Z. CCMI, on the other hand, is a function not just of Zq but
of the entire Z ensemble of variables.

Conditional mutual information I(X ;ZjQ = q) and utility5 are compared, for
compressed sub-band spectral envelopes, in Figures 4.8 and 4.9 for various values of q
spanning over di�erent phonemes. The utility plots show a type of discriminative loss for the
corresponding HMM. In other words, these plots show where in time-frequency additional
information exists that could potentially reduce recognition error. The conditional mutual
information plots show a similar pattern regardless of the condition. The utility plots,
on the other hand, show very di�erent patterns of loss for each condition. In particular,
plosives (d, k, b, and p) tend to have more discriminative loss across frequency within a
narrow-time region. Fricatives (f, s, th, and v) also show loss primarily over frequency but
the loss spans a greater temporal range. Other phonemes such as vowels (ae, ah, ih, and
iy) show loss both across time and frequency. For vowels, the least informative spectro-
temporal regions, however, are close in time and frequency. Nasals (m and n) and liquids (l
and r) show more complex patterns of loss over time and frequency. The patterns shown by
these discriminative loss functions are consistent with known spectro-temporal phonemic
characteristics (Clark & Yallop 1995).

4.4 Posterior Probability

In the previous section, a dependency variable selection algorithm was presented
that uses DCMI. The ultimate form of discriminability criterion, however, is the posterior
probability. According to Bayes decision theory, choosing the class with the largest class
posterior will minimize the probability of error. Furthermore, posterior-based training algo-
rithms are typically superior to pure likelihood-based training (Bahl et al. 1986; Brown 1987;
Ephraim et al. 1989; Ephraim & Rabiner 1990; Juang & Katagiri 1992; Juang et al. 1997;
Bourlard & Morgan 1994; Konig 1996). Therefore, a procedure to select dependencies that
more accurately approximate the posterior probability is desirable. In this section, it is
�rst shown how mutual information and the average posterior probability are essentially
equivalent. Next, it is shown that, under certain assumptions, selection rule 4.2 increases
an upper bound on the average posterior probability. Finally, dependency variable selection
algorithms are derived that directly increase the average posterior probability.

4.4.1 Mutual Information and Posterior Probability

If Q is a class random variable and X is a data random variable, then log p(QjX)
is also a random variable. The expected value of log p(QjX) is equal to the average log
posterior probability. The mutual information between X and Q is directly related to the
average posterior probability as is shown in the following theorem.

Theorem 4.3. Equivalence of Mutual Information and Class Posterior. Increasing
the mutual information between a feature random variable X and a class random variable Q
correspondingly increases the average posterior probability of Q given X, i.e., E[log p(QjX)].

5The �gure actually shows an approximation to utility. See Section 4.6.
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Proof. Consider the average log of the posterior over the data and over all classes.

E[log p(QjX)] =
X
q

p(q)

Z
p(xjq) log p(qjx)dx =

Z
log p(qjx)dF (x; q)

where dF (x; q) is the joint distribution over x and q (Grimmett & Stirzaker 1991). It can
be seen that this quantity is equal to �H(QjX) implying that:

H(Q) +E[log p(QjX)] = H(Q)�H(QjX) = I(Q;X)

Therefore, increasing the mutual information between X and Q increases the average poste-
rior and vice versa. Note thatH(Q) is una�ected by changes in the probabilistic relationship
between X and Q.

The theorem implies that adjusting the parameters of a classi�er by maximizing
the mutual information between the input and output will correspondingly increase the
average posterior probability. Classi�er training methods such as MMI (Bahl et al. 1986)
and MDI (Ephraim & Rabiner 1990) which maximize mutual information can therefore
correctly be called discriminative training methods. Furthermore, posterior-based training
methods (such as multi-layered perceptron training with softmax outputs (Bishop 1995))
are essentially increasing the mutual information between the input features and the output
class variables.

Looking back at the de�nition of discriminability given in Section 4.3, it can now
be seen that E[log p(QjX)] = Discriminability�H(Q) and that discriminability is equal to
I(Q;X). Therefore, increasing discriminability also increases average posterior probability.

4.4.2 DCMI and Posterior Probability

In this section, a comparison is made between DCMI and the posterior probability.
It will be shown that, under certain conditions, increasing the DCMI will increase an upper
bound on the posterior.

Consider the following form of posterior probability p(QjX;Z) whereX is a feature
random variable, Q is the class random variable, and Z are a set of dependency random
variables. The variable Z once again denotes the collection of variables used by all models.
That is, Z = fZ1[Z2[: : :[ZNg � Z where Z is the set of all possible dependency variables.

Consider the following form of the posterior probability p(qjX;Z) expanded, using
Bayes rule, as follows

p(qjX;Z) =
p(X jq;Z)p(qjZ)P
r p(X jr;Z)p(rjZ)

=
p(X jq;Zq)p(qjZ)P
r p(X jr;Zr)p(rjZ)

:

Note that Zq is presumably chosen so that X??(Z n Zq)jfZq; qg for all q and therefore
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p(X jq;Z) = p(X jq;Zq). It follows that:

E[log p(QjX;Z)]

=
X
q

p(q)

Z
p(x; zjq) logp(qjx; z)dxdz

=
X
q

p(q)

Z
p(x; zjq) log

�
p(xjq; z)p(qjz)P
r p(xjr; z)p(rjz)

�
dxdz

=
X
q

p(q)

Z
p(x; zjq) logp(xjq; z)dxdz+

X
q

p(q)

Z
p(zjq) log p(qjz)dz

�
X
q

p(q)

Z
p(x; zjq) log

"X
r

p(xjr; z)p(rjz)

#
dxdz

= �H(X jZ; Q)�H(QjZ)�
X
q

p(q)

Z
p(x; zjq) log

"X
r

p(xjr; z)p(rjz)

#
dxdz

From Jenson's Inequality, it follows that for any x and z:

log

"X
r

p(xjz; r)p(rjz)

#
�
X
r

p(rjz) log p(xjz; r)

Therefore,

E[log p(QjX;Z)]

� �H(X jZ; Q)�H(QjZ)�
X
q

p(q)

Z
p(x; zjq)

X
r

p(rjz) logp(xjr; z)dxdz (4.5)

= �H(X jZ; Q)�H(QjZ)�
X
q

p(q)

Z
p(x; zjq)

X
r

p(rjz) logp(xjr; zr)dxdz (4.6)

Equation (4.5) follows from Jensen's inequality and (4.6) follows since X is independent of
Z n Zq given Q = q and Zq.

Equation (4.6) can be simpli�ed further if the assumption is made that either
Z??Q or at least that Z has only a weak in
uence on Q (i.e., that I(Z;Q) is su�ciently
small). This approximation is true to a greater or lesser extent depending on the de�nition
of Z (more on this in Section 4.7). Also, since mutual information decreases with increasing
spectro-temporal distance in speech (Morris 1992; Morris et al. 1993; Yang et al. 1999),
if the location of Z is spectro-temporally distant from Q, the assumption becomes more
reasonable. This approximation and the de�nition of Z is further discussed in section 4.4.4.
Making this assumption, H(QjZ) � H(Q) and p(rjz) � p(r) yielding:

E(p(QjX;Z))

� �H(X jZ; Q)�H(Q)�
X
q

X
r

p(q)p(r)

Z
p(x; zrjq) log p(xjr; zr)dxdz (4.7)
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As in Theorem 4.3, quantities independent of the choice of Z can be added and
subtracted to both sides of this inequality without a�ecting an optimization procedure with
respect to the selection of Z. Therefore, adding the quantity

H(X jQ)+H(Q) +
X
q

X
r

p(r)p(q)

Z
p(xjq) log p(xjr)dx

to both sides of (4.7) produces:

I(X ;ZjQ)�
X
q

X
r

p(q)p(r)

Z
p(x; zrjq) log

p(xjr; zr)

p(xjr)
dxdz

= I(X ;ZjQ)�
X
q

X
r

p(q)p(r)Iq(X ;Zrjr)

= S(X ;ZjQ)

The preceding steps therefore prove the following theorem:

Theorem 4.4. Selection rule 4.4 increases an upper bound on the average pos-
terior probability if I(Q;Z) is small enough.

Increasing an upper bound could potentially reduce Bayes error, but it does not
necessarily reduce it. A selection procedure directly related to Bayes error is described in
the following section.

4.4.3 Posterior-based Dependency Variable Selection

Dependency variable selection rules may be derived directly starting from the
posterior probability. Observe once again at the average log posterior:

E(log p(QjX;Z)) =
X
q

p(q)

Z
p(x; zjq) logp(qjx; z)dxdz

= �H(QjX;Z)

Adding H(QjX) to both sides does not a�ect the choice of Z in an optimization procedure

E(log p(QjX;Z)) +H(QjX) = I(Q;ZjX)

Therefore, when choosing a collection of dependency variables Z � Z to maximize the re-
sulting average posterior, the Z chosen should maximize the conditional mutual information
between Q and Z given X . If Q and Z are independent given X , then Z is non-informative,
and does not help to increase the average log posterior probability which then degenerates
to the negative conditional entropy �H(QjX). The variable set Z should be chosen to
provide new information about the class variable Q not already provided by X . This is an
intuitively satisfying result since adding features containing only redundant information to
a classi�er provides no new information and should not grant any bene�t. Such a criterion,
in fact, could be used in a feature selection procedure | features could be added one at a
time with each newly chosen feature providing maximal new information.
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For the problem of selection Z for use by the class conditional models p(X jZq; q)
for each q, a more useful way to look at the average posterior probability is as follows.

E(log p(QjX;Z)) = �H(QjX;Z)

= �H(X jZ; Q)�H(QjZ) +H(X jZ)

Again, adding values that do not depend on Z leads to:

E(log p(QjX;Z)) +H(X jQ)+H(Q)�H(X)

= H(X jQ)�H(X jZ; Q) +H(Q)�H(QjZ)�
�
H(X)�H(X jZ)

�
= I(X ;ZjQ) + I(Q;Z)� I(X ;Z)

In this form, there are three contributions to the average posterior. In the �rst term, Z
provides new information about X that is not already provided by Q. This is essentially the
likelihood criterion described in Section 4.2. In the second term, Z provides information
about Q. Note, however, that even if Q and Z are marginally independent, Z can a�ect the
posterior probability of Q given X via the �rst term (see Section 4.7.2 for an example). In
the last term, the degree to which Z is informative about X in general (i.e., unconditional of
any class) decreases the posterior probability. This last term determines if the Z variables
help to distinguish one class from another. Discriminability requires that Z reduce the
entropy of X in the context of Q, but not reduce the entropy of X as much in general.

A posterior-based dependency selection rule should choose the �xed-size subset
Z � Z that results in the smallest decrease in average posterior probability. This choice
(and class speci�c choices Zq for all q) will a�ect only the class conditional observation
probability model p(X jZ; Q) (or p(X jZq; q)). The observation models, however, are found
only in the quantities I(X ;ZjQ) and I(X ;Z) and not in the quantity I(Q;Z). This can be
seen from the following. First,

I(X ;ZjQ) = H(X jQ)�H(X jQ;Z)

= �

Z
log p(xjq)dF (x; q)+

Z
log p(xjz; q)dF (x; z; q)

= �

Z
log p(xjq)dF (x; q)+

Z
log p(xjzq; q)dF (x; zq; q)

= I(X ;ZjQ)

where zq is an instance of Zq and where the following property is assumed: X??(Z n
Zq)jfZq; Q = qg. Second,

I(Q;Z) = H(Q)�H(QjZ)

= �

Z
log p(q)dF (q) +

Z
log p(qjz)dF (q; z)

where in this case z is an instance of Z. Therefore, the choice of Z does not a�ect this



4.4. POSTERIOR PROBABILITY 85

quantity. Third,

I(X ;Z) = H(X)�H(X jZ)

= �

Z
log p(x)dF (x) +

Z
log p(xjz)dF (x; z)

= �

Z
log p(x)dF (x) +

Z
log

 X
r

p(xjr; zr)p(rjz)

!
dF (x; z)

�
= IZ(X ;Z)

where again zr is an instance of Zr and z an instance of Z . It can be seen, therefore, that
this latest quantity is dependent on both the entire set Z for the quantities p(rjz) but also
on Z for the class conditional observation densities. It is therefore written as IZ(X ;Z).

Using the above, the best choice for Z is found using:

Z� = argmax
Z

I(X ;ZjQ) + I(Q;Z)� IZ(X ;Z)

= argmax
Z

I(X ;ZjQ)� IZ(X ;Z)

This leads to the following selection rule:

Selection Rule 4.5. Maximize Posterior. Choose Z to maximize

I(X ;ZjQ)� IZ(X ;Z):

The preceding can be taken as a proof of the following theorem:

Theorem 4.5. Selection rule 4.5 better approximates the average posterior prob-
ability and therefore decreases Bayes error.

4.4.4 Relationship to HMM Posterior Probabilities

The previous dependency selection methods have been motivated by optimizing
what could called the \local" posterior probability of a hidden state Q given the features,
i.e., p(QjX ;Z). This was described in Figure 4.5, where hidden variables at other times
were ignored. HMM-based pattern classi�cation, however, is performed by selecting the
HMM M� that has the maximum \global" posterior probability given the data:

M� = argmax
M

p(M jX1:T)

where M indicates a distinct HMM (representing a word, phrase, sentence, etc.), and X1:T

is a length T set of observation vectors. Similar to (Bourlard & Morgan 1994), p(M jX1:T)
can be expanded as

p(M jX1:T) =
X
q1:T

p(M; q1:T jX1:T) =
X
q1:T

p(q1:T jX1:T )p(M jq1:T ; X1:T)
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where q1:T is a particular HMM state sequence. This leads to:

p(M jX1:T) =
X
q1:T

p(M jq1:T ; X1:T)p(q1:T jX1:T)

=
X
q1:T

p(M jq1:T ; X1:T)
Y
t

p(qtjq<t; X1:T)

Where the last equality uses the chain rule of probability. It is therefore important to
estimate the local conditional posterior probabilities p(qtjq<t; X1:T). Proceeding again by
taking the expected value of the log posterior probabilities yields:

E[log p(QtjQ<t; X1:T)]

= �H(QtjQ<t; X1:T)

= �H(QtjQ<t; Xt; X:t)

= �H(XtjQt; Q<t; X:t)�H(QtjQ<t; X:t) +H(XtjQ<t; X:t)

If it is assumed that Xt is independent of Q<t given Qt, and that Xt is independent of Q<t

given the entire remaining observation environment X:t, then this leads to:

E[log p(QtjQ<t; X1:T)]

= �H(XtjQt; X:t)�H(QtjQ<t; X:t) +H(XtjX:t)

to which adding H(XtjQt) +H(QtjX:t)�H(Xt) results in:

I(Xt;X:tjQt) + I(Qt;Q<tjX:t)� I(Xt;X:t):

Once again, the entropy of the observation probability models given the dependency vari-
ables a�ects only the �rst and the third terms. The second term may be ignored.

Taking Z = X:t, the problem of choosing dependency variables leads to the fol-
lowing:

Selection Rule 4.6. Maximize Global Posterior. Choose Z � Z = X:t, to maximize
the quantity:

I(X ;ZjQ)� IZ(X ;Z):

Like rule 4.5, this rule consists of the subtraction of an unconditional mutual in-
formation term from a conditional mutual information term. In this rule, however, the
dependencies may be chosen from the past or the future, i.e., Z = X:t. This seemingly
minor di�erence can cause signi�cant complications because the resulting conditional inde-
pendence assumptions could cause directed loops in the corresponding dependency graph.
An accurate implementation would represent this as a Markov random �eld requiring a
global normalization. This rule will not be explored in this work.6

6See, however, Chapter 6 which presents results using an implementation that, ignoring global normal-
izations, uses dependency variables from the future, the present, and the past.
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4.5 Summary of Dependency Selection Rules

The preceding sections listed a variety of rules for selecting the variable set Z for
use in the augmented observation model p(X jQ;Z). These rules are summarized in this
section. The �rst two items are included here just for completeness. All the rules assume
some �xed upper limit on the number of entries in Z.

� Choose some particular subset: Z � X<t.

� Choose a random subset: Z � X<t.

� Rule 4.1: Choose Z� = argmax
Z

I(X ;ZjQ) for Z � X<t.

� Rule 4.2: For each q, choose Z�q = argmax
Zq

I(X ;ZqjQ = q) for Zq � X<t.

� Rule 4.3: For each q, choose Z�q = argmax
Zq

U(X ;Zqjq) for Zq � X<t.

� Rule 4.4: Choose Z� = argmax
Z

S(X ;ZjQ) where Z = fZ1 [ : : :[ Zng and Zq � X<t

for each q.

� Rule 4.5: Choose Z� = argmax
Z

I(X;ZjQ)� IZ(X ;Z) for Z � Z = X<t.

� Rule 4.6: Choose Z� = argmax
Z

I(X;ZjQ)� IZ(X ;Z) for Z � Z = X:t.

Some of these rules, along with the approximation algorithm described in the next
section, will be evaluated in a complete automatic speech recognition Chapter 6.

4.6 Approximation Algorithms for Dependency Selection

The dependency selection algorithms presented in the previous sections involve
the computation of mutual information between multi-dimensional vectors evaluated under
multiple probabilistic contexts. Clearly, to compute such quantities directly would be com-
putationally prohibitive. In this section, a tractable heuristic algorithm is developed for
dependency selection. The heuristic uses sub-optimal greedy search strategies with restarts
and intuitively arguable approximations to upper and lower bounds. Although several de-
pendency rules were presented in Section 4.5, the heuristic is applicable to all of them | the
resulting heuristic is such that a certain dependency selection rule is obtained by \plugging
in" the appropriate parameters.

To start, dependencies are considered and added individually for each feature
element of X . Let X i

t be the i
th element of the vector Xt. For each i, dependency variables

are chosen for X i
t from the set X<t independently of the choices made for Xj

t where j 6= i.
Assuming that the probability model for Xt includes intra-vector dependence (e.g., a full-
covariance Gaussian, or Gaussian Mixture), this approximation at worst allows the addition
of redundant variables because the information provided by a variable added for X i

t might
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indirectly have already been included via Xj
t and Xj

t 's dependence with X i
t . The above

approximation reduces the problem to one of evaluating quantities such as I(X i
t ;Zjq) where

X i
t is a scalar random variable and Z is a vector random variable from X i

t 's context.

A second di�culty stems from evaluating mutual information between vectors
rather than scalars. The chain rule of mutual information (Cover & Thomas 1991) can be
stated as follows:

I(X i
t;Z1:N jQ) =

X
j

I(X i
t;Zj jZ1:(j�1); Q)

This suggests that the quantity I(X i
t;Z1:N jQ) can be approximated by a greedy algorithm:

choose Z1 so that I(X i
t;Z1jQ) is large, choose Z2 so that I(X i

t;Z2jZ1; Q) is large, choose
Z3 so that I(X i

t ;Z3jZ1:2; Q) is large, and so on. Because of this approximation, however,
dependency selection choices made early will limit the set of possible choices available later
| each selection that is chosen greedily based on the current criterion might not lead to
the global optimum. Therefore, the selection order must be chosen intelligently (see below)
and the heuristic will allow for restarts.

A third di�culty arises from the evaluation of the conditional mutual information
I(X i

t ;ZjjZ1:j�1; Q). This quantity captures the notion that a dependency variable should
not be added if it contains only redundant information already provided by previously
added variables. More formally, given Q, no variable Zi, i < j in the already chosen set of
dependency variables Z1:j should have a Markov blanket (Pearl 1988) in Z1:j shielding it
from X i

t . To approximate a lower bound of this quantity, I(X i
t;Zj jZ1:j�1; Q) is considered

large if both I(X i
t;Zj jQ) is large and if I(Zj ;ZkjQ) is small for k < j. This is depicted in

Figure 4.10 (in the �gure, dependence on Q is assumed). In the �gure, Z1:3 have already
been chosen and Z4 is being evaluated as a candidate dependency variable. Z4 will be chosen
only if I(X ;Z4jQ) is large, and if I(Z4;Zj jQ) is small for j 2 f1; 2; 3g. This heuristic can go
wrong if the information provided by Z4 about X is di�erent in nature than the information
provided by Zj , j < 4 about X and if the variables Z4 and Zj , j < 4 are strongly dependent.

It will sometimes be necessary to approximate an upper bound to I(X i
t ;ZjjZ1:j�1; Q)

as well. The approximation is made that conditioning on previously selected dependency
variables will not increase mutual information which is of course not true in general. Ac-
cordingly, the quantity I(X i

t ;ZjjZ1:j�1; Q) is considered small if I(X i
t;Zj jQ) is small.

