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Abstract

Modern microprocessors can achieve high performance
on linear algebra kernels but this currently requires ex-
tensive machine-speci�c hand tuning. We have devel-
oped a methodology whereby near-peak performance on
a wide range of systems can be achieved automatically
for such routines. First, by analyzing current machines
and C compilers, we've developed guidelines for writing
Portable, High-Performance, ANSI C (PHiPAC, pro-
nounced \fee-pack"). Second, rather than code by hand,
we produce parameterized code generators. Third, we
write search scripts that �nd the best parameters for a
given system. We report on a BLAS GEMM compat-
ible multi-level cache-blocked matrix multiply genera-
tor which produces code that achieves around 90% of
peak on the Sparcstation-20/61, IBM RS/6000-590, HP
712/80i, SGI Power Challenge R8k, and SGI Octane
R10k, and over 80% of peak on the SGI Indigo R4k.
The resulting routines are competitive with vendor-
optimized BLAS GEMMs.
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1 Introduction

The use of a standard linear algebra library interface,
such as BLAS [LHKK79, DCHH88, DCDH90], enables
portable application code to obtain high-performance
provided that an optimized library (e.g., [AGZ94,
KHM94]) is available and a�ordable.

Developing an optimized library, however, is a dif-
�cult and time-consuming task. Even excluding algo-
rithmic variants such as Strassen's method [BLS91] for
matrix multiplication, these routines have a large design
space with many parameters such as blocking sizes, loop
nesting permutations, loop unrolling depths, software
pipelining strategies, register allocations, and instruc-
tion schedules. Furthermore, these parameters have
complicated interactions with the increasingly sophis-
ticated microarchitectures of new microprocessors.

Various strategies can be used to produced opti-
mized routines for a given platform. For example, the
routines could be manually written in assembly code,
but fully exploring the design space might then be in-
feasible, and the resulting code might be unusable or
sub-optimal on a di�erent system.

Another commonly used method is to code using a
high level language but with manual tuning to match
the underlying architecture [AGZ94, KHM94]. While
less tedious than coding in assembler, this approach
still requires writing machine speci�c code which is not
performance-portable across a range of systems.

Ideally, the routines would be written once in a high-
level language and fed to an optimizing compiler for
each machine. There is a large literature on relevant
compiler techniques, many of which use matrix multi-
plication as a test case [WL91, LRW91, MS95, ACF95,
CFH95, SMP+96]1. While these compiler heuristics
generate reasonably good code in general, they tend not
to generate near-peak code for any one operation. A
high-level language's semantics might also obstruct ag-
gressive compiler optimizations. Moreover, it takes sig-
ni�cant time and investment before compiler research
appears in production compilers, so these capabilities
are often unavailable. While both microarchitectures
and compilers will improve over time, we expect it will

1A longer list appears in [Wol96].
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be many years before a single version of a library routine
can be compiled to give near-peak performance across
a wide range of machines.

We have developed a methodology, named PHiPAC,
for developing Portable High-Performance linear alge-
bra libraries in ANSI C. Our goal is to produce, with
minimal e�ort, high-performance linear algebra libraries
for a wide range of systems. The PHiPAC methodol-
ogy has three components. First, we have developed
a generic model of current C compilers and micropro-
cessors that provides guidelines for producing portable
high-performance ANSI C code. Second, rather than
hand code particular routines, we write parameterized
generators [ACF95, MS95] that produce code according
to our guidelines. Third, we write scripts that automat-
ically tune code for a particular system by varying the
generators' parameters and benchmarking the resulting
routines.

We have found that writing a parameterized genera-
tor and search scripts for a routine takes less e�ort than
hand-tuning a single version for a single system. Fur-
thermore, with the PHiPAC approach, development ef-
fort can be amortized over a large number of platforms.
And by automatically searching a large design space,
we can discover winning yet unanticipated parameter
combinations.

Using the PHiPAC methodology, we have produced
a portable, BLAS-compatible matrix multiply genera-
tor. The resulting code can achieve over 90% of peak
performance on a variety of current workstations, and
is sometimes faster than the vendor-optimized libraries.
We focus on matrix multiplication in this paper, but we
have produced other generators including dot-product,
AXPY, and convolution, which have similarly demon-
strated portable high performance.

