
Backpropagation in
Sequential Deep Neural Networks

Galen Andrew
University of Washington

galen@cs.washington.edu

Jeff Bilmes
University of Washington

bilmes@ee.washington.edu

Abstract

Most previous work applying neural networks to problems in speech processing
has combined the output of a static network trained over a sliding window of
input with an HMM or CRF to model linear-chain dependencies in the output.
The recently developed Sequential Deep Neural Network (SDNN) model allows
sequential dependencies between internal hidden units, allowing them to potentially
detect long-range phenomena. During the upward propagation phase, a binary
forward-backward (Baum-Welch) computation is performed for each hidden unit,
passing information along the extent of the chain. Then the gradient of the SDNN
error can be computed exactly via a modified backpropagation algorithm that also
includes an information-passing Baum-Welch-like step. The model introduces
minimal computational overhead compared to other DNN approaches to sequential
labeling, and achieves comparable performance with a much smaller model (in
terms of number of parameters). Experiments on the TIMIT phone recognition
dataset show that using sequential information at all layers improves accuracy over
baseline models that use a sequence model only in the output.

1 Learning deep representations for sequential labeling

Sequential labeling problems occur in a variety of settings, including speech recognition, audio and
video processing, natural language processing, and bioinformatics. The goal of sequential labeling
is to map whole sequences of inputs over observations {x1, x2, . . . , xT } to sequences of labels
{y1, y2, . . . , yT }, where the length of the sequence T may vary from instance to instance, and where
dependencies between observations or labels at different positions within a sequence are used to
produce a better labeling than might be achieved by labeling each yi independently.

In Conditional Random Fields (CRFs) [Lafferty et al., 2001], a Markov Random Field (MRF) is
defined over the label sequence whose parameters depend on the input. Typically, the graphical
model structure is a linear chain so that globally conditioned on the input, each label is conditionally
independent of the other labels given its neighboring labels. CRFs allow features of the input to be
defined at arbitrary distance from the associated label, but the user must consciously design such
features to allow long-distance dependencies and, moreover, the feature functions may only be fixed
length. Feature design is a difficult, task-specific problem, and it is especially difficult to hand-design
effective long-range features for tasks such as speech recognition, where the input is a relatively
low-level representation of the acoustic signal. On the other hand, results in speech science suggest
that longer-range features (that is, longer than the typical 25ms frame width) may be useful for speech
perception, particularly in noisy environments [Hermansky and Sharma, 2002].

Several methods have been proposed to introduce hidden variables to CRFs that might be capable of
modeling regularities in the data that are not explicit in the features but nevertheless aid in classifica-
tion. We focus here on approaches that were applied to phone recognition, which is a prototypical
sequential labeling task, and the subject of our experiments. The hidden CRF (HCRF) appends a

1

multinomial hidden state to each phone class and optimizes the marginal likelihood [Gunawardana
et al., 2005], so that subclasses may be induced that are easier to recognize than the original classes.
Another successful approach models each phone as a sequence of three subphones, the boundaries of
which are latent [Sung and Jurafsky, 2009]. Other work uses a multi-layer CRF in which the data
is mapped through various layers of multinomial sequences that may be either Markov order-1, or
order-0 (conditionally independent given the input) [Yu et al., 2010]. All of these approaches are
more effective than a single-layer CRF with no latent structure, but even better results have been
obtained with a richer latent representation via Deep Neural Networks (DNNs).

Deep Neural Networks have emerged as an empirically very effective model for inducing rich feature
representations of static (non-sequential) data [Hinton et al., 2006]. Each layer of latent representation
is learned by training a Restricted Boltzmann Machine (RBM) to model the data distribution at
the next lower layer, using Contrastive Divergence (CD) or some other update. The expected
values of the hidden layer units conditioned on the input can then be used as the representation
for further processing. Typically after training several stacked RBMs in sequence, a discriminative
classifier is trained using the final layer as the input, and the parameters of the entire chain of feature
transformations are then fine-tuned according to a discriminative training criterion.