Several of the dependency selection rules summarized in Section 4.5 require the
computation of the cross-context conditional mutual information. Given the above approx-
imations, this computation could be performed. For each element of X , for each candidate
dependency variable, and for each q, this requires computing jCqj CCCMI univariate en-
tities, where jCqj is the number of elements in the confusability class for q. This leads to
a total of jX jjZj

P
q jCqj entities, where jX j is the dimension of X , and where jZj is the

total possible number of dependency variables considered. This is not as bad as it sounds if
mutual information is computed by �rst calculating the relevant distributions (requiring the
majority of the computation), and then computing the KL-distance between the joint distri-
bution and the product of the marginals (see Appendix C). In such a case, the distributions
can be re-used. This requires computing jX jjZjjQj distributions, where jQj is the number
of classes (this is needed anyway to compute conditional mutual information I(X i

t ;Zjq) for
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Z1

Z2

X

Z4

Z3

Figure 4.10: Approximating I(X ;Z4jZ1; Z2; Z3) using only I(X ;Z4) and I(Z4;Zj) for j 2
f1; 2; 3g.

each i, Z 2 Z , and q). Using the resulting distributions, producing the CCCMI for each
case requires computing jX jjZj

P
q jCqj additional univariate KL-distances.

As an alternative, the cross-context conditional mutual information Ir(X
i
t ;Zjq) for

some scalar Z can be approximated using the conditional mutual information I(X i
t ;Zjr),

a \guess" at an upper bound. This can be argued by observing the di�erence between the
two quantities:

I(X ;Zjr)� Ir(X ;Zjq)

=

Z
p(x; zjr) log

p(x; zjr)

p(xjr)p(zjr)
dxdz �

Z
p(x; zjr) log

p(x; zjq)

p(xjq)p(zjq)
dxdz

=

Z
p(x; zjr) log

p(x; zjr)p(xjq)p(zjq)

p(x; zjq)p(xjr)p(zjr)
dxdz

=

Z
p(x; zjr) log

p(xjz; r)p(xjq)

p(xjz; q)p(xjr)
dxdz

=

Z
p(x; zjr) log

p(xjz; r)

p(xjz; q)
dxdz �

Z
p(x; zjr) log

p(xjr)

p(xjq)
dxdz

=

Z
p(x; zjr) log

p(xjz; r)

p(xjz; q)
dxdz �

Z
p(xjr) log

p(xjr)

p(xjq)
dx

= D(p(X jZ; r)jjp(XjZ; q))�D(p(X jr)jjp(Xjq))

where D(p1jjp2) is the KL-distance between distributions p1 and p2. While there is no
guarantee that this di�erence is non-negative, intuitively it can be argued that additionally
conditioning on Z as in D(p(X i

tjZ; r)jjp(X
i
tjZ; q)) is not likely to decrease the KL-distance

between p(X i
t jr) and p(X

i
t jq). This is because, for r 2 Cq, the quantity D(p(X

i
t jr)jjp(X

i
tjq))

is small (confusable probability models should typically have a small KL-distance). Also,
Z is chosen to highlight rather than suppress the di�erences between the distribution of X i

t

given q and the distribution of X i
t given r. It is unlikely that such a chosen Z will result in a

lower KL-distance, even if selected using I(X i
t ;Zjr) which evaluates the entropy reduction

of a di�erent probabilistic model than does Ir(X i
t ;Zjq). Therefore, the following relation is
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assumed typical for r 2 Cq.

I(X i
t;Zjr) � Ir(X

i
t ;Zjq)

Choosing a Z that minimizes the cross-context conditional mutual information Ir(X
i
t ;Zjq)

thus becomes choosing one that minimizes I(X i
t;Zjr). Using a liberal estimate for Cq (i.e.,

Ĉq � Cq as an estimate of Cq), results in a stronger constraint on the chosen Z. A liberal Ĉq

potentially eliminates some useful dependencies, but any remaining dependencies will still be
informative and discriminative for the confusable classes. Cq can therefore be approximated
with a larger set, perhaps even the entire set of states (sans q). This approximation requires
no additional computation beyond the calculation of the original jX jjZjjQj distributions.

In the preceding paragraphs, phrases such as \large enough" and \small enough"
were used. In general, there is no way to tell how large or small a particular parameter
should be. In order to achieve control of these parameters in di�erent scenarios, percentiles
are used to specify thresholds. For example, suppose there are M dependency variables
Zk; k = 1 : : :M to choose from. The condition \I(X ;Zk) is large" is met by the condition
jfj : I(X ;Zk) > I(X ;Zj)gj > �M for some 0 < � < 1 speci�ed as an input parameter to
the heuristic. The value of � determines the signi�cance required of a particular quantity.
This condition will be denoted by I(X ;Zk) > �� for some � .

INPUT: q, i, Z , M , S(�), �u, �u, �q, �c, �g, Cq

OUTPUT: Z

Set Z = ;
Sort Zj 2 Z into an order decreasing by S(�)
Repeat over j until S(Zj) < min (��u ; �u) or jZj =M :

If Zj satis�es all the following criteria:
1) I(X i

t ;Zj jq) > ��q
2) For each Z 2 Z; I(Zj;ZjQt) < �gI(Zj ;X

i
tjq)

3) I(X i
t ;Zj jCq) < ��c

then add Zj to Z.

Figure 4.11: Dependency selection heuristic: this algorithm chooses the dependency vari-
ables for the ith feature position of Xt and for class q.

These approximations lead to the following algorithm for choosing Zqi for each q
and i shown in Figure 4.11. Again, the parameter Z is the entire set of possible dependency
variables that may be considered. Typically, Z contains all of the scalars contained within
Xt�m:t�1 for somem > 1. In some cases, Z might contain all the scalars within fXt�m:t+ngn
fX i

tg for some m � 0 and n � 0 (see Section 4.4.4). In either case, m and n may also be
considered input parameters that control the maximum temporal extent of the candidate
dependency variables. The parameter M is the maximum number of dependency variables
allowable for a particular element of X .

The function S(�) controls the greedy selection order for the variables Z 2 Z. Typ-
ically, S(Z) will be an approximation of a scalar version of the utility (or the confusability
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re�ned utility) function. In other words, for a particular i and q,

S(Z) = Û(X i
t ;Zjq) = I(X i

t;Zjq)�
1

Kq

X
r2Cq

p(r)I(X i
t;Zjr)

which uses the CCCMI approximation mentioned above. A modi�cation which uses the
true CCCMI is:

S(Z) = U(X i
t ;Zjq) = I(X i

t ;Zjq)�
1

Kq

X
r2Cq

p(r)Ir(X
i
t ;Zjq)

For rules 4.5 and 4.6, the selection order function becomes:

S(Z) = I(X i
t;Zjq)� I(X i

t ;Z)

which produces the set of q speci�c dependencies. In any case, S(�) should select the best
(i.e., most informative and discriminative) candidate dependency variables sooner rather
than later.

The parameters �u and �u place a lower bound on Z according to S(�). The
parameter �u is a percentile from the set of values S(Zj) for all j. The parameter �u is
a hard threshold intended to disallow any Z for which S(Z) < �u. For example, �u = 0
would preclude the addition of any negative S-valued (i.e., anti-discriminative) variables
regardless of the percentile threshold.

The candidate Z must also satisfy three criteria. Criterion one ensures that any
added dependency provides a signi�cant amount of information (determined by the thresh-
old �q) to the current model not already provided by Qt.

Criterion two is a redundancy check, and puts an upper bound on the amount of
information a dependency variable may have about previously added dependency variables
using the approximation mentioned above and described in Figure 4.10. The upper bound
�g is a relative value determined by a fraction of the information between Zj and X i

t .
Therefore, the upper bound can change for each Zj .

Criterion three essentially places an upper bound �c on the prior-weighted entropy
reduction of X i

t by Z when evaluating the current model q in other potentially confusable
contexts Cq. As listed in the �gure, criterion three uses the approximation Ir(X ;Zjq) �
I(X ;Zjr) in the following:

I(X i
t ;ZjjCq)

�
=

P
r2Cq

p(r)I(X i
t;Zjjr)P

r2Cq
p(r)

�

P
r2Cq

p(r)Ir(X i
t ;Zj jq)P

r2Cq
p(r)

If the true cross-context conditional mutual information is used, criterion three becomes:P
r2Cq

p(r)Ir(X
i
t ;Zj jq)P

r p(r)
< ��c

The two previous cases approximate utility (De�nition 4.2), where Z is chosen such that
the q model using Z has only a small entropy reduction when evaluated in the r context,
for r 2 Cq. Since utility is an approximation of DCMI, these conditions also approximate
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selection rule 4.4. Finally, to approximate the posterior based selection (rules 4.6 and 4.6),
criterion three becomes:

I(X i
t ;Zj) < ��c

which chooses a Z that should in general not reduce the entropy of X .
The parameter Cq for each q de�nes the set of classes that could be confusable

with class q. These clusters can be determined either using high-level knowledge about the
class de�nitions (e.g., phonemes, syllables, etc.) or could be derived using likelihood scores
as a similarity measure in an automatic clustering algorithm (Povey & Woodland 1999;
Leggetter 1995; Odell 1995).

With this heuristic, it is possible to end up with fewer than N (or even zero)
dependencies if no satisfying Z 2 Z exists for the current thresholds. Also, there may be
cases where some feature elements have many dependencies and others have none. Note that
the algorithm requires only the computation of pairwise (i.e., scalar) mutual information,
conditional mutual information, or perhaps cross-context conditional mutual information
for a given labeling scheme. In chapter 6, these heuristics are evaluated in a complete speech
recognition system.

4.7 Buried Markov Models

The previous sections describe methods that can add statistical dependencies to an
HMM. The results are called Buried Markov Models7 (BMMs) because the hidden Markov
chain in an HMM is further hidden (or buried) by speci�c cross-observation dependencies
whose placement is determined via statistical measurements made on signals representing
natural objects.

Like an HMM, a BMM can be viewed as a graphical model (Lauritzen 1996). Re-
call Figure 3.4 that showed the graphical model representation of an HMM. Figure 4.12
shows a similar diagram for a BMM. Relative to the HMM plot, the graph has been aug-
mented with cross-observation dependency edges between individual observation elements.
The resulting graph therefore depicts the conditional independence assumptions between
individual observation elements made by a BMM.

The �gure shows those dependencies only for a particular assignment to the hidden
variables. A di�erent hidden Markov chain assignment will result in di�erent Zq's at each
time and therefore a di�erent set of cross-observation dependencies. It is more precise
therefore to categorize a BMM as a Bayesian multinet (Geiger & Heckerman 1996), or
since there is a temporal element to the graph, perhaps a \dynamic Bayesian multinet".
It is possible, of course, to use a graphical model to describe the dependencies under all
hidden-variable assignments either using deterministic nodes as multiplexors or by drawing
arcs for the dependency edges possible under all hidden state assignments. In this latter
case, it is assumed that the parameters (e.g., zeros) of the model can cause the observation
variables to ignore certain dependency variables for certain hidden state values. In any

7Other names considered include stealth Markov models, interred Markov models, natural Markov models,
ecologically covered Markov models, vital statistics Markov models, dead and buried Markov models, hidden
Markov super-models, etc.
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Qt qt= Qt 1+ qt 1+=Qt 1– qt 1–=

X

Qt 2+ qt 2+=

Y

Figure 4.12: Graphical Model view of a BMM

case, such depictions are less desirable because the graphs very quickly become unwieldy
and because they do not depict the various conditional independence properties for di�erent
hidden Markov chain values.

4.7.1 BMM Structure Learning

Viewing a BMM as a graphical model, it can be seen that the procedures described
in previous sections essentially learn the structure of the model in terms of selecting new
dependency edges. Bayesian network structure learning methods (Heckerman et al. 1994;
Heckerman 1995; Friedman 1998; Chow & Liu 1968; Meila 1999; Sahami 1996) were de-
scribed in Chapter 2. Most of the methods investigated in the literature so far, to the
extent of this author's knowledge, concentrate on changing the structure of a network to
better model the true class-dependent data distribution. As mentioned before, several of
the BMM structure learning rules concentrate on increasing the model's structural discrim-
inability | i.e., for each class, the goal is to adjust the corresponding model so that it
better represents only the unique and natural statistical dependencies for each class. Many
structure learning methods typically learn only the likelihood-maximizing structure.

While the BMM structure learning algorithms can be discriminative, there are still
two training choices: likelihood based and discriminative. As argued in Section 3.3.10, a
discriminatively structured model will represent only those statistical properties unique to
its class. When such a model is evaluated in a di�erent context with di�erent statistical
properties, the model would produce a lower score. While model's parameters might not
have been trained to produce a lower score, its structure is simply incapable of representing
the typical properties of rival classes. When trained using a maximum likelihood based
scheme, the result could be called a discriminatively structured but non-discriminatively
trained system. Chapter 5's presents an EM algorithm for maximizing the likelihood of



94 CHAPTER 4. BURIED MARKOV MODELS

BMMs.
Discriminative training methods such as MMI (Bahl et al. 1986), MDI (Ephraim

& Rabiner 1988; Ephraim et al. 1989), and MCE (Juang & Katagiri 1992; Juang et al.
1997) can also be used to train a discriminatively structured model such as a BMM. The
result could be called a discriminatively structured and trained system.

Table 4.1 lists a few examples of di�erent discriminative or maximum-likelihood
based parameter or structure training procedures. Learning Bayesian networks is described
in (Heckerman et al. 1994; Heckerman 1995). The structural EM algorithm is described
in (Friedman 1998). Hybrid ANN/HMM systems are described in (Bourlard & Morgan
1994). The REMAP algorithm is described in Konig (1996). The various forms of HMM
extensions (AR-HMM, Segmental HMM, Trended HMM, etc) were described in Section 3.5
and are summarized in Ostendorf et al. (1996).

Discriminative Training Distribution Estimation

Discriminitive
Structure 
Determination

Distribution
Structure
Determination

By-hand
Structure
Selection

o BMM, rules 4.3-4.6 
    with ML training.

o BMM, rules 4.3-4.6 with
   MCE/MMI training.

o BMM, rules 4.1,4.2 with
   MCE/MMI/MDI training

o BMM, rules 4.1,4.2
    with ML training

o Hybrid ANN/HMM

o REMAP

o MCE/MMI/MDI trained:
    HMM, AR-HMM,
    Segmental HMM,
    Trended HMM, etc.

o ML Trained:
    HMM, AR-HMM
    Segmental HMM,
    Trended HMM, etc.

o Other likelihood-
   based training.

o Learning Baysian
    Networks
o Structural EM

Table 4.1: Examples of di�erent parameter value and structure selection methods.

4.7.2 BMM Instantaneous Speaker Adaptation

The BMM graphical model in Figure 4.12 makes a distinction between two separate
observation vector streams X1:T and Y1:T . For an HMM,

p(X1:T ; Y1:T) =
X
q1:T

Y
t

p(Xt; Ytjqt)p(qtjqt�1):

and p(Xt; Ytjqt) = p(XtjYt; qt)p(Ytjqt). In Figure 4.12, it is assumed that Yt consists of a set
of variables that are marginally independent of qt but are not independent of qt given Xt.
This is the \explaining away" phenomena described in Section 2.
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Modeling a relationship between Yt and qt when they are independent is at best
super
uous and at worst detrimental. At best the addition of the irrelevant dependency
p(Ytjqt) to the model will have no a�ect on error performance, but it will require more
memory and computation. At worst, including a dependency between two variables that
are independent could lead to a larger demand on training data size, and the possibility of
over-training would increase. The extraneous dependency and its parameters might interfere
with the proper training of the remaining parameters. This is essentially a bias-variance
issue (Bishop 1995). If Yt and qt are indeed independent, modeling a relationship between
the two for a �xed training set size would cause the variance of the classi�er to increase
(i.e., the relationship potentially could allow the representation of idiosyncratic relationships
in the data) while the bias would not decrease (p(Ytjqt) adds no new information to help
classi�cation when Yt and qt are independent).

In automatic speech recognition, \speaker adaptation" refers to a method whereby
the parameters of a previously trained system are updated with information obtained from
a new speaker. For example, in (Leggetter & Woodland 1995; Leggetter 1995), the means
of a Gaussian mixture HMM are re-trained with a form of EM using new speaker data. It
has been found that adapting to a new speaker, essentially turning a speaker independent
system into a speaker dependent one, reduces word error.

With the BMM described in the �gure, p(Ytjqt) is ignored but the dependency
variables Z may consist of elements from both the X and Y streams. When using BMMs
for speech recognition, Xt could be standard speech features that are known to convey
information about the hidden state (e.g., MFCCs, LPC, etc.) and Yt could be acoustic
features that provide information about the current speaker. Such features could, for ex-
ample, include higher-order cepstral coe�cients (Rabiner & Juang 1993), or estimates of
vocal tract length, gender, speaking rate, noise condition, etc. These types of features will
in
uence the statistics of the acoustic features Xt but will have little if any dependence with
the hidden state (e.g., phoneme, syllable, etc.). The BMM structure learning procedure can
be used to decide which features are useful for each hidden state. The resulting system can
be thought of as an instantaneous speaker adaptation procedure.

A B

CD

A B

CD

A B

CD

Figure 4.13: Decomposition of joint probability.

4.7.3 BMMs and MRFs

In section 4.4.4, it was suggested that dependencies could be added not just from
the past but from the future as well. In other words, the set Z could take values from X:t

rather than just X<t. While this is possible, the danger is that the resulting dependencies
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could create a directed cycle in the corresponding graph. The problem with directed cycles
can easily be seen from the following simple example. Given four random variables, A, B,
C, and D, the chain rule of probability allows the joint distribution to be written as

p(A;B;C;D) = p(A)p(BjA)p(CjA;B)p(DjA;B;C);

shown graphically on the left in Figure 4.13. If it is (validly) assumed that C is independent
of A given B, and that D is independent of A and B given C, then we get

p(A;B;C;D) = p(A)p(BjA)p(CjB)p(DjC)

shown in Figure 4.13 in the center. This decomposition is still a valid probability distribu-
tion. If it was decided that A should also somehow depend on D, then

p(A;B;C;D) 6= p(AjD)p(BjA)p(CjB)p(DjC)

because the resulting product of conditional probabilities do not necessarily integrate to
unity. In such a case, one must use a product of potential functions and globally normalize
to re-obtain a valid distribution, as in:

p(A;B;C;D) =
�A;D(A;D)�B;A(B;A)�C;B(C;B)�D;C(D;C)

�A;B;C;D

where �A;B;C;D is a normalization constant. The resulting distribution becomes a Markov
random �eld (e.g., the right in Figure 4.13) and the problem inherits all the associated
complexities due to non-decomposable graphs (Lauritzen 1996).

There are several ways to overcome such di�culties with BMMs. First, depen-
dencies could be allowed only from the past as was done for most of the selection rules
and as is depicted in Figure 4.12. Second, since a BMM is a Bayesian multinet, as long as
there are no directed cycles for any possible assignment to the hidden Markov chain, then
the normalization problem does not arise. Extending the simple example above, suppose
there is a 0/1-valued switching variable S. A valid decomposition of the joint probability
of A,B,C, and D could be the mixture:

p(A;B;C;D)

=
X
s

p(A;B;C;D; S = s)

= p(AjD;S = 0)p(BjA; S = 0)p(CjB; S = 0)p(DjS = 0)p(S = 0)

+p(AjS = 1)p(BjA; S = 1)p(CjB; S = 1)p(DjC; S = 1)p(S = 1)

In this form, a direct dependence between A and D is represented when S = 0 but not
when S = 1. For an BMM, the joint probability could be represented as:

p(X1:T ) =
X
q

Y
t

p(Xtjparents(q; t; Xt); qt)p(qtjqt�1)

where the parents() function is such that for a given value of q (i.e., hidden Markov chain
assignment), no directed cycles result in the corresponding graph. An example is shown in
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Figure 4.14. Ensuring that this condition holds, however, can be di�cult because the exis-
tence of directed loops depend on the intra-vector dependencies implicit in the observation
models p(Xtj�).

An alternative approach is to allow loops, and use a form of loopy belief propa-
gation, an approximate inference procedure (Weiss Submitted) that tends to work well in
practice. Finally, arbitrary dependencies could be allowed resulting in a MRF version of an
BMM and necessitating a global normalization distribution of the form:

p(x1:T ) =

P
q

Q
t p(xtjzt; qt)p(qtjqt�1)R P

q

Q
t p(xtjzt; qt)p(qtjqt�1)dx1:T

:

In this work, for simplicity, only the �rst case is considered. One case in Chapter 6, however,
evaluates a form of a single-iteration loopy propagation where Z may contain variables from
the future.

Q
t-1 = q

t-1
Q

t = q
t

Q
t+1

= q
t+1 Q

t-1 = q'
t-1

Q
t = q'

t
Q

t+1
= q'

t+1

X X

Figure 4.14: BMM dependencies depend on the value of the hidden variables.

