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Abstract
Graphical models are an increasingly popular approach for
speech and language processing. As researchers design ever
more complex models it becomes crucial to find triangulations
that make inference problems tractable. This paper presents a
genetic algorithm for triangulation search that is well-suited for
speech and language graphical models. It is unique in two ways:
First, it can find triangulations appropriate for graphs with a
mix of stochastic and deterministic dependencies. Second, the
search is guided by optimizing the inference speed (CPU run-
time) on real data. We show results on 10 real-world speech
and language graphs and demonstrate inference speed-ups over
standard triangulation methods.

1. Introduction
The predominant statistical model used in automatic speech
recognition (ASR) is the Hidden Markov Model (HMM). Al-
though the HMM is quite powerful, it is only one of an infinite
number of possible statistical models. Graphical models (GMs)
provide a visual abstraction that can represent an enormous fam-
ily of probability models (including the HMM). With GMs, it
is possible to rapidly explore many diverse models for ASR,
given an available and computationally efficient software sys-
tem. There is growing interest in the use of GMs for a variety
of speech and language tasks. Examples include multi-stream
models for ASR [1], audio-visual speech recognition [2], artic-
ulatory modeling [3, 4, 5], pitch tracking [6], and edit distance
learning [7].

All exact statistical inference procedures on a graphical
model, such as EM training and Viterbi decoding, use a tri-
angulated graph (see Section 2) either explicitly or implicitly
[8]. The difference between a good and bad triangulation has
a dramatic impact on the computational requirements of infer-
ence tasks. Finding the optimal triangulation for a particular
graph, unfortunately, is NP-hard [9, 10]. Although many heuris-
tic methods have been proposed, we will show that standard
triangulation methods are inadequate for producing inference
schemes for many graphs seen in speech and language process-
ing.

This paper addresses this issue by examining some com-
mon characteristics of speech/language graphical models (Sec-
tion 3). We show that standard triangulation methods do not
perform well with the large number of deterministic dependen-
cies commonly found in speech/language graphs. Further, we
argue that standard heuristics for judging triangulation quality
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is inferior to directly estimating the inference speed (CPU time)
of the triangulation on real speech/language data. We propose
two triangulation searches to address these issues. The first gen-
erates a large number of triangulations using the heuristics pro-
posed in [10] and ranks them using inference speed. The second
triangulation method is based on genetic algorithms. In the fol-
lowing, we first review the basics of triangulation (Section 2)
and present the issues specific to triangulating speech/language
graphs (Section 3). Section 4 presents a genetic algorithm, and
Section 5 reports inference speed-up results on various real-
world speech/language graphs.

2. Background
Graphical models [11] use a general probabilistic inference
scheme that requires a graph to be triangulated. A graph is tri-
angulated if there are no “chordless cycles,” where a chord is
an edge connecting two non-consecutive vertices in a cycle of
length > 3. For instance, the graph in Fig. 1(a) is not trian-
gulated. To triangulate it, we must add one or more edges, as
done in Fig, 1(b), 1(c), and 1(d). The resulting graphs have no
chordless cycles and are referred to as triangulated graphs or
triangulations. The edges that are added to create a triangula-
tion are called fill-in edges.

Adding fill-in edges creates cliques. A clique is a set of
variables that are completely connected to each other. The state
space of a clique is the product of its variables’ state space,
which is, in turn, the number of values the variable can take
on. The state space of a triangulated graph is the sum of the
state space of its “maximal cliques,” and the magnitude of this
correlates with inference speed.

The design of a GM for any task involves three steps:
First, the researcher characterizes the speech/language process
he wishes to model by specifying a set of hidden/observed vari-
ables and stochastic/deterministic dependencies. Then, this GM
is triangulated so that inference tasks such as EM training and
Viterbi decoding can be performed. Finally, parameter estima-
tion and other statistical inference tasks are run on the distribu-
tion defined by the graph. Triangulation is a crucial step in GM
design because it transforms any user-specified GM, which can
be arbitrary, into a data structure that is efficient for inference
tasks. The triangulation quality therefore has a direct effect on
the inference speed of practical GM-based systems.