Several researchers have employed DNNs to learn feature representations for use in phone recogni-
tion [Plahl et al., 2012, Hinton et al., 2012]. Mohamed et al. [2009] train a static DNN to classify
phones (actually, subphones) which is then combined with an HMM bigram language model, using
Viterbi decoding to produce a labeling of the sequence. In later work, a DNN phone classifier is
trained jointly with a CRF taking the top hidden layer of the DNN as input [Mohamed et al., 2010].
Other recent work [Veselỳ et al., 2013] includes a model where gradients based on a sequence error
in an HMM-based system are passed down through shared-parameter deep neural networks at each
time frame — unlike this work, our model allows structures at every level in the deep hierarchy to
interact in a manner that still allows for tractable backpropagation style training.

In the present work, we give full details on the tractable training procedure for our Sequential
DNN (SDNN) model, which introduces true sequence models in each of the hidden layers of a
DNN [Andrew and Bilmes, 2012].1 Each layer is modeled with an MRF structure called a sequential
RBM (SRBM) that allows dependencies between corresponding hidden units at adjacent time frames.
Exact sampling of hidden structures given the input and computation of conditional expectations
remains tractable in the SRBM—it involves only matrix multiplication and forward-backward
computations—so CD training is still possible. As with RBMs, we can stack SRBMs and append
a discriminative sequence classifier (in particular, a CRF) atop the final layer. Finally, using a
backpropagation-like algorithm, we can discriminatively fine-tune all parameters. This way the model
can learn to enforce smoothness in the hidden layers across timeframes, and to allow the hidden units
to detect longer-range phenomena.

1.1 Notation

We employ the following notation in the sequel. If X is a matrix, the (i, j)th entry is Xij and the
jth column is X∗j . The submatrix of columns j through k is X∗(j:k). The matrix transpose is denoted
X ′. If X and Y are matrices (or vectors) of the same dimension, 〈X,Y 〉 denotes tr(X ′Y). If X and
Y have the same number of rows, [X|Y] denotes their concatenation.

2 The Sequential Restricted Boltzmann Machine

An SRBM defines a joint distribution over two matrix-valued layers, a visible layer V ∈ Rnv×T and
a hidden layer H ∈ Rnh×T . Conditioned on the hidden layer, all variables of the visible layer are
independent (just as in a standard RBM). Conditioned on the visible layer, all rows of the hidden
layer are independent of each other, but we allow Markov interactions within each row (see Figure 1).
While an RBM typically has dense connections between the visible and hidden layers, an SRBM has
only edges that are local in time. Specifically, we use edges between Vit and Hj(t+δ) for all i, j, t
and for |δ| ≤ δmax. The weights on the edges are summarized in the matrices Wδ ∈ Rnv×nh , where

1In the cited work, the SDNN was referred to as ”Sequential Deep Belief Network”, but we feel the
terminology used here is more appropriate.

2

V11

V21

V31

V41

V51
V12

V22

V32

V42

V5211H

21H

31H

12H

22H

32H

23H

13H

33H

V13

V23

V33

V43

V53

(a) Independent (non-sequential)
RBMs

V11

V21

V31

V41

V51
V12

V22

V32

V42

V5211H

21H

31H

12H

22H

32H

23H

13H

33H

V13

V23

V33

V43

V53

(b) Intractable

V11

V21

V31

V41

V51
V12

V22

V32

V42

V5211H

21H

31H

12H

22H

32H

23H

13H

33H

V13

V23

V33

V43

V53

(c) SRBM with δmax = 0

V11

V21

V31

V41

V51
V12

V22

V32

V42

V5211H

21H

31H

12H

22H

32H

23H

13H

33H

V13

V23

V33

V43

V53

V12

V22

V32

V42

V52

12H

22H

32H

23H

13H

33H

V13

V23

V33

V43

V53

V11

V21

V31

V41

V51

11H

21H

31H

V11

V21

V31

V41

V51
V12

V22

V32

V42

V5211H

21H

31H

12H

22H

32H

23H

13H

33H

V13

V23

V33

V43

V53

+ +
(d) Purple edges in the center figure correspond to W1, and those on the right, to W−1. The union of the
three graphs is an SRBM with δmax = 1.