Providing yet another alternative, the heuristic dependency selection algorithm
described in Section 4.6 chooses dependencies individually for each element of Xt. This al-
lows the possibility that a dependence variable could be chosen from the same time frame.
For example, the dependencies for X i

t could include X
j
t where j 6= i. If a full covariance

Gaussian distribution is used for the observation models, such dependencies would be super-

uous. With diagonal covariance or a mixture of diagonal covariance Gaussians, choosing
such dependencies could enrich the model if appropriate normalization is performed. In this
case, however, only a local normalization is required. These sparse covariance matrices are
discussed further in Chapter 7.

4.7.4 BMM Complexity

In general, adding conditional dependencies in a DBN can signi�cantly increase the
complexity for probabilistic inference and learning. In fact, for the junction tree algorithm,
the complexity (Smyth et al. 1996; Pearl 1988) is O(

PT
i=1 s(Ci)) where T is the number of

resultant cliques in the junction tree, and s(Ci) is the size of the state space for clique Ci. For
an HMM with T time-steps and N states, there are O(T ) cliques each with at most a state
space size of N2 resulting in the O(TN2) complexity we saw above. For a corresponding
BMM, there are also O(T ) cliques, but because we are only adding conditional dependencies
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between observations, they do not increase the state-space size of the resulting cliques.
There is, however, a constant cost associated with the number of additional dependency
edges. The BMM complexity therefore is O(TN2M) where M is the maximum number of
dependency edges per time frame. In a BMM, the extra dependency structure is sparse and
can change for each hidden state value at each time. Therefore, M is a loose upper bound.
In the average case, the computational and memory requirements of a BMM will be less
than the O(TN2M) complexity �gure implies. Even in the worst case, however, a BMM
only adds a factor of M in complexity over an HMM, but potentially with signi�cantly
enhanced modeling power. And the complexity grows only linearly with M .

4.8 Discussion

This chapter has introduced a variety of information-theoretic discriminative cri-
teria that can be used to extend an HMM's statistical dependencies. The method can seen
as a way to produce structurally discriminative models. Up to now, a BMM implementation
has not been described. In Chapter 5, Gaussian mixture HMMs are extended to allow for
the dependencies speci�ed by a BMM. The result will be called Gaussian mixture BMMs.
This implementation is tested on speech corpora as reported in Chapter 6.
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Switching Gaussian Mixtures for

BMMs
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In Chapter 4, a method was presented that can augment the underlying statistical
dependencies of an HMM but a speci�c implementation was not given. In this chapter,
an new method is proposed for this purpose. The method is a generalization both of
Gaussian mixture HMMs and auto-regressive (or conditionally Gaussian) HMMs. It allows
the dependency variables to a�ect the underlying distribution in signi�cant ways yet has
relatively e�cient EM update equations for maximum-likelihood parameter estimation.

In this chapter, maximum likelihood parameter estimation and the EM algorithm
are reviewed �rst. Then, EM update equations are derived for Gaussian mixtures and
for Gaussian mixture HMMs (i.e., the Baum-Welch algorithm).1 Then switching Gaussian

1These three sections are a shortened version of Bilmes (1997).
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mixtures, the method that implements BMM dependencies, are de�ned and new EM update
equations are provided.

5.1 Maximum-likelihood parameter estimation

The maximum likelihood procedure for parameter estimation attempts to estimate
the parameters values of a model that most accurately explain a given sample of data. There
is some model density function p(xj�) that is governed by the set of parameters � (e.g.,
p could be a Gaussian and � could be the mean and covariance of that Gaussian). There
is also a sample of data x of size N , supposedly drawn i.i.d. from the underlying true
distribution where x = fx1; : : : ; xNg. The probability of the data under the model is given
by:

p(xj�) =
NY
i=1

p(xij�) = L(�jX)

This function L(�jx) is referred to as the likelihood of the parameters � given the data
sample x (or just the likelihood function). The likelihood is viewed as a function of the
parameters � for a �xed data set. The maximum likelihood problem is to �nd the � that
maximizes L, i.e.:

�� = argmax
�

L(�jx)argmax
�

logL(�jx)

The di�culty of this problem depends on the form of p(xj�). If, for example,
p(xj�) is a single component Gaussian distribution and � = (�; �2), then setting the
derivative of log(L(�jx)) to zero will result in analytical equations for � and �2. For many
problems it is not possible to �nd such analytical expressions and an iterative method such
as EM or gradient descent (Bishop 1995) must be used.

5.2 The EM Algorithm

The EM algorithm (Dempster et al. 1977; Redner & Walker 1984; Ghahramami &
Jordan 1995; Jordan & Jacobs 1994; Bishop 1995; Wu 1983; McLachlan & Krishnan 1997)
can be used to �nd a maximum-likelihood parameter estimate for a model given a data set
that is incomplete or has missing values.

There are two main applications of the EM algorithm. The �rst occurs when the
data indeed lacks certain values due to problems with or limitations of the observation
process. The second occurs when optimizing the original likelihood function is analytically
intractable but the function can be simpli�ed by assuming the existence of and values for
additional but missing (or hidden) parameters. The latter application is more common in
the computational pattern recognition community.

The random data X is assumed to be incomplete, and the complete data V =
(X;W), where W are the hidden or missing values, is described by the complete joint
density function:

p(Vj�) = p(X;Wj�)
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With this new density function, a new likelihood function can be de�ned, L(�jV) =
L(�jX;W) = p(X;Wj�), called the complete-data likelihood. Note that the complete-
data likelihood is a true random variable because the missing information W is unknown,
random, and presumably governed by an underlying distribution. The original likelihood
L(�jX) is referred to as the incomplete-data likelihood function.

The EM algorithm �rst �nds the expected value of the complete-data log-likelihood
log p(x;Wj�) with respect to the unknown data W given the observed data x and some
current parameter estimates governing the distribution of W. An auxiliary function is
de�ned as:

Q(�;�(i�1)) = E
h
log p(x;Wj�)jx;�(i�1)

i
(5.1)

where �(i�1) is the current or guessed parameter estimate and is used to evaluate the
expectation. The quantity � comprises the new parameters that are optimized to increase
Q.

The right-hand side of Equation 5.1 can be written as:

E
h
log p(x;Wj�)jx;�(i�1)

i
=

Z
w2�

log p(x;wj�)f(wjx;�(i�1))dw: (5.2)

The function f(wjx;�(i�1)) is the marginal distribution of the unobserved data and is
dependent on both the observed data x and on the current parameters, and � is the space
of valuesW can take on. In the best of cases, this marginal distribution is a simple analytical
expression of the assumed parameters �(i�1) and perhaps the data. In the worst of cases,
this density might be very hard to obtain. The evaluation of this expectation is called the
E-step of the algorithm.

The second step (the M-step) of the EM algorithm is to maximize the expectation
computed in the �rst step:

�(i) = argmax
�

Q(�;�(i�1)):

These two steps are repeated until convergence is achieved. Each iteration is
guaranteed to increase the log-likelihood and the algorithm is guaranteed to converge to a
local maximum of the likelihood function. The rate at which the likelihood converges to
the true likelihood is discussed in Dempster et al. (1977); Redner & Walker (1984); Wu
(1983); Jordan & Xu (1996); Xu & Jordan (1996); McLachlan & Krishnan (1997).

Instead of maximizing Q(�;�(i�1)), an alternative form of the M-step is to �nd
some �(i) such that Q(�(i);�(i�1)) > Q(�;�(i�1)). This form of the algorithm is called
Generalized EM (GEM) and is also guaranteed to converge.

5.3 The EM Algorithm for Gaussian Mixture Parameter Es-

timation

The parameter estimation problem for a �nite mixture of densities (Titterington
et al. 1985) is probably one of the most widely used applications of the EM algorithm in
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the computational pattern recognition community. In this case, the following probabilistic
model is assumed:

p(xj�) =
MX
m=1

�mpm(xj�m)

where the parameters are � = (�1; : : : ; �M ; �1; : : : ; �M) such that
PM

m=1 �m = 1 and each
pm is a density function governed by the parameters �m. There are M component densities
mixed together with M mixing coe�cients �m. The graphical model for a �nite mixture
model is depicted in Figure 2.6.

The incomplete-data log-likelihood expression for this density is given by:

log(L(�jx)) = log
NY
i=1

p(xij�) =
NX
i=1

log

 
MX
m=1

�mpm(xij�m)

!

which is di�cult to optimize directly because it contains the log of the sum. If the un-
observed data w1:N identi�es which component density \generated" each data item, the
complete-date likelihood expression is much simpler. In this case, wi 2 f1; : : : ;Mg for each
i, and wi = m only if the ith sample was generated by the mth mixture component. Given
values for the unobserved data, the complete-data log likelihood becomes:

log(L(�jx;W)) =
NX
i=1

log (P (xijwi)P (wi)) =
NX
i=1

log (�wi
pwi

(xij�xi)) :

The distribution of the unobserved data given the observed data and some guessed
or current parameters can be obtained as follows. Using �g = (�g1; : : : ; �

g
M ; �g1; : : : ; �

g
M ) as a

guess of the parameter values, the distribution for the unobserved portion of the ith sample
can be speci�ed using Bayes rule as:

p(wijxi;�
g) =

�
g
wi
pwi(xij�

g
wi
)

p(xij�g)
=

�
g
wi
pwi(xij�

g
wi
)PM

k=1 �
g
kpk(xij�

g
k)

and the distribution of the complete set of unobserved variables w = (w1; : : : ; wN) can be
speci�ed using the fact that the samples are i.i.d.:

p(wjx;�g) =
NY
i=1

p(wijxi;�
g)
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Equation 5.1 now takes the form:

Q(�;�g) =
X
w2�

log (L(�jx;w)) p(wjx;�g)

=
X
y2�

NX
i=1

log (�wi
pwi

(xij�wi
))

NY
j=1

p(wj jxj;�
g)

=
MX

w1=1

MX
w2=1

: : :

MX
wN=1

NX
i=1

log (�wi
pwi

(xij�wi
))

NY
j=1

p(wj jxj ;�
g)

=
MX

w1=1

MX
w2=1

: : :

MX
wN=1

NX
i=1

MX
m=1

�m;wi
log (�mpm(xij�m))

NY
j=1

p(wj jxj ;�
g)

=
MX
m=1

NX
i=1

log (�mpm(xij�m))
MX

w1=1

MX
w2=1

: : :

MX
wN=1

�m;wi

NY
j=1

p(wj jxj ;�
g) (5.3)

This equation can be greatly simpli�ed by noting that for m 2 1; : : : ;M ,

MX
w1=1

MX
w2=1

: : :

MX
wN=1

�m;wi

NY
j=1

p(wj jxj;�
g)

=

0
@ MX
w1=1

: : :

MX
wi�1=1

MX
wi+1=1

: : :

MX
wN=1

NY
j=1;j 6=i

p(wj jxj ;�
g)

1
A p(mjxi;�

g)

=
NY

j=1;j 6=i

0
@ MX
wj=1

p(wj jxj ;�
g)

1
A p(mjxi;�

g) = p(mjxi;�
g) (5.4)

since
PM

m=1 p(mjxj ;�
g) = 1. Using Equation 5.4, Equation 5.3 can be written as:

Q(�;�g) =
MX
m=1

NX
i=1

log (�mpm(xij�m)) p(mjxi;�
g)

=
MX
m=1

NX
i=1

log(�m)p(mjxi;�
g) +

MX
m=1

NX
i=1

log(pm(xij�m))p(mjxi;�
g) (5.5)

To maximize this expression, the term containing �m and the term containing �m
can be maximized independently since they are not related.

To �nd the expression for �m, the Lagrange multiplier � is introduced, with the
constraint that

P
m �m = 1, in the following equation:

@

@�m

"
MX
m=1

NX
i=1

log(�m)p(mjxi;�
g) + �

 X
m

�m � 1

!#
= 0

or

NX
i=1

1

�m
p(mjxi;�

g) + � = 0



104 CHAPTER 5. SWITCHING GAUSSIAN MIXTURES FOR BMMS

Summing both sizes over m, we get that � = �N resulting in:

�m =
1

N

NX
i=1

p(mjxi;�
g)

For certain component densities, it is possible to get an analytical EM update
expressions for �m as functions of everything else. For example, assuming a d-dimensional
Gaussian component distributions with mean � and covariance matrix �, i.e., � = (�;�),
yields

pm(xj�m;�m) =
1

(2�)d=2j�mj1=2
e�

1
2 (x��m)T��1m (x��m): (5.6)

To derive the update equations for this distribution, some results from matrix algebra
(Mardia et al. 1979; Harville 1997; Strang 1988) must be used.

The trace of a square matrix tr(A) is equal to the sum of A's diagonal elements.
The trace of a scalar equals that scalar. Also, tr(A + B) = tr(A) + tr(B), and tr(AB) =
tr(BA). These properties imply that

P
i x

T
i Axi = tr(AB) where B =

P
i xix

T
i . The

quantity jAj indicates the determinant of the matrix A, and the determinant of the inverse
matrix satis�es jA�1j = 1=jAj.

For notational simplicity, derivatives of a function of a matrix f(A) with respect

to multiple elements of that matrix are de�ned. In particular, de�ne @f(A)
@A to be the matrix

with i; jth entry [
@f(A)
@ai;j

] where ai;j is the i; j
th entry of A. The de�nition also applies to

taking derivatives with respect to a vector. Using this notation, several derivative results
for common matrix operations may be obtained. First, @xTAx

@x = (A+AT )x. Second, when
A is a symmetric matrix:

@jAj

@ai;j
=

�
Ai;j if i = j

2Ai;j if i 6= j

where Ai;j is the i; j
th cofactor of A. Given the above:

@ log jAj

@A
=

�
Ai;j=jAj if i = j

2Ai;j=jAj if i 6= j

�
= 2A�1 � diag(A�1)

by the de�nition of the inverse of a matrix. Finally,

@tr(AB)

@A
= B + BT � Diag(B):

Taking the log of Equation 5.6, ignoring any constant terms (since they disappear
after taking derivatives), and substituting into the right side of Equation 5.5, yields:

MX
m=1

NX
i=1

log (pm(xij�m;�m)) p(mjxi;�
g)

=
MX
m=1

NX
i=1

�
�
1

2
log(j�mj)�

1

2
(xi � �m)

T��1m (xi � �m)

�
p(mjxi;�

g) (5.7)
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Taking the derivative of Equation 5.7 with respect to �m and setting it equal to
zero, yields:

NX
i=1

��1m (xi � �m)p(mjxi;�
g) = 0

with can be solved for �m to obtain:

�m =

PN
i=1 xip(mjxi;�

g)PN
i=1 p(mjxi;�

g)
:

To �nd �m, note that Equation 5.7 can be written as:

MX
m=1

"
1

2
log(j��1m j)

NX
i=1

p(mjxi;�
g)�

1

2

NX
i=1

p(mjxi;�
g)tr

�
��1m (xi � �m)(xi � �m)

T
�#

=
MX
m=1

"
1

2
log(j��1m j)

NX
i=1

p(mjxi;�
g)�

1

2

NX
i=1

p(mjxi;�
g)tr

�
��1m Am;i

�#

where Am;i = (xi � �m)(xi � �m)
T .

Taking the derivative with respect to ��1m yields:

1

2

NX
i=1

p(mjxi;�
g) (2�m � diag(�m))�

1

2

NX
i=1

p(mjxi;�
g) (2Am;i � diag(Am;i))

=
1

2

NX
i=1

p(mjxi;�
g) (2Bm;i � diag(Bm;i))

= 2C � diag(C)

where Bm;i = �m�Am;i and where C = 1
2

PN
i=1 p(mjxi;�

g)Bm;i. Setting this derivative to
zero, i.e., 2C � diag(C) = 0, implies that C = 0. This gives

NX
i=1

p(mjxi;�
g) (�m �Am;i) = 0

or

�m =

PN
i=1 p(mjxi;�

g)Am;iPN
i=1 p(mjxi;�

g)
=

PN
i=1 p(mjxi;�

g)(xi � �m)(xi � �m)TPN
i=1 p(mjxi;�

g)

Summarizing, the estimates of the new parameters in terms of the old parameters
are as follows:

�newm =
1

N

NX
i=1

p(mjxi;�
g)
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�newm =

PN
i=1 xip(mjxi;�

g)PN
i=1 p(mjxi;�

g)

�new
m =

PN
i=1 p(mjxi;�

g)(xi � �newm )(xi � �newm )TPN
i=1 p(mjxi;�

g)

These three equations are the EM update equations for maximum-likelihood pa-
rameter estimation of Gaussian mixtures. The equations perform both the expectation step
and the maximization step simultaneously. The algorithm iterates, using the newly derived
parameters as the guess for the next iteration, until convergence has been achieved. In
practice, it is important to start with good initial parameters, for otherwise the variances
might collapse to zero. The k-means algorithm (Duda & Hart 1973; Jain & Dubes 1988;
Anderberg 1973) often provides very good initial parameter estimates.

5.4 The EM Algorithm for Gaussian Mixture HMMs

Hidden Markov Models were described extensively in Chapter 3. In that chapter,
it was shown that HMMs are a model of the joint probability of a collection of random
variables fX1; : : : ; XT ; Q1; : : : ; QTg. In this section, the EM algorithm is used to produce
update equations for maximum-likelihood parameter estimation of HMM parameters. This
algorithm is also known as the Baum-Welch algorithm. The HMMs will use Gaussian
mixture observation distributions.

It is assumed that the hidden Qt variables are discrete with Q possible values
f1 : : :Qg. The transition matrix is given by A = fai;jg = p(Qt = jjQt�1 = i) for all t.
The special case of time t = 1 is described by the (not necessarily stationary) initial state
distribution, �i = p(Q1 = i). A particular sequence of states is described by q = (q1:T )
where qt 2 f1 : : :Qg is the state at time t.

A particular observation sequence is described as x = x1:T where xt is a vector
of features at time t. The observation probability distribution for state j is described
by: bj(x) = p(X = xjQ = j). The complete collection of parameters for all observation
distributions is represented by B = fbj(�); 8jg. It is assumed that bj(x) is a mixture of M

multivariate Gaussians so bj(x) =
PM

`=1 cj`N (xj�j`;�j`) =
PM

`=1 cj`bj`(x).

We describe the complete set of HMM parameters for a given model by: � =
(A;B; �). There are three basic problems one typically wishes to solve using HMMs (Rabiner
& Juang 1993):

1. Find p(X = xj�) for some x = x1:T . The forward or the backward procedure are typi-
cally used for this problem because they are much more e�cient than direct evaluation.
These procedures are special cases of the junction tree algorithm (Smyth et al. 1996;
Jensen 1996) for probabilistic inference in Bayesian networks.

2. Given some x and some �, �nd the state sequence q�1:T that best explains x. I.e., �nd

q�1:T = argmax
q1:T

p(X1:T = x1:T ; q1:T j�):
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The Viterbi procedure, very similar to the forward procedure (and therefore not dis-
cussed in this thesis), solves this problem.

3. Find the parameters that best match the data, i.e., �nd �� = argmax
�

p(xj�). The

Baum-Welch algorithm (also called the forward-backward procedure or EM for HMMs)
solves this problem. This is the algorithm we develop presently.

5.4.1 Fast HMM Inference

As mentioned in Chapter 3, one of the advantages of HMMs is the relative ef-
�ciency of the probabilistic inference (Smyth et al. 1996) needed for the EM parameter
estimation. Before deriving the update equations via the EM auxiliary equation, the proce-
dure is intuitively reviewed as it is typically presented in the speech recognition literature
(Rabiner & Juang 1993).

