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Abstract

Electronic drum machines need algorithms to help them produce \expressive-
sounding" rhythmic phrases. In [Bilmes, 1992], I claim that three perceptually separate ele-
ments characterize percussive rhythm: metric content, tempo variation, and deviations (for-
merly called event-shifts). Herein, I demonstrate that algorithms based on this model may
considerably facilitate reproduction of expressive rhythm. I describe one such algorithm
which extracts the separate elements from a percussive performance. The performance is
then resynthesized with varying degrees of tempo variation and deviations. Without the de-
viations, the performance sounds mechanical. With them it sounds rich and alive. Conse-
quently, I claim that we should begin a concentrated study on the separate elements char-
acterizing percussive rhythm, particularly deviations. To this e�ect, development has be-
gun on a graphical drum machine program with which deviations may be explored.

1 Introduction

To err is human. Yet most users of drummachines
and music sequencers strive to eliminate \errs"
in musical performance. In fact, some computer
musicians1 never turn o� the quantize option, de-
stroying forever \
aws that make the performance
sound sloppy." At the same time, other computer
musicians complain about the mechanical quality
of computer music. They call for the development
of techniques which would enable computers to
sound better, i.e. more \human."

There are two orthogonal criteria of per-
formance. The �rst is sheer technical pro�ciency.
Clearly, computers have long surpassed humans
on this axis. The other is expressivity, something
more elusive, something that gives music its emo-
tion, its feeling, its joy and sorrow, and its human-
ity. Music exudes humanity; computer music ex-
udes uniformity. This, I strive to eliminate.

�Author's current address: Computer Science Division,
EECS Department, U.C. Berkeley, Berkeley, CA 94720.
<bilmes@cs.berkeley.edu>

1I use \computer musician" to refer to anyone who uses
a computer to create music, and \computer music" to re-
fer to music created thereof.

2 Rhythm

There is no doubt that music devoid of both har-
mony and melody may still contain considerable
expression. Percussive music is a case in point,
as anyone who has truly enjoyed traditional mu-
sic from Africa, India, or Central or South Amer-
ica knows.

Unsuitable for percussive music however,
previous representations of expressive timing
([Clines, 1977], [Ja�e, 1985], [Schloss, 1985],
[Repp, 1990], [Wessel et al., 1991], [Anderson and
Kuivila, 1991], [Anderson and Bilmes, 1991], and
[Desain and Honing, 1992]) can all (with the ex-
ception of [Desain and Honing, 1992]) be reduced
to tempo variation.

In [Bilmes, 1992], I introduce a new model
of rhythmic expressivity. Speci�cally, I state that
beat-based rhythm can be characterized by three
components: metric structure, tempo variation,
and deviations (formerly called event-shift mod-
els). In this paper, I argue that deviations are
most important for percussive and non-Western
music, and that they are indispensable study for
any drum machine architect wishing to create an
expressive sounding product.

When we listen to or perform music, we of-
ten perceive a high frequency pulse, frequently a
binary, trinary, or quaternary subdivision of the



musical tactus2. What does it mean to perceive
this pulse, or, as I will call it, tatum3.

Perceiving the tatum does not necessarily
imply a conscious ticking in the mind, like a clock.
Often, it is an unconscious and intuitive pulse
that can be brought into the foreground of one's
thought when needed. Perceiving the tatum im-
plies that the listener or performer is judging and
anticipating musical events with respect to a high
frequency pulse. It is a natural perception, per-
haps similar to the illusory contour in the well
known picture on the front cover of Marr's book
[Marr, 1982].

The tatum is not always explicitly stated in
a piece of music. How, then, is it implied? The
tatum is the lowest level of the metric musical hi-
erarchy. Often, it is de�ned by the smallest time
interval between successive notes in a rhythmic
phrase. For example, two sixteenth notes followed
by eighth notes would probably create a sixteenth
note tatum. Other times, however, the tatum is
not as apparent; then, it might best be described
as that time division which most highly coincides
with all note onsets.

