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ABSTRACT

This work presents the use of dynamic Bayesian networks
(DBNs) to jointly estimate word position and word identity
in an automatic speech recognition system. In particular, we
have augmented a standard Hidden Markov Model (HMM)
with counts and locations of syllable nuclei. Three experi-
ments are presented here. The first uses oracle syllable counts,
the second uses oracle syllable nuclei locations, and the third
uses estimated (non-oracle) syllable nuclei locations. All re-
sults are presented on the 10 and 500 word tasks of the SVitch-
board corpus. The oracle experiments give relative improve-
ments ranging from 7.0% to 37.2%. When using estimated
syllable nuclei a relative improvement of 3.1% is obtained on
the 10 word task.

Index Terms— Automatic speech recognition, dynamic
Bayesian networks, syllables, speaking rate

1. INTRODUCTION

Conventional automatic speech recognition systems based on
a Hidden Markov Model (HMM) use a tweak factor that pe-
nalizes the insertion of words. Without this factor, known
as the word insertion penalty (WIP), most recognizers will
incorrectly insert a large number of words, many of which
have unrealistically short durations. The WIP clearly has an
effect on decoded word durations, but it is a single parame-
ter that stays the same regardless of any variation in the rate
of speech, the length of words, or any changes in the acous-
tics. There are a few reasons why such a penalty is neces-
sary. First, the duration model in a typical recognizer is quite
weak. It consists of a transition probability for each state in
the pronunciation, making the duration distribution a sum of
geometric models with a (short) minimum duration of one
frame per state. The state transition probability has a small
dynamic range and no memory of how long the model has
been in the current state. Although the duration model allows
for longer words, the acoustic model, which is applied every
10 milliseconds, has a relatively large dynamic range and an

acoustic match can overwhelm the scores given by the transi-
tion probabilities. The WIP is a balancing value, independent
of both the word and the acoustics, that lowers the probability
of sentence hypotheses that have too many short words over
the duration of the utterance. Second, the acoustic observa-
tion variables are independent of past and future observation
variables given their corresponding state, so acoustic cues can
only affect duration and segmentation via the scoring of indi-
vidual sub-phone states. Standard recognition features use a
time window that is only 25 milliseconds, and when longer
time scale features (such as [1]) are used they are often ap-
pended to the standard observation vector and, again, can only
change the segmentation via the acoustic match to the a sub-
phone state. In a typical system, the transition probabilities
themselves have no direct relation to the acoustics of an indi-
vidual utterance.

The first goal of this work is to enhance the standard model
in a novel way with additional state to better model word du-
ration. The second goal is to use long time scale features to
influence duration and segmentation directly, without having
to “pass through” a sub-phone state variable. The particular
acoustic queues used are estimates of syllable nuclei locations
derived from a spectral correlation envelope [2, 3, 4]. A dy-
namic Bayesian network (DBN) is used to integrate a state
variable that counts syllable nuclei with a traditional recog-
nizer (that uses a WIP).

The use of syllable information in automatic speech rec-
ognizers has been a topic of research in the past. The syllable
was proposed as a basic unit of recognition as early as 1975
[5]. In [6], the utterances were segmented via syllable onset
estimations as a precursor to template matching, and in [7]
syllables were employed as the basic recognition unit in an
HMM . The most closely related method to this paper was
presented by Wu in 1997 [8, 9]. In that work, syllable onsets
are detected by a neural network classifier, and this informa-
tion is then used to prune away hypotheses in a lattice. In [10],
a standard phone based recognizer is fused with a syllable
based recognizer using asynchronous HMMs that are fused
together at dynamically located ”recombination states”, and
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Fig. 1. Baseline Model [13, 14]. This is a standard speech
HMM represented as a DBN. Hidden variables are white
while observed variables are shaded. Straight arrows repre-
sent deterministic relationships, curvy arrows represent prob-
abilistic relationships, and dashed arrows are switching rela-
tionships.

in [11, 9] phone and syllable based recognizers are combined
using N-Best lists. Syllable nuclei estimates via a spectral
correlation measure were first used to estimate speaking rate
(one of the 3 measures inmrate) [2]. This idea was expanded
on by Wang to include temporal correlation and a number of
other improvements [3, 4], and this is the method employed
in this work. Wang used this detection method in [12] to cre-
ate speaking rate and syllable length features for automatic
speech prominence detection.