We concentrate on producing high quality uniproces-
sor libraries for microprocessor-based systems because
multiprocessor libraries, such as [CDD+96], can be read-
ily built from uniprocessor libraries. For vector and
other architectures, however, our machine model would
likely need substantial modi�cation.

Section 2 describes our generic C compiler and mi-
croprocessor model, and develops the resulting guide-
lines for writing portable high-performance C code. Sec-
tion 3 describes our generator and the resulting code
for a BLAS-compatible matrix multiply. Section 4 de-
scribes our strategy for searching the matrix multiply
parameter space. Section 5 presents results on several
architectures comparing against vendor-supplied BLAS
GEMM. Section 6 describes the availability of the dis-
tribution, and discusses future work.

2 PHiPAC

By analyzing the microarchitectures of a range of ma-
chines, such as workstations and microprocessor-based
SMP and MPP nodes, and the output of their ANSI C
compilers, we derived a set of guidelines that help us
attain high performance across a range of machine and
compiler combinations [BAD+96].

From our analysis of various ANSI C compilers, we
determined we could usually rely on reasonable reg-
ister allocation, instruction selection, and instruction
scheduling. More sophisticated compiler optimizations,

however, including pointer alias disambiguation, reg-
ister and cache blocking, loop unrolling, and software
pipelining, were either not performed or not very e�ec-
tive at producing the highest quality code.

Although it would be possible to use another target
language, we chose ANSI C because it provides a low-
level, yet portable, interface to machine resources, and
compilers are widely available. One problem with our
use of C is that we must explicitly work around pointer
aliasing as described below. In practice, this has not
limited our ability to extract near-peak performance.

We emphasize that for both microarchitectures and
compilers we are determining a lowest common denom-
inator. Some microarchitectures or compilers will have
superior characteristics in certain attributes, but, if we
code assuming these exist, performance will su�er on
systems where they do not. Conversely, coding for the
lowest common denominator should not adversely a�ect
performance on more capable platforms.

For example, some machines can fold a pointer up-
date into a load instruction while others require a sep-
arate add. Coding for the lowest common denomina-
tor dictates replacing pointer updates with base plus
constant o�set addressing where possible. In addi-
tion, while some production compilers have sophisti-
cated loop unrolling and software pipelining algorithms,
many do not. Our search strategy (Section 4) empiri-
cally evaluates several levels of explicit loop unrolling
and depths of software pipelining. While a naive com-
piler might bene�t from code with explicit loop un-
rolling or software pipelining, a more sophisticated com-
piler might perform better without either.

2.1 PHiPAC Coding Guidelines

The following paragraphs exemplify PHiPAC C code
generation guidelines. Programmers can use these cod-
ing guidelines directly to improve performance in critical
routines while retaining portability, but this does come
at the cost of less maintainable code. This problem is
mitigated in the PHiPAC approach, however, by the use
of parameterized code generators.

Use local variables to explicitly remove false dependen-
cies.

Casually written C code often over-speci�es operation
order, particularly where pointer aliasing is possible.
C compilers, constrained by C semantics, must obey
these over-speci�cations thereby reducing optimization
potential. We therefore remove these extraneous depen-
dencies.

For example, the following code fragment contains a
false Read-After-Write hazard:

a[i] = b[i]+c;
a[i+1] = b[i+1]*d;

The compiler may not assume &a[i] != &b[i+1] and
is forced to �rst store a[i] to memory before loading
b[i+1]. We may re-write this with explicit loads to
local variables:

float f1,f2;
f1 = b[i]; f2 = b[i+1];
a[i] = f1 + c; a[i+1] = f2*d;
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The compiler can now interleave execution of both orig-
inal statements thereby increasing parallelism.

Exploit multiple integer and 
oating-point registers.