Given any arbitrary graph, the goal of a triangulation algo-
rithm is to find a triangulation that results in tractable and fast
inference. A common technique for this is vertex elimination.
It proceeds by removing each vertex in the graph in some order
and adding fill-in edges that completely connect the removed
vertex’s neighboring vertices. For a graph of N nodes, there



are N! possible elimination orders; different elimination orders
may add different sets of fill-in edges, thereby resulting in dif-
ferent triangulations. Choosing the optimal elimination order
is also NP Hard, and various heuristics and stochastic searches
[12, 13] have been attempted. It can be shown that vertex elimi-
nation always results in a triangulated graph [14]. However, not
all triangulations can be created by elimination [10]. An exam-
ple is Fig. 1(d). This deficiency has a nontrivial effect on the
triangulations of speech and language graphs.

3. Triangulation in Speech Graphs
Many graphical models used in speech and language systems
use a mixture of stochastic and deterministic variables, where a
deterministic variable is a variable in which its value is deter-
mined by a function of its parents. These deterministic depen-
dencies are used either to model deterministic relationships in
the underlying speech/language process, or to provide ways to
implement constraints or parameter tying.

A graph for ASR is shown in Fig. 2. For each frame, five
out of ten variables are deterministic. The important thing to
learn is that many practical speech/language GMs, such as the
ones used in the Experiments section, are large and complex and
involve many deterministic variables. The large number of de-
terministic dependencies creates a problem for standard elimi-
nation algorithms. When many variables are deterministic func-
tions of other variables, combinations of certain variable val-
ues will have zero probability; this implies that grouping these
variables in a clique can result in a significant reduction of the
state space. However, standard vertex elimination often cannot
achieve the grouping needed for this reduction of state space.
When deterministic variables are present, examples exist where
the state-space optimal triangulation has an arbitrarily smaller
state space than the best elimination based triangulations [10].

Another problem with many convention approaches is that
they use heuristics to differentiate between triangulations. State
space can be a good heuristic when all of the variable combina-
tions in the graph have non-zero probability, but if many state
combinations have zero probability it becomes only a rough
upper bound of the amount of computation actually needed.
Speech graphs have many zeros for two reasons. The first rea-
son is due to the prevalence of deterministic variables. The
second issue is that beam pruning, which is often used in
speech/language tasks, adds additional zeros to the distribution.
Similarly, triangulation methods which are guided by heuristics,
such as choosing nodes in an elimination order, are not always
able to find triangulations with fast inference time. These rea-
sons make it difficult to predict the ”true” state space of a graph
without actually running inference. In the following, we present
two triangulation algorithms that address these issues.

4. Timing Based Triangulation Searches
4.1. Multiple Heuristics

Multiple Heuristics Triangulation (MH) is a search technique
that generates a large number of triangulations using the heuris-
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Figure 1: Graph (a) is untriangulated, graphs (b), (c), (d) are
triangulated versions of (a). Triangulation in (d) can not be
created using elimination on (a)
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Figure 2: Aynchronous multi-stream graphical model for
ASR. Shaded/unshaded nodes are observed/hidden variables;
wavy/nonwavy arrows are probabilistic/deterministic depen-
dency. Shaded area indicates one frame.

tics given in [10] and evaluates them based on inference speed.
The first step is to run a “boundary search”, which is often rel-
evant for speech/language graphs involving variable-length se-
quences: To model variable-length utterances, the user specifies
a template that characterizes the dependencies between vari-
ables within a frame. Then, given an input utterance of any
length, this template is replicated to fit the whole utterance. The
template specified by the user, though intuitive during model-
ing, may not be optimal for triangulation; thus the templates are
re-segmented with new boundaries, and different triangulation
searches are run on the results of each boundary search. [15]
For each boundary, 205 triangulations are generated and timed.
Then, a larger set of 4265 greedy heuristics are tried on the top
four boundaries.

4.2. Genetic Algorithms for Triangulation

Genetic Algorithms (GAs) [16] are a class of evolution-inspired
search/optimization techniques that perform particularly well in
problems with complex, poorly understood search spaces. The
fundamental idea is to encode problem solutions as genes, and
to evolve successive populations of solutions through the use of
genetic operators (selection, crossover, and mutation). Potential
solutions are evaluated according to a task-specific fitness func-
tion which represents the desired optimization criterion. The
individual steps are as follows:

Initialize: Randomly generate a population of genes.
While fitness improves by a certain threshold:

Evaluate fitness: calculate each gene’s fitness
Apply operators: apply the selection, crossover, and mutation
operators to create a new population.

