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ABSTRACT

In this paper, a new technique is introduced that relaxes the
HMM conditional independence assumption in a principled way.
Without increasing the number of states, the modeling power of an
HMM is increased by including only those additional probabilis-
tic dependencies (to the surrounding observation context) that are
believed to be both relevant and discriminative. Conditional mu-
tual information is used to determine both relevance and discrim-
inability. Extended Gaussian-mixture HMMs and new EM update
equations are introduced. In an isolated word speech database,
results show an average 34% word error improvement over an
HMM with the same number of states, and a 15% improvement
over an HMM with a comparable number of parameters.

1. INTRODUCTION

Hidden Markov Models (HMMs) are the most common statis-
tical method used for automatic speech recognition where they
model the joint probability distribution of a collection of ran-
dom variables under certain statistical assumptions. Under the
first-order Markov assumption, a set of "hidden" variables, one
for each time point, form a discrete-valued first-order Markov
chain. Under the conditional independence assumption, a set of
observation variables, again one for each time point, are each
conditionally independent of past variables given the correspond-
ing hidden variable.1 While HMMs can potentially represent
rich probability distributions, these assumptions burden the hid-
den variables with the task of containing all relevant information
about the observation variables’ environment.

The conditional independenceassumption can be further exam-
ined by observing how an HMM models p(XtjX<t) and compar-
ing this with the “true” distribution; Xt is an observation vector at
time t, and X<t = fX1; : : : ;Xt�1g is the observed context pre-
cedingXt. Without any modeling assumptions,Xt can be viewed
as the output of a noisy channel with inputX<t (Figure 1). For an
accurate representation of p(XtjX<t), any channel model must
have information transmission rate at least as big as I(Xt;X<t)
where I(X;Y ) is the mutual information between random vectors
X and Y .
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Figure 1: The distribution of Xt can be thought of as being
probabilistically determined by its context X<t – that is, as a
noisy channel with the context as input and X t as output.

Under an HMM, p(XtjX<t) =
P

q
p(XtjQt = q)p(Qt =

qjX<t), where Qt represents the random hidden state variable at

1Both are conditional independence assumptions;these names are used
to distinguish the two assumptions later in the paper.

time t. An HMM, therefore, attempts to compress the information
about Xt contained in X<t into a single discrete variable Qt

(Figure 2). For an accurate representation, these two channels
must be sufficiently powerful, i.e., Ri � I(Xt;X<t) whereRi is
the mutual information between the input and output of channel
i. Furthermore, the number of hidden states must be large enough
to accurately encode the information being transmitted. This is
essentially a requirement that jQj � 2I(Xt;X<t) where jQj is the
number of hidden states. Assuming Q appropriately encodes the
information contained inX<t relevant toXt, an HMM’s accuracy
can be increased by increasing the number of states (as has been
repeatedly noted in the past).
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Figure 2: With an HMM, the information about Xt contained
in X<t is “squeezed” through the hidden state variable Q t. De-
pending on the number of hidden states, this can overburden Q t

and result in an inaccurate probabilistic model.

In this paper, a new technique is introduced that relaxes the
conditional independence assumption in a principled way. With-
out increasing the number of states, the modeling power of an
HMM is increased by including only those additional probabilis-
tic dependencies believed to be useful according to training data.
This can potentially lead to a more powerful statistical model
without a large free-parameter increase. Section 2 introduces a
data-driven method used to expand an HMM’s probabilistic de-
pendencies. Section 3 describes a heuristic approximation to the
dependency selection algorithm given in Section 2. Section 4
describes an implementation of the extended HMMs and includes
an EM training procedure, and Section 5 gives word-error results
for an isolated-word digits data-base.

2. BURIED MARKOV MODELS

For a given number of hidden variable states, the degree
to which a hidden variable does not contain contextual in-
formation can be measured using conditional mutual informa-
tion. The conditional mutual information I(Xt;X<tjQt) =P

q
I(Xt;X<tjQt = q)p(Qt = q) represents the quantity of

additional information X<t provides about Xt not already pro-
vided by Qt . In particular, I(Xt;X<tjQt = q) represents the
amount missing for a particular hidden state value q. This sug-
gests that if I(Xt;X<tjQt = q) > 0, the accuracy of an HMM
can be improved without increasing the number of states by aug-
menting the probabilistic observation models with dependencies
directly on contextual data. It also suggests that dependencies
should be added 1) only on the “relevant” contextual data, 2) that
are potentially distinct for each value ofQt, and 3) that are chosen
to provide only new information not already provided byQt. This
is depicted in Figure 3.
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Figure 3: Improving an HMM by including additional direct
dependencies on the relevant portions of X<t depending on the
value of Qt.