The forward procedure is de�ned as follows:

�i(t) = p(X1 = x1; : : : ; Xt = xt; Qt = ij�)

which is the probability of seeing the partial sequence x1; : : : ; xt and ending up in state i
at time t. Using the HMM conditional independence properties (see De�nition 3.3), the
quantity �i(t) can be e�ciently and recursively de�ned as follows:

1. �i(1) = �ibi(x1)

2. �j(t+ 1) =
hPQ

i=1 �i(t)aij
i
bj(xt+1)

3. p(X j�) =
PQ

i=1 �i(T )

The backward procedure is de�ned similarly:

�i(t) = p(Xt+1 = xt+1; : : : ; XT = xT jQt = i; �)

which is the probability of the ending partial sequence xt+1; : : : ; xT given that we started
at state i at time t. The quantity �i(t) can e�ciently be de�ned as follows:

1. �i(T ) = 1

2. �i(t) =
PQ

j=1 aijbj(xt+1)�j(t+ 1)

3. p(X j�) =
PQ

i=1 �i(1)�ibi(x1)

The quantity


i(t) = p(Qt = ijX1:T = x1:T ; �)

is the probability of being in state i at time t for the observation sequence x1:T . Note that:

p(Qt = ijx1:T ; �) =
p(x1:T ; Qt = ij�)

P (x1:T j�)
=

p(x1:T ; Qt = ij�)PQ
j=1 p(x1:T ; Qt = jj�)
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From the HMM conditional independence properties,

�i(t)�i(t) = p(x1; : : : ; xt; Qt = ij�)p(xt+1; : : : ; xT jQt = i; �) = p(X1:T = x1:T ; Qt = ij�)

so 
i(t) can be de�ned in terms of �i(t) and �i(t) as follows


i(t) =
�i(t)�i(t)PQ
j=1 �j(t)�j(t)

Another useful quantity is

�ij(t) = p(Qt = i; Qt+1 = jjX1:T = x1:T ; �)

which is the probability of being in state i at time t and being in state j at time t+1. This
can also be expanded as:

�ij(t) =
p(Qt = i; Qt+1 = j;X1:T j�)

p(X1:T j�)
=

�i(t)aijbj(xt+1)�j(t+ 1)PQ
i=1

PQ
j=1 �i(t)aijbj(xt+1)�j(t+ 1)

or equivalently as (Young et al. 1990's; Odell 1995):

�ij(t) =
p(Qt = ijX1:T)p(xt+1 : : :xT ; Qt+1 = jjQt = i; �)

p(xt+1 : : :xT jQt = i; �)
=

i(t)aijbj(xt+1)�j(t+ 1)

�i(t)

The quantity 
i(t) summed across time

TX
t=1


i(t)

is the expected number of visits to state i and therefore is also the expected number of
transitions away from state i for X1:T . Similarly,

T�1X
t=1

�ij(t)

is the expected number of transitions from state i to state j for X1:T . These follow from
the fact that X

t


i(t) =
X
t

E[It(i)] = E[
X
t

It(i)]

and X
t

�ij(t) ==
X
t

E[It(i; j)] = E[
X
t

It(i; j)]

where It(i) is an indicator random variable that is 1 when the Markov chain in state i at
time t, and It(i; j) is a random variable that is 1 when the Markov chain moves from state
i to state j after time t.
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To estimate new parameters for the HMM using the old parameters and the data,
it seems intuitively reasonable to use the current relative frequencies to de�ne the new
parameters.

The quantity

~�i = 
i(1) (5.8)

is the relative frequency spent in state i at time 1.
The quantity

~aij =

PT�1
t=1 �ij(t)PT�1
t=1 
i(t)

(5.9)

is the expected number of transitions from state i to state j relative to the expected total
number of transitions away from state i.

The probability that the `th component of the ith mixture generated observation
xt is de�ned as:


i`(t) = 
i(t)
ci`bi`(xt)

bi(xt)
= p(Qt = i; Cit = `jX; �)

where Cit is a random variable indicating the mixture component at time t for state i.
From the previous section on Gaussian Mixtures, a reasonable guess for the EM

update equations might be:

ci` =

PT
t=1 
i`(t)PT
t=1 
i(t)

�i` =

PT
t=1 
i`(t)xtPT
t=1 
i`(t)

�i` =

PT
t=1 
i`(t)(xt � �i`)(xt � �i`)

TPT
t=1 
i`(t)

When there are E observation sequences the eth being of length Te, the resulting
update equations are:

�i =

PE
e=1 


e
i (1)

E

ci` =

PE
e=1

PTe
t=1 


e
i`(t)PE

e=1

PTe
t=1 


e
i (t)

�i` =

PE
e=1

PTe
t=1 


e
i`(t)x

e
tPE

e=1

PTe
t=1 


e
i`(t)
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�i` =

PE
e=1

PTe
t=1 


e
i`(t)(x

e
t � �i`)(x

e
t � �i`)

TPE
e=1

PTe
t=1 


e
i`(t)

and

aij =

PE
e=1

PTe
t=1 �

e
ij(t)PE

e=1

PTe
t=1 


e
i (t)

These relatively intuitive equations are in fact the EM (or Balm-Welch) algorithm
for HMM parameter estimation. In the next section, they are derived using the typical EM
auxiliary function.

5.4.2 Estimation Formula Using the Q Function.

The quantity x = (x1; : : : ; xT ) is again the observed data. The underlying state
sequence q = (q1; : : : ; qT ) and the collection of mixture components m = (m1; : : : ; mT)
constitute the missing information. The incomplete-data likelihood function is given by
P (xj�) and the complete-data likelihood function is P (x;q;mj�). The auxiliary function
becomes:

Q(�; �g) =
X
q2Q

X
m2M

log P (x;q;mj�)P (x;q;mj�g)

where �g are the initial guessed parameter estimates, where Q is the space of all state
sequences of length T , and M is the space of all possible mixture component assignments
for the corresponding hidden variables.2

Given a particular state sequence q and set of mixturesm, representing P (x;q;mj�g)
is fairly easy easy.3 I.e.,

P (x;q;mj�) = �q0

TY
t=1

aqt�1qtcqtmtbqtmt(xt)

The auxiliary function then becomes:

Q(�; �g) =
X
q2Q

log �q0P (x;qj�
g) (5.10a)

+
X
q2Q

 
TX
t=1

log aqt�1qt

!
p(x;qj�g) (5.10b)

+
X
q2Q

X
m2M

 
TX
t=1

log cqtmt

!
p(x;q;mj�g) (5.10c)

+
X
q2Q

X
m2M

 
TX
t=1

log bqtmt(xt)

!
P (x;q;mj�g) (5.10d)

2In general, the component assignment for a particular hidden state qt at time t will depend on qt since
di�erent hidden states might have di�erent numbers of components. For notational simplicity, it will be
assumed, in this and the following sections, that all states have the same number of components.

3It is assumed here that the initial distribution starts at t = 0 instead of t = 1, again for notational
convenience.
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The sum overm in terms 5.10a and 5.10b do not appear because they are marginalized away.
Since the parameters to optimize are now split into a sum of four independent components,
each can be optimized individually.

The �rst term (5.10a) becomes

X
q2Q

log �q0P (x;qj�
g) =

QX
i=1

log �ip(x; q0 = ij�g)

since by selecting all q 2 Q, all hidden states are marginalized away except for time t = 0.
Adding the Lagrange multiplier 
, using the constraint that

P
i �i = 1, and setting the

derivative equal to zero yields:

@

@�i

0
@ QX

i=1

log �ip(x; q0 = ij�g) + 
(
QX
i=1

�i � 1)

1
A = 0

Taking the derivative, summing over i to get 
, and solving for �i yields:

�i =
P (x; q0 = ij�g)

P (xj�g)
(5.11)

The second term (5.10b) becomes:

X
q2Q

 
TX
t=1

log aqt�1qt

!
p(x;qj�g) =

QX
i=1

QX
j=1

TX
t=1

log aijP (x; qt�1 = i; qt = jj�g)

because for each term for time t, all other factors are again marginalized away. Similar to

the previous term, the use of a Lagrange multiplier with the constraint
PQ

j=1 aij = 1 yields:

aij =

PT
t=1 P (x; qt�1 = i; qt = jj�g)PT

t=1 P (x; qt�1 = ij�g)

The third term ( 5.10a) becomes:

X
q2Q

X
m2M

 
TX
t=1

log cqtmt

!
P (x;q;mj�g) =

QX
i=1

MX
`=1

TX
t=1

log(ci`)p(x; qt = i;mt = `j�g)

which again can be optimized using a Lagrange multiplier.
Finally, the forth term (5.10a) becomes:

X
q2Q

X
m2M

 
TX
t=1

log bqtmt(xt)

!
P (x;q;mj�g) =

QX
i=1

MX
`=1

TX
t=1

log(bi`(xt))p(x; qt = i;mt = `j�g)

(5.12)

This term is almost identical to Equation 5.5, except for an addition sum component over
the hidden state variables. Therefore, it can be optimized in the same way as described in
Section 5.3.
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The �nal resulting update equations are as follows:

cil =

PT
t=1 P (qt = i;mt = `jx; �g)PT

t=1

PM
`=1 P (qt = i;mt = `jx; �g)

;

�il =

PT
t=1 xtP (qt = i;mt = `jx; �g)PT
t=1 P (qt = i;mt = `jx; �g)

;

and

�il =

PT
t=1(xt � �i`)(xt � �i`)

TP (qt = i;mt = `jx; �g)PT
t=1 P (qt = i;mt = `jx; �g)

:

These are essentially the same set of update equations that were provided in the previous
section.

5.5 BMM Implementation

The primary di�erence between an HMM and a BMM is the observation probabil-
ity model. In an HMM, the probability model for x under state q is p(xjq). In a BMM, there
is a sized K set of additional dependency variables z for each q that are chosen either from
the same or a di�erent feature stream (see Figure 4.14) according to one of the selection
rules listed in Chapter 4. In this case, each element of x will have a direct dependence on
only a subset of the elements of z. One way of explicitly specifying this model is to expand
the d-dimensional vector x into the scalars x1; x2; : : : ; xd, where xi is the ith element of the
vector x, and write the probability model as:

p(xjq; z) = p(x1; x2; : : : ; xdjq; z)

=
dY
i=1

p(xijx1; x2; : : : ; xi�1; q; z) by the chain rule of probability

=
dY
i=1

p(xijx1; x2; : : : ; xi�1; q; z(i)) by conditional independence

where z(i) � z is the set of additional dependency variables that xi is directly dependent
on. In other words, xi??fz n z(i)gjfq; z(i); x1:i�1g. For notational simplicity, the observation
model will often be speci�ed simply as p(xjq; z).

There are a variety of choices for the model p(xjq; z). These include a Gaussian
autoregressive process, a mixture-Gaussian autoregressive process, non-linear conditional
mean regression using a neural network (Levin 1990; Levin 1992) or a mixture thereof,
a conditional mean and conditional variance models such as a GARCH model (Engle &
Bollerslev 1986; Bollerslev et al. 1988).

There are two criteria that such an implementation should satisfy. First, it should
be possible that the entropy of the distribution on x can be signi�cantly a�ected by the
value of the z variable. In Chapter 4, it was shown that to produce a better model, the
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entropy of the distribution p(xjq; z) should decrease in the context of q but not decrease
as much in competing contexts. Therefore, any implementation must have the ability to
achieve such an e�ect. Second, in the ideal case, an e�cient and easy parameter estimation
procedure should exist for the implementation.

In a Gaussian autoregressive process, only the mean of the conditional Gaussian
can be a�ected by the additional dependency data. The entropy of a Gaussian, however, is
a function only of the covariance matrix of that Gaussian (Kullback 1968). Therefore, such
a simple model does not satisfy the �rst criterion.

A mixture Gaussian autoregressive process does have the potential to satisfy the
�rst criterion if the mean of each Gaussian component is determined by di�erent regression
coe�cients over the conditional data. In other words, an identical translation of all the com-
ponents of a Gaussian mixture distribution does not a�ect the entropy of the distribution.
The update equations for a mixture auto-regressive process are derived in Section 5.6.

A non-linear conditional mean can be implemented using a neural network (Levin
1992; Levin 1990). For example, a three-layer multi-layered perceptron with linear output
units could control the mean of a Gaussian distribution. One such network could be used
for each value of q to determine the mean of p(xjq; z). Although the conditional mean would
in this case contain potentially more interesting properties, the variance of the Gaussian is
still una�ected by z. A mixture of Gaussians, where each mixture component has its own
neural-network-derived conditional mean would, once again, solve this problem.

Finally, there are models where the variance is directly conditioned on the past.
These are called conditional variance models, one example being the Generalized auto-
regressive conditional heteroscedasticity (GARCH) model (Engle & Bollerslev 1986) and
multivariate versions thereof (Bollerslev et al. 1988).

While these models satisfy the �rst criterion, parameter estimation is particularly
easy using the model proposed in the next section which also satis�es the �rst criterion.

In the following sections, inference and learning procedures for BMMs that use new
observation distributions are presented. In Section 5.6, EM update equations are derived for
Gaussian mixture models with means linearly conditioned on z. In Section 5.7, these models
are extended with an additional outer mixture, and EM update equations are provided in
Section 5.8. And in Section 5.9, update equations are derived for BMMs that use these new
observation models.

5.6 Mixture Gaussian Autoregressive Processes

In this section, the update equations are derived for a mixture Gaussian autore-
gressive process. The following probabilistic model is assumed:

p(xjz;�) =
MX
`=1

p(xj�`; B`; z)p(`) =
MX
`=1

c`p(xj�`; B`; z)

where

p(xj�`; B`; z) =
1

(2�)d=2j�`j1=2
e�

1
2 (x�B`z)T�

�1
`

(x�B`z)
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is a Gaussian component with conditional mean determined by the matrix-vector product
B`z. The vector z = [z1z2 : : :zK�11]

T is a sized K observed vector, and p(`) = c` is the
probability of component `.

B` is a matrix that determines which elements of the vector z have in
uence over
the individual elements of x. When used for a BMM, the matrix B` is sparse. The sparseness
controls the fact that each individual element of x depends on a di�erent set of elements of
z. For example, if the i; jth element of B` is not zero, then the jth element of z will have
an in
uence on the ith element of x. For the sake of simplicity, the algorithm is presented
without any assumptions made on the topology of B`.

As mentioned above, it is assumed that the last element of z is the constant 1, so
if K = 1, then z is a scalar constant and the model degenerates to the standard mixture of
Gaussians with a constant mean and covariance matrix.

Assume a sample of data x = x1:N exists drawn according to the real distribution.
Also, assume that w = w1:N is the collection of hidden variables indicating the component
of each sample, and that z = z1:N is a sample of the additional dependency variables for
each i.

The incomplete log-likelihood function is

log p(xjz;�) =
NX
i=1

log p(xij�; zi);

and the complete log-likelihood function is

log p(x;wjz;�) =
NX
i=1

log(cwip(xij�wi ; Bwi ; zi):

Similar to the analysis provided in Section 5.3, the auxiliary function may be
speci�ed as:

Q(�;�g) =
X
w2�

log(p(x;yj�; z))p(wjx; z;�g) =
MX
`=1

NX
i=1

log(c`p(xij�`; B`; zi))p(`jxi; zi;�
g)

The quantity p(`jxi; zi;�g) can be determined using Bayes rule as follows:

p(`jxi; zi;�
g) =

p(xij`; zi;�
g)p(`jzi;�

g)

p(xijzi;�g)
=

p(xij�
g
` ; B

g
` ; zi)c

g
`PM

k=1 p(xij�
g
k; B

g
k ; zi)c

g
k

For notational simplicity, let p`i = p(`jxi; zi;�g). The auxiliary function therefore
becomes:

Q(�;�t) =
MX
`=1

NX
i=1

log(c`)p`i +
MX
`=1

NX
i=1

log(p(xij�`; B`; zi))p`i (5.13)

in which the individual terms can be optimized independently.
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The �rst term is exactly analogous to the �rst term of Equation 5.5, yielding the
update equation:

c` =
1

N

NX
i=1

p`i:

Ignoring any constants that vanish after taking derivatives, the second term of
Equation 5.13 can be represented as:

MX
`=1

NX
i=1

�
�
1

2
log(j�`j)�

1

2
(xi �B`zi)

T��1` (xi �B`zi)

�
p`i (5.14)

Using the result from Appendix B, the derivative of Equation 5.14 can be taken with respect
to B` and set it to zero yielding:

@

@B`

NX
i=1

�
�
1

2
(xi � B`zi)�

�1
` (xi � B`zi)

�
p`i =

NX
i=1

�
��1` (xi � B`zi)z

T
i p`i

�
= 0 (5.15)

Multiplying this by �` yields:

NX
i=1

(xi � B`zi)z
T
i p`i = 0

or equivalently

NX
i=1

xiz
T
i p`i =

NX
i=1

B`ziz
T
i p`i:

This equation can be easily solved for B`

B` =

 
NX
i=1

xiz
T
i p`i

! 
NX
i=1

ziz
T
i p`i

!�1

which can be solved by a matrix subroutine such as LU-decomposition (Harville 1997;
Golub & Loan 1996). If K = 1 so that zi is just the scalar variable 1, then

B` =

PN
i=1 p`ixiPN
i=1 p`i

which, as expected, is the update equation for the mean for the `th component of the usual
Gaussian mixture model.

To �nd the update rule for the covariance matrices, let vi` = xi�B`zi and �` = 0.
Equation 5.14 becomes

MX
`=1

NX
i=1

�
�
1

2
log(j�`j)�

1

2
(vi` � �`)

T��1` (vi` � �`)

�
p`i

which has the same form as the unconditional Gaussian mixture case shown in Equation 5.7.
Therefore, the update equation for �` is as follows:

�` =

PN
i=1 p`i(xi �B`zi)(xi � B`zi)

TPN
i=1 p`i
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5.7 Switching Gaussian Mixtures

A generalization of the mixture Gaussian autoregressive processes adds one addi-
tional outer mixture that is conditioned on the variable z. A switching Gaussian mixture
(SGM) model is de�ned as follows:

p(xjz; q) =
SX
s=1

 
MX
m=1

p(xjm; s; z; q)p(mjs; q)

!
p(sjz) (5.16)

The outer mixture uses the variable s which mixes over a set of inner mixtures. The variable
s can be seen as a switching variable, the inner mixtures are probabilistically switched on
or o� according to the distribution p(sjz). The inner mixture is a Gaussian mixture but
where the mixing coe�cients and the Gaussian components are dependent on the switching
variable s. The inner mixing coe�cients are given by p(mjs; q) where m is the inner mixing
variable. Each underlying component is a Gaussian autoregressive process on z with a
sparse dependency matrix Bqms.

p(xjm; s; z; q) =
1

(2�)d=2j�qmsj1=2
e�

1
2 (x�Bqmsz)0�

�1
qms(x�Bqmsz) (5.17)

Therefore, p(xjm; s; z; q) is a Gaussian distribution with conditional mean Bqmsz and co-
variance matrix �qms with a discrete dependence on the variable s.

An SGM therefore can simulate the e�ect of the variable z controlling the covari-
ances of a Gaussian mixture, but by using an additional mixture, it avoids complexities
associated with a conditional variance model. The Bayesian network for a SGM is shown
in Figure 5.1 and the sampling from an SGM is depicted in Figure 5.2.

Z
S

M

X

Q

Figure 5.1: Graphical model showing a Switching Gaussian Mixture to represent the con-
ditional density p(X jQ;Z). Z is the set of continuous dependency variables, S is a discrete
switching variable, M is a discrete mixture variable, Q is the hidden variable, and X is an
observation variable. Continuous dependencies are shown using solid arrows, and discrete
dependencies are shown using dashed arrows.
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p(s=1|z)

p(s=2|z)p(s=3|z)

X1

X2

m=1
m=2m=3

m=1
m=2

m=3

m=4
m=1

m=2

m=3 m=4
m=5

Figure 5.2: Two-dimensional density for a Switching Gaussian Mixture for a particular z.
To sample from such a distribution given a q and z, �rst a Gaussian mixture is randomly
chosen according to the distribution p(sjz). Then an individual mixture component in
that mixture is chosen using p(mjs; q). Then, the mean of that component is set to the
vector Bqmsz which corresponds to a translation of the chosen Gaussian component's mean.
Finally, the resulting Gaussian density is sampled as usual.

5.8 Switching Gaussian Mixture EM Update Equations

In this section, EM update equations are derived for an SGM. For simplicity,
update equations for an SGM alone are derived without considering the hidden Markov
variables of the BMM (i.e., dependence on Q will be ignored for now). The hidden variables
will be re-introduced in the next section.

Similar to the previous section, the following model is assumed:

p(xjz;�) =
SX
s=1

 
MX
m=1

cmsp(xj�ms; Bms; z)

!
p(sjz)

where

p(xj�ms; Bms; z) =
1

(2�)d=2j�msj1=2
e�

1
2 (x�Bmsz)T�

�1
ms(x�Bmsz);

cms are the mixing coe�cients for mixture s, and p(sjz) are the z speci�c mixing probabil-
ities.

As in Section 5.6, individual elements of z may in
uence individual elements of x
depending on the structure of the Bms matrices. The conditional switching probabilities
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p(sjz) may be seen as an initial classi�er of the z variables. Therefore, the entire x model is
dependent on the class of the entire vector z. The more re�ned element-wise dependencies
are represented by having a separate Bms matrix both for each main component m and
for each cluster s. In general, not only the parameters but also the structure of the Bms

matrices could be di�erent for each value of s and m. This is discussed further in Chapter 6.
Let x be the incomplete data sample, and w = w1:N and s = s1:N designate the

missing data indicating respectively the mixture component and the z-variable class. The
complete log-likelihood function becomes:

log p(x;w; sjz;�) =
NX
i=1

log
�
cwisip(xij�wisi ; Bwisi ; zi)p(sijzi)

�
:

Using the same reasoning as was used in Section 5.3, the auxiliary function be-
comes:

Q(�;�g) =
X
w

X
s

log(p(x;w; sj�; z))p(w; sjx; z�g)

=
X
w

X
s

NX
i=1

log p(xi; wi; sijzi;�)
Y
j

p(wj; sj jxj ; zj;�
g)

=
MX
m=1

SX
s=1

NX
i=1

log p(xi; m; sjzi;�)p(m; sjxi; zi;�
g)

Using the conditional independence properties implied by the Bayesian network
shown in Figure 5.1, the probability of the hidden variables p(m; sjxi; zi;�

g) can be repre-
sented as

p(m; sjxi; zi;�
g) = p(mjxi; zi; s;�

g)p(sjxi; zi;�
g)

= p(mjxi; zi; s;�
g)p(sjzi;�

g)

where

p(mjxi; zi; s;�
g) =

p(xijm; xi; s;�
g)p(mjs;�g)P

m p(xijm; xi; s;�g)p(mjs;�g)

and where p(sjzi;�
g) is the posterior probability of class s given zi.