The tatum provides a useful means of de�n-
ing two components of beat-based rhythm, tempo
variation and deviations. Tatums pass by at a
certain rate, and may be measured in tatums per
minute. Tempo variation may be expressed as
tatum duration (in seconds) as a function of tatum
number. Similarly, deviations may be expressed
as deviation (in seconds) as a function of tatum
number. That is, a deviation function determines
the amount of time that an event metrically falling
on a particular tatum should be shifted when per-
formed. Note that tempo variation is de�ned per
ensemble, whereas deviations are de�ned per per-
former.

A common question asked is, if we assume
tempo variation is also per person, why not just
use tempo variation to represent deviations in a
performance? That is, is there mathematically
any di�erence between tempo variation and devia-
tions? The answer is no, there is no mathematical
di�erence. Either can represent performance tim-
ing. There is, however, a perceptual di�erence.

When listening to or playing in a drum or
jazz ensemble, there are times when the tempo
is considered constant, even though members are
playing o� the beat. Notice, the concept of be-
ing \o� the beat" suggests that there is deviation
from some tempo generally followed by the ensem-
ble. There is no concept, however, of individual

2The stroke of the hand or baton in conducting, or, of-
ten, the main quarter note beat

3When I asked Barry Vercoe if this concept had a term,
he felicitously replied \Not until now. Call it temporal

atom, or tatom." So, in honor of Art Tatum, whose tatum
was faster than all others, I chose the word tatum.
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Figure 1: Equivalent Tempo Variation and Devi-
ation Representations

members of the ensemble slightly adjusting their
own personalized tempo. Furthermore, the tempo
change needed to represent deviations in a typi-
cal performance would be at an unnaturally high
frequency and high amplitude. Imagine, at each
successive tatum, varying the tempo between 2000
and 354 tatums per minute (Figure 1A). Perceptu-
ally, this seems quite impossible. However it seems
quite reasonable to assume that a person could, at
a constant tempo of 300 tatums per minute, play
every other note 15 percent of a tatum early (Fig-
ure 1B). In other words, although they might be
mathematically equivalent, tempo variation and
deviations are di�erent in more important ways {
they are distinct functionally and conceptually.

The previous paragraph suggests that there
must be some (per person) upper limit on tempo
oscillation frequency. That is, any performance
variation not accounted for by tempo variation be-
cause of its high frequency must be owing to \de-
viations." The following algorithm was developed
with this assumption in mind.

3 Timing Extraction Algo-

rithm

In [Bilmes, 1992], I point out the necessity of an
algorithm that extracts deviations from a perfor-
mance. Presented herein is one that extracts the
quantized score, the tempo variation, and the de-
viations. The input to the algorithm is a list of
attack times.

The algorithm is given complete metric
knowledge of the performer. That is, it knows the
time signature, the number of tatums per beat,
the number of beats per measure, and where the



beginning of the measure is (the answer to \where
is one?"). There are two versions of the algorithm;
one is primarily for percussive music, the other is
slightly more general.

Version I of the algorithm requires a repet-
itive reference instrument (such as a bell, a clave,
or a bass). The reference instrument is used to
extract tempo and must repeatedly play a known
pattern. The pattern period must be an integer
multiple of the measure duration. Percussive mu-
sic normally contains such an instrument, so this
is not an unreasonable requirement. The algo-
rithm produces the expressive timing of a perfor-

mance instrument relative to the reference instru-
ment. In an ensemble, any instrument other than
the reference instrument may be considered a per-
formance instrument.

The algorithm �rst computes a tempo func-
tion using the reference instrument. The tempo
function is then transformed into a tatum dura-
tion function { tatum duration as a function of
tatum number. The tatum function determines
a normalized metric grid; i.e. a time grid spaced
so that grid markers determine the time points
of each tatum. The metric grid is then used to
judge the performance instrument. For each per-
formance instrument attack, the deviation is its
distance to the nearest grid marker.

Let L be the number of tatums per measure,
R be the number of reference instrument attacks
per measure, x[n] be the nth reference instrument
attack time, y[n] be the nth performance instru-
ment attack time, and let z[n] = x[n� R] be our
estimate of the starting time of the nth measure
(if reference instrument attacks do not fall on the
measure starting points, we interpolate, add en-
tries to x[n], and pretend that it does). y[0] must
lie past the �rst measure's starting point.

