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Abstract
In this work we combine a conventional phone-based automatic
speech recognizer with a classifier that detects syllable loca-
tions. This is done using a dynamic Bayesian network. Using
oracle syllable detections we achieve a 17% relative reduction
in word error rate on the 500 word task of the SVitchboard cor-
pus. Using estimated locations we achieve a 2.1% relative re-
duction which is significant at the 0.02 level. The improvement
in the estimated case is from reducing insertions caused by burst
noise.
Index Terms: Automatic speech recognition, dynamic
Bayesian networks, syllables, speaking rate

1. Introduction
In many cases automatic speech recognizers will incorrectly
decode burst noises as speech. These noises, such as cross-
talk, are neither speech nor silence, and many particular noises
may never occur in the training data. Non-speech noise is not
explicitly labeled and whenever a portion of the speech is la-
beled “silence” it may also include noise. Here we propose a
method that improves on burst noise identification using a dy-
namic Bayesian network that combines a conventional phone-
based automatic speech recognizer with a classifier that identi-
fies locations of syllable nuclei.

Perceptual experiments have given evidence that speech
intelligibility depends on syllable-length modulations in the
speech signal [1, 2, 3]. This has led a number of researches to
incorporate syllable information into automatic speech recogni-
tion (ASR). In [4] it was proposed that syllables should be used
as a basic recognition unit. This work proposed that, instead
of phones, speech should be characterized in terms of syllable
onset, nucleus, and coda along with sub-classes within each of
these sub-syllable units. This was implemented at a later date in
[5]. In [6], a phone-based recognizer is combined with an asyn-
chronous syllable-based recognizer using what were called “re-
combination states”, and in [7, 8] phone and syllable based rec-
ognizers are combined using N-Best lists. This work has much
in common with the ideas presented in [9] and [10, 8]. In [9],
speech was segmented using syllable onset estimations for use
in template matching. In [10, 8] syllable onsets are detected us-
ing a neural network, and hypotheses that are inconsistent with
these detections are removed from a lattice.

There has been much research in the area of noise robust
ASR. A somewhat dated but excellent survey can be found in
[11]. One set of approaches, such as [12], consists of pre-
processing the features in a way that makes them more robust to
noise. These approaches tend to be more effective on stationary
noise than on bursts. Some voice activity detectors (VADs) can
handle bursts by building models for speech, noise, and silence.
If one has instances of many burst noises at training time a noise
model can be trained using a hidden Markov model (HMM) as

in [13]. The output of a neural network based VAD was inte-
grated into ASR in [14]. This VAD made binary speech/non-
speech decisions but was integrated into recognition in a soft
manner using a penalty factor. A noise model is built in an
unsupervised manner using a switching Kalman filter in [15].
Unlike the HMM and neural network, this method can handle
noises not seen in training. The Kalman filter uses standard
ASR analysis windows and has only been integrated into ASR
by making “hard” segmentation decisions. The model proposed
here makes use of temporal dynamics at a syllable-length time
scale, and it makes the speech/non-speech decision in a soft
manner at recognition time. It makes use of a trained silence
model and at the same time is theoretically robust to noises not
seen in training.

This work builds on the ideas reported by these authors in
[16]. In the previous work, when using estimated syllable nuclei
a small improvement was shown on the 10 word task from [17]
and no improvement was shown on the 500 word task. Here
we report an improved baseline result and an improvement on
the 500 word task. Previously the word and syllable detection
streams were synchronized at the ends of words and utterances,
and the newly proposed graph synchronizes them at the end of
every syllable. The nuclei features in the previous work were
from the correlation-based method given in [18, 19]. This pa-
per uses neural network derived features that will be described
in Section 2. Finally, in this work the possible nuclei are se-
lected off-line and a binary feature is given to the model. In the
previous work, each potential nucleus had an associated floating
point number indicating a confidence that the maximum was ac-
tually a nucleus, and a “soft” selection was incorporated into the
DBN. A soft selection could be added into the model presented
here, but empirically we found the binary feature to perform
better.

2. Detecting Syllables
English syllables are typically defined by an onset, nucleus, and
coda. This structure generally corresponds to the rising and
falling of sonorance and energy in the speech signal. The sylla-
ble nucleus is always a vowel and is the most sonorant portion
of the syllable. Syllables may or may not have an onset and/or
a coda. If the onset and coda do exist, they consist of conso-
nants with the most sonorant consonants directly surrounding
the nucleus. The consonants become decreasingly sonorant as
one looks towards the beginning and end of the syllable.