Using just the first-order Markov assumption, the joint distri-
bution of the observations can be written:2

p(X1:T ) =
X
q1:T

Y
t

p(XtjX1; : : : ;Xt�1; qt)p(qtjqt�1)

In this form, the model for the distribution of Xt depends only
on previous time frames. While not necessary for subsequent
analysis, the chain rule of probability can be violated3 to get:

p(X1:T ) =
X
q1:T

Y
t

p(XtjXRqt
; qt)p(qtjqt�1)

where XRqt
� fX1; : : : ;Xt�1;Xt+1; : : : ;XT g is a subset of

Xt’s surrounding context. For a fixed size XRqt
, the problem

becomes choosing the elements of XRqt
to maximize the condi-

tional mutual information I(Xt;XRqt
jQt = qt) for each qt. In

this case, XRqt
is a vector consisting of relevant (i.e., entropy

reducing) and non-redundant (i.e., containing information not al-
ready provided by Qt) portions of Xt’s context given Qt = qt.

Does additional information typically exist in the surrounding
context given Q? Figure 4 shows a conditional mutual informa-
tion density plot I(∆f; `jQ) = avgi�j=∆f I(Xti;Xt�`;jjQ) in
bits per unit area computed (as in [1]) from a 2 hour random selec-
tion of the Switchboard continuous-speech database where X ti is
the ith element of the random vectorXt and ` is time-lag. Feature
channels consist of cube root-compressed sub-band envelopes (so
∆f is frequency difference) and Q represents decision-tree clus-
tered triphones.4 As can be seen, additional information is on av-
erage distributed throughout the acoustic context. Similar results
have been found both for different labeling schemes(monophones
and syllables) and feature sets (MFCCs, LPC and RASTA-PLP
coefficients).

To increase tractability, dependenciesare considered and added
individually for each feature element. Define the context of Xti

as the set Zti = fXt�`;j : 8`; jg � fXtig. The set of N vari-
ables Z i

k1:N
= fZi

k1
; : : : ; Zi

kN
g providing the greatest entropy

reduction of Xti when Qt = q can be found by evaluating:

argmax
Zi
k1:N

� Zti

I(Xti;Z
i
k1:N

jQt = q)

Alone, this selection method suffices to increase the descriptive
power (i.e., lead to a higher likelihood) of the model for a partic-
ular state q but does not necessarily decrease classification error.
A potential problem, therefore, is that the chosen dependencies

2The notationX1:N represents the set fX1; : : : ;XNg.
3This might sound like an egregious mistake but it is actually quite

common and can be beneficial in practice, e.g., delta features, hybrid
ANN/HMM systems[2], etc. The theoretical problems could potentially
be eliminated if each probability distribution is considered a potential
function (as in a Markov Random Field) and if appropriate normalization
terms are used for each HMM. Such issues are not addressed further in
this work.

4Thanks to Katrin Kirchhoff for these labels.
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Figure 4: The conditional mutual information density of a ran-
domly selected 2-hour section of the Switchboard continuous-
speech database (in bits per unit area).

might also reduce “entropy” in the context of a different and in-
correct state. To increase the discriminability between different
states, dependencies should be chosen that both 1) decrease en-
tropy in the context of the correct state and 2) do not decrease the
entropy (as much) in other contexts. This second concept can be
represented with the following mutual information-like quantity:5

IfQt=rg(Xti;Z
i
k1:N

jQt = q) =

Ep(Xti;Z
i
k1:N

jQt=r)

�
log

p(Xti; Z
i
k1:N

jQt = q)

p(XtijQt = q)p(Zi
k1:N

jQt = q)

�

for r 2 Cq where Cq is the set of state values that could
lead to a confusion with state q. Using this notation,
I(Xti;Zi

k1:N
jQt = q) = IfQt=qg(Xti;Zi

k1:N
jQt = q). The

quantity IfQt=rg(Xti;Zi
k1:N

jQt = q) is similar to mutual infor-
mation except that the individual event-wise entropy reductions
are averaged under the probability distribution for the confusable
context r rather than the original context q. When r 6= q, it rep-
resents the situation in a classification task during evaluation of a
model in an incorrect context.