We explicitly keep values in local variables to reduce
memory bandwidth demands. For example, consider
the following 3-point FIR �lter code:

while (...) {
*res++ = filter[0]*signal[0] +

filter[1]*signal[1] +
filter[2]*signal[2];

signal++; }

The compiler will usually reload the �lter values every
loop iteration because of potential aliasing with res. We
can remove the alias by preloading the �lter into local
variables that may be mapped into registers:

float f0,f1,f2;
f0=filter[0];f1=filter[1];f2=filter[2];
while ( ... ) {
*res++ = f0*signal[0]

+ f1*signal[1] + f2*signal[2];
signal++; }

Minimize pointer updates by striding with constant o�-
sets.

We replace pointer updates for strided memory address-
ing with constant array o�sets. For example:

f0=*r8;r8+=4;f1=*r8;r8+=4;f2=*r8;r8+=4;

should be converted to:

f0 = r8[0]; f1 = r8[4]; f2 = r8[8]; r8 += 12;

Compilers can fold the constant index into a register
plus o�set addressing mode.

Hide multiple instruction FPU latency with indepen-
dent operations.

We use local variables to expose independent operations
so they can be executed independently in a pipelined or
superscalar processor. For example:

f1=f5*f9;f2=f6+f10;f3=f7*f11;f4=f8+f12;

Balance the instruction mix.

A balanced instruction mix has a 
oating-point multi-
ply, a 
oating-point add, and 1{2 
oating-point loads or
stores interleaved. It is not worth decreasing the num-
ber of multiplies at the expense of additions if the total

oating-point operation count increases.

Increase locality to improve cache performance.

Cached machines bene�t from increases in spatial and
temporal locality. Whenever possible, we arrange our
code to have predominantly unit-stride memory ac-
cesses, and try to reuse data once it is in cache. See
Section 3.1, for our blocked matrix multiply example.

Convert integer multiplies to adds.

Integer multiplies and divides are slow relative to integer
addition. Therefore, we use pointer updates rather than
subscript expressions. Rather than:

for (i=...) {row_ptr=&p[i*col_stride];...}

we produce:

for (i=...) {...row_ptr+=col_stride;}

Minimize branches, avoid magnitude compares.

Branches are costly, especially on modern superscalar
processors. Therefore, we unroll loops to amortize
branch cost and use C do fg while (); loop control
whenever possible to avoid any unnecessary compiler-
produced loop head branches.

Also, on many microarchitectures, it is cheaper to
perform equality or inequality loop termination tests
than magnitude comparisons. For example, instead of:

for (i=0,a=start_ptr;i<ARRAY_SIZE;i++,a++}
{ ... }

we produce:

end_ptr = &a[ARRAY_SIZE]; a = start_ptr;
do { ... a++; } while (a != end_ptr);

This also removes one loop control variable.

Loop unroll explicitly to expose optimization opportu-
nities.

We unroll loops explicitly to increase opportunities for
other performance optimizations. For example, our 3-
point FIR �lter example above may be further opti-
mized as follows:

float f0,f1,f2,s0,s1,s2;
f0=filter[0];f1=filter[1];f2=filter[2];
s0=signal[0];s1=signal[1];s2=signal[2];
*res++=f0*s0+f1*s1+f2*s2;
do {

signal+=3;
s0=signal[0];res[0]=f0*s1+f1*s2+f2*s0;
s1=signal[1];res[1]=f0*s2+f1*s0+f2*s1;
s2=signal[2];res[2]=f0*s0+f1*s1+f2*s2;
res += 3;

} while ( ... );

In the inner loop, there are now only two memory access
per �ve 
oating point operations whereas in our unopti-
mized code, there were seven memory accesses per �ve

oating point operations.

3 Matrix Multiply Generator

mm gen is a generator that produces C code, follow-
ing the PHiPAC coding guidelines, for one variant of
the matrix multiply operation C = �op(A)op(B) + �C
where op(A), op(B), and C, are respectively M�K,
K�N, and M�N matrices, � and � are scalar parame-
ters, and op(X) is either transpose(X) or just X. Our
individual procedures have a lower level interface then
a BLAS GEMM and have no error checking. For op-
timal e�ciency, error checking should be performed by