This work does not attempt to use syllables as a recogni-
tion unit. All models in this paper use a phone based recog-
nizer with a 10 millisecond time frame. This basic recognizer
is then supplemented with information about syllable nuclei
(rather than onsets), and this information uses a DBN to in-
fluence the probabilities in first pass decoding (rather than
pruning segmentations in a lattice). Three experiments are
presented in this paper. The first is an oracle experiment that
requires the total number of syllables in the decoded hypoth-
esis be equal to the total number of syllables in the reference
hypothesis. The second experiment also uses oracle informa-
tion. It generates simulated syllable nuclei locations using the
reference hypotheses, and each individual decoded word must
contain the correct number of syllables within its time bound-
ary. Finally, the last experiment is performed using syllable
nuclei estimated from the acoustics.

2. MODELS AND EXPERIMENTS

All experiments were performed on the 10 and 500 word tasks
of the SVitchboard corpus [15]. SVitchboard is a subset of
Switchboard I [16] chosen to give a small, closed vocabu-
lary. This allows one to experiment on spontaneous continu-
ous speech, but with less computational complexity and ex-
periment turn-around time than true large vocabulary recog-
nition. The A, B, and C folds were used for training, in the 10
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Fig. 2. Illustration of syllable nuclei features. (a) word level
oracle features, these are binary features evenly spaced within
the word boundary, (b) acoustic waveform, (c) correlation en-
velope, (d) local maxima of the correlation envelope are po-
tential syllable nuclei (maxima in silence and unvoiced re-
gions are removed)

word experiments the D fold was used as the development-
test set, in the 500 word experiments the Dshort fold was the
development-test set, and for both tasks E was used as the
evaluation set. All models were trained and decoded using
The Graphical Models Toolkit (GMTK) [17].

The baseline systems are HMMs implemented using the
DBN shown in Figure 1. This DBN and the baseline sys-
tems were developed in [13]. For more on DBNs in auto-
matic speech recognition see [18, 14]. The 10 word experi-
ments used three state left-to-right monophone models, and
the 500 word experiments used state clustered within-word
triphones with the same topology. The features are 13 dimen-
sional PLPs normalized on a per conversation side basis along
with their deltas and double-deltas. The language model scale
and penalty were determined using a grid search over the de-
velopment test set. Grid searches were performed separately
for the 10 and 500 word experiments.

2.1. Oracle Experiments

An important part of all of the experiments is the mapping
from a word and pronunciation to the number of syllables.
This is determined by counting the number of vowels in the
pronunciation (we call this the canonical number of sylla-
bles). Although this definition matches human intuition for
most words, the precise definition of a syllable is not univer-
sally agreed upon. For some words the number of syllables



is not clear, especially when several vowels appear consecu-
tively and when vowels are followed by glides. For example,
one could reasonably argue for either two or three syllables in
the word “really” when pronounced “r iy ax l iy”. Fortunately
we do not need to know the “true” definition of syllable, we
only need a mapping that is consistent with the output of our
signal processing.

The first oracle experiment, calledUtterance Level, uses
the DBN in Figure 3. This DBN will only decode hypothe-
ses that have the same total number of syllables as the refer-
ence hypothesis. The portion of the graph below the “Word”
variable remains the same as the baseline, and all the trained
parameters from the baseline model are used unchanged. The
variable “Word Syllables”,Sw, gives the number of canon-
ical syllables in the given word/pronunciation combination.
At each word transition the value ofSw is added to the vari-
able “Syllable Count”,Sc. Hence, in the last frameSc con-
tains the total number of canonical syllables in the hypothesis.
The variable “Count Consistency”,Cc, only occurs in the last
frame and is always observed to be equal to the oracle syl-
lable count and simultaneously is defined to be equal toSc.
This forces all hypotheses that have a different total number
of syllables than the oracle syllable count to have probability
zero. Another way of viewing this is that it creates a con-
straint on the allowed hypotheses, and this constraint is that
all decoded sentences must have the same total number of syl-
lables as the oracle syllable count. Because some words have
more than one pronunciation, and each pronunciation might
have a differing number of syllables, a forced alignment is
used to obtain the oracle syllable count for each acoustic ut-
terance. The lower part of the model still requires a language
model scale and penalty, and these are again determined with
a grid search on the development set. The scale and penalty
are optimized for this DBN separately from the baseline ex-
periments, and different values were learned for the 10 and
500 word experiments.