Figure 1: Illustrations of SRBM with T = 3 time frames, n1 = 5 input units and n2 = 3 hidden
units per frame. Fig. 1a shows a sequence of independent (non-sequential) RBMs. Fig. 1b shows
a model with dense connections in the hidden layer, which may seem desirable from a modeling
perspective, but including all green edges would render contrastive divergence training intractable.
Fig. 1c shows an SRBM with δmax = 0. The red edges correspond to the weights of the matrix W0,
while the blue edges have weights given by θ. Fig. 1d shows the edges corresponding to W±1 when
δmax > 0 in purple.

(Wδ)ij is the weight on all edges (Vit, Hj(t+δ)). The hidden layer of the SRBM also has a vector of
transition parameters θ ∈ Rnh which govern the interactions between adjacent frames within each
row of H , as we describe shortly. We intentionally disallow edges between observed units, in order
to encourage the hidden layer to model any dependencies between time frames of the observations.

We assume the hidden variables are always binary, meaning H ∈ {±1}nh×T , and the observed
variables are either binary (V ∈ {±1}nv×T) or real-valued Gaussian (V ∈ Rnv×T). For δmax = 1,
the energy of a configuration is defined in terms of the matrix Ah ∈ Rnh×T :

Ah =
[
W ′−1V∗(2:T)

∣∣0]+W ′0V +
[
0
∣∣W ′1V∗(1:T−1)] . (1)

In (1), the middle term W ′0V produces the matrix of inputs to each hidden unit coming from the
visible units at the same time frame (the red edges in the figure). The other two terms add the influence
of visible units at the preceding and subsequent frame (the purple edges). The generalization to
δmax > 1 is straightforward.

If both layers are binary, the joint distribution is Pr(V,H) ∝ exp−E(V,H) where

E(V,H) = −〈H,Ah〉 −
T−1∑
t=1

nh∑
j=1

θjHjtHj(t+1). (2)

An examination of (2) reveals the function of the θ parameters. If θj = 0, there are no terms
involving the products HjtHj(t+1), so the hidden states are independent. If θj > 0, the model prefers
configurations where Hjt = Hj(t+1), and in the unlikely case that θj < 0, “flip-flopping” hidden
state configurations would be preferred.

Defining
Av =

[
0
∣∣W−1H∗(1:T−1)]+W0H +

[
W1H∗(2:T)

∣∣0] ,
3

note that
Pr(V |H) ∝ exp−E(V,H) ∝ exp〈H,Ah〉 = exp〈V,Av〉,

so the Vit are independent given H , with Pr(Vit|H) ∝ expAvitVit, or Pr(Vit|H) = σ(2VitA
v
it)

where σ(x) = (1 + exp−x)−1.

If the visible layer is Gaussian, then the joint density is f(V,H) ∝ exp−E(V,H)− 1
2 〈V, V 〉. Now

f(V |H) ∝ exp
(
〈V,Av〉 − 1

2

∑
it V

2
it

)
, so the Vit are independent and Gaussian-distributed given

H , with Vit|H ∼ N (Avit, 1).

Regardless of the type of visible layer, Pr(H|V) factorizes into terms involving individual Hjt and
terms involving HjtHj(t+1):

Pr(H|V) ∝ exp

(
〈H,Ah〉+

T−1∑
t=1

nh∑
j=1

θjHjtHj(t+1)

)

=

nh∏
j=1

exp

(
〈Hj∗, A

h
j∗〉+

T−1∑
t=1

θjHjtHj(t+1)

)

=

nh∏
j=1

(T∏
t=1

expHjtA
h
jt

)(T−1∏
t=1

exp θjHjtHj(t+1)

)
. (3)

So given V , the rows of H are independent Markov order-1 sequences with binary states. Therefore
the Baum-Welch (or “forward-backward”) algorithm can be used to sample from Pr(H|V) and to
determine E [H|V], which we will need for training.