For n = 0 : : :R� 1, we compute

P [n] =
1

M

M�2X

m=0

x[mR+ n+ 1]� x[mR+ n]

z[m+ 1]� z[m]
;

where M is the number of measures in the per-
formance. P [n] is the average measure fraction of
the time duration between reference instrument
attacks n and n + 1. If the performer is play-
ing very uniformly (i.e., nearly quantized), and we
have the score for the pattern, P [n] may be ob-
tained directly from the score rather than from
the attack times.

Next, a rough tempo function

T 0[n] =
x[n+ 1]� x[n]

P [n mod R]
;

is computed. T 0[n] provides an estimate, at time
x[n], of the measure duration. At any one point

in time, the reference instrument informs the en-
semble what the tempo is. The performance in-
strument, depending on whether it is dominant
in the ensemble (such as a lead drum), controls
when the tempo speeds up and slows down. That
is, we say the reference instrument de�nes the
tempo, and the performance instrument controls
the tempo. Therefore, when obtaining the timing
of a dominant performance instrument, we look
slightly ahead, and compute

T [n] =
1

C + 1

n+CX

k=n

T 0[k];

where C is a parameter determining how far into
the future we should look. C depends on the per-
formance instrument, and could equal zero; ac-
cordingly, T [i] may or may not be an anticipatory
measure duration estimate.

Creating a continuous time function, we
next linearly interpolate4

D(t) = D[n]+(D[n+1]�D[n])�
t� x[n]

x[n+ 1]� x[n]
;

where

n = fn : x[n] � t < x[n+ 1]g:

It follows that D(t) is an estimate, at time t, of
the measure duration.

Clearly, D(t) increases as tempo decreases,
and 1=D(t) decreases as the tempo decreases. We
want the tempo-normalized time points. There-
fore, for each measure, we �nd the time points that
divide the area under 1=D(t) into L equal area re-
gions. The time points provide a tatum time func-
tion, a function that gives the time point for each
tatum.

So, for each measure m, 0 � m < M � 1,
and each tatum i in measure m, 1 � i < L, we
�nd bL[mL + i] where

z[m] � bL[mL+ i] < z[m+ 1];

and R bL[mL+i]
z[m]

1=D(t)dt
R z[m+1]

z[m] 1=D(t)dt
= i=L:

The array bL[n] is the L-tatum per measure time
location of tatum n.

We next compute the �rst order forward
di�erence by linear convolution

d0[n] = bL[n] � (�[n+ 1]� �[n]);

where �[n] is the unit sample sequence5 .

4Higher order interpolation schemes could be used,
but they probably would not signi�cantly alter the �nal
outcome.

5�[0] = 1; �[n 6= 0] = 0



To �lter out high frequency variation, we
convolve again, and compute

d[n] = d0[n] � h[n];

where h[n] is either an FIR low-pass �lter with a
desired stop-band, or a Savitzky-Golay smoothing
�lter [Press et al., 1992]. This step removes high
frequency variation in d0[n]. Thus, the array d[n]
is our estimate of the duration of the nth tatum.
We next recover the tatum positions from d[n] by
convolving with the unit step sequence u[n] 6

b[n] = (d[n� 1] + bL[0]�[n]) � u[n]:

The array b[n] then gives us the time position of
tatum n.

For each performance instrument attack
y[n], we �nd the closest tatum. The distance from
y[n] to the closest tatum is the attack's deviation.
That is

devs[n] = y[n]� b[j]

and
quants[n] = j;

where
j = argmin

j
j y[n]� b[j] j;

The array devs[n] is the deviation function and
quants[n] is an array of tatum numbers. There-
fore, the quantized score is given (in tatums) by
quants[n], the tempo variation by b[n], and the
deviations by devs[n]. A positive deviation means
the attack occurred after the tatum, and a nega-
tive one means it occurred before.

Version II of this algorithm does not require
the reference instrument to play repetitively and
does allow the reference and performance instru-
ment to be the same. It does, however, require
the complete score or quantized representation. If
the score is known, however, and the goal is to ob-
tain the tempo variation and deviations, it may
be used directly.