The second oracle experiment is known asWord Leveland
uses the DBN given in Figure 4. In this DBN, each indi-
vidual word is forced to have the correct number of syllable
nuclei somewhere within its time boundary. Note that since
this is based only on a count, there is flexibility in the exact
placement in time of the syllable centers. Thus, the location
information is used, but it does not need to be as precise as
methods that segment the utterance based on syllable onsets
[6, 8]. The motivation for this is that the exact placement of
the onset may not be well defined due to coarticulation [19].
The first step in this experiment was to create an oracle binary
observation stream, where at each frame a 1 indicates a sylla-
ble nuclei and a 0 otherwise. This observation stream is cre-
ated by taking each time-aligned reference word and evenly
spacing the correct number of ones within its time boundary.
An example oracle observation stream is given in Figure 2(a).
The word “oh” has one syllable, so there is a single 1 placed
in the center of the word. The word “okay” has two syllables,
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Fig. 3. Utterance Level decoder with oracle syllable count
(see Figure 1 for key). This DBN only allows hypotheses
with the same total number of syllables as the reference tran-
scription.

so there are two 1 features evenly spaced across this word.
In the DBN, this observation stream is used to set the value
of the “Syllable Nuclei”,Sn, variable in each frame. Again,
“Word Syllables” (Sw) refers to the number of canonical syl-
lables for the given word/pronunciation. The variable “Sylla-
ble Count”,Sc, keeps track of the number of syllable centers
seen since the last word transition. Finally, whenever a word
transition occurs “Count Consistency”,Cc, gives zero proba-
bility to any word hypothesis that does not contain the canon-
ical number of syllable centers. Again, a forced alignment
was done to determine the number of canonical syllables in
each word and pronunciation , and a grid search determines
the language model scale and penalty.

2.2. Use of Estimated Syllable Nuclei

In the third and final experiment, known asEstimated Word
Level, the oracle syllable nuclei locations used inWord Level
are replaced with soft estimations of nuclei locations. As will
be discussed in Section 3, the oracleWord Levelgraph out-
performs the oracleUtterance Levelgraph so an analogous
estimated utterance level experiment was not performed. Be-
fore this DBN is presented, the feature extraction process is
described. This process was given by Wang in [3, 4]. First,
a 19 band filter is applied to the waveform, and the 5 bands
with the most energy are selected. This filterbank uses two
second-order section Butterworth band-pass filters centered
at the following frequencies in Hertz: 240, 360, 480, 600,
720, 840, 1000, 1150, 1300, 1450, 1600, 1800, 2000, 2200,
2400, 2700, 3000, 3300, and 3750. Temporal correlation is
performed on the selected five bands followed by spectral cor-
relation. The resulting signal is then smoothed using a Gaus-
sian window. An example correlation envelope can be seen
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Fig. 4. Word Level decoder with oracle syllable nuclei (see
Figure 1 for key). This graph only allows word hypotheses
that are consistent with the oracle syllable nuclei locations.

in Figure 2(c). The next step is to find the local minima and
maxima of the correlation envelope. The height of each min-
imum is subtracted from the maximum that follows it, and
the resulting maxima heights are normalized by height of the
largest peak in the utterance. This method can produce spu-
rious peaks in non-speech and unvoiced regions, so a pitch
detector is applied to the waveform and all peaks correspond-
ing to unvoiced and non-speech segments are removed. In
[4], it was reported that this method correctly placed nuclei in
80.6% of the syllables in a hand transcribed test set. In [3, 4],
peaks that fall below a minimum threshold are rejected and
the result is a binary feature. For our experiments we do not
make a hard decision, instead we retain all the maxima points
and use the actual height value as a feature. This allows us
to make a soft decision on if a particular local maximum is
a syllable center, with a lager value indicating a higher prob-
ability. An example of the resulting features can be seen in
Figure 2(d).