The dependencyselection algorithm is therefore as follows: for
each q and i, choose the sizeN q set of variablesZ i

k1:Nq
for which

I(Xti;Zi
k1:Nq

jQt = q) is large and IfQt=rg(Xti;Zi
k1:Nq

jQt =

q) is small for each r 2 Cq .

This approach is distinct from previous work [3, 8, 4, 9] in that
the dependency structure may be sparse and may change for each
value of Qt rather than depending on an additional, fixed, and
arbitrarily chosen sets of observations. And rather than depend-
ing on a location in a segment trajectory [5], the dependencies
are data-derived; using conditional mutual information, the de-
pendencies are chosen to provide new and discriminative infor-
mation aboutXt not already provided by the current value of Qt.
This potentially leads to a more accurate statistical model with-
out a large free-parameter increase. The result is called a buried
Markov model (BMM) because the underlying Markov chain in
an HMM is further hidden (buried) by specific cross-observation
dependencies.

5Using the notationEp(X)[f(X)] =
R
p(x)f(x)dx.



3. HEURISTIC DEPENDENCY
SELECTION ALGORITHM

The general algorithm presented in the previous section in-
volves the computation of mutual information between vectors
evaluated under different probabilistic contexts. Computing of
such quantities directly would involve more data and/or compu-
tation time than is typically available. In this section, a tractable
heuristic algorithm is developed for selecting a good set of depen-
denciesZqi for each q and feature position i.

To avoid potentially computing
P

q
jCqj values for each can-

didate dependencyset, the quantity IfQt=rg(Xti;Zi
k1:N

jQt = q)

is approximated using I(Xti;Zi
k1:N

jQt = r), a reasonable guess
at an upper bound. The difference between the two quantities is:

I(Xti;Z
i
k1:N

jQt = r)� IfQt=rg(Xti;Z
i
k1:N

jQt = q) =

D(p(XtijZ
i
k1:N

;Qt = r)jjp(XtijZ
i
k1:N

;Qt = q))�

D(p(XtijQt = r)jjp(XtijQt = q))

where D(p1jjp2) is the relative-entropy between distributions p1
and p2. While there is no guarantee that this difference is non-
negative, intuitively it can be argued that additionally conditioning
on Z i

k1:N
is not likely to decrease the relative-entropy between

p(XtijQt = r) and p(XtijQt = q). This is because, for r 2 Cq ,
the quantityD(p(XtijQt = r)jjp(XtijQt = q)) is already small.
And Z i

k1:N
is chosen in a sense to highlight rather than suppress

differences between the distribution of Xti given Qt = q and
given Qt = r. It is unlikely such a chosen Z i

k1:N
will cause

a further decrease in relative-entropy, even if selected using a
different probabilistic model as above. Therefore, the following
relation is assumed typical for r 2 Cq .

I(Xti;Z
i
k1:N

jQt = r) � IfQt=rg(Xti;Z
i
k1:N

jQt = q)

Using a liberal estimate for Cq (i.e., Ĉq � Cq as an estimate of
Cq ), results in a stronger constraint on the chosen Z i

k1:N
. A lib-

eral Ĉq potentially eliminates some useful dependencies, but any
remaining dependencies will still be informative and discrimina-
tive for the confusable classes. Cq can therefore be approximated
with a larger set, perhaps even the entire set of states (sans q).

A second difficulty stems from evaluating mutual information
between vectors rather than scalars. The chain rule of mutual
information says I(Xti;Z1:N jQ) =

P
j
I(Xti;ZjjZ1:(j�1);Q).

This can be approximated by first findingZ1 so that I(Xti;Z1jQ)
is large, Z2 so that I(Xti;Z2jZ1; Q) is large, and so on.
Because of this approximation, earlier dependency selections
can affect later ones. Each of the Z variables are there-
fore considered in order of decreasing utility choosing the
most informative and discriminative variables first. Us-
ing an argument similar to the previous paragraph, utility
is defined as Uti(Zj) = I(Xti;Zj jZ1:(j�1); Q = q) �
I(Xti;Zj jZ1:(j�1);Q 2 Cq) where I(Xti;ZjjZ1:(j�1);Q 2
Cq) =