Again using the conditional independence properties implied by Figure 5.1, the
quantity to optimize as a function of � can be represented as:

p(x;m; sjz;�)= p(xjm; s; z;�)p(mjs; z;�)p(sjz;�)

= p(xjm; s; z;�)p(mjs;�)p(sjz;�)

This results in the following three separate equations to be optimized

MX
m=1

SX
s=1

NX
i=1

log p(xijm; s; zi;�)p(m; sjxi; zi;�
g); (5.18)
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MX
m=1

SX
s=1

NX
i=1

log p(mjs;�)p(m; sjxi; zi;�
g) =

MX
m=1

SX
s=1

NX
i=1

log cmsp(m; sjxi; zi;�
g) (5.19)

where cms = p(mjs;�), and

MX
m=1

SX
s=1

NX
i=1

log p(sjzi;�)p(m; sjxi; zi;�
g) =

SX
s=1

NX
i=1

log p(sjzi;�)p(sjzi; xi;�
g) (5.20)

Equation 5.18 is similar to Equation 5.13, so a procedure similar to that described
in Section 5.6 may be used. In this case, each parameter has an additional subscript s that
indicates the dependence on the switching variable (See Figure 5.1). The resulting update
equations for the output probabilities are:

Bms =

 
NX
i=1

xiz
T
i pmis

! 
NX
i=1

ziz
T
i pmis

!�1

and

�ms =

PN
i=1 pmis(xi �Bmszi)(xi �Bmszi)TPN

i=1 pmis

;

where pmis = p(m; sjxi; zi;�
g).

Similar to Equation 5.5, the mixing coe�cients in Equation 5.19 can be optimized
by introducing a Lagrange multiplier, taking the partial derivatives, and setting the result
to zero:

@

@cms

 
MX
m=1

SX
s=1

NX
i=1

log(cms)pmis + �(
X
m

cms � 1)

!
= 0

which yields

cms =
1

N

NX
i=1

pmis:

Equation 5.20, performs the optimization of the quantity p(sjz;�), which performs
an initial discrete classi�cation of the variable z, and involves the quantity p(sjz; x;�g)
which can be represented as:

p(sjz; x;�g) =
p(xjs; z;�g)p(sjz;�g)

p(xjz;�g)
=

p(xjs; z;�g)p(sjz;�g)P
r p(xjr; z;�

g)p(rjz;�g)

where

p(xjs; z;�g) =
MX
m=1

cmsp(xj�
g
ms; B

g
ms; z)
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and where

p(xj�g
ms; B

g
ms; z) = N (xj�g

ms; B
g
msz)

Optimization of Equation 5.20 therefore depends on the form of the distribution p(sjz;�).
One option for p(sjz;�) is to use a form of multi-class logistic regression such as

the softmax function, in which case

p(sjz;�) =
eu

T
s zP

r e
uTr z

where us is a length K vector of parameters for each s. It can be seen that Equation 5.20 cor-
responds to a maximization of the negative cross-entropy (Bishop 1995) between p(sjzi;�)
and p(sjzi; xi;�

g) so the optimization procedures such as gradient descent or iteratively
reweighted least squares (Jordan & Xu 1993; Jordan & Jacobs 1994) can be used to learn
us. Another (quite similar) approach uses a multi-layered perceptron with a softmax output
non-linearity (Bishop 1995) trained at each iteration using the distribution p(sjz; x;�g) as
\soft" training targets. Both of these approaches requires an extra training iteration within
each SGM EM training iteration.

Alternatively, to avoid the inner training iteration, it may be su�cient to approx-
imate this learning problem by transforming the quantity to be optimized from a \diagnos-
tic" to a \generative" (Jordan 1995) model and then ignoring terms that are di�cult to
optimize. By Bayes rule,

p(sjz;�) =
p(zjs;�)p(sj�)P
r p(zjr;�)p(rj�)

=
p(zjs;�)p(sj�)

p(zj�)

The right-hand side of Equation 5.20 then becomes:

SX
s=1

NX
i=1

log p(zijs;�)p(sjzi; xi;�
g) +

SX
s=1

NX
i=1

log p(sj�)p(sjzi; xi;�
g)

�
SX
s=1

NX
i=1

log p(zij�)p(sjzi; xi;�
g)

If it is assumed that p(zijs;�) is a class conditional multivariate Gaussian (i.e., p(zjs;�) =
N (zj�s;�s) then the �rst two terms of this equation may be separately optimized as was
done in Equation 5.5 if the third term (which is not independent of the �rst two) is ignored.
This approximation eliminates the additional embedded training iteration within each SGM
EM iteration by learning the models p(zjs) and p(s) rather than the model p(sjz).

An even more severe approximation can be made by ignoring the dependence of s
on xi in p(sjzi; xi;�g), in which case the right-hand side of Equation 5.20 becomes:

SX
s=1

NX
i=1

log p(sjzi;�)p(sjzi�
g)

This quantity is maximized when D(p(sjzi;�)jjp(sjzi;�g)) is minimized, and this occurs
when � = �g for those portions of � that a�ect these distributions. Therefore, under this
approximation p(sjz) does not change between EM iterations so any, perhaps unsupervised,
probabilistic clustering method can be used (such as k-means followed by EM for Gaussian
mixtures) prior to SGM EM training.
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5.9 BMM Update Equations for SGM Observation Models

In this section, update equations for a BMM with SGM observation models are
derived.

A BMM with SGM observations corresponds to the following probabilistic model:

p(xjz) =
X
q

X
m

X
s

p(x;q;m; sjz)

where x = x1:T is a collection of T feature vectors, q = q1:T is an assignment to the
hidden variables, m = m1:T is a mixture variable assignment, and s = s1:T is a switching
variable assignment. Because of the HMM and SGM conditional independence properties,
the following factorization is valid:

p(x;q;m; sjz) =
Y
t

p(xtjqt; mt; st; zt)p(mtjst; qt)p(stjzt)p(qtjqt�1)

= �q0

TY
t=1

bqt(xtjmt; st; zt)cmtstqtaqt�1qtdzt(st)

where � is the initial distribution over Markov states, bi(xj`; s; z) is the mean-conditional
Gaussian for state i and switch value s, c`sq is the mixture coe�cient for mixture ` of switch
s and hidden state q, aij is the Markov transition probability from state i to state j, and
dz(s) = p(sjz) is the probability of mixture s given dependency variables z.

The auxiliary function is similar to the one provided in Section 5.4.2 except in this
case there is an additional sum over the switching variables:

Q(�; �g) =
X
q

X
m

X
s

log p(x;q;m; sjz; �)p(x;q;m; sjz; �g)

=
X
q

X
m

X
s

log �q0

TX
t=1

log
�
bqt(xtjmt; st; zt)cmtstqtaqt�1qtdzt(st)

�
p(x;q;m; sjz; �g)

In this form, it can be seen that there are �ve independent components to be optimized: the
initial distribution �, the mean-conditional Gaussians bi(xj`; s; z), the mixture coe�cients
c`sq, the Markov transition probabilities aij , and the dependency variable classi�er dz(s).

The auxiliary function for �rst term becomes:

X
q

X
m

X
s

log �q0p(x;q;m; sjz; �g) =
QX
i=1

log �ip(x; q0 = ijz; �g)

giving an update equation that is very similar to Equation 5.11:

�i =
p(x; q0 = ijz; �g)

p(xjz; �g)
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The auxiliary function for the second term becomes:

X
q

X
m

X
s

TX
t=1

log (bqt(xtjzt; mt; st))P (x;q;m; sjz; �g)

=
QX
i=1

MX
`=1

SX
j=1

TX
t=1

log (bi(xtjzt; mt = `; st = j)) p(x; qt = i;mt = `; st = jjz; �g)

This equation is almost identical to Equation 5.18 except for the additional sum over the
hidden Markov variable at each time qt. For notational simplicity, let:


i`j(t) = p(qt = i;mt = `; st = jjx; z; �g)

By the same logic that optimized Equation 5.13 in Section 5.6, the update equation for
Bi`j , the dependency matrix for hidden Markov state i, mixture component `, and switch
j is

Bi`j =

 
TX
t=1


i`j(t)xtz
0
t

! 
TX
t=1


i`j(t)ztz
0
t

!�1
(5.21)

and the update equation for the corresponding covariance is:

�i`j =

PT
t=1 
i`j(t)(xt �Bi`jzt)(xt �Bi`jzt)0PT

t=1 
i`j(t)
(5.22)

The auxiliary function for the third term becomes:

X
q2Q

X
m2M

X
s2S

TX
t=1

log (cmtstqt) p(x;q;m; sjz; �g)

=
QX
i=1

MX
`=1

SX
j=1

TX
t=1

log (c`ji) p(x; qt = i;mt = `; st = jjz; �g)

which is similar to Equation 5.19. The update equation becomes:

c`ji =

PT
t=1 p(qt = i;mt = `; st = jjx; z; �g)PT

t=1

PM
`=1 p(qt = i;mt = `; st = jjx; z; �g)

For the forth term which optimize the transition probabilities, the form of the
auxiliary equation is similar to Equation 5.10b. The update equation therefore is:

aij =

PT
t=1 P (x; qt�1 = i; qt = jjz; �g)PT

t=1 P (x; qt�1 = ijz; �g)

Finally, the auxiliary function for the �fth term becomes:

X
q2Q

X
m2M

X
s2S

TX
t=1

log dzt(st)P (x;q;m; sjz; �g) =
SX
i=1

TX
t=1

log dzt(i)P (x; st = ijz; �g)
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The right-hand side of this equation has the same form as Equation 5.20 and can be opti-
mized as described in that section.

Notice that if K = 1 (i.e., zt = 1 for all t) and S = 1, these update equations
reduce to the standard update equations for Gaussian mixture HMMs.

5.9.1 Fast Recursive Equations for BMMs with SGMs

As in Section 5.4.1, we can de�ne � and � recursions that can be computed e�-
ciently and then used to produce the needed probabilistic quantities in the previous section.

The alpha and beta recursions become:

�i(t) = p(x1:t; qt = ijz) =
X
j

�j(t� 1)ajibi(xtjzt)

and

�i(t) = p(xt+1:T jqt = i; z) =
QX
i=1

aijbj(xt+1jzt+1)�j(t+ 1)

In this case, the recursions use the more complex observation probability model bj(xjz) for
the jth hidden Markov state. Using the conditional independence properties, it follows that

p(x; qt = ijz) = �i(t)�i(t)

The following quantities may also be de�ned:


i(t) = p(qt = ijx; z) =
p(x; qt = ijz)PQ
j=1 p(x; qt = ijz)

=
X
`


i`(t)

where


i`(t) = 
i(t)
c`ibi`(xtjzt)

bi(xtjzt)
= p(qt = i;mt = `jx; z) =

X
j


i`j(t);

and where


`ji(t) = 
i(t)
c`ijbi`j(xtjzt)dzt(j)

bi(xtjzt)
= p(qt = i;mt = `; st = jjx; z);

and where bi`j(xtjzt) = p(xtjzt; mt = `; st = j) and c`ji =
P

j c`ji.
The expected state transitions may also be de�ned:

�ij(t) = p(qt = i; qt+1 = jjx; z)

as

�ij(t) =
p(qt = i; qt+1 = j;xjz)

p(xjz)
=

�i(t)aijbj(xt+1jzt+1)�j(t+ 1)PQ
i=1

PQ
j=1 �i(t)aijbj(xt+1jzt+1)�j(t+ 1)
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Therefore, all the quantities needed for the EM update equations can obtained
e�ciently.

The most likely assignment to the hidden state variables (i.e., the Viterbi path)
can be found as usual (Rabiner & Juang 1993):

�j(t) =

�
max
i

�i(t � 1)aij

�
bj(xtjzt)

for 1 < t � T and where the initial conditions are given by:

�j(1) = �jbj(x1jz1):

5.10 Simpli�cations with Diagonal Covariance Matrices

As stated, equations 5.21 and 5.22 require the outer products zz0 and xz0 and the
matrix-vector products Bi`jzt for each time frame, each hidden Markov state, each mixture
component, and each switch variable value. Signi�cant simpli�cations can be achieved if
diagonal rather than full covariance matrices are used. And as will be described in Sec-
tion 7.3, diagonal covariance matrices are not any less general than full covariance matrices
for these observation distributions.

Let diag(�i`j ; r) be the rth diagonal element of the (now diagonal) covariance
matrix �i`j . Also, let Bi`j(r) be a row-vector consisting of the non-zero (i.e., existing)
elements from the rth row of the matrix Bi`j , and let zt(r) be a column vector consisting
of the elements of the vector zt that correspond to the non-zero entries in the rth row of
Bi`j . In other words, the quantity Bi`j (r)zt(r) equals the rth element of the vector Bi`jzt
but Bi`j (r)zt(r) does not sum terms containing just zero. This is a slight abuse of notation
as the elements contained in zt(r) depend on the matrix it is being multiplied with. The
meaning should be clear nevertheless. Finally, let xt(r) be the rth scalar element of the
vector xt. It follows immediately that the update equations for the diagonal entries of the
covariance matrices are:

diag(�i`j ; r) =

PT
t=1 
i`j(t)

�
xt(r)�Bi`j(r)zt(r)

�2
PT

t=1 
i`j(t)
(5.23)

Note that this is a scalar update equation for each of the diagonal elements of the covariance
matrix. Depending on the sparse patterns of the matrices, the cost of the dot products
Bi`j(r)zt(r) can be signi�cantly smaller than before.

The update equations for the B matrices can also be signi�cantly simpli�ed. When
using diagonal covariance matrices, Equation 5.15 can be represented as:

@

@B`(r)

NX
i=1

dX
r=1

�
�
1

2

�
xi(r)�B`(r)zi(r)

�
��1` (r)

�
xi(r)�B`(r)zi(r)

��
p`i

which consists of a set of independent update equations, one each for the non-zero portions
of each row of B`. Taking the derivative by applying the result of Appendix B to each
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update equation yields:

NX
i=1

�
��1` (r)(xi(r)�B`(r)zi(r))zi(r)

Tp`i
�
= 0

for each r. This leads to independent update equations for the non-zero portion of each row
of the B matrix.

Bi`j(r) =

 
TX
t=1


i`j(t)xt(r)zt(r)
0

! 
TX
t=1


i`j(t)zt(r)zt(r)
0

!�1

In this case, only the outer products zt(r)zt(r)
0 and the SAXPY (Golub & Loan 1996)

operations xt(r)zt(r)
0 are required, a signi�cant computational complexity and memory

requirement reduction.

5.11 Discussion

In this chapter, the switching mixture of Gaussians was introduced and suggested
as an implementation for the dependencies used by a BMM. EM update equations for
maximum likelihood parameter estimation were derived in detail. This implementation
with S = 1 and M = 1 is similar to the conditionally Gaussian HMMs as was described in
Chapter 3 | the key di�erence between an HMM and a BMM when S =M = 1 is that the
dependence structure is sparse, derived discriminatively from the data, and hidden-variable
dependent (see Chapter 4).

As described in section 4.7, the BMM parameters could also be found using dis-
criminative training schemes such as MMI (Bahl et al. 1986), MDI (Ephraim & Rabiner
1988; Ephraim et al. 1989), and MCE (Juang & Katagiri 1992; Juang et al. 1997). As
argued in Chapter 3, however, because the BMM learning schemes (Chapter 4) attempt
to produce more structurally discriminative models, these more complex training methods
might not be necessary.
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BMM Word Error Results
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In this chapter, word error results are reported for a BMM-based speech recogni-
tion system and are compared with an HMM-based system. It is shown that it is possible
for a BMM-based system to outperform a comparable HMM based system. The imple-
mentation of the additional BMM dependencies and their EM parameter update equations
was described in Chapter 5. In Section 6.1, the procedure used to boot both HMMs and
BMMs are described. In Section 6.2 BMMs are compared with HMMs on a small-vocabulary
isolated-word speech corpus. Then, in Section 6.3, results are reported for a large-vocabulary
isolated-word speech corpus. In Section 6.4, by comparing word error results for a variety of
models, it is empirically demonstrated that good performance relies crucially on the struc-
tural discriminability of the models, at least when trained using a maximum-likelihood
procedure.

6.1 Training Procedure

A BMM-based speech recognition system requires the computation of conditional
mutual information (X ;ZjQ = q) where the individual conditions q correspond to the
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hidden state values of a particular baseline HMM. Computing these quantities therefore
requires a working HMM baseline system. The following general training procedure is used
for all of the results reported in this chapter | any di�erences between this procedure and
the actual procedure used for a particular experiment are described in the section where
that experiment is presented.

1. From the training data, initialize the parameters of a set of Gaussian mixtures using
the uniform segmental k-means procedure (Rabiner & Juang 1993; Jelinek 1997) where
k is the number of mixture components per Gaussian.

2. Construct a boot HMM with the initial Gaussian means set from the result of the
k-means procedure. Compute the initial covariance matrices using the samples closest
to each mean.

3. Using the same training data, train the resulting HMM system using EM until con-
vergence is achieved.

4. Compute the Viterbi (most likely) path through the HMM's hidden variables for all
examples in the training set.

5. Compute the conditional mutual information I(X ;ZjQ = q) for class q using the
samples in the training set that are labeled q according to the Viterbi path. The
computation of mutual information is described in Appendix C.

6. Compute the appropriate loss function(s).

7. Choose a set of parameter values for the heuristic listed in Figure 4.11. Run the
heuristic and produce a BMM with a new set of cross-observation dependencies.

8. Produce a Gaussian mixture BMM with sparse B matrices. The B matrices will have
trainable (i.e., existing) entries only where there is a corresponding direct dependency
in the BMM. If the entry of B in the ith row and jth column is greater than zero, it
means that the ith element of x has a direct dependency on the jth element of z in
the model for p(xjz; q). Other locations in the B matrix are permanently �xed to the
value zero and therefore are not trained (and in fact do not exist, see Section 5.10).

9. Train the resulting BMM either using a forced Viterbi procedure or using the full EM
update equations. Recall that the collection of dependency variables z have a unity
constant as the last element. That is z = [z1z2 : : : zK�11]

T is a sized K observed
vector where the Kth element is the constant 1. Therefore, the right-most column
of B can be seen as the residual means of each component distribution irrespective
of the dependency variables. The initial values for the B matrices are set as follows:
the right-most column of B is set to the mean of the boot HMM's corresponding
mixture component. The remaining trainable entries in B are set to zero. After one
EM iteration, these entries will take on values other than zero. The initial covariance
matrices for the BMMs are set to the corresponding HMM covariance matrices.
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10. Test the resulting trained BMM on a development set and compute the word error
rate. The utterance probability scores are evaluated using a Viterbi procedure (i.e., the
score for the most likely path is used rather than for all the paths). Since utterances
in both corpora consist only of isolated words, a full-beam Viterbi score is used. The
word-error results therefore do not include any decoding errors (Chase 1997).

11. For random restarts, go to step 7 , but use di�erent parameter values for the heuristic.

12. Report the best word error rate found.

All the experiments described in this chapter use feature vectors consisting of 12
mel-frequency cepstral coe�cients (MFCCs) (Young 1996; Rabiner & Juang 1993; Deller
et al. 1993) plus c0 (log energy) and their deltas, all of which are derived from FFT-based log
spectra. While it is known that MFCCs work very well with Gaussian mixture HMMs alone,
it was desirable to show that an improvement could be obtained even using this baseline
con�guration, one that typically results in state-of-the-art speech recognition performance.
Potential BMM bene�ts when using di�erent features are discussed Chapter 7.

As described in Section 3.5, the inclusion of delta features often negates any im-
provements resulting from HMMs extended with direct dependencies between feature vec-
tors. Deltas are included in all the experiments to verify that BMM improvements can be
obtained even in this, probably more di�cult, case. In total, the features with their deltas
resulted in d = 26 element feature vectors. The feature extraction process also included
cepstral mean subtraction (Deller et al. 1993), a pre-emphasis �lter with a coe�cient of
0.97, and Hamming windowed FFTs computed for each time frame. In all cases, the frame
sampling rate was set to 10 ms where each frame had a window width of 25 ms.