We now have features for estimating syllable nuclei and
can move to the discussion of theEstimated Word LevelDBN,
as seen in Figure 5. The variable “Syllable Indicator”,Sni, is
a binary feature indicating if the current frame is a local maxi-
mum in the correlation envelope, “Syllable Observation”,Os,
is the magnitude of the local maximum, and “Syllable Nu-
clei”, Sn, is a hidden variable that decides if the current frame
is or is not a syllable nuclei. WhenSni is “false” it indicates
that we are not at a local maximum in the correlation curve,
andSn is forced to be false andOs has no bearing on the prob-
ability. WhenSni is “true”, we are at a maximum and there is
a potential syllable nuclei in the frame. In this case,Sn is true
with probability p(Sn = true)p(Os|Sn = true) and false
with probability p(Sn = false)p(Os|Sn = false), where
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Fig. 5. Word Level decoder with estimated syllable nuclei
(see Figure 1 for key). This DBN estimates the number of
syllable nuclei in each word and models the probability that
this estimate matches the word hypothesis.

p(Sn = true) andp(Sn = false) are discrete probabilities
andp(Os|Sn = true) andp(Os|Sn = false) are single di-
mensional Gaussians. This is implemented by makingSni a
“switching parent” [17] ofOs andSn, meaningSni controls
the choice of its children’s’ distributions but does not appear
as a conditioning variable in their conditional probability ta-
bles (CPTs).

As in the oracleWord Levelmodel, the variable “Syllable
Count” (Sc) counts the number of syllable centers since the
last word transition and “Word Syllables” (Sw) is the number
of canonical syllables. The variable “Count Consistency”,Cc,
forces “Count Matching”,Cm, to be equal toSc at word tran-
sitions.Cm and its CPT,p(Cm|Sw), are the probabilistic glue
between the phone recognizer and syllable counting stream.
In the oracle experiment, the value ofSc equals the value of
Sw with probability 1. In the estimated DBN,p(Cm|Sw) gives
a distribution where (ideally) these two values have a high
probability of matching. This CPT along withp(Sn) and the
two Gaussians (p(Os|Sn)) are trained using EM, while the pa-
rameters of the phone recognizer are held fixed with their val-
ues from the baseline. In the 10 word case, a four dimensional
grid search was performed over the language model scale, the
language model penalty, a scaling factor forp(Cm|Sw), and
a scaling factor for the Gaussiansp(Os|Sn). The scaling fac-
tor for the Gaussians did not improve results, so only a three
dimensional grid search was done in the 500 word case.



10 Word Vocabulary 500 Word Vocabulary
Dev Eval Dev Eval

S D I WER S D I WER S D I WER S D I WER
Baseline 183 86 25 18.1%187 130 16 19.6%585 234 157 53.2%6815 3122 1803 58.6%
Oracle Utterance Level175 24 5 12.5%189 39 3 13.6%655 140 87 48.1%6927 2935 1046 54.5%

Word Level 178 8 2 11.5%188 18 4 12.3%628 50 41 39.2%7418 913 603 44.6%
Estimated Word Level 174 77 31 17.3%180 125 18 19.0%583 233 153 52.8%6824 3114 1798 58.6%

Table 1. Table of Results. S, D, and I are counts of substitutions, deletions, and insertions. WER is percent word error rate.

3. RESULTS

The results for all experiments are given in Table 1. The 500
word baseline system has a small improvement over the re-
sults presented in [13]. Note that systems that train with ad-
ditional data outside the designated SVitchboard training sets
have reported lower word error rates [13, 20].