It is not hard to show that the gradient of the log-likelihood log Pr(V = V̂) with respect to the Wδ

has the following form, similar to a standard RBM:

∇W0
= V

(
E
[
H ′
∣∣ V = V̂

]
− E

[
H ′
])

and, e.g., ∇W1
= V∗(1:T−1)

(
E
[
H ′∗(2:T)

∣∣ V = V̂
]
− E

[
H ′∗(2:T)

])
.

Also, the gradient with respect to θj is

∇θj =

T−1∑
t=1

(
E
[
HjtHj(t+1)

∣∣ V = V̂
]
− E

[
HjtHj(t+1)

])
.

The positive terms (the conditional expectations) can all be computed exactly by first computing the
values E[Hjt|V̂] and E[HjtHj(t+1)|V̂] with Baum-Welch. To approximate the negative terms, we
sample Ṽ by running two steps of blocked Gibbs sampling, from V̂ to H and back, and then use the
conditional expectations given Ṽ , which is analogous to CD training for an RBM.

3 The Sequential Deep Neural Network

Figure 2: SDNN with T = 3, L = 3, δmax = 0.

An L-layer SDNN is formed by stacking mul-
tiple layers of SRBMs. For l = 1 . . . L − 1,
the hidden layer at level l is a binary matrix
H l ∈ {±1}nl×T with weight matrices W l

δ and
transition parameters θl. We define V l ∈ Rnl×T

for l = 0 . . . L− 1 to be a matrix of features at
layer l. In case l = 0 (the input), the features are
assumed to be real values that are defined by the
user in a task-specific way. For the hidden lay-
ers (l = 1 . . . L− 1), we specify V l = E

[
H l
]
,

where Pr(H l|V l−1) is defined as in Eq. (3), us-
ing the input matrix Al of the lth layer as defined
in Eq. (1).

4

The output {y1 . . . yT } is assumed to be a sequence of integer labels, with yi ∈ {1 . . . nL}. Let
Y ∈ RnL×T be the matrix where Yit = 1 if yt = i, and 0 otherwise. We have weight matrices WL

δ

just as with the hidden layers, and the input matrix AL is formed applying Eq. (1) to the features
V L−1 of the deepest hidden layer. However now instead of a vector θ of transition parameters, we
have a full matrix U ∈ RnL×nL . The distribution is similar to Eq. 3:

Pr(Y |V L−1) ∝ exp

(
〈Y,AL〉+

T−1∑
t=1

Y ′∗tUY∗(t+1)

)
(4)

only here instead of a set of independent binary Markov sequences, Pr(Y |V L−1) defines a single
Markov sequence over multinomials with nL values.

The temporal edges at internal layers of an SDNN can potentially offer distinct advantages in modeling
capacity. Consider, for example, a CRF that utilizes features with a fixed temporal span over the
input, for example, derived from a static DNN. The only hope to recognize patterns that occur over
larger spans is via the temporal integration at the output CRF layer. A SDNN, by contrast, has the
ability, starting at l = 2, for its hidden units to detect the presence of an arbitrarily long temporal
pattern, or even properties of the entire sequence, owing to the earlier layers’ Baum-Welch stages
that can pass information over an arbitrary temporal extent.

4 Backpropagation algorithm

To fine tune the SDNN parameters, we use a procedure similar to error backpropagation in a static
deep network to compute the gradient of the log-likelihood ` = log Pr(Ŷ |V L−1). The computation
has algorithmic properties that favor efficient implementation. Matrix-matrix multiplication is used
for both the upward and downward passes, enabling the use of fast matrix multiplication routines. In
addition, both passes require Baum-Welch-like procedures that operate independently on rows of the
matrix, and that can make efficient use of distributed processing or vectorized arithmetic.