Strictly left-to-right Markov chains are used in each experiment. This means that
each HMM state has only a self-loop and an exit transition. Only a single pronunciation
is used for each word. All experiments use mixture components containing only diagonal
covariance matrices. The use of diagonal-covariance matrices with BMMs are not inherently
less 
exible than full-covariance matrices as BMM dependencies can also exist within a single
frame. Test results using such \sparse" covariance matrices are not reported in this work,
but they are discussed further in Section 7.3.

The reported results all use a switching variable value of unity, so S = 1. The
observation model therefore becomes a mixture Gaussian autoregressive process with sparse
dependency matrices, as described in Section 5.6. In general, the Bqms dependency matrix
in Equation 5.17 is a function of the hidden state q, the mixture component m, and the
switching variable s. For the results presented in this chapter, the structure of this matrix
is shared by all mixture components. In other words, the sparse structure of each matrix
changes only when the hidden state q changes. Di�erent parameters are used for di�erent
values ofm. In general, a di�erent structure could be used for each q,m, and s if conditional
mutual information quantities such as I(X ;ZjQ= q;M = m;S = s) were computed. Since
the goal of the procedure, however, is not to discriminate between di�erent values of m
or s, the structure is a function only of q. Structures could, however, also be shared by
groups of di�erent values of q | for example, when multiple states are used for a phoneme
model, each state used for a portion of a phone might share the same structure. The
mutual information quantities required in this case would be I(X ;ZjQ 2 �i) where �i is
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the set of Markov states corresponding to the ith phoneme. Such sharing could increase the
robustness of the conditional mutual information estimates (see Section 7.7). This type of
shared structure, however, is not investigated in this work.

In the following sections, results typically include the word error rate, the number
of parameters in the �nal system, the number of states (either per word or per phone model),
and the number of Gaussian mixtures per state.

The reported number of parameters indicates the �nal parameters of each system.
This, in fact, might be less than the number of parameters before training. This is be-
cause during EM training certain mixture components with very small covariances (e.g.,
small eigenvalues) are pruned away. Such covariance matrices occur for one of two reasons.
First, the additional dependency variables can at times decrease the resulting variances
because of the BMM's time-varying means. In other words, in a Gaussian mixture BMM,
the distance between a particular frame and its \customized" mean are sometimes very
small, much smaller than for an HMM. This can be seen by examining Equation 5.22. Sec-
ond, a particular component might at times become extremely improbable | as a result,
that component \receives" no new training data during the next iteration of EM via the
component's posterior probability.

Two mechanisms were used to avoid such covariance matrices. First, the variances
(diagonal elements of the covariance matrices) were \
oored" if they became to small. This
is done by using the corresponding variance at the previous EM iteration. Second, any
mixture component whose probability falls below a threshold is eliminated. A dynami-
cally changing threshold is used and is determined via a mixture coe�cient vanishing ratio
(MCVR). If an EM iteration resulted in a mixture component with a coe�cient less than
(1=K)=MCVR, then the component is eliminated and K is decremented accordingly. This
scheme can therefore reduce the number of parameters in the system | it is somewhat
similar to a complexity penalty like MDL or BIC (Burnham & Anderson 1998). The results
presented in this chapter use a mixture coe�cient vanishing ratio of 40.

6.2 BMM Bellcore Digits+ Results

The �rst test results were obtained using a small isolated word speech corpus.
The Bellcore digits+ corpus (Bellcore Digits+ Database 1990's) consists of isolated digits
(\zero," \one," ..., \nine") and control words (\oh," \yes," and \no"). The corpus is
telephone quality, was sampled at 8 kHz, and consists of utterances spoken in a variety of
channel settings.

The word error rates (WER) reported for this case were obtained using data from
200 speakers totaling 2600 examples from 4 jack-knifed cuts { scores shown are the average
of 4 tests in which 150 speakers were used for training and 50 di�erent speakers used for
testing.

The following procedure is performed independently for each cut and number of
states per word. Whole-word, strictly left-to-right HMM models bootstrapped using the
uniform segmental k-means procedure are created. Since the test words occur in the training
set and since the corpus consists only of a small number of isolated words, whole-word
models are feasible. Each HMM state in each model therefore corresponds to some not
necessarily linguistic portion of the corresponding word. And since each state occurs only
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in one word in one position, the states can be considered context dependent although the
meaning of \context" is not de�ned in any high-level phonetic sense like context dependent
phone models typically are.

Full EM training is performed on these HMMs until convergence has been achieved.
In this case, \convergence" means that the relative di�erence between the log likelihood of
the data at two successive EM iterations has fallen below 0.2%. Using the trained models,
the test set words are evaluated and word error is calculated.

Using the resulting HMMs, the Viterbi path is computed for each word determining
the HMM state of each frame. Conditional mutual information is then computed using
the resulting labels. The BMM dependency selection heuristic described in Section 4.6 is
performed. The heuristic is slightly di�erent in this case in that, rather than percentile
thresholds speci�ed as input parameters, the actual values are speci�ed. This means, for
example, that rather than ��u being the value at the percentile �u, the quantity �u is the
actual value in units of bits. The values of the threshold parameters are listed in the caption
in Table 6.1.

For this corpus, only selection rule 4.2 (summarized in Section 4.5) was used. The
set Cq for all q was set to all states except for q so the confusability re�ned utility was not
used. Dependency links were allowed to span a maximum of 70 ms (7 frames) on either
side of t. Therefore, directed cycles were possible with this structure. Other experiments
were performed with this corpus where dependency variables were taken only from the past
(thereby avoiding directed cycles) | the results, however, were not strongly a�ected by the
existence of future dependency variables.

As described in the previous section, the BMMs are trained starting with the
means and covariances given by the corresponding HMM and with initial dependency link
values set to zero. In this experiment, forced-Viterbi training is then performed on the
BMMs using the labels derived from the HMM.

HMM BMM HMM

1.73% (3, 10k) 0.96% (3, 19k) 1.19% (6, 20k)

1.34% (4, 14k) 0.85% (4, 26k) 0.89% (8, 27k)

1.15% (5, 17k) 0.96% (5, 32k) 1.08% (10, 34k)

1.19% (6, 20k) 0.73% (6, 39k) 1.00% (12, 41k)

0.54% (6, 62k)

Table 6.1: The results for the Bellcore digits+ corpus. The dependency selection parameters
are �u = 5� 10�4; �q = 10�3, �g = 75%, �c = 5� 10�2, Nq = 2 for all q, and Cq is the set
of all states except q.

Table 6.1 shows the word error results. Each entry in the table contains three
numbers, the �rst shows the word error percentage, the second is the number of HMM
states used for each word, and the third is the total number of system parameters. The
table consists of three columns, the left- and right-most columns correspond to HMM word-
error rates and the middle column to BMM results. In all cases, �ve mixture components
per HMM state are used.

The left-most and center columns compare HMM and BMM performance using
the same number of hidden states per word. The numbers range from three to six. As can
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be seen from the table, in each case a BMM yields a performance improvement over the
corresponding HMM.

The center and right-most columns compares the performance of an BMM and
HMM system with approximately the same number of parameters. This was done by
increasing the number of hidden states per word for an HMM and then choosing the case
with the most closely matching number of parameters. Again, BMMs seem to outperform
HMMs, even when comparing systems with comparable numbers of parameters.

The best known word error rate for this corpus was achieved with a BMM using
61877 parameters (built by increasing the upper limit on dependency variables to Nq = 7)
and is 0.54% using 6 states per word.

The results of this section indicate that it is possible for a BMM to produce smaller
error rates than an HMM even with a comparable or fewer number of parameters and even
when delta features are included in the feature stream. As argued in the beginning of
Chapter 4, one possible reason for this is that a BMM augments an HMM only with those
additional dependencies that �x the de�ciencies found in a particular HMM.

6.3 BMM NYNEX Phonebook Results

Phonebook is a large-vocabulary \phonetically-rich isolated-word telephone-speech
database" (Pitrelli et al. 1995) that was created to investigate real-world isolated-word
recognition systems because it has repeatedly been found that continuous speech system
training is not as good as isolated word training when the underlying goal is isolated word
recognition.

Phonebook contains a rich collection of vocabulary words including poly-syllabic
words such as \exhaustion," \immobilizing," \sluggishness," and \overambitious" as well
monosyllabic words such as \awe," \bi�," and \his."

In all experiments, the training and test sets were determined as de�ned in Dupont
et al. (1997). The training corpus consisted of 19,421 isolated word utterances, and consisted
of the following phonebook lists (Pitrelli et al. 1995): aa, ah, am, aq, at, ba, bh, bm, bq, bt,
ca, ch, cm, cq, ct, da, dh, dm, dq, dt, and ea. The development set consisted of the eight
lists: ad, ar, bd, br, cd, cr, dd, and dr. The independent \test-only-once" test set consisted
of the eight lists: ao, ay, bo, by, co, cy, do, and dy. There is neither any speaker overlap nor
vocabulary word overlap between these training and test sets. Therefore, it is necessary to
produce embedded HMMs (or BMMs) and represent a test word as a concatenation of a
series of phoneme models structured according to a pronunciation of the word. All presented
results use pronunciations taken from the phonebook distribution dictionary (Pitrelli et al.
1995). Strictly left-to-right transition matrices were used according to the pronunciation.
The pronunciations also included a silence model used both at the beginning and the end
of each word.

All pronunciations in these experiments are de�ned using a set of 42 phonemes
| 41 of the 42 phonemes de�ned in the phonebook distribution plus a silence model.
The phonebook pronunciation dictionary includes lexical stress markings but they are not
used for the current results. Also, all pronunciations using the syllabic consonant 'N' are
translated into a schwa ('x') followed by an 'n'. The phoneme set used in this work is listed
in Table 6.2.
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1 - i - bEAt 12 - Y - bIte 23 - m - Meet 34 - p - Pea

2 - I - bIt 13 - O - bOY 24 - G - siNG 35 - t - Tea

3 - e - bAIt 14 - W - bOUt 25 - h - Heat 36 - k - Key

4 - E - bEt 15 - R - bIRd 26 - s - See 37 - b - Bee

5 - @ - bAt 16 - x - sofA 27 - S - SHe 38 - d - Day

6 - a - bOb 17 - X - buttER 28 - f - Fee 39 - g - Geese

7 - c - bOUGHt 18 - l - Let 29 - T - THigh 40 - C - CHurCH

8 - o - bOAt 19 - w - Wet 30 - z - Zoo 41 - J - JuDGe

9 - -̂ bUt 20 - r - Red 31 - Z - meaSure 42 - # - Silence

10 - u - bOOt 21 - y - Yet 32 - v - Van

11 - U - bOOk 22 - n - Neat 33 - D - THy

Table 6.2: Phone list used for phonebook experiments.

Each test case includes word error results for four di�erent vocabulary sizes: 75,
150, 300, and 600. The vocabulary size determines the number of possible competing words
that a given unknown test word might take on. Therefore the perplexity (Jelinek 1997) in
each case is equal to the vocabulary size. It is assumed that each test word occurs in the
test vocabulary so there are never any \out-of-vocabulary" words.

The development set consists of the eight phonebook lists mentioned above; each
list has a number of utterances as given in Table 6.3. The independent test set sizes are
given in Table 6.9. Each test list consists of a set of about 75 possible words, and no two
test lists share a single word or speaker in common. The results for the 75 word vocabulary
size are obtained by performing a separate recognition on all eight lists, and averaging the
eight results. The results for the 150 word vocabulary size are obtained by performing
a recognition on groups of two lists, and then averaging the four results. The 300 word
(average of two grouped lists) and 600 word cases (all lists grouped together) are de�ned
similarly.

Phonebook List ad ar bd br cd cr dd dr

Num. Utterances 764 672 780 1007 964 785 725 901

Table 6.3: Phonebook development set lists and list sizes.

6.3.1 No Transition Matrix Training

The �rst experiment compares an HMM and a BMM on the development set
with training performed only on the observation models, so the transition matrices are not
trained. In other words, the transition matrices are �xed and are not adjusted via the EM
algorithm | Markov state exit transitions are �xed at 0.9 (and self loops are �xed at 0.1).
One state per phoneme is used so there are a total of 42 Markov states. Each observation
distribution is shared among any word model whose pronunciation uses the corresponding
phoneme.

This �rst experiment evaluated dependency selection rule 4.3 (listed in Section 4.5)
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with confusability re�ned utility, and a phonetically motivated clustering. Eight phoneti-
cally derived clusters were used to de�ne the confusable classes Cq in the utility function:
silence (phone model 42), frontal vowels which possess high second (F2) and third (F3)
formants and large F2-F1 distances (phoneme models 1, 2, 21, 4, 5, 9, 16, and 18), diph-
thongs which are characterized by spectral changes over time (phoneme models 3, 8, and
12-14), tongue retraction which is characterized by a small F2-F1 distance and high F1, and
rounding characterized by a downward shift of F1, F2, and F3 (phoneme models 6,7,10,11,
and 19), retro
ex which have small F4-F3 distance (models 15,17, and 20), nasals which
have a weak F1 (models 22-24), fricatives which have a noise like spectrum with much
high frequency energy (models 25-33, 40, and 41), and plosives which have dynamic energy
characteristics such as a closure followed by a sudden burst in energy (models 34-39). Of
course, it is not guaranteed that such phonetically derived clusters will actually lead to
confusability among the corresponding members of the statistical models. As an alterna-
tive, one would produce clusters in a data-derived way (Woodland 1991; Woodland 1992;
Leggetter 1995). The utility was computed using the upper bound approximation described
in Section 4.6.

As described above, an HMM baseline system bootstrapped using uniform seg-
mental k-means was developed using the 42 phoneme models. In this experiment, each
phoneme model used a mixture of 48 diagonal covariance Gaussians.

Lex. Size 75 150 300 600

HMM 5.7% 7.6% 9.8% 14.1%

BMM 5.1% 7.1% 9.3% 13.4%

Params

105k

115k

Table 6.4: Phonebook results, one Markov state per phoneme, no transition training

The results are summarized in Table 6.4. As can be seen, for each vocabulary size, a
BMM outperforms the corresponding HMM. The heuristic algorithm thresholds were again
speci�ed using values rather than percentiles. The thresholds for this set are as follows:
�u = 0:0, �u = �1, �q = 2:25� 10�2, �g = 75%, �c = 6:1� 10�3, M = 20, and Cq is the
clustering de�ned above. These values were obtained by performing a search over parameter
values and evaluating each result. In the above, dependency links were allowed to span a
maximum of 100 ms (10 frames) only into the past. That means that directed cycles in the
dependency graph do not occur. The baseline HMM system used 105k observation model
parameters and the BMM used an additional 10k parameters resulting in 115k parameters.

6.3.2 One Markov State per Phoneme

The results in this section, and in Sections 6.3.3 through 6.3.5, are produced with
HMMs and BMMs that include Markov transition matrix training. Word-error results are
again provided for the development set. The main purpose is to demonstrate that it is
possible for a BMM to outperform an HMM even when delta features are included in the
feature stream.

Again, strictly left-to-right Markov chains are used. Also, the approximation to
dependency selection rule 4.5 was used for the heuristic in Figure 4.11. As described in
Chapter 4, this selection rule is directly related to Bayes error. In all of the following
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results, dependency links were allowed to span a maximum of 100ms (10 frames) only into
the past. Therefore, directed cycles in the Bayesian network graph do not occur.

Unlike the previous section, the results presented here are produced with a system
trained using the embedded BMM update equations listed in Appendix A. These equations
are used because in order to train the Markov transitions, it is required to embed BMMs
inside a larger Markov structure. Each embedded BMM corresponds to a phoneme model
consisting of at least one observation distribution and a local Markov chain controlling the
probabilistic sequence through the observation distributions. The number of observations
per phone model is in all cases equal to the number of Markov states per phone model, i.e.,
the case was not evaluated where multiple Markov states are used to produce a di�erent
phone duration distribution, with all such states sharing an observation distribution.

Vocab. Size 75 150 300 600

Comp. HMM 7.1%

HMM A 5.3% 7.2% 9.5% 13.5%

HMM B 5.0% 7.0% 9.2% 13.3%

BMM 4.6% 6.5% 8.7% 12.3%

Params Mixtures/State

162k 48

105k 48

157k 72

157k 48

Table 6.5: Phonebook results, one Markov state per phone, transition training

This section reports the case where one Markov state per phoneme is used, so there
are a total of 42 Markov states. The results are shown in Table 6.5. The �rst row shows
the result of a comparable HMM as reported in the literature (Dupont et al. 1997). This
HMM result was produced using cepstral features, and used the same word pronunciation
dictionary. It also uses double-delta (acceleration) features (Wilpon et al. 1991; Lee et al.
1991), minimum duration modeling (i.e., each phoneme corresponded to three HMM states
strung together in series where each state shared the same output distribution), and 48
mixture components per state.

The results for HMM A show the new baseline HMM results. The HMM baseline
reported here was signi�cantly better than Dupont et al. (1997) probably because of better
parameter initialization via the k-means procedure, although the exact reason for HMM
A's improvement is not known. The HMM A system uses one state per phoneme, no
duration modeling, and 48 components per mixture. The next row, HMM B, shows the
word error performance when the number of parameters in the HMM system is increased
by increasing the number of mixture components per state to 72. This was close to the
maximum number of components possible with this system as initial parameter values for
more components could not be found via the k-means procedure (i.e., k-means would not
converge to a con�guration with more than zero samples in all of the k > 72 clusters).
Again, the EM algorithm pruned away irrelevant components using the MCVR so 72 is the
maximum number of components used by this system.

The forth column shows the result of a BMM using 48 component densities per
mixture. As can be seen, the BMM achieves better performance than any of the previous
HMMs. It is apparent, in this case, that adding dependencies between features yields a
greater performance improvement per parameter than increasing mixture components. The
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BMM was derived using heuristic algorithm percentiles: �u = 0:0, �u = 60%, �q = 80%,
�c = 40%, �g = 75%, and Cq was unde�ned since selection rule 4.5 is used.

6.3.3 Two Markov States per Phoneme

Vocab. Size 75 150 300 600

Comp. HMM 6.2%

HMM A 2.8% 4.0% 6.2% 8.6%

HMM B 2.4% 3.5% 5.6% 7.7%

BMM 2.3% 3.4% 5.4% 7.5%

Params Mixtures/State

162k 34

105k 24

182k 43

182k 24

Table 6.6: Phonebook results, two Markov states per phoneme, transition training

This section presents performance results when two Markov states per phoneme
model are used. When the number of states per phoneme is increased, performance gets
uniformly better as shown in Table 6.6.

The �rst row again shows a comparable HMM result again from (Dupont et al.
1997). This result is not exactly the same as using two states per phoneme | in that case,
three observations and three states were used per phoneme. The �rst and third state in
each phone used observations that were globally tied, the �rst observation being the global
\entry to phoneme model" observation, and the third observation being the \exit phoneme
model" observation. The middle observation is unique to each phoneme model. Although
the HMM associated with the results in the �rst row of the table are di�erent than the
other HMMs, they are included because they most closely match the current conditions.

The second row, HMM A, shows the new baseline HMM results which are again
better than the �rst row. These results were obtained with an HMM using 24 mixture
components per state. Moving up to 48 mixture components per state, the HMM results
do improve, as shown in the third row. The last row shows the BMM result with 24
mixture components per state which is again the best, and achieves its performance with
fewer parameters. The BMM was derived using heuristic algorithm percentiles: �u = 0:0,
�u = 80%, �q = 60%, �c = 40%, and �g = 60%.

6.3.4 Three Markov States per Phoneme

Vocab. Size 75 150 300 600

Comp. HMM 5.0%

HMM A 1.8% 3.2% 4.9% 7.0%

HMM B 1.7% 2.8% 4.6% 6.2%

BMM 1.5% 2.6% 4.4% 6.0%

+

Params Mixtures/State

162k 16

105k 16

163k 26

166k 16

Table 6.7: Phonebook results, three Markov states per phoneme, transition training
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This section presents performance results for the case when three Markov states
per phoneme model are used. Performance again uniformly increases as shown in Table 6.7.

The �rst row again shows a comparable HMM result from (Dupont et al. 1997).
This HMM uses 16 components per mixture, 38 features (as described above), and three
separate Markov states with di�erent observation distributions for each phoneme model.

The second row, HMM A, shows the new baseline HMM results which are sig-
ni�cantly better than the �rst row. These results were obtained with an HMM using 16
mixture components per state. Moving up to 32 mixture components per state, the HMM
results do improve, as shown in the third row. But the last row shows the BMM result which
is again the best. The BMM was derived using heuristic algorithm percentiles: �u = 0:0,
�u = 60%, �q = 60%, �c = 30%, and �g = 50%.

6.3.5 Four Markov States per Phoneme

Vocab. Size 75 150 300 600

HMM A 1.7% 3.1% 4.9% 6.5%

HMM B 1.5% 2.7% 4.3% 5.8%

BMM 1.4% 2.6% 4.2% 5.6%

Params Mixtures/State

105k 12

200k 24

207k 12

Table 6.8: Phonebook results, four Markov states per phone, transition training

This section provides performance when four Markov states per phoneme model
are used. Once again, performance uniformly increases over the cases where fewer states
are used. The results are presented in Table 6.6.