P
q2Cq

I(Xti;ZjjZ1:(j�1);Q = q)p(Q = q)= with

 =
P

q2Cq
p(Q = q). The remaining difficulty is the eval-

uation of I(Xti;Zj jZ1:(j�1);Q) which captures the notion that
a variable should not be added to Zqi if it contains only redun-
dant information already provided by previously added variables
(i.e., no variable in Zqi should have a Markov blanket in Zqi

shielding it from Xti given Q). To approximate this quality,
I(Xti;Zj jZ1:(j�1);Q) is considered large if both I(Xti;Zj jQ)
is large and I(Zj;ZkjQ) is small for k < j and is considered
small if I(Xti;ZjjQ) is small.

These approximations lead to the following heuristic depen-
dency selection algorithm for choosingZqi for each q and i:

Set Zqi = ;
Sort Zj 2 Zti into an order decreasing by Uti(Zj)
Repeat over j until Uti(Zj) < �u or jZqij = Nq:

If Zj satisfies all the following criteria:
1) I(Xti;Zj jQt = q) > �q
2) For each Z 2 Zqi; I(Zj;ZjQt) < �gI(Zj;XtijQt = q)
3) I(Xti;Zj jQt 2 Cq) < �c

then add Zj to Zqi.

�u places a lower bound on utility. Criterion 1 ensures that any
added dependency provides a significant amount of information
(determined by the threshold �q ) to the current model. Criterion
2 is a redundancy check, and puts an upper bound on the amount
of information a dependency variable may have about previously
added dependency variables. Criterion 3 places an upper bound
�c on the prior-weighted cost of this dependency when evaluat-
ing the current model in other potentially confusable contexts. It
is possible to end up with fewer than Nq (or even zero) depen-
dencies if no satisfying Z exists for the current thresholds. This
algorithm requires only the computation of pairwise conditional
mutual information for a given labeling scheme.

4. GAUSSIAN-MIXTURE BMMS

In this section, Gaussian mixture HMMs are extended to in-
clude the cross-observation dependencies specified by a BMM.
The dependencies affect only state specific observation models so
modifications involve only Gaussian mixture models.

The observation models should allow their entropy to be af-
fected by the additional dependencies. To this end, hidden vari-
ables m and v are introduced to obtain the following:

p(xjz; q) =

MX
m=1

VX
v=1

p(x;m;vjz; q)

where x = (x1; : : : ; xd)
0 is an observation vector, z =

(z1; : : : ; zs; 1)0 is the entire collection of dependency variables
any element of xmight use (appended with the constant 1 to com-
pute a fixed mean offset), m indicates a mixture component, and
v indicates the class of z. m is assumed independent of z given v
and q and v is assumed independent of q given z resulting in:

p(xjz; q) =

MX
m=1

VX
v=1

p(xjm;v; z; q)p(mjv; q)p(vjz)

where p(mjv; q) is a discrete probability table, p(vjz) is the prob-
ability of class v given continuous vector z, and

p(xjm;v; z; q) =
1

(2�)d=2jΣqmvj1=2
e�

1
2 (x�Bqmvz)

0Σ�1
qmv(x�Bqmvz)

is a Gaussian distribution with meanBqmvz and covariance Σqmv.
The d�(s+1)-sizedBqmv matrices have a sparse structure deter-
mined by the BMM dependencies for state q.

With z containing observations only from x’s past, these equa-
tions are similar to or generalize auto-regressive HMMs [6, 7]
(d = 1, M = 1, V = 1), vector-valued auto-regressive HMMs
[4, 9, 8]6 (d > 1, M = 1, V = 1 ), mixture auto-regressive
HMMs [3] (d = 1,M > 1,V = 1), and the usual Gaussian mix-
ture models (d = 1,M > 1,V = 1,s = 0). With V > 1 and
M > 1, this model can be considered a mixture of mixtures. An
important difference from previous work is that here the depen-
dency structure, as represented by B qmv , is sparse, data-derived,

6[9] uses discriminative output distributions similar to state-specific
LDA and also considers dependencies from future observations.



and hidden-variable dependent as described in Section 2. Further-
more, z is allowed to contain observations from x’s past, present,
and future.