The Utterance Leveloracle DBN gives a substantial im-
provement over the baseline. The improvement is much larger
in the 10 word case than in the 500. The first reason for this is
that the utterances in the 10 word data set are shorter than in
the 500 word set, and when the syllable count is larger more
valid hypotheses are possible. Second, the “Syllable Count”
state variable needs to be quite large in the 500 word set and
this makes decoding more difficult and more susceptible to
search errors. The word error rate improvement comes in the
form of a reduction in deletions and insertions, but with a rise
in substitutions. The primary cause of increased substitutions
is the case when the baseline hypothesis has a deletion and
the oracle constraint forces the addition of a word which is
incorrect.

TheWord Leveloracle DBN performs better than theUt-
terance LevelDBN in both the 10 and 500 word vocabulary
systems. This gives us two pieces of information. First, the
location of the syllable nuclei is of more use than having only
the syllable count. Second, it tells us that if we had perfect
syllable detection and a perfect match from detection to the
words, we could see a substantial word error rate improve-
ment. On caveat with this experiment is that the oracle syl-
lable centers are evenly spaced which may not always be in-
dicative of the true locations. One can conceive of a case
where a simulated center of a two syllable word is so far off
that two one syllable words would not align correctly. Hav-
ing the centers in locations more consistent with the acoustics
could increase the confusability in such a case.

TheEstimatedsyllable nuclei DBN gave a substantial re-
sult on the 10 word system, but its performance was similar
to the baseline on the 500 word task. This experiment is suc-
cessful at lowering deletions and substitutions, but has less
impact on insertions. The problem in the oracle graphs where
deletions are changed to substitutions does not occur often
because the matching between the syllable count and word
hypothesis is soft, and the removal of the deletion will not

10 Words 500 Words
Full Reduced Full Reduced

Baseline 19.6% 19.9% 58.6% 59.7%
Estimated Word Level 19.0% 19.2% 58.6% 59.7%

Table 2. Results are % WER. Full is full eval set (as in
Table 1), reduced is the eval set with the STP data removed

happen unless the acoustics in the word recognizer supports
this. The reason that there is no improvement on the 500 word
task is likely because the syllable nuclei detection is working
much better on the short and isolated words that predominate
the 10 word system. In the 500 word system the entropy of
p(Cm|Sw = x) for x = 0...4 is 0.04, 1.00, 1.27, 1.54, and
1.50. This is evidence that the more syllables there are in a
word, the more difficulty our system has detecting the proper
number.

There is one possible caveat about the above experimen-
tation that still needs to be addressed here, namely that in the
development of the syllable nuclei features in [3, 4] the pa-
rameters were tuned using data from the Switchboard Tran-
scription Project (STP) [21], and some STP data is included
in our test set. In this last set of results we run an experiment
that controls for this and shows that our results still hold. Ta-
ble 2 gives baseline and estimated results for the ”Reduced”
test set, which contains the SVitchboard E fold minus any
speech from any speaker included in the STP data. This set is
approximately 80% of the full test set. Note that the relative
differences between the baseline andEstimated Word Level
results are approximately the same.

4. CONCLUSION

The oracle experiments present empirical evidence that syl-
lable nuclei locations have the potential to give large word
error rate improvements in automatic speech recognition. In
our experiments with estimated syllable centers, an improve-
ment was seen in the 10 word task but no performance gain
was seen on the longer words and utterances found in the 500
word task. There are many possible directions for improving
the results without oracle information. First, additional fea-
tures for detecting syllables derived from differing signal pro-



cessing methods could be employed. The simple counts could
be replaced by a more sophisticated recognition stream where
syllable onsets are also considered. Another direction is that
instead of using the canonical number of syllables, the map-
ping of words to the number of detected syllables could be
learned. This mapping could make use of individual syllable
identities as well as their contexts. Finally, additional ways of
modeling the mismatch between the detection and prediction
scheme could be employed. In particular, the detection could
be matched after each individual syllable instead of after each
word. Given the potential gain seen in the oracle experiments
and the encouraging results with estimated nuclei, all of these
directions will be pursued.
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