There have been two primary ways that syllables have been
identified in other work. The first is to train a discriminative
classifier to locate syllable boundaries or nuclei. In [10, 8] a
neural network was used to find syllable onsets. Temporal Flow
Model neural networks were used in [20] to find syllable bound-
aries. In [21] a support vector machine was used to classify
speech as sonorant or non-sonorant.

In other cases, signal processing methods have been used



to identify syllables. This class of methods was developed for
the purpose of estimating speaking rate. A spectral correla-
tion metric was used to identify nuclei in [22], and this method
was improved upon in [18, 19]. In [23] syllable nuclei are de-
tected using a modified loudness function combined with the
zero-crossing rate.

Our method uses the posterior of a neural network as a mea-
sure of sonorance and interprets the peaks in this posterior as a
syllable nuclei. We make use of an existing set of publicly avail-
able neural networks trained for phone classification. A detailed
description of the networks can be found in [24].

The inputs to the neural network are nine frames of PLP
cepstra plus energy along with their deltas and double deltas.
The features are calculated every 10ms with 25ms windows,
and are mean and variance normalized on a per speaker basis.
These neural networks produce posteriors for 46 phones. We
divide the phones into three classes: vowels, consonants, and
silence. The posteriors for individual vowels are summed to
give a single overall vowel posterior. The silence posterior is
used directly, and the posteriors for the consonants are not used.

For each utterance, the vowel and silence posteriors are
smoothed in time using a 9 frame Hamming window. The
length of the window was chosen by the recognition perfor-
mance of the resulting features on the development set. Next,
the maxima in the smoothed vowel posterior are found. A max-
imum is taken to be any frame with a posterior larger than its
two adjacent frames. Maxima that occur less than 5 frames af-
ter a previous maximum are thrown away. If a maximum is
found at a point where the smoothed silence posterior is greater
than 0.5, that maximum is also thrown away. These remaining
maxima are taken to be estimated locations of the syllable nu-
clei. We then create a binary feature for each time frame. These
features equal 1 in the frames where a maximum occurred, and
they equal 0 in all other frames.

We also present results using Oracle syllable features. To
obtain these, the baseline recognizer is used along with the time-
aligned transcriptions to create time-aligned phone transcrip-
tions of each utterance. The beginnings and ends of all words
are marked as syllable boundaries. It is assumed that there is
one syllable per vowel, and in multiple syllable words within-
word syllable boundaries are marked using a heuristic. This
heuristic splits strings of consonants that occur between vowels
by placing the first consonant in the coda of the first syllable
and subsequent consonants in the onset of the second syllable.
The oracle syllable nuclei are set to be the points in the centers
of the syllable boundaries, and binary features are created in the
same manner as the estimated features.

3. Model
The baseline system is a conventional HMM implemented using
the DBN shown in Figure 1. This DBN was developed for [25].
For more on DBNs in automatic speech recognition see [27,
26]. This graph uses state clustered within-word triphones and
implements a three state left-to-right topology.

The model introduced in this paper is called Syllable-Level
and is given in Figure 2. The lower portion of the graph is iden-
tical to the baseline model. The upper portion of the model
counts the number of detected syllables since the beginning
of each hypothesized syllable or silence region. We expect to
count 1 detection for each syllable, and we expect to count 0
detections in a silence or short pause. Whenever the lower por-
tion reaches the end of a syllable or silence region, an addi-
tional probability is multiplied into the hypothesis score. This
additional factor is the probability of the current detection count
given the number of detections we expect to see. This distribu-
tion is learned from the training data. Note that the syllable
detection portion of the model adds additional state. This state
allows the model to give differing scores depending on how the
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Figure 1: Baseline Model [25, 26]. This is a standard speech
HMM represented as a DBN. Hidden variables are white while
observed variables are shaded. Straight arrows represent de-
terministic relationships, curvy arrows represent probabilistic
relationships, and dashed arrows are switching relationships.

beginnings and ends of the hypothesized words align with the
stream of detected syllables.