The �st row, HMM A, shows the baseline HMM performance. These results were
obtained with an HMM using 12 mixture components per state. Moving up to 24 mixture
components per state, the HMM results again improve, as shown in the third row. The
last row shows the BMM result using 12 mixtures per state which is again the best and
uses a comparable number of parameters as HMM B. The BMM was derived using heuristic
algorithm percentiles: �u = 0:0, �u = 60%, �q = 60%, �c = 40%, and �g = 70%.

6.3.6 Independent Test Set

In the previous sections as described in Section 6.1, several sets of heuristic param-
eter values were evaluated to produce the reported word error performance. In this section,
the HMM and the �nal resulting BMMs from each of the four cases above (one through four
states per phoneme) are evaluated on an independent test set. The test lists and test list
sizes are given in Table 6.9. In each of the following, the reported word error was produced
by a recognition system that was run once and only once using the test set | no parameter
tuning was done on these test sets in an attempt to produce better performance.

Again four di�erent test cases are shown corresponding to di�erent numbers of
Markov states per phoneme. The results are presented in Tables 6.10 through 6.13. As
the results show, a BMM consistently outperforms an HMM with the same number of
mixture components per state. As the parameters of the HMM are increased by increasing
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the number of HMM mixture components per state, the performance of the HMM system
improves as predicted by the theory presented in Chapter 3. In all but the last case, the
BMM still has a slight advantage over the HMM. This is discussed further in Section 6.5.

Phonebook List ao ay bo by co cy do dy

Num. Utterances 922 971 734 895 918 1104 830 917

Table 6.9: Phonebook independent test set lists and list sizes.

Vocab. Size 75 150 300 600

HMM A 6.3% 7.6% 11.4% 14.8%

HMM B 6.4% 7.7% 11.4% 14.7%

BMM 5.8% 7.2% 11.1% 14.3%

Params Mixtures/State

105k 48

157k 72

157k 48

Table 6.10: Phonebook results, one Markov state per phoneme, independent test set

Vocab. Size 75 150 300 600

HMM A 3.4% 4.5% 7.4% 9.7%

HMM B 3.0% 4.1% 7.0% 9.2%

BMM 3.0% 4.1% 7.1% 9.1%

Params Mixtures/State

105k 24

182k 43

182k 24

Table 6.11: Phonebook results, two Markov states per phoneme, independent test set

6.4 Structural Discriminability

In this section, several of the 75 word vocabulary development set results from
the previous sections are presented along with results obtained using other methods to
extending the HMM's structure.

The results are presented in Table 6.14. The �rst �ve results (cases 1-5) all use
one state per phoneme and 48 mixtures per state.

Case 1 shows the performance of an HMM that has been extended with additional
dependencies according to selection rule 4.2 (dependency selection using just conditional
mutual information). As described in Chapter 4, this rule adds dependencies such that the
resulting structure has a higher potential likelihood. Once these models are trained, the
likelihood scores of each model both on training data and test data dramatically increase
relative to the baseline HMM (case 5). But as can be seen from the table, the performance
dramatically decreases. The reason is that, although the likelihood of each word for each
model is much higher, the models no longer discriminate well. Essentially, the models have
been extended with structure that describes the statistics of speech but not the character-
istics distinguishing one speech utterance relative to other utterances. As a result, each
model reports a high likelihood score for all utterances and discriminability decreases.
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Vocab. Size 75 150 300 600

HMM A 2.4% 3.4% 5.7% 7.5%

HMM B 2.3% 3.2% 5.6% 7.0%

BMM 2.2% 3.1% 5.3% 6.7%

Params Mixtures/State

105k 16

163k 26

166k 16

Table 6.12: Phonebook results, three Markov states per phoneme, independent test set

Vocab. Size 75 150 300 600

HMM A 2.3% 3.4% 5.8% 7.4%

HMM B 2.0% 2.8% 5.0% 6.2%

BMM 2.0% 2.9% 5.0% 6.2%

Params Mixtures/State

105k 12

200k 24

207k 12

Table 6.13: Phonebook results, four Markov states per phoneme, independent test set

Case 2 and 3 shows the performance of vector auto-regressive (or conditional Gaus-
sian, see Chapter 3) HMMs on this corpus. AR2 (case 2) corresponds to the case where
dependencies are added from the current observation variable to the two preceding obser-
vation variables. More precisely, each element of the current observation vector now also
includes a dependency on the corresponding element of the two preceding observation vec-
tors. AR1 (case 3) is the same except that a dependency is added only to the preceding
observation vector. As can be seen from the results, the auto-regressive HMM performance
is also very poor. This is consistent with the literature which shows that auto-regressive
HMMs are bene�cial only when delta features are not included in the feature stream (see
Chapter 3).

The results from cases 1-3 indicate that some dependencies can be damaging |
these are the ones which produce a structure with increased potential likelihood, but de-
creased discriminability. As mentioned above, the likelihoods reported by the models for
cases 1-3 were extremely large when evaluated both on the training data and on test data
which consisted of di�erent words spoken by di�erent speakers. This suggests that over�t-
ting to the training data did not cause the performance decrease.

Case 4 shows the performance when a random set of dependencies between ob-
servation elements are added. Di�erent random dependencies are added for each hidden
state. Case 4 is much better than cases 1 through 3 which suggests that truly harmful and
anti-discriminative dependencies have not been added. The performance, however, is still
not as good as case 5 (to be described shortly) which implies that just adding dependencies
arbitrarily, even if they are not the \wrong" ones, can hurt performance.

Case 5 shows a baseline HMM result given in Table 6.5. As can be seen, this result
is better than all of the previous HMM extensions. Taken together, the above results imply
that just adding dependencies to a model because they are missing does not necessarily
improve performance.

Case 6 shows the comparable best Gaussian-mixture HMM performance using the
same pronunciation dictionary as given in (Dupont et al. 1997). This number is the same
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Case Type WER Num. Params States/Phone Mixtures/State

1 CMI 32.0% 207k 1 48
2 AR2 27.6% 207k 1 48
3 AR1 20.9% 156k 1 48
4 RAND 8.3% 207k 1 48
5 HMM 5.3% 105k 1 48
6 Comp HMM 5.0% 162k 3 16
7 HMM 5.0% 157k 1 72
8 BMM 4.6% 157k 1 48
9 HMM 2.8% 105k 2 24
10 HMM 2.4% 200k 2 48
11 BMM 2.3% 182k 2 24
12 HMM 1.8% 105k 3 16
13 HMM 1.7& 201k 3 32
14 HMM 1.7% 105k 4 12
15 HMM 1.5% 200k 4 24
16 BMM 1.5% 166k 3 16
17 BMM 1.4% 207k 4 12

Table 6.14: 75 Word Vocabulary Size Comparisons

as what was provided in Table 6.7.

With one Markov state per phoneme, cases 5 and 7 compare an HMM and a BMM
with equal numbers of mixtures per component (48 in this case). Cases 5 and 8 compare
an HMM and a BMM with a comparable number of parameters (157k). In each case, the
BMM outperforms the HMM.

With two Markov states per phoneme, cases 9 and 11 compare an HMM and a
BMM with equal numbers of mixtures per component (24 in this case) and cases 10 and
11 compare an HMM and a BMM with a comparable number of parameters (200k for the
HMM and 182k for the BMM). Again, the BMM yields a lower word error rate in either
case.

With three Markov states per phoneme, the situation is similar. Cases 12 and 16
compare an HMM and a BMM with equal numbers of mixtures per component (16 in this
case) and cases 13 and 16 compare an HMM and a BMM with a comparable number of
parameters (201k for the HMM and 166k for the BMM). Again, the BMM yields a lower
word error rate in either case, even with signi�cantly fewer parameters.

Finally, with four Markov states per phoneme, the gap narrows between an HMM
and a BMM, with the BMM still having a slight advantage. Cases 14 and 17 compare an
HMM and a BMM with equal numbers of mixtures per component (12 in this case) and
cases 15 and 17 compare an HMM and a BMM with a comparable number of parameters
(200k for the HMM and 207k for the BMM). The BMM yields a slightly lower word error
rate in both cases.

There are several general points that can be made from the information provided
by Table 6.14. First, case 1 suggests that augmenting the model structure to increase the
potential likelihood might actually cause the error rate to dramatically increase. Many
of the methods in the statistical model selection literature (Burnham & Anderson 1998;
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Linhart & Zucchini 1986) attempt to select a model that provides the best description of
the data. But even if this is done in a class conditional way, and the resulting models
are used for classi�cation, the above results show that discrimination can get worse. Ad-
mittedly, model selection procedures also typically include a term which penalizes overly
complex structures (e.g., MDL, BIC, etc.). But these penalties typically do not select for
discriminative structures, something that seems required to achieve good classi�cation per-
formance. This could explain the mixed success of AR-HMMs in the past (Kenny et al. 1990;
Ostendorf et al. 1996) where \dependencies" are �xed a priori without regard to their a�ect
on information gain and discriminability.

Second, dependencies should not be added arbitrarily just because they are miss-
ing. Cases 2 and 3 adds dependencies between adjacent observation vectors, an approach
sometimes justi�ed by noting that they are not directly represented by an HMM. But as the
performance for these augmented models shows, adding missing dependencies can decrease
classi�cation performance.

Third, adding random dependencies does not produce as poor performance as in
the previous cases, but there is no bene�t either. It is unlikely that just choosing ran-
dom dependencies, even if they are di�erent for di�erent q, will select the discriminative
dependencies because the space of possible sets of dependencies is so large.

Forth, as mentioned above, when delta features are also used in the observation
stream, HMMs with extra dependencies between observations often do not provide any
improvement. The results if this section show that it is possible to gain an improvement even
using delta features if the right structurally discriminative set of additional dependencies
are used.

Finally, the theory given in Chapter 3 argues that an HMM can approximate a
distribution arbitrarily well if it has enough hidden states, mixtures per component, and
training data. The results in Table 6.14 (and throughout this chapter) support this claim
as each increase in the number of hidden states or the number of mixtures per component
resulted in a performance improvement. The performance improvement obtained by adding
more hidden states is dramatic, but on top of that the additional BMM dependencies are
able to produce an additional improvement in each case. As argued in Chapter 4, a BMM
adds parameters only where an HMM is found to be de�cient and therefore could lead to
better or equal word error performance with fewer parameters. The data also supports this
claim as an HMM is often better than an HMM with an equivalent number of parameters
and the same number of hidden states.

The key point of this section is that it is important to produce structurally dis-
criminative models, at least when the parameters are trained using a maximum likelihood
training procedure. Adding more hidden states increases structural discriminability as can
adding BMM dependencies.

6.5 Discussion

For most of the results presented in this chapter, dependency variables are chosen
only from the past and not from the present (see Section 7.3) or from the future. This avoids
a MRF and the need for a global renormalization as described in Section 4.7.3. Therefore,
at each time frame, each observation model is a function only of the current hidden state
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and previous feature frames. At the beginnings of the utterances, however, the observation
models contain dependencies to time regions before the beginning of the speech waveform.
It therefore might be necessary to, prior to feature extraction, prepend samples to the
beginnings of each speech utterance providing enough data for these extra dependencies.
For the results above, the speech signals were prepended with extra random Gaussian
noise samples since speci�c hidden state conditions to determine beginning-of-utterance
dependencies were not used. Therefore, the BMM results might have been penalized by
this constraint. In the ideal case, context dependent phoneme models would be used and
dependencies appropriately directed according to the hidden state.

Min 1st Quartile 2nd Quartile 3rd Quartile Max Avg

1 state/phone 2k 20k 30k 45k 115k 46k

2 state/phone 700 9k 14k 25k 82k 23k

3 state/phone 450 6k 10k 16k 49k 16k

4 state/phone 300 4k 7k 12k 56k 12k

Table 6.15: Number of speech frames per CMI estimate

Regarding the results in this chapter, it is important to realize that as the number
of hidden states per phoneme increases, the robustness of the conditional mutual information
estimates get worse for a �xed amount of training data. This is because conditional mutual
information is computed using Viterbi paths as described in Section 7.4 and Chapter C. As
the number of Markov states increases, there are fewer frames of speech that are labeled
as any given state. The minimum, quartiles, maximum, and average number of frames per
state used for to produce conditional mutual information estimates is given in Table 6.15. As
can be seen, on average about eight minutes of speech are used to produce each conditional
mutual information estimate when using one Markov state per phone model. But only
about 2 minutes of speech on average are used when using four states per phoneme model,
a drop that could have a signi�cant a�ect on the robustness of the estimate.

In general, the HMM theory presented in Chapter 3 argued that HMMs can ap-
proximate a distribution arbitrarily well given enough hidden states and parameters. The
results of this chapter seem to support this claim | increasing the number of hidden states
and the number of mixture components improves performance. By adding discriminative
structure only where it is found to be missing, BMMs are an endeavor to produce an equal
or better performing model with the same or fewer parameters. The results of this chap-
ter appear to support this claim as well. Furthermore, as the results of Section 6.4 show,
it is crucial to produce structurally discriminative models when training uses a maximum
likelihood procedure, as otherwise performance can get dramatically worse.
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Conclusions and Future Work
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In this thesis, it has been argued that statistical models should represent the
natural statistical dependencies extant in real-world objects. For a classi�cation task, it is
particularly important to produce models that are structurally discriminative | each model
should have the capability to represent the de�ning and unique attributes of each object
class. It was hypothesized that such an approach can satisfy the principle of parsimony in
that the resulting models represent only what is important for the classi�cation task, not
attempting to explain more than necessary.

This general approach was applied to the automatic speech recognition task. It was
claimed that some criticisms of HMMs do not address inherent problems that cause errors in
a speech recognition system and that HMMs are a more powerful statistical model than they
are sometimes portrayed. To extend HMMs in a potentially parsimonious way, it was shown
how one can exploit statistical regularity in speech to automatically determine statistical
dependencies between observation elements that can be added to an HMM. Thereby, the
HMM conditional independence assumptions can be relaxed in a data-driven way.

In particular, an HMM makes the assumption that Xt??X:tjQt for all t. Given
enough hidden states and observation distributes with large enough capacity, an HMM can
at least in theory approximate any real-world distribution arbitrarily well. This might also
be true in practice assuming su�cient training data. For a particular HMM, however, the
validity of this conditional independence property can be measured using conditional mutual
information, a quantity that can be seen as a measure of an HMM's loss. If I(Xt; X:tjQt) =
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0 then it is possible for the HMM to be accurate. If I(Xt; X:tjQt) > 0 then an HMM can
be extended with additional cross-observation dependencies to minimize the remaining loss.
But because structural discriminability is the goal, discriminative versions of an HMMs loss
were developed in this thesis and used to determine additional dependencies. The result is
called a BMM. It was found that a BMM can outperform an HMM with fewer parameters
if discriminative dependencies are used, but if \likelihood maximizing" dependencies are
chosen, word-error performance can get dramatically worse.

This thesis leaves open many possible avenues of research to further explore. Some
of the more promising ones are postulated and discussed in the following sections.

7.1 Discriminative Training

The structure learning schemes presented in this work attempt to produce models
that are structurally discriminative, but only maximum likelihood parameter training was
implemented and tested. While it was mentioned in Chapter 3 that structurally discrimi-
native models might not need a discriminative training procedure, on the other hand, there
might be an additional advantage to using both discriminatively structured and discrimi-
natively trained models.

7.2 Simultaneous Multi-level Speech System Improvements

It has repeatedly been observed that Gaussian mixture HMMs and MFCC-based
features seem uniquely suited to each other. Promising new feature extraction methods
are sometimes proposed and then compared with MFCCs using a Gaussian mixture HMM-
based system only to �nd that the MFCCs work better. One possible explanation is that the
nature of the statistical properties that are represented by a particular Gaussian mixture
HMM better match the properties of the MFCCs than the new features. In other words,
the HMMs that yield success with MFCCs do not yield success with the new features. It
would perhaps be advantageous to move to a fundamentally di�erent HMM, or to tune the
HMM to better match the statistical properties of the speech signals as represented by the
new features.

More generally, as was hypothesized in Chapter 1, speech recognition systems
will perhaps yield signi�cant performance improvements when multiple components of the
system are simultaneously optimized. For example, if new features are used in an otherwise
�xed system, that system might be incapable of successfully using those features while a
di�erent system might �nd them bene�cial. Alternatively, if new pronunciations are added
to a dictionary using an otherwise �xed system, the increased pronunciation accuracy can
be o�set by greater confusability at the acoustic level.

The BMM structure learning procedure can be seen as adapting a model to repre-
sent the statistics of the speech signal as represented by the current set of features and using
the current set of word pronunciations. BMMs might therefore yield greater bene�ts with
di�erent non-MFCC feature sets. And since BMMs possess observation distributions that
have lower within-class average entropy, richer pronunciation models could be used but with
a smaller confusability increase. In general, the BMM approach of automatically augment-
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ing the statistical model can be one part of a set of improvements applied simultaneously
to multiple levels of a large speech recognition system.

7.3 Sparse Inverse Covariance Matrices

In many speech recognition systems, diagonal covariance Gaussian components are
used even though full covariance matrices can provide additional improvements. Another
option, for example, factors the covariance matrices using an eigen-analysis and then ties
di�erent factors together (Gales 1999).

In a Gaussian distribution, zeros in the inverse covariance matrix determine condi-
tional independence properties of the Gaussian model (Lauritzen 1996; Mardia et al. 1979).
Another possibility therefore is to use sparse inverse covariance matrices. The sparse pat-
terns impose a structure over the intra-frame statistical dependencies. With the right dis-
criminative structure, the same advantages might be obtained as with any discriminatively
structured model.

The BMM structure learning procedure described in Chapter 4 can also be used
to produce sparse inverse covariance matrices by restricting the set Z in the algorithm in
Figure 4.11 to contain only elements from the vector at the current time frame. Consider
Equation 5.17 with S = 1 slightly modi�ed so that the z variables do not contain 1 as the
last element. Also, the �xed means normally contained in the right-most column of the B
matrices are now explicitly represented using the quantities �qm:

p(xjm; z; q) =
1

(2�)d=2j�qmj1=2
e�

1
2 (x�Bqmz��qm)0��1qm(x�Bqmz��qm)

If the set z contains elements only from x itself, the above procedure would use square
Bqm matrices that have zeros along the diagonal. These matrices represent dependencies
between the individual elements of x. These dependencies are, of course, super
uous if � is
a full covariance matrix. Suppose, however, that the inverse covariance matrices, referred to
as �, contains only diagonal elements. If the element of Bqm in the ith row and jth column
(for j 6= i) is non-zero, then it says that ith element of x is directly dependent on the jth

element of x. This can be viewed as a Bayesian network similar to the simpli�cation of the
chain rule of probability, as shown in Figure 2.5. Therefore, it is su�cient to consider only
the case where Bqm is an upper triangular matrix with zeros along the diagonal.

The argument of the exponential above can be transformed as follows (subscripts
are dropped for notational simplicity):

(x+Bx � �)T�(x+Bx � �) = ((I +B)x � �)T�((I + B)x� �)

= (Cx� �)T�(Cx� �)

= (CC�1(Cx� �))T�(CC�1(Cx� �))

= (C(x� C�1�))T�(C(x� C�1�))

= (C(x� �̂))T�(C(x� �̂))

= (x� �̂))TCT�C(x� �̂)

where C = I + B and �̂ = C�1� is the new mean. This procedure de�nes new discrim-
inatively structured sparse inverse covariance matrix CT�C where the sparse structure is
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determined by the B matrices used by the BMM. The Gaussian normalization constant
becomes (2�)d=2jCT�Cj1=2 = (2�)d=2j�j1=2 since det(C) = 1.

A matrix A is positive semi-de�nite if xTAx > 0 for all non-zero x. Since � is
positive semi-de�nite, so is the matrix CT�C since:

xT (CT�C)x = xT (CT�1=2�1=2C)x

= xT (�1=2C)T(�1=2C)x

= (�1=2Cx)T (�1=2Cx) � 0

The last form is a sum of squares which is always non-negative, so CT�C is also positive
semi-de�nite and therefore is a valid covariance matrix for a Gaussian.

Note also that the matrix C�1 is guaranteed to exist since C = I +B is an upper
triangular matrix with ones along the diagonal, a matrix that is guaranteed to have full
rank (Harville 1997).

7.4 Iterative Re-estimation of Mutual Information

The BMM boot scheme presented in Chapter 5 requires the computation of the
conditional mutual information. The mutual information is obtained from frames labeled
using the Viterbi path of the HMM. Once the BMM has been designed, however, a new
Viterbi path can be computed and used to re-estimate the conditional mutual information.
This leads to the following possible algorithm for iteratively re�ning a BMM.