Here is the main di�erence from version
I. P [n] is not computed from the performance.
Rather, P [n] is obtained directly from the score.
That is, P [n] becomes the measure fraction of the
time duration between reference instrument at-
tacks n and n + 1. The measure fraction is com-
puted using the score. So an eight note in 4

4 time
would produce a value of 1=8, and a quarter note
in 7

8 time a value of 2=7. The starting time of each
measure, z[n], is computed from x[n] according to
the score. If, for a particular measure, no x[n] falls
at the beginning, we interpolate, and create an es-
timation of the measure starting time. The only
other di�erences are the following:

T 0[n] =
x[n+ 1]� x[n]

P [n]
;

6u[n < 0] = 0; u[n � 0] = 1
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Figure 2: Guagua Pattern

The tempo variation b[n] and the deviations
devs[n] are computed as in version I. In this case,
however, the reference instrument x[n] and the
performance instrument y[n] need not be di�erent.
Version II essentially computes the tempo varia-
tion as the low-pass �ltered performance variation,
and uses the high frequency performance variation
as the deviations. The trick is to �nd the desired
stop-band frequency, something which largely de-
pends on the musical style.

4 Results

Version I of the timing extraction algorithm
was applied on a performance given by Los
Mu~nequitos de Matanzas, the extraordinary drum
ensemble from Matanzas, Cuba. Timing data was
obtained from the following performance instru-
ments: the quinto (high), the segundo (middle),
and the tumbao (low) drum. A new attack de-
tection algorithm, using only high frequency en-
ergy to determine the attack, is de�ned in [Bilmes,
1993] and was used here. The reference instru-
ment was the guagua, a thick bamboo cylinder,
about 4" diameter, hit with two sticks. An ap-
proximation to the reference instrument pattern
may be seen in Figure 2. What follows are the re-
sults of the segundo only.

The algorithm was run with C = 3 and
h[n] = u[n]�u[n�5]. Therefore, h[n] is just a rect-
angular moving window average. b[n] is plotted in
Figure 3. Although it looks as if there is consid-
erable high frequency, the abscissa scale informs
us otherwise. Figure 4 shows the DFT magnitude
of b[n]. The abscissa is in normalized frequency
units, where 0:5 corresponds to the Nyquist fre-
quency. However, the frequency units are in cy-
cles per tatum, not in Hz. The DFT magnitude
is not plotted for f > 0:1 (10 tatums per cycle)
since there is no signi�cant energy. Also, notice
the peaks at 0.0620 and 0.0630, corresponding to
16.13 and 15.9 tatums per cycle respectively. It is
probably more than coincidental that 16 is both
the number of tatums per measure and a large
component in tempo variation.

Figure 5 shows a plot of the deviations for
this performance. In this form it is hard to see any
structure. Although the deviation array is essen-
tially an unevenly sampled signal, spectral anal-
ysis is still possible. The Lomb normalized peri-
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Figure 3: Mu~nequitos tempo track
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Figure 5: Segundo deviations

odogram [Press et al., 1992] is a magnitude spec-
tral analysis technique speci�cally designed for un-
evenly sampled signals. It is commonly applied to
astrophysical data where regular sampling is not
possible. Hoping to uncover some structure, I de-
veloped a short-time version of this algorithm, and
applied it to the deviations.

Figure 6 shows the short-time Lomb nor-
malized periodogram for the segundo deviations in
Figure 5. The front axis is, again, in normalized
frequency units (cycles per tatum) where 0.5 is the
Nyquist frequency. The window size is 32 tatums,
and the overlap is 24 tatums. Notice the strong
peak at 0.25 cycles per tatum, implying consider-
able deviation periodicity near 4 tatums per cycle.
The segundo performance, in fact, largely consists
of a repeating 4 tatum phrase. For larger window
sizes (order 100), this peak signi�cantly narrows
centered right on 0.25, and other small peaks ap-
pear at 0.125, 0.166, 0.333. Clearly, this con�rms
that structure does exist in the deviations.