The variables in the syllable detection portion of the graph
will now be described in detail. The variable Syllable Transi-
tion, notated Sstr , can take on four values: syllable, silence,
sp, and none. It is equal to syllable when a hypothesized word
is in the last frame of a syllable, silence when it is in the last
frame of a hypothesized silence, sp when it is in the last frame
of a hypothesized short pause, and none when it is not in the
last frame of a syllable or silence region. The variable Syllable
Nuclei is a binary observation using the syllable detection fea-
tures described in the previous section. The variable Syllable
Count keeps a count of the number of detected syllables since
the beginning of each hypothesized syllable (this is a positive
count, starting from zero). The count is reset to zero when-
ever Syllable Transition is equal to syllable, silence, or sp.
Count Matching, Cm, is a random variable that gives a distribu-
tion over detected syllable counts given the Syllable Transition.
Both Syllable Count and Count Matching have 4 possible val-
ues. These represent a total count of 0, 1, 2, and ≥ 3. Count
Consistency is a constraint that is enforced whenever Syllable
Transition does not equal none. When the constraint is turned
on, it forces Syllable Count to be equal to Count Matching. This
will cause p(Cm = c|Sstr = s) to be multiplied into the hy-
pothesis score. Whenever Syllable Transition equals none and
the constraint is turned off, p(Cm = c|Sstr = s) has no effect
on the model.

The Gaussian parameters and transition probabilities were
trained for the baseline model with expectation maximiza-
tion (EM). These parameters were imported directly into the
Syllable-Level model and held fixed while training the Syllable-
Level model’s parameters . The only distribution in Syllable-
Level that needs to be trained is p(Cm|Sstr). This training con-
verges with four additional EM iterations. The language model
scale and word insertion penalty is determined by evaluating the
recognition performance over a range of settings on the devel-
opment set. The Syllable-Level model has an additional scaling
factor on p(Cm|Sstr). This scale along with the language model
scale and word insertion penalty are optimized on the develop-
ment set separately from the baseline.

4. Experiments and Results
All experiments were performed on the 500 word task of the
SVitchboard corpus [17]. SVitchboard is a small, closed vocab-
ulary subset of Switchboard I [28]. This allows experimentation
on spontaneous continuous speech, but with less computational
complexity and experiment turn-around time than a true large
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Figure 2: Syllable-Level graph (see Figure 1 for key). The bot-
tom portion of this graph is identical to the baseline model given
in Figure 1. The upper portion of the model keeps track of the
number of estimated syllable detections that occur during the
duration of each syllable hypothesized by the lower portion of
the model.

vocabulary task. The A, B, and C folds were used for train-
ing, the D short fold was used as the development set, and the
E fold was used as the evaluation set. The observation vec-
tors are 13 dimensional PLPs normalized on a per conversation
side basis along with their deltas and double-deltas. All models
were trained and decoded using The Graphical Models Toolkit
(GMTK) [29].

The neural networks (from [24]) that are used to calculate
the vowel posteriors for the syllable detector were trained on
2000 hours of Fisher data. Although this data is not as well
matched as the in-domain data, it is important to note that the
syllable detection likely benefits from being trained on a large
amount of data outside the SVitchboard corpus.

Results for all experiments are given in Table 1. Using the
oracle features we achieve a 17% relative reduction in word er-
ror rate. When using the estimated syllable locations we achieve
a 2.1% relative reduction which is significant at the 0.02 level
according to a difference of proportions significance test. This
should be considered the most important result in the paper.

Table 1 also presents a result, labeled Silence Oracle,
where the baseline and Syllable-Level models are told which
frames should be decoded as silences. Note that the “silence”
regions also include the non-speech noise, and with the help
of the oracle information neither system will ever hypothesize
speech in a noise region. In this case, the Syllable-Level model
does not show any improvement over the baseline. This result
has two implications. First, it shows that the improvement in
the Syllable-Level model primarily comes from the reduction
of insertions due to noise. Second, the absolute improvement
of 1.1% using the estimated features is 42% of the possible im-
provement of 2.6% given by the silence oracle.