The gradient of the log-likelihood with respect to U is

∇U ` =
T−1∑
t=1

Ŷ∗tŶ
′
∗(t+1) − E

[T−1∑
t=1

Y∗tY
′
∗(t+1)

]
=

T−1∑
t=1

(
Ŷ∗tŶ

′
∗(t+1) − E

[
Y∗tY

′
∗(t+1)

])
(5)

For WL
0 , we have that

∇WL
0
` = V L−1∇AL` = V L−1(Ŷ ′ − E

[
Y ′
]
) = V L−1(DL)′, (6)

where DL , ∇AL`, and the expressions for WL
1 and WL

−1 are similar. (If some other objective
function `′ is used, just replace DL with∇AL`′, and the rest of the derivation is unchanged.)

By the chain rule, the derivative with respect to some value ρ at or below level l is

∂`

∂ρ
=

nl∑
i=1

T∑
t=1

∂`

∂V lit

∂V lit
∂ρ

. (7)

Define εl to be the matrix with εlit =
∂`
∂V l

it

. Then

εL−1 =
[
0
∣∣WL
−1D

L
∗(1:T−1)

]
+WL

0 D
L +

[
WL

1 D
L
∗(2:T)

∣∣ 0].
Because V l is the conditional expected value of a log-linear distribution, it follows that

∂V lit
∂ρ

= E
[
H l
it

(
E
[∂
∂ρ
E(V l−1, H l)

]
− E

[∂
∂ρ
E(V l−1, H l)

∣∣ H l
it

])]
. (8)

5

Now consider ρ = (W l
0)jk. Since ∂

∂ρE(V l−1, H l) = −
∑T
τ=1 V

l−1
jτ H l

kτ ,

∂V lit
∂ρ

=

T∑
τ=1

V l−1jτ E
[
H l
it

(
E
[
H l
kτ

∣∣ H l
it

]
− E

[
H l
kτ

])]
=

T∑
τ=1

V l−1jτ

(
E
[
H l
itH

l
kτ

]
− E

[
H l
it

][
H l
kτ

])
=

T∑
τ=1

V l−1jτ Cov(H l
it, H

l
kτ),

which is zero when k 6= i because the rows of H are independent. Plugging this into Eq. (7) only the
i = k terms remain, yielding

∂`

∂(W l
0)jk

=

T∑
t=1

εlkt

T∑
τ=1

V l−1jτ Cov(H l
kt, H

l
kτ) =

T∑
τ=1

V l−1jτ

T∑
t=1

εlkt Cov(H
l
kt, H

l
kτ).

Defining Dl
iτ ,

∑
t ε
l
itCov(H

l
it, H

l
iτ) we can write the gradient with respect to the entire matrix

W l
0 compactly as∇W l

0
` = V l−1(Dl)′ (exactly as (6)). The gradients with respect to W l

δ can also be
expressed in terms of Dl.

The case of θli is similar. Since ∂
∂θli
E(V l−1, H l) = −

∑T−1
τ=1 H

l
iτH

l
i(τ+1), from (8)

∂V lit
∂θli

= E
[
H l
it

(
E
[∑T−1

τ=1H
l
iτH

l
i(τ+1)

∣∣ H l
iτ

]
− E

[∑T−1
τ=1H

l
iτH

l
i(τ+1)

])]
=

T−1∑
τ=1

(
E
[
H l
itH

l
iτH

l
i(τ+1)

]
− E

[
H l
it

]
E
[
H l
iτH

l
i(τ+1)

])
=

T−1∑
τ=1

Cov(H l
it, H

l
iτH

l
i(τ+1)),

so

∇θli` =
T−1∑
τ=1

T∑
t=1

εlitCov(H
l
it, H

l
iτH

l
i(τ+1)) ,

T−1∑
τ=1

Fiτ .