3



M

K

K0

M
0

K0*K11

K

N

N0
M
0

N0*N1

N0

K
0

N0*N1

Figure 1: Matrix blocking parameters

the caller when necessary rather than unnecessarily by
the callee. We create a full BLAS-compatible GEMM,
by generating all required matrix multiply variants and
linking with our GEMM-compatible interface that in-
cludes error checking.

mm gen produces a cache-blocked matrix multiply
[GL89, LRW91, MS95], restructuring the algorithm for
unit stride, and reducing the number of cache misses
and unnecessary loads and stores. Under control of
command line parameters, mm gen can produce block-
ing code for any number of levels of memory hierar-
chy, including register, L1 cache, TLB, L2 cache, and so
on. mm gen's code can also perform copy optimization
[LRW91], optionally with a di�erent accumulator preci-
sion. The latest version can also generate the innermost
loop with various forms of software pipelining.

A typical invocation of mm gen is:

mm_gen -cb M0 K0 N0 [ -cb M1 K1 N1 ] ...

where the register blocking is M0, K0, N0, the L1-cache
blocking is M1, K1, N1, etc. The parameters M0, K0,
and N0 are speci�ed in units of matrix elements, i.e.,
single, double, or extended precision 
oating-point num-
bers,M1,K1,N1 are speci�ed in units of register blocks,
M2, K2, and K2 are in units of L1 cache blocks, and so
on. For a particular cache level, say i, the code accu-
mulates into a C destination block of size Mi�Ni units
and uses A source blocks of size Mi � Ki units and B
source blocks of size Ki �Ni units (see Figure 1).

3.1 Matrix Multiply Code

In this section, we examine the code produced by mm gen
for the operation C = C + A*B where A (respectively B,
C) is an M�K (respectively K�N, M�N) matrix. Fig-
ure 2 lists the L1 cache blocking core code comprising
the 3 nested loops, M, N, and K. mm gen does not vary
the loop permutation [MS95, LRW91] because the re-

sulting gains in locality are subsumed by the method
described below.

The outer M loop in Figure 2 maintains pointers
c0 and a0 to rows of register blocks in the A and C
matrices. It also maintains end pointers (ap0 endp and
cp0 endp) used for loop termination. The middle N loop
maintains a pointer b0 to columns of register blocks in
the B matrix, and maintains a pointer cp0 to the current
C destination register block. The N loop also maintains
separate pointers (ap0 0 through ap0 1) to successive
rows of the current A source block. It also initializes a
pointer bp0 to the current B source block. We assume
local variables can be held in registers, so our code uses
many pointers to minimize both memory references and
integer multiplies.

The K loop iterates over source matrix blocks and
accumulates into the same M0 �N0 destination block.
We assume that the 
oating-point registers can hold a
M0�N0 accumulator block, so this block is loaded once
before the K loop begins and stored after it ends. The K
loop updates the set of pointers to the A source block,
one of which is used for loop termination.

The parameter K0 controls the extent of inner loop
unrolling as can be seen in Figure 2. The unrolled core
loop performs K0 outer products accumulating into the
C destination block. We code the outer products by
loading one row of the B block, one element of the A
block, then performing N0 multiply-accumulates. The
C code uses N0 + M0 memory references per 2N0M0


oating-point operations in the inner K loop, while hold-
ing M0N0 +N0 +1 values in local variables. While the
intent is that these local variables map to registers, the
compiler is free to reorder all of the independent loads
and multiply-accumulates to trade increased memory
references for reduced register usage. The compiler also
requires additional registers to name intermediate re-
sults propagating through machine pipelines.

The code we have so far described is valid only when
M, K, and N are integer multiples of M0, K0, and N0

respectively. In the general case, mm gen also includes
code that operates on power-of-two sized fringe strips,

i.e., 20 through 2blog2 Lc where L is M0, K0, or N0. We
can therefore manage any fringe size from 1 to L�1 by
executing an appropriate combination of fringe code.
The resulting code size growth is logarithmic in the
register blocking (i.e., O(log(M0) log(K0) log(N0))) yet
maintains good performance. To reduce the demands
on the instruction cache, we arrange the code into sev-
eral independent sections, the �rst handling the matrix
core and the remainder handling the fringes.