1) Train a normal HMM using EM
2) Compute Viterbi paths using the HMM
3) Compute conditional mutual information and discriminative loss functions
4) Build a BMM as described in Section 4.7
5) Train the new BMM
6) Compute Viterbi paths using the BMM
7) Go to step 3 if the new alignment is su�ciently di�erent.

This procedure iteratively re�nes the Viterbi path, the conditional mutual information, and
the BMM model itself.

A possible modi�cation of this procedure computes mutual information not using
the Viterbi path (which makes hard decisions about the hidden state assignment at each
frame) but instead uses the state occupation probabilities at each frame (this is called 
i(t)
in Chapter 5).

7.5 Instantaneous Speaker Adaptation

In Figure 4.12, the Bayesian network for a BMM was presented making a dis-
tinction between the two feature streams X and Y . It was suggested that X could con-
sist of standard speech features and that Y could consist of features that are more in-
formative about characteristics of a particular speaker but which might be independent
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of the hidden variables. Such an approach is similar to the speaker adaptation proce-
dures commonly used in large speech recognition systems (Leggetter & Woodland 1995;
Leggetter 1995). In this case, however, the adaptation data changes the statistics of the
observations at each time frame. Such a procedure therefore could be referred to as instan-
taneous speaker adaptation.

7.6 Switching Variable S > 1

In this work, switching Gaussian mixture BMMs were tested only with S = 1 in
Equation 5.17. A potentially greater a�ect on the entropy can be achieved by setting S > 1.

7.7 Miscellaneous

A list of additional research topics to explore follows.

� Better dependency selection heuristic. Several gross simpli�cations were made to
obtain the heuristic presented in Figure 4.11. As was demonstrated in Chapter 6,
the selected dependencies can have a dramatic a�ect on recognition error. A more
advanced heuristic might produce better results. And since the heuristic is only run
once per training, it need not have severe computation complexity restrictions.

� The dependency selection procedure could be applied to any Bayesian network to
produce an additional discriminatively structured set of dependency edges.

� As described in Chapter 1, BMMs might yield further advantages in noisy acoustic
environments.

� Dependency selection rule 4.1 could be useful for producing good speech synthesis
models.

� As discussed in Section 6.5, BMMs word-error results should be produced using
context-dependent hidden Markov state phoneme models. Such a procedure would
solve the problem where, at the beginning of utterances, dependency variables in the
past correspond to random background noise. Such a hidden-state de�nition could
perhaps also result in more robust estimates of conditional mutual information. This
is because the data samples used to produce conditional mutual information (see Ap-
pendix C) for each hidden state would contain less noise from the frames prior to the
beginning of an utterance.

� The BMM results presented in this thesis used dependency variables limited to no
more than 100 ms into the past. There could be an additional advantage to using
dependency variables at more distant temporal locations, or at a lower level of gran-
ularity.

� The heuristic listed in Figure 4.11 could be useful as a general feature selection pro-
cedure for a pattern classi�cation task. In this case, a modi�cation of dependency
selection rule 4.5 that includes the I(Q;Z) term would be useful.
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� The test results given in Chapter 6 were obtained with BMMs that used a di�erent
structure for each q. In other words, the sparse structure of the matrices Bqms in
Equation 5.17 would change as a function of q. It might be bene�cial to �rst cluster
the q and then share the structure among cluster members. This could reduce the
amount of computation required for and increase the robustness of the conditional
mutual information estimates (see Section C). One example would be to share the
structure within each state of a phoneme when using multi-state phoneme models.

In summary, there are many more ideas, heuristics, and experiments that follow
directly from the work presented in this thesis.
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Appendix A

Embedded BMM Update

Equations

This appendix describes the equations for computing the alpha and beta proba-
bilities, and for EM parameter update, in the context of embedded BMMs. The BMMs
use mixtures of Gaussian auto-regressive processes as observations (so they correspond to
switching Gaussian mixtures with S = 1). An embedded BMM is a collection of BMMs
that are concatenated together forming an implicit much larger BMM. The BMMs are con-
catenated together according to the Markov transition probabilities in the matrix A. The
equations given here are similar to those presented in (Young et al. 1990's) except that here
A can be an arbitrary left-to-right Markov \pronunciation" model. Therefore, the models
can be trained with multiple possible pronunciations for each word.

There are K BMMs concatenated together typically indexed by k. BMM 1 and
BMM K are non-emitting (i.e., they only consist of a single non-emitting Markov state) so
there are K � 2 emitting BMMs in the collection. The kth BMM consists of Nk states, the
�rst and the N th

k states being non-emitting. The transition matrix of BMM k is the matrix
a(k).

The transition probability between the non-emitting exit state of BMM i and the
non-emitting entrance state of BMM j is element Aij from the matrix A. In all the following
equations, a left-to-right transition structure is assumed both between BMMs and within
BMMs. This implies that the matrix A is upper triangular with zero diagonal entries (no

BMM self loops), and that the matrices a(k) with i; jth element a
(k)
ij are also upper triangular

with not necessarily zero diagonal entries (self loops allowed) except that a
(k)
1;1 = a

(k)
Nk;Nk

= 0.
The time variable is t and ranges from 1 to T . One can think of the non-emitting

�rst state of a BMM that starts at time t as occurring at time t� and the non-emitting last
state of a BMM that ends at time t as occurring at time t+.

For convenience, recall here the standard de�nition of the alpha, beta, and gamma
probabilities after (Rabiner & Juang 1993; Young et al. 1990's).

�
(k)
j (t) = p(o1; o2; : : : ; ot; Qt = kj)

�
(k)
j (t) = p(ot+1; ot+2; : : : ; oT jQt = kj)
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(k)
j (t) =

�
(k)
j (t)�

(k)
j (t)P

i �
(k)
i (t)�

(k)
i (t)

= p(Qt = kj jo1:T )

where Qt is the hidden random variable at time t and kj is the j
th state of the kth BMM.

The observation vector for time t is xt and the set of dependency variables at

time t is given by zt. The functions b
(k)
j (xtjzt) is the acoustic model for state j of BMM k.

The variables zt have an implicit dependence on j (the hidden state) but this subscript is
dropped for simplicity. The construct xtjzt is abbreviated using ot.

The most di�cult aspect of these equations is caused by the existence of non-
emitting states and their adjacent transition probabilities. These occur between BMMs
(to de�ne the embedded BMM Markov structure), within a BMM from the non-emitting
start state to the emitting states, within a BMM from the emitting states to the non-
emitting end state, and also within a BMM from the non-emitting start state to the non-
emitting end state (i.e., the \tee" transition). These states and their adjacent transitions
essentially distribute probability to all connecting emitting states at a given time before
actually accounting for any observations at that time.

In the following, all transitions within a BMM are learned via the EM algorithm.
While update equations could also be presented for A, it is assumed here that these are
�xed and exist simply to de�ne the (say pronunciation) structure.

A.1 Alpha computation

The alpha computation for the start state of each BMM is as follows. Like all
start-state alpha computations, it corresponds to a time slightly earlier than its argument.

�
(k)
1 (1�) =

(
1 if k = 1

A1k +
Pk�1

r=2 �
(r)
1 (1)a

(r)
1Nr

Ark otherwise

For 1 < j < Nk, the initial alpha probabilities are:

�
(k)
j (1) = a

(k)
ij b

(k)
j (o1)�

(k)
1 (1�)

Since this next alpha computation corresponds to the non-emitting last state, it
corresponds to a time slightly later than its argument.

�
(k)
Nk
(1+) =

Nk�1X
i=2

�
(k)
i (1)a

(k)
iNk

The following are the alpha equations for t > 1 and k < K.

�
(k)
1 (t�) =

(
0 if k = 1; 2Pk�1

r=2

h
�
(r)
Nr
((t� 1)+) + �

(r)
1 (t�)a

(r)
1Nr

i
Ark otherwise

This next equation is like the standard alpha update equation except consideration
has to be given to the entrance states at each time point.

�
(k)
j (t) =

2
4�(k)1 (t�)a

(k)
1j +

Nk�1X
i=j

�
(k)
i (t � 1)a

(k)
ij

3
5 b(k)j (ot)
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The �nal alpha update equation is for the end state.

�
(k)
Nk
(t+) =

Nk�1X
i=2

�
(k)
i (t)a

(k)
iNk

To manage tee transitions at time T from each BMM's non-emitting �nal state,
several additional quantities are de�ned. The �rst is an extra alpha probability that can be
thought of as occurring at time (T + 1)�, i.e., at time at the end of an utterance where all
observations have been accounted for by previous BMMs, and it is only possible to reach
the �nal Markov state by traveling through tee transitions.

�
(k)
1 ((T + 1)�) =

(
0 if k = 1; 2Pk�1

r=2

h
�
(r)
Nr
(T+) + �

(r)
1 ((T + 1)�)a

(r)
1Nr

i
Ark otherwise

The �nal alpha computation is used to obtain the total observation probability.

�(K) =
K�1X
k=2

h
�
(k)
1 ((T + 1)�)a

(k)
1Nk

+ �
(k)
Nk
(T+)

i
AkK

Note that p(o1:T ) = �(K).

A.2 Beta computation

The following equations de�ne the beta computation. They are analogous to the
alpha computation, so there is less accompanying descriptive text given.

�
(k)
Nk
(T+) =

(
1 if k = K

AkK +
PK�1

r=k+1 �
(r)
Nr
(T+)a

(r)
1Nr

Akr otherwise

�
(k)
i (T ) = a

(k)
iNk

�
(k)
Nk
(T+)

�
(k)
1 (T�) =

Nk�1X
j=2

a
(k)
ij b

(k)
j (oT )�

(k)
j (T )

The following are for t < T .

�
(k)
Nk
(t+) =

(
0 if k = K;K � 1PK�1

r=k+1

h
�
(r)
1 ((t+ 1)�) + �

(r)
Nr
(t+)a

(r)
1Nr

i
Akr otherwise

�
(k)
i (t) = a

(k)
iNk

�
(k)
Nk
(t) +

Nk�1X
j=i

a
(k)
ij b

(k)
j (ot+1)�

(k)
j (t+ 1)



A.3. UPDATE EQUATIONS 151

�
(k)
1 (t) =

Nk�1X
j=2

a
(k)
1j b

(k)
j (ot)�

(k)
j (t)

Again, special beta quantities are needed to support tee transitions.

�
(k)
1 ((T + 1)�) =

(
1 if k = K

a
(k)
1Nk

hPK
r=k+1Akr�

(r)
1 ((T + 1)�)

i
otherwise

�
(k)
Nk
(�1+) =

(
0 if k = K;K � 1PK�1

r=k+1

h
�
(r)
1 (1�) + �

(r)
Nr
(�1+)a

(r)
1Nr

i
Akr otherwise

The earliest beta probability is computed as follows:

�(1) =
K�1X
k=2

h
�
(k)
Nk
(�1+)a

(k)
1Nk

+ �
(k)
1 (1)

i
A1k

The �nal utterance probability is given by:

p(o1:T) = �(1) = �(K)

A.3 Update equations

This section provides the EM update equations for embedded BMMs. The update
equations are for multiple utterances. There are a total of U utterances, indexed by the
variable u. Each utterance contains Tu time frames. The quantity Pu is the total probability
for utterance u and is de�ned as Pu = p(ou1:Tu) = �(K)u. The + and � superscripts are
dropped in this section to save space.

The �rst update equation gives the new values for the transitions within a BMM.

â
(k)
ij =

PU
u=1

1
Pu

PTu�1
t=1 �

(k)u
i (t)a

(k)
ij b

(k)
j (out+1)�

(k)u
j (t+ 1)PU

u=1
1
Pu

PTu
t=1 �

(k)u
i (t)�

(k)u
i (t)

The next equation is for the transition from the emitting states to the non-emitting
exit state of a BMM.

â
(k)
iNk

=

PU
u=1

1
Pu

PTu
t=1 �

(k)u
i (t)a

(k)
iNk

�
(k)u
Nk

(t)PU
u=1

1
Pu

PTu
t=1 �

(k)u
i (t)�

(k)u
i (t)

The quantity D is used as a denominator by several of the update equations.

D =
PU

u=1
1
Pu

�PTu
t=1

h
�
(k)u
1 (t)�

(k)u
1 (t) + �

(k)u
1 (t)a

(k)
1Nk

nPK�1
r=k+1Akr�

(r)u
1 (t)

oi

+ �
(k)u
1 (T + 1)a

(r)
1Nk

nPK
r=k+1Akr�

(r)u
1 (T + 1)

o�
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The next equation is for the transition from the non-emitting entry state to the
emitting states of a BMM.

â
(k)
1j =

PU
u=1

1
Pu

PTu
t=1 �

(k)u
1 (t)a

(k)
1j b

(k)
j (out )�

(k)u
j (t)

D

The next equation is for the tee transition.

â
(k)
1Nk

=

PU
u=1

1
Pu

�PTu
t=1 �

(k)u
1 (t)a

(k)
1Nk

nPK�1
r=k+1 Akr�

(r)u
1 (t)

o
+�

(k)u
1 (T+1)a

(r)
1Nk

nPK
r=k+1 Akr�

(r)u
1 (T+1)

o�

D

Given the de�nitions of alpha and beta from the previous section, we can de�ne
a gamma probability for each emitting state and use that to update the acoustic models,
and a gamma probability for each component of each mixture model associated with each
state. That is:



(k)u
j (t) =

�
(k)u
j (t)�

(k)u
j (t)

Pu

and



(k)u
jm (t) = 


(k)u
j (t)

c
(k)
jmb

(k)
jm(o

u
t )

b
(k)
j (out )

Where c
(k)
jm is the mixture coe�cient, b

(k)
j (out ) is the acoustic model, and b

(k)
jm(o

u
t ) is just the

mth component of the acoustic model for BMM k state j.
With these de�nitions, the BMM update equations become:

B
(k)u
jm =

 
UX
u=1

TuX
t=1



(k)u
jm (t)xut z

u
t
0

! 
UX
u=1

TuX
t=1



(k)u
jm (t)zut z

u
t
0

!�1
;

�
(k)u
jm =

PU
u=1

PTu
t=1 
jm(t)(xt �B

(k)u
jm zt)(xt � B

(k)u
jm zt)

0PU
u=1

PTu
t=1 


(k)u
jm (t)

;

and

c
(k)
jm =

PU
u=1

PTu
t=1 


(k)u
jm (t)PU

u=1

PTu
t=1 


(k)u
j (t)

All these equations were used in the training program that produced the results
listed in Chapter 6.
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Appendix B

Matrix Derivative

In this section, it is shown that

@

@B
(x�Bz)TA(x� Bz) = �(A+ AT )(x�Bz)zT

where A (resp. B) is an N �N (resp. N �K) matrix, and x (resp. z) is an N � 1 (resp.
K � 1) vector.

For notational simplicity, assume that:

� = Bz

y = x� �

�i =
X
p

Bipzp

and

yi = xi � �i = xi �
X
p

Bipzp:

where Bip is the i; pth element of the matrix B and zp is the pth element of the vector z. It
immediately follows that:

(x�Bz)TA(x� Bz) =
X
i;j

(xi � �i)Aij(xj � �j)

=
X
i;j

 
xi �

X
p

Bipzp

!
Aij

 
xj �

X
q

Bjqzq

!

=
X
ij

xiAijxj �
X
ij

xiAij

X
q

Bjqzq

�
X
ij

 X
p

Bipzp

!
Aijxj +

X
ij

 X
p

Bipzp

!
Aij

 X
q

Bjqzq

!
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=
X
ij

xiAijxj �
X
ijq

xiAijBjqzq

�
X
ijp

BipzpAijxj +
X
ijpq

BipzpAij

X
q

Bjqzq

The derivative with respect to Bk` for each of the above terms must therefore be
found. The �rst term is zero since it does not involve Bk`. Taking the derivative of the
second term yields:

@

@Bk`

X
ijq

xiAijBjqzq =
@

@Bk`

X
i

xiAikBk`z` =
X
i

xiAikz`

Doing the same for the third term yields:

@

@Bk`

X
ijp

BipzpAijxj =
@

@Bk`

X
j

Bk`z`Akjxj =
X
j

z`Akjxj

The forth term yields:

@

@Bk`

X
ijpq

BipzpAij

X
q

Bjqzq

=
@

@Bk`

0
@ X

(j;q)6=(k;l)

Bk`z`AkjBjqzq +
X

(i;p)6=(k;l)

BipzpAikBk`z` +B2
k`z

2
`Akk

1
A

=
X

(j;q)6=(k;l)

z`AkjBjqzq +
X

(i;p)6=(k;l)

BipzpAikz` + 2Bk`z
2
`Akk

Combining all four terms leads to:

@

@Bk`
yTAy = �

X
i

xiAikz` �
X
j

z`Akjxj +
X
jq

z`AkjBjqzq +
X
ip

BipzpAikz`

= z`
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4�X

i

xiAik �
X
j

Akjxj +
X
jq

AkjBjqzq +
X
ip

BipzpAik

3
5

= z`

"X
i

 
�xi(Aik +Aki) + Aki

X
q

Biqzq +Aik

X
p

Bipzp

!#

= z`

"X
i

 
�xi +

X
q

Biqzq

!
(Aik +Aki)

#

= �z`

"X
i

 
xi �

X
q

Biqzq

!
(Aik +Aki)

#

=
�
�(A+ AT )(x�Bz)zT

�
k`

This last quantity is the k; `th element of the matrix �(A+ AT )(x�Bz)zT , as desired.
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Appendix C

Computation of MI and CMI

This appendix describes the computation of (conditional) mutual information
given a sample of data. After making the approximations described in Section 4.6, only
pairwise conditional mutual information is needed, the computation of which is described
herein.

C.1 Mutual Information Computation Using EM

The mutual information between two continuous random variables X and Y is
de�ned as (Cover & Thomas 1991):

I(X ; Y ) =

Z
p(x; y) log

p(x; y)

p(x)p(y)
dxdy:

In practice, access is only given to samples D = f(xi; yi) : 1 � i � Ng drawn from the
distributions governing X and Y . Therefore, an estimation method must be used.

One method �rst discretizes the samples in D, computes a 2-dimensional his-
togram, and then performs a discrete version of the above computation:

I(X ; Y ) =
X
x;y

pd(x; y) log
pd(x; y)

pd(x)pd(y)

where the pd are the discrete histograms. Like all histogram methods, this method requires
a very large sample size to accurately estimate the histogram.

Another method assumes that X and Y are jointly Gaussian distributed with
correlation coe�cient �xy. If so, the quantity can be computed analytically (Kullback 1968)
as Il(X ; Y ) = �1

2 log2(1��2xy) where �xy is the correlation coe�cient of X and Y . Because
�xy captures the linear dependence between X and Y regardless of their joint distribution,
this estimate could be called the linear mutual information.

Another parametric option is to �t a Gaussian mixture distribution to the sampled
data using, say, EM, producing an estimate p̂ of the true distribution p of X and Y . Unfor-
tunately, there is no analytical formula that, like in the single component case, maps from
mixture parameters to mutual information. Given such a mixture distributions, however,
there are a variety of ways to produce a mutual information estimate.
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One way would perform some form of numerical integration method (Press et al.
1992). Alternatively, a law-of-large-numbers type of computation can be performed as
follows:

I =
1

N

NX
i=1

log
p̂(xi; yi)

p̂(xi)p̂(yi)

The sample used in this sum can either be the original samples used to estimate the distri-
bution (resulting in a cross-entropy-like estimation of mutual information) or could also be
drawn anew from the estimated distributions.

As yet another alternative, once p̂ has been produced, the distribution itself can
be sampled and used for the discrete form of the mutual information computation.

While the �rst non-parametric method is fairly simple, it su�ers from several prob-
lems including the need for bias correction (Morris 1992), a large number of histogram bins,
and large amounts of \training" data. Because we need to compute thousands of mutual in-
formation values, this approach is not viable since thousands of simultaneously maintained
2-dimensional histograms would be required. Also, while the linear mutual information
approximation is computationally simple, it does not capture potentially important non-
linear statistical dependencies contained in distributions not well approximated by a single
component Gaussian.

Therefore, all of the (conditional) mutual information results in this work use the
following parametric method. The EM algorithm is used to �t a 5-component full-covariance
Gaussian mixture to each data set. The resulting density is sampled at points on a 250�250
evenly spaced grid. In each dimension d = 1; 2, the grid spans the range [mini(�i;d �
2:4�i;d);maxj(�j;d + 2:4�j;d)] where �i;d and �i;d are the mean and standard deviation of
component i for dimension d. This grid is normalized and used in the discrete computation
of mutual information. With one mixture component, the method produces results almost
identical to linear mutual information. For a larger number of components, the resulting
values almost always get larger, indicating the addition of non-linear ingredients of the
true mutual information. This method also produces results that are comparable to the
law-of-large numbers method but requires signi�cantly less computation.
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