Finally, by setting ρ = V l−1it in (7), we can also derive

εl−1 =
[
0
∣∣∣W l
−1D

l
∗(1:T−1)

]
+W l

0D
l +
[
W l

1D
l
∗(2:T)

∣∣∣0]
which allows us to recursively compute the derivatives with respect to lower-level parameters.

At first glance, it may appear that it requires O(nlT 2) operations to compute Dl and F l, since each
entry is a sum over T weighted covariances. In fact, it is possible to compute all entries of Dl and F l
in time linear in T with an algorithm that bears a striking resemblance to Baum-Welch. Define

αliτ =

τ−1∑
t=1

εlit
Cov(H l

it, H
l
iτ)

VarH l
iτ

and βliτ =

T∑
t=τ+1

εlit
Cov(H l

iτ , H
l
it)

VarH l
iτ

,

so that Dl
iτ = Var(H l

iτ)(α
l
iτ + εliτ + βliτ). For F liτ we have

F liτ =

τ−1∑
t=1

εlitCov(H
l
it, H

l
iτH

l
i(τ+1))+

τ+1∑
t=τ

εlitCov(H
l
it, H

l
iτH

l
i(τ+1))+

T∑
t=τ+2

εlitCov(H
l
it, H

l
iτH

l
i(τ+1)).

Considering the first term,2
τ−1∑
t=1

εlitCov(H
l
it, H

l
iτH

l
i(τ+1)) =

τ−1∑
t=1

εlit
Cov(H l

it, H
l
iτ) Cov(H

l
iτ , H

l
iτH

l
i(τ+1))

VarH l
iτ

= Cov(H l
iτ , H

l
iτH

l
i(τ+1))α

l
iτ ,

2Here and in the recursion for α below, use the identity Cov(A,C) = Cov(A,B) Cov(B,C)
VarB

which holds for
±1-valued variables where A is independent of C given B.

6

so that

F liτ = Cov(H l
iτ , H

l
iτH

l
i(τ+1))(α

l
iτ + εliτ) + Cov(H l

iτH
l
i(τ+1), H

l
i(τ+1))(β

l
i(τ+1) + εli(τ+1)).

To compute αli1, we can set αli1 = 0, and recursively apply

αli(τ+1) =
1

VarH l
i(τ+1)

(
τ−1∑
t=1

εlitCov(H
l
it, H

l
i(τ+1)) + εliτ Cov(H

l
iτ , H

l
i(τ+1))

)

=
1

VarH l
i(τ+1)

(
τ−1∑
t=1

εlit
Cov(H l

it, H
l
iτ) Cov(H

l
iτ , H

l
i(τ+1))

VarHiτ
+ εliτ Cov(H

l
iτ , H

l
i(τ+1))

)

=
Cov(H l

iτ , H
l
i(τ+1))

VarH l
i(τ+1)

(
αliτ + εliτ

)
=

1

2

(
E[H l

iτ |H l
i(τ+1) = 1]− E[H l

iτ |H l
i(τ+1) = −1]

) (
αliτ + εliτ

)
,

and symmetrically

βli(τ−1) =
1

2

(
E[H l

iτ |H l
i(τ−1) = 1]− E[H l

iτ |H l
i(τ−1) = −1]

) (
βliτ + εliτ

)
,

yielding a numerically stable dynamic program for computing αl and βl (and therefore Dl and F l)
in linear time.

The entire SDNN backpropagation procedure is summarized as follows.

1. (Upward pass.) Given V 0, for l = 1 . . . L − 1 compute the inputs Al from the previous
layer’s activations V l−1, and then V l from Al using Baum-Welch on each row. Compute
AL from V L−1 and the label marginals E[Yit] and E[YitYj(t+1)] with Baum-Welch over the
multinomial sequence.

2. (Downward pass.) Construct DL from the labels Ŷ and marginals, and update the weights
at the output layer L. Then for l = L − 1 . . . 1, backpropagate the error εl from Dl+1,
compute Dl and F l from εl with the Baum-Welch-like algorithm above, and finally update
the weights at layer l.