The latest version of the generator can optionally
produce code with a software-pipelined inner loop. Each
outer product consists of a load, a multiply, and an accu-
mulate section. We group these sections into three soft-
ware pipelined code variants: two two-stage pipes with
stages [load-multiply, accumulate] and [load, multiply-
accumulate], and a three-stage pipe with stages [load,
multiply, accumulate]. Recent results show that this
software pipelining can result in an appreciable speedup.

Because of the separation between matrix dimen-
sion and matrix stride, we can implement higher levels
of cache blocking as calls to lower level routines with
appropriately sized sub-matrices.
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mul_mfmf_mf(const int M,const int K,const int N,

const float*const A,const float*const B,float*const C,

const int Astride,const int Bstride,const int Cstride)

{

const float *a,*b; float *c;

const float *ap_0,*ap_1; const float *bp; float *cp;

const int A_sbs_stride = Astride*2;

const int C_sbs_stride = Cstride*2;

const int k_marg_el = K & 1;

const int k_norm = K - k_marg_el;

const int m_marg_el = M & 1;

const int m_norm = M - m_marg_el;

const int n_marg_el = N & 1;

const int n_norm = N - n_marg_el;

float *const c_endp = C+m_norm*Cstride;

register float c0_0,c0_1,c1_0,c1_1;

c=C;a=A;

do { /* M loop */

const float* const ap_endp = a + k_norm;

float* const cp_endp = c + n_norm;

const float* const apc_1 = a + Astride;

b=B;cp=c;

do { /* N loop */

register float _b0,_b1;

register float _a0,_a1;

float *_cp;

ap_0=a;ap_1=apc_1;bp=b;

_cp=cp;c0_0=_cp[0];c0_1=_cp[1];

_cp+=Cstride;c1_0=_cp[0];c1_1=_cp[1];

do { /* K loop */

_b0 = bp[0]; _b1 = bp[1];

bp += Bstride; _a0 = ap_0[0];

c0_0 += _a0*_b0; c0_1 += _a0*_b1;

_a1 = ap_1[0];

c1_0 += _a1*_b0; c1_1 += _a1*_b1;

_b0 = bp[0]; _b1 = bp[1];

bp += Bstride; _a0 = ap_0[1];

c0_0 += _a0*_b0; c0_1 += _a0*_b1;

_a1 = ap_1[1];

c1_0 += _a1*_b0; c1_1 += _a1*_b1;

ap_0+=2;ap_1+=2;

} while (ap_0!=ap_endp);

_cp=cp;_cp[0]=c0_0;_cp[1]=c0_1;

_cp+=Cstride;_cp[0]=c1_0;_cp[1]=c1_1;

b+=2;cp+=2;

} while (cp!=cp_endp);

c+=C_sbs_stride;a+=A_sbs_stride;

} while (c!=c_endp);

}

Figure 2: M0 = 2, K0 = 2, N0 = 2 matrix multiply
L1 routine for M 2 f2m : m � 1g;K 2 f2k : k �
1g;N 2 f2n : n � 1g. Within the K-loop is our fully-
unrolled 2� 2� 2 core matrix multiply. The code is not
unlike the register code in [CFH95]. In our terminol-
ogy, the leading dimensions LDA, LDB, and LDC are
called Astride, Bstride, and Cstride respectively. The
four local variables c0 0 through c1 1 hold a complete
C destination block. Variables ap 0 and ap 1 point to
successive rows of the A source matrix block, and vari-
able bp points to the �rst row of the B source matrix
block. Elements in A and B are accessed using constant
o�sets from the appropriate pointers.

4 Matrix Multiply Search Scripts

The search script take parameters describing the ma-
chine architecture, including the number of integer and

oating-point registers and the sizes of each level of
cache. For each combination of generator parameters
and compilation options, the matrix multiply search
script calls the generator, compiles the resulting routine,
links it with timing code, and benchmarks the resulting
executable.

To produce a complete BLAS GEMM routine, we
�nd separate parameters for each of the three cases A�
B, AT � B, and A� BT (AT � BT has code identical
to A�B). For each case, we �rst �nd the best register
(or L0) parameters for in-L1-cache matrices, then �nd
the best L1 parameters for in-L2-cache matrices, etc.
While this strategy is not guaranteed to �nd the best
L0 core for out-of-L1-cache matrices, the resulting cores
have performed well in practice.