The performance was resynthesized7 by
triggering select samples of the original perfor-
mance. I developed an automatic note classi�ca-
tion algorithm to obtain the drum stroke types
which completed the score [Bilmes, 1993]. The
various resynthesis examples follow:

1. Direct { by triggering the samples at the ap-
propriate time.

2. Quantized { using a constant tempo equal
to the overall average.

3. Quantized { using b[n] as the tempo

4. Quantized { with devs[n] added to the nth

attack.

7Using Csound.
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gundo Deviations

5. Quantized { with random Gaussian devia-
tions added to each attack time. The Gaus-
sian process had the same mean and vari-
ance as the devs[n] array.

6. Quantized { with per-tatum random Gaus-
sian deviations added to each attack time.
Here, there were 16 independent Gaussian
processes, each with a di�erent mean and
variance. The mean and variance for the ith

process was the same as the mean and vari-
ance of devs[n mod i].

Most people who listen to these examples
say that number 4 sounds most like the original,
observing that only 4 contains the \feel" of the
original performance. In addition, numbers 5 and
6 are considered, in general, to sound \sloppy" and
\random." Accordingly, Figure 7, showing a peri-
odogram for the deviations in resynthesis 5, con-
�rms that there is lack of structure. As expected,
resynthesis 2 sounds mechanical. Unexpectedly,
even resynthesis 3 sounds mechanical. In general,
without the correct deviations, the performance
sounds colorless and cold { with them it sounds
rich and alive.

Consequently, I propose that, in addition to
the ongoing studies of tempo variation, we begin
a concentrated study on performance deviations.
Combining both tempo variation and deviations
could eventually produce the full e�ect of rhyth-
mic expressivity.
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Figure 7: Lomb Normalized Periodogram: Ran-
dom Gaussian Deviations

5 Experimental Tatum De-

viation Program

Drummachines and music sequencers should start
providing advanced facilities for experimenting
with deviations. While waiting for this to occur,
we8 have developed a deviation experimentation
program called xited (pronounced \excited" for
eXperimental Interactive Tatum-Editor of Devia-
tions, see Figure 8). Currently, xited runs on SGI
IRIS Indigo workstations.

The program consists of a control panel,
and any number of pattern windows. The main
window controls global tempo in units of normal-
tatums per minute, starting and stopping, and
other miscellany.

The pattern windows determine the score.
Each pattern window consists of a rectangular grid
of toggle buttons (of any size), an additional row
of sliders, and a duration value. A pattern win-
dow's grid represents a repeatedly played percus-
sive phrase. The rows correspond to drum samples
or voices and the columns correspond to pattern-
tatums. If a toggle is set for row i and column
j, then voice i will be triggered during pattern-
tatum j. Each column also has a corresponding
deviation slider. The slider for pattern-tatum j
determines, in percentage of pattern-tatum, the
amount of time to shift all voices set to play on
that pattern-tatum.

A pattern window also contains a duration
in units of normal-tatums. Therefore, di�erent
patterns may have di�erent numbers of pattern-

8Je� Foley, an undergraduate working with me at MIT,
has been the primary implementor of this program



Figure 8: Graphical Deviation Program xited in Action

tatums, with their absolute durations the same.
This may be used to express poly-rhythms and
multi-tatum ethnic music. For example, in Fig-
ure 8, the top pattern has a duration of 16 normal-
tatums and contains 24 pattern-tatums. The bot-
tom pattern has a duration of 16 normal-tatums
and contains 16 pattern-tatums. This example
encodes, in a sense, the feeling of multiple con-
current tatums that is heard in African or Afro-
Cuban music.

Each pattern window maintains a counter.
When the <PLAY> button is pressed, the counters
cycle through their patterns modulo their pattern-
tatum length. When the counter reaches a partic-
ular tatum, any voices scheduled for that tatum
are appropriately shifted and triggered. During
playback, deviations, toggles, and pattern dura-
tions may all be adjusted.

xited is thus a novel drum machine user
interface. A similar such interface could be used
by music sequencers, or eventually, by commercial
drum machines. In [Bilmes, 1993], an algorithm is
de�ned that creates a mapping between quantized
musical patterns and sets of deviations. This algo-
rithm will be eventually incorporated into xited.
xited provides the ability to experiment with de-
viations and to determine the best sounding de-

viations for a drum pattern. Indeed, some very
interesting rhythmic e�ects may be attained with
xited by varying deviations and pattern dura-
tions.