The Syllable-Level model is more computationally expen-
sive than the baseline model. Currently it runs two to three times
slower than the baseline, but we expect to be able to speed up
its performance by optimizing the beam settings and the graph
triangulation.
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Figure 3: Example to illustrate the syllable detection features.
(a) Gives the transcription. Note that the baseline recognizer
decodes the noise as an additional “right”, but Syllable-Level
correctly decodes the noise as “silence”. (b) Spectrogram of
the audio signal. (c) Smoothed posterior from the neural net-
work vowel detector (d) Maxima in the vowel posterior are in-
terpreted as syllable nuclei. The one syllable in “right” is de-
tected correctly. There are false detections in the silence and
noise portions.

5. Discussion
When a noise occurs, often both the speech recognition unit and
the neural network give a high posterior probability to speech.
The Syllable-Level model is able correct mistakes in the base-
line because it recognizes that a mismatch between the baseline
hypothesis and the detected number of syllables is indicative of
noise. Figure 3 gives an example of the Syllable-Level graph
removing such an error. The baseline model correctly decodes
the word “right”, but then incorrectly inserts a second “right”
during a breath noise. The breath noise does not sound like the
word “right”, but it has an even worse acoustic match to the
silence model. The syllable detector correctly identifies the syl-
lable nucleus for the word “right”, but it has five false detections
during the breath noise. Syllable-Level will give a low proba-
bility to decoding “right” during the noise because it is not a
five syllable word. There is also a false detection during the ini-
tial silence, but it does not affect the result. Many of the false
detections are clearly not syllable nuclei and one could easily
suppress many of these based on the vowel or silence posteriors
at these points. The primary reason that this is not done is that
the frequency of their occurrence is informative, and including
them improves the speech detection performance. In addition,
removing detections based on the posterior can be problematic
because the neural network is often fooled by the same noises
that fool the baseline recognizer. In Figure 3, the five false de-
tection points during the breath noise have a vowel posterior
that is larger than the silence or consonant posteriors. Although
these posteriors are smaller than the one correct detection in the
figure, in other speech segments it is not uncommon to see true
vowels with similarly low posteriors.

The corrections mentioned above (and similar such correc-
tions) are not a result of a particularly good acoustic match be-
tween training and test data. Instead, they are a result of two
portions of our model being inconsistent and thereby preclud-
ing ”speech” as being hypothesized at those points. Further-
more, theoretically there do not need to be any examples of a



Development Evaluation
S D I WER S D I WER

Baseline 595 195 117 49.5% 6799 2547 1124 52.3%
Syllable-Level Oracle Features 633 26 53 38.8% 7376 474 799 43.2%

Estimated Features 564 219 86 47.4% 6684 2752 813 51.2%
Baseline + Silence Oracle 600 189 65 46.6% 6739 2478 726 49.7%
Syllable-Level + Silence Oracle Estimated Features 626 137 91 46.6% 7048 1959 969 49.8%

Table 1: Table of Results. S, D, and I are counts of substitutions, deletions, and insertions. WER is percent word error rate.

specific noise in the training data for a mismatch to occur and
cause it to be properly decoded as non-speech. (This hypothe-
sis has not been directly tested, though. Noises are not marked
in our corpus making such a claim difficult to verify empiri-
cally.) Our method can also be seen as a classifier combination.
Typical classifier combination approaches concentrate on ways
of choosing between a set of alternative hypotheses. The ef-
fect seen here is different in that neither hypothesis is correct,
instead the mismatch is used as an information source. The
switching Kalman filter based VAD in [15] can also deal with
unseen noises, but it relies on building an accurate noise model
in an unsupervised manner.

Another important aspect to this work is its ability to in-
corporate information over longer time spans than typical ASR
systems. This is done in two ways. First, locating peaks in the
smoothed neural network posterior analyzes the signal over syl-
lable length time scales. Second, the syllable counting portion
of the model adds additional state that is related to the duration
of each hypothesized syllable. Other work that makes use of
longer time scales is typically in the form of a feature that is
appended to the standard observation vector, such as [30].

In conclusion, the Syllable-Level model successfully is able
to discriminate between speech and non-speech noise which re-
sults in a significant reduction in word error rate. Currently,
the model does not appear to provide any advantage inside
sub-segments that the baseline model correctly hypothesizes as
speech. Given the large improvement using the oracle sylla-
ble nuclei, future work will examine how to make the syllable
detection more robust. This framework could also be used to
incorporate other prosodic detections. In particular, a logical
extension would be to add information distinguishing between
stressed an unstressed syllables.
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