4.1 Register (L0) Parameter Search

The register block search evaluates all combinations of
M0 and N0 where 1 �M0N0 � NR and where NR is the
number of machine 
oating-point registers. We search
the above for 1 � K0 � Kmax

0 where Kmax

0 = 20 but
is adjustable. Empirically, Kmax

0 > 20 has never shown
appreciable bene�t.

Our initial strategy [BAD+96] benchmarked a set of
square matrices that �t in L1 cache. We then chose
the L0 parameters that achieved the highest perfor-
mance. While this approach gave good performance,
the searches were time consuming.

We noted that that the majority of the computation,
especially for larger matrices, is performed by the core
M0 �K0 �N0 register blocked code. Our newer search
strategy, therefore, produces code containing only the
core, which decreases compile time, and for each L0 pa-
rameter set, we benchmark only a single matrix multiply
with size M = M0, N = N0, and K = kK0. The pa-
rameter k is chosen such that the three matrices are no
larger than L1 cache (we call this a \fat" dot-product).
While this case ignores the cost of the M- and N-loop
overhead, we have so far found this approach to pro-
duce comparable quality code in much less time than
the previous strategy (e.g., 5 hours vs. 24 hours on the
SGI Indigo R4K).

We initially thought the order in which we searched
the L0 parameter space could have an e�ect on search
time and evaluated orders such as i-j-k, random, best-
�rst, and simulated annealing. We found, however, that
the added search complexity outweighed any bene�t so
we settled on a random strategy.

4.2 Cache Block Search

We perform the L1 cache blocking search after the best
register blocking is known. We would like to make
the L1 blocks large to increase data reuse but larger
L1 blocks increase the probability of cache con
icts
[LRW91]. Tradeo�s between M- and N- loop overheads,
memory access patterns, and TLB structure also af-
fect the best L1 size. We currently perform a rela-
tively simple search of the L1 parameter space. For
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the D�D square case, we search the neighborhood cen-
tered at 3D2 = L1 where L1 is the L1 cache size in
elements. We set M1 to the values b�D=M0c where

� 2 f0:25; 0:5; 1:0; 1:5; 2:0g and D =
p
L1=3. K1 and

N1 are set similarly. We benchmark the resulting 125
combinations with matrix sizes that either �t in L2
cache, or are within some upper bound if no L2 cache
exists. The L2 cache blocking search, when necessary,
is performed in a similar way.

5 Results

We ran the search scripts to �nd the best register and L1
cache blocking parameters for six commercial worksta-
tion systems. These systems have di�erent instruction
set architectures and widely varying microarchitectures
and memory hierarchies. The results are summarized in
Table 1.

The SGI R8K and R10K searches used the newer
version of the code generator and search scripts, while
other results were obtained with the alpha release. Fig-
ures 3{6 plot the performance of the resulting routines
for all square matrices M = K = N = D, where D runs
over powers of 2 and 3, multiples of 10, and primes, up to
a maximum of 300. We compare with the performance
of a vendor-optimized BLAS GEMM where available. In
each case, PHiPAC yields a substantial fraction of peak
performance and is competitive with vendor BLAS. Due
to limited availability, we could only perform an incom-
plete search on the R8K and R10K, and so these are
preliminary performance numbers. There is also po-
tential for improvement on the other machines when we
rerun with the newer version. For completeness, we also
show the poor performance obtained when compiling a
simple three nested loop version of GEMM with FOR-
TRAN or C optimizing compilers.

The PHiPAC methodology can also improve perfor-
mance even if there is no scope for memory blocking.
In Figure 9 we plot the performance of a dot product
code generated using PHiPAC techniques. Although
the parameters used were obtained using a short man-
ual search, we can see that we are competitive with the
assembly-coded SGI BLAS SDOT.