6 Conclusion

This paper is a summary of two and one-half chap-
ters from [Bilmes, 1993]. Therein may also be
found a new drum attack detection algorithm, an
automatic drum stroke classi�er, and the design
of a deviation learning algorithm9.

In this paper, I have introduced the concept
of tatum, have utilized the separate elements de-
�ned in [Bilmes, 1992] for rhythmic analysis, and
have demonstrated the importance of deviations
for representing expressivity in percussive musical
phrases. Deviations play a vital role in rhythm.
They should be analyzed, comprehended, and uti-
lized. And before switching on that quantize op-

9This work, including audio examples, the timing ex-
traction algorithm, the deviation experimentation pro-
gram, the drum attack detection and classi�cation algo-
rithm, and the learning algorithm, is (or will soon be) avail-
able via anonymous ftp on amt.mit.edu:pub/bilmes-thesis,
cecelia.media.mit.edu:pub/bilmes-
thesis, and ftp.icsi.berkeley.edu:pub/bilmes-thesis



tion, we should remember that yes, to err is hu-
man, but to forgive divine.

References

[Bilmes, 1992] Je� A. Bilmes. A Model for Musi-

cal Rhythm. Proceedings of the ICMC, San
Jose CA, 1992.

[Bilmes, 1993] Je� A. Bilmes. Timing is of

the Essence: Perceptual and Computational

Techniques for Representing, Learning, and

Reproducing Expressive Timing in Percus-

sive Rhythm. Masters Thesis 1993, Mas-
sachusetts Institute of Technology, MIT Me-
dia Laboratory, Cambridge MA, 02139.

[Desain and Honing, 1992] Peter Desain and Henk-
jan Honing. Music, Mind and Machine:

Studies in Computer Music, Music Cogni-

tion, and Arti�cial Intelligence. Thesis Pub-
lishers, Amsterdam 1992.

[Schloss, 1985] W. Andrew Schloss. On the Auto-

matic Transcription of Percussive Music {

From Acoustic Signal to High-Level Analy-

sis. Ph.D. Thesis, CCRMA, Stanford Uni-
versity, Stanford CA, 94305.

[Clines, 1977] Manfred Clines. Sentics, The

Touch of Emotion. Doubleday Anchor, New
York 1987.

[Press et al., 1992] W.H. Press, S.A. Teukolsky,
W.T. Vetterling, and B.P. Flannery. Nu-

merical Recipes in C, Second Edition. Cam-
bridge University Press, 1992.

[Marr, 1982] David Marr. Vision. W.H. Freeman
and Company, San Francisco 1982

[Ja�e, 1985] David Ja�e. Ensemble Timing in

Computer Music. Computer Music Journal,
9(4): pp.38-48, 1985.

[Anderson and Kuivila, 1991] David P. Anderson
and Ron Kuivila. Formula: A Programming

Language for Expressive Computer Music.
IEEE Computer, 24(7): pp.12-21, 1991.

[Anderson and Bilmes, 1991] David P. Anderson
and Je� Bilmes. Concurrent Real-Time Mu-

sic in C++. USENIX C++ Conference Pro-
ceedings, Washington, D.C. April 1991.

[Anderson and Bilmes, 1992] David P. Anderson
and Je� Bilmes. MOOD: A Concurrent

C++-Based Music Language. Proceedings
of the ICMC, pp.440-441 San Jose CA. 1992.

[Repp, 1990] Bruno H. Repp. Patterns of Expres-
sive Timing in Performances of a Beethoven

Minuet by Nineteen Famous Pianists. J.
Acoust. Soc. Am. 88, pp. 622-641.

[Wessel et al., 1991] David Wessel, David Bris-
tow, and Zack Settel. Control of Phrasing

and Articulation in Synthesis. Proceedings
of the ICMC, Urbana, Illinois 1987.