The selection operator probabilistically chooses genes for the
next generation so that fitter genes have higher chances of sur-
vival. Crossover combines two genes to create new genes, in
effect exploring new regions of the search space. Mutation cre-
ates genetic diversity by randomly altering parts of an existing
gene. GAs provide no guarantee of finding the optimal solution,
but often finds good solutions quickly and are relatively robust
against premature convergence to local optima.

We chose to apply GAs to triangulation since GAs can ad-



Variables Sec/100frame Utterance Time (sec) Speedup
total det MH GA Base MH GA ∆MH ∆GA

FeatureDetect 9 6 8.94 6.77 fail 21.8 16.2 ∞ ∞
MultiStream 14 9 2.92 2.03 63.9 2.42 1.68 26.4 38.0
CTS Decode 9 6 16.39 11.7 24.7 8.80 5.20 2.80 4.75
PhoneFree 1 50 35 1.49 1.56 0.34 0.35 0.34 0.97 1.00
PhoneFree 2 40 28 0.909 0.896 0.24 0.22 0.22 1.09 1.09
Mandarin 10 6 7.39 7.89 41.92 41.14 45.43 1.02 0.923
Edit D. 1 training 10 9 0.847 0.831 11.84 9.19 9.37 1.29 1.26
Edit D. 1 decoding 11 10 0.226 0.222 2.62 2.58 2.67 1.02 0.98
Edit D. 2 training 10 9 0.288 0.286 2.16 1.87 1.89 1.16 1.14
Aurora Decode 6 4 0.163 0.163 27.28 27.14 27.18 1.00 1.01

Table 1: Experimental results. 1st column shows total number of variables per frame and number of deterministic variables.
Base:Baseline, MH:multiple heuristics, GA:genetic algorithm, all times in seconds. The speedups, ∆MH, ∆GA are “Utterance Time”
ratios Base/MH, Base/GA. fail indicates that all Baseline triangulations were not decodable within the available memory

dress the two problems common to speech/language graphs in
a principled manner. First, to allow for search on all possible
triangulations, each gene in the GA is defined to represent some
triangulation. All potential fill-in edges are encoded, so the
space of all possible triangulations is available to the GA. This
stands in contrast to vertex elimination, which cannot search a
certain subspace of triangulations. Since the optimal triangu-
lation for graphs with deterministic dependencies often exist in
this subspace, GAs have the potential to find better triangula-
tions of real-world graphs.

Second, we define the GA fitness function as the triangula-
tions’ inference speed on real data. Specifically, the fitness is
calculated by running inference on a triangulation and counting
the number of frames processed in a fixed number of seconds.
(Alternatively, we can count sec/frame, as done in the Results
section.) If each evaluation is allowed to run for a large number
of seconds, the fitness will more closely approximate the true
time required to perform inference on a large dataset. There is a
tradeoff, however, as setting evaluation time small enables more
triangulations to be evaluated and searched. The advantage of
fitness functions is that it avoids the use of heuristics to evaluate
a triangulation’s quality, and allows for direct optimization of
the quantity desired in real-world situation. It should be noted
that fitness function can also be modified to account for mem-
ory usage and other practical considerations, such that multiple
ways to judge triangulations can be jointly evaluated.

The selection operators used here are standard GA opera-
tors such as roulette wheel selection or tournament selection.
Crossover of two parent triangulations is done as follows: First,
each parent graph replicates itself to produce a child graph.
Then, edges between the children graphs are swapped with
some probability, in effect creating triangulations that are com-
binations of both parents.

We extend this crossover approach to allow for “boundary
search”, as was done in MH. We allow triangulations based on
different boundaries but restrict crossover to genes that come
from the same boundary. This is the idea of selective crossover,
and has the effect of creating several “species” of genes. This
technique improves robustness against local optimum and en-
larges the search space. All of the boundaries are placed in the
initial population, but one boundary eventually dominates.

In mutation, a random edge from the set of all possible fill-
in edges is chosen. If the chosen edge exists in the gene, then it
is deleted; otherwise, it is added. However, if deletion/addition
causes an untriangulated graph, the change is undone and an-

other random edge is chosen. We show that the space of all
possible triangulations can be traversed using this single edge
mutation:

Lemma 1. Let G = (V, E) be a triangulated graph and let
G′ = (V, E′) be a spanning triangulated subgraph of G with
|E\E′| = k. Then there is an increasing sequence G′ = G0 ⊂
... ⊂ Gk = G of triangulated graphs that differ by exactly one
edge. [17, Lemma 2.21, page 20]

Theorem 2. Given any two triangulations of a graph,
Ta(G) and Tb(G) there is a sequence of triangulated graphs
Ta(G), T1(G), T2(G), ..., Tb(G) with only a single edge dif-
ference between subsequent graphs in the sequence.