In some of the plots, we see that PHiPAC routines
su�er from cache con
icts. Our measurements exagger-
ate this e�ect by including all power-of-2 sized matri-
ces, and by allocating all regions contiguously in mem-
ory. For matrix multiply, we can reduce cache con
icts
by copying to contiguous memory when pathological
strides are encountered [LRW91]. Unfortunately, this
approach does not help dot product. One drawback of
the PHiPAC approach is that we can not control the
order compilers schedule independent loads. We've oc-
casionally found that exchanging two loads in the as-
sembly output for dot product can halve the number of
cache misses where con
icts occur, without otherwise
impacting performance.

6 Status, Availability, and Future Work

This paper has demonstrated our ability to write
portable, high performance ANSI C code for matrix
multiply using parameterized code generators and a
timing-driven search strategy.
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Figure 3: Performance of single precision matrix multi-
ply on a Sparcstation-20/61.
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Figure 4: Performance of single precision matrix mul-
tiply on a 100 MHz SGI Indigo R4K. We show the
SGEMM from SGI's libblas mips2 serial.a library.
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Figure 5: Performance of double precision matrix multi-
ply on a HP 712/80i. We show DGEMM from the pa1.1
version of libvec.a in HP's compiler distribution.

6



Sun

Sparc-20/61

HP

712/80i

IBM

RS/6000-590

SGI

Indigo R4K

SGI

Challenge

SGI

Octane

Processor SuperSPARC+ PA7100LC RIOS-2 R4K R8K R10K

Frequency (MHz) 60 80 66.5 100 90 195

Max Instructions/cycle 3 2 6 1 4 4

Peak MFLOPS (32b/64b) 60/60 160/80 266/266 67/50 360/360 390/390

FP registers (32b/64b) 32/16 64/32 32/32 16/16 32/32 32/32

L1 Data cache (KB) 16 128 256 8 - 32

L2 Data cache (KB) 1024 - - 1024 4096 1024

OS SunOS 4.1.3 HP-UX 9.05 AIX 3.2 Irix 4.0.5H IRIX6.2 IRIX6.4

C Compiler Sun acc 2.0.1 HP c89 9.61 IBM xlc 1.3 SGI cc 3.10 SGI cc SGI cc

Search results

PHiPAC version alpha alpha alpha alpha new new

Precision 32b 64b 64b 32b 64b 64b

M0,K0,N0 2,4,10 3,1,2 2,1,10 2,10,3 2,4,14 4,2,6

M1,K1,N1 26,10,4 30,60,30 105,70,28 30,4,10 200,80,25 12,24,9

CFLAGS -fast -O -O3 -qarch=pwr2 -O2 -mips2 -n32 -mips4 -O3

Table 1: Workstation system details and results of matrix multiply parameter search.
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Figure 6: Performance of double precision matrix mul-
tiply on an IBM RS/6000-590. We show the DGEMM
from IBM's POWER2-optimized ESSL library.
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Figure 7: Preliminary performance of double precision
matrix multiply on an SGI R8K Power Challenge. We
show the DGEMM from SGI's R8K-optimized libblas.
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Figure 8: Preliminary performance of double precision
matrix multiply on an SGI R10K Octane. We show the
DGEMM from SGI's R10K-optimized libblas.
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Figure 9: Performance of single precision unit-stride
dot-product on a 100 MHz SGI R4K.
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The PHiPAC alpha release contains the matrix mul-
tiply generator, the naive search scripts written in perl,
and our timing libraries. We have created a Web
site from which the alpha release is available and on
which we plan to list blocking parameters for many sys-
tems [BAD+]. We are currently working on a better
L1 blocking strategy and accompanying methods for
search based on various criteria [LRW91]. The PHiPAC
GEMM can be used with Bo K�agstr�om's GEMM-based
BLAS3 package [BLL93] and LAPACK [ABB+92].

We have also written parameterized generators for
matrix-vector and vector-matrix multiply, dot product,
AXPY, convolution, and outer-product, and further
generators, such as for FFT, are planned.

We wish to thank Ed Rothberg of SGI for help ob-
taining the R8K and R10K performance plots. We also
wish to thank Nelson Morgan who provided initial im-
petus for this project and Dominic Lam for work on the
initial search scripts.
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