By introducing an auxiliary function and taking its derivative,
it can be shown that the EM update equations for maximum-
likelihood parameter estimation are as follows:

Bqmv =

 
TX
t=1

qmv(t)xtz
0
t

! 
TX
t=1

qmv(t)ztz
0
t

!�1

;

Σqmv =

PT

t=1
qmv(t)(xt �Bqmvzt)(xt �Bqmvzt)

0PT

t=1
qmv(t)

;

and

p(mjv; q) =

PT

t=1 qmv(t)PT

t=1

PM

m=1 qmv(t)

where qmv(t) = p(qt = q;mt = m;vt = vjo;z) and where
o (resp. z) is the set of training vectors (resp. context vec-
tors). p(vjz) does not change between EM iterations, so any
(perhaps unsupervised) classification method can be used prior
to EM BMM learning. The update equations for the transition
probabilities are the same as usual.

5. RESULTS ON AN ISOLATED DIGITS
DATABASE

Gaussian-mixture BMMs were tested with d > 1, M = 5,
V = 1, and with diagonal covariance matrices on digits+, a
telephone quality database of isolated digits and control words
from Bellcore. The data is represented using 12 MFCCs plus c0
and includes deltas resulting in a d = 26 element feature vector
sampled every 10ms. Dependency links were allowed to span a
maximum of 70ms (7 frames) on either side of t.

All word error rates (WER) reported are obtained using data
from 200 speakers totaling 2600 examples from 4 jackknifed cuts
– scores shown are the average of 4 tests in which 150 speakers
were used for training and 50 different speakers used for testing.
WER is computed using Viterbi probability evaluation.

Num. States 3 4 5 6 7
WER 1.73% 1.34% 1.15% 1.19% 1.19%
Num. Params. 10140 13520 16900 20280 23660
Num. States 8 9 10 11 12
WER 0.89% 1.35% 1.08% 1.08% 1.00%
Num. Params. 27040 30420 33800 37180 40560

Table 1: Results for a HMM with various number of states.
The following procedure is performed independently for each

cut and number of states per word. Whole-word strictly left-
to-right HMM models bootstrapped using a uniform segmental
k-means procedure are created. Full EM training is performed
until convergence is achieved and then HMM word error is cal-
culated. Using the HMMs, the Viterbi path is computed for each
word determining the state of each frame. Conditional mutual
information is computed (as described in [1]) using the resulting
labels. The BMM dependency selection algorithm of Section 3
is performed. The BMMs are trained starting with the means and
covariances given by the corresponding HMM and with initial
dependency link values set to zero. Forced-Viterbi training is
performed on the BMMs using the labels derived from the HMM.

Table 1 shows the WER for normal HMMs with varying num-
bers of states per word along with the corresponding number of
observation model parameters. Table 2 shows BMM WER. As
can be seen, for a given number of states per word, the BMM
error rate is always better than the corresponding HMM WER.

Num. States 3 4 5 6
WER 0.96% 0.85% 0.96% 0.73%
Num. Params. 19157 25511 32070 38521

Table 2: Results for a BMM with various number of states. The
dependency selection parameters are �u = 5� 10�4; �q = 10�3,
�g = 75%, �c = 5� 10�2, Nq = 2 for all q, and Cq is the set of
all states except q.

The average percentageWER decrease 7 from an HMM to a BMM
in this case is 34%. The table also shows that a BMM is always
better than an HMM even when comparing with an HMM using a
comparable number of parameters. The average percentage WER
decrease from an HMM to a BMM in this case is 15% (BMMs
with 3,4,5, and 6 states are compared with HMMs with 6, 8, 10,
and 12 states respectively). The best WER achieved is 0.54% with
a BMM using 6 states per word, 61877 parameters, and Nq = 7.
The same procedure using JRASTA features shows comparable
WER results and BMM advantages.

6. CONCLUSIONS

The HMM conditional independence assumption can be re-
laxed by including additional probabilistic dependencies only to
the relevant and discriminative observation context. In this paper,
a method has been provided that chooses this context using con-
ditional mutual information. In an isolated word speech database,
BMMs show improved performance over comparable HMMs.

The model building scheme presented above can be consid-
ered discriminative, but maximum likelihood training is currently
being used. A discriminative training scheme such as MCE com-
bined with these discriminatively built models might yield an
additional advantage.

This work has benefited from discussions with Geoff Zweig,
Nelson Morgan, Nir Friedman, and Dan Ellis. This work has been
partially sponsored by ONR URI Grant N00014-92-J-1617 and a
DoD IDEA grant.
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