Proof. Suppose both Ta(G) and Tb(G) are spanning subgraphs
of some Ts(G). From lemma 1 one can create a series of graphs
from Ta(G) to Ts(G), and likewise a there exists a series from
Tb(G) to Ts(G) which can be followed in reverse to get from
Ts(G) to Tg(G). One can always choose Ts(G) to be the com-
plete graph.

This is an important property, as it shows that the GA is
able to search all possible triangulations from any initial condi-
tion. Finally, we compare our work to previous work in genetic
triangulation [13] and note significant differences. First, [13]
searches for elimination orders, whereas our method searches
all possible triangulations. Second, we evaluate genes using in-
ference speed (CPU time) on real data, rather than heuristics,
which is more practical for users of graphical models.

5. Experiments and Results
For our experiments, we evaluated the MH and GA on a di-
verse set of speech/language graphical models. The goal is to
see whether either of them consistently finds better triangula-
tions in real-world situations, as compared to standard triangu-
lation techniques. We collected 10 real-world graphical mod-
els from various speech/language researchers: Aurora Decod-
ing - whole word model for digit recognition, CTS Decoding -
continuous speech recognition graph using monophones and bi-
gram, Edit Distance training 1, 2, decoding - graphs for learn-
ing edit distance parameters from data [7], Feature Detect - for
extracting phonetic features, courtesy of Simon King, Phone-
Free 1, 2 - isolated-word scoring using a phone-free model,
from Karen Livescu, Mandarin - graphs for model Mandarin
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Figure 3: Comparison of GA and MH search on (a) FeatureDe-
tect and (b) MultiStream graphs. The plots show the inference
speed (seconds/frame) of the current best triangulation found as
a function of search time (seconds). Triangulations found by the
MH and GA are shown as dashed and solid lines, respectively.
Note that GA improves inference speed at a much faster rate.

Chinese tonal phones with asynchronous spectral and pitch fea-
ture streams [18], MultiStream - asynchronous multi-stream
training graph, based on graphs used in [1] and [2].

We evaluate our triangulation algorithm with two criteria:
first is the inference speed performance of the resulting triangu-
lation, and second is the search time required find a good trian-
gulation. For the first criteria, the performance of MH and GA
are compared with a baseline of standard triangulation meth-
ods: 6 methods are used to create 600 triangulations and for
each method the triangulation with the best state space is cho-
sen. These 6 triangulations plus a triangulation created by one
single clique of all variables are timed, and the best is given
in the results and referred to in the table by ”Base”. Table 1
compares the time performance of each method. The column
labeled “Sec/100frames” gives the amount of time required for
evaluating a short sequence of frames, as reported during the
search process. This is the objective function optimized by both
MH and GA (Baseline does not optimize on inference speed,
so it does not have this number). A result more indicative of
inference time as seen by the end-user of the graphical model
is reported in the column labeled “Utterance Time”, which lists
the number of seconds required for performing inference over
a number of complete utterances (or sentences). The speed im-
provement of MH and GA over instant triangulation techniques
are shown in the column labeled “Speedup”. It is defined as the
ratio of utterance times (e.g. ∆MH= Base

MH
, ∆GA= Base

GA
), and

shows the relative improvement in inference speed one gets af-
ter spending some time to acquire a triangulation by MH or GA
methods. As seen, both MH and GA speedups are very high
and quite comparable.

For the second criteria, we compare the search time for
MH and GA: Fig. 3 shows the improvement of triangulations
as a function of search time. For both plots, it’s important to
note that the GA achieves good triangulations at a much faster
rate than the MH. This means that a researcher can easily use
GA search within the development cycle of a speech/language
graphical model, like one does with the baseline triangulation
techniques.

6. Conclusions
We have addressed the important issue of making inference
tasks tractable on graphical models for speech and language
processing. The proposed genetic algorithm searches the space
of all possible triangulations and optimizes the triangulation

based on inference speed on real data. We demonstrate on
10 real-world speech/language graphs that our method outper-
forms conventional triangulation techniques. All the above
algorithms have been implemented in the publicly-available
Graphical Models Toolkit (GMTK) [19]. It is our hope that
our work in triangulation search will encourage more graphical
model research in speech and language processing.
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