5 Experiments

We tested the SDNN on the TIMIT phone recognition dataset. We use the standard train/test split for
phone recognition experiments: removing all SA records from training, and testing on the core test
set of 24 speakers. The dataset has 3696 train utterances and 192 test utterances, with an average
of 304 frames per utterance. The input features were 12th order MFCCs and energy over 25 ms
windows, plus the first-order temporal differences, giving 26 total features per 10 ms frame. The
outputs are sequences of the standard 39-phone set of Lee and Hon [1989]. In order to model repeated
phones and get some of the modeling power of subphones, we divide each phone into two states, and
constrain the model to require traversal through each substate of each phone. The boundaries between
subphones are kept latent, that is, we follow the gradient of log

∑
Ysub : phones(Ysub)=Ŷ

Pr(Ysub).

To establish the value of the primary innovation of the SDNN—that it makes use of sequence models
at all layers—we compared the complete SDNN to a baseline model that uses a sequence classifier
at the top level, but no sequential model at any hidden layer, exactly as if θl were constrained to be
zero for l < L. We compare the models over a range of configurations: we vary the model depth
from one layer to eight, the half-width δmax of the input window (at all layers) from one to four, and
the number of hidden units per frame (in each layer) from 50 to 150. Each stage of training (that is,
pre-training each layer with CD and also joint training of all parameters with BP) continued until the
training criterion (squared reconstruction error for CD, log-likelihood for BP) failed to improve over
five epochs, at which point the learning rate was annealed linearly to zero over another five epochs.
Weight decay is applied after each update, and the amount of decay is scaled proportionally with T .
The initial learning rates, weight decays and momentum parameters were estimated using random

7

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 3 4 5 6 7 8

P
E

R

number of layers

stat 50
SDBN 50

stat 100
SDBN 100

stat 150
SDBN 150

(a) δmax = 1

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 3 4 5 6 7 8

P
E

R

number of layers

stat 50
SDBN 50

stat 100
SDBN 100

stat 150
SDBN 150

(b) δmax = 2

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 3 4 5 6 7 8

P
E

R

number of layers

stat 50
SDBN 50

stat 100
SDBN 100

stat 150
SDBN 150

(c) δmax = 4

Figure 3: Average test set PER of the SDNN and baseline model over a range of number of layers,
nh and input window width δmax.

search to maximize phone error rate (PER) on a randomly selected 10% the training set, which was
added back before training the final model for test results.

The results of the experiment are summarized in Figure 3. Comparing the complete SDNN to the
baseline model, it is apparent that using full sequence information at all layers is beneficial across
nearly all configurations, and the gains are more significant as the number of hidden layers increases.
Interestingly, the results also indicate that the use of temporal hidden units may make a very wide
input window unnecessary: our best results are obtained with δmax = 1, whereas δmax from 5 to as
high as 11 is more common with MLPs or DNNs for phone recognition [Dahl et al., 2010, Hinton
et al., 2012].

Our best performing configuration (150 units/frame, 8 layers, δmax = 1) achieved a PER of 24.2,
which surpasses many systems that are highly tailored to the phone-recognition task [Keshet et al.,
2006, Crammer, 2006, Cheng et al., 2009, Morris and Fosler-Lussier, 2008, Keshet et al., 2011,
Sung and Jurafsky, 2009, Sha and Saul, 2007]. Other recent developments using deep networks
have improved somewhat on those scores [Dahl et al., 2010, Hinton et al., 2012, Plahl et al., 2012,
Tóth, 2013], and in future work it would be interesting to try combining some of those successful
techniques with the SDNN model, in particular, the use of triphone states, dropout training and larger
numbers of hidden units per frame. It is significant that the SDNN performs so well with only 150
hidden units per frame, over an order of magnitude fewer than state-of-the-art neural systems (1500
in Dahl et al. [2010], 2000 in Tóth [2013] and 4000 in Hinton et al. [2012]). However our goal in
the present work is not to build a state-of-the-art system but to demonstrate that the use of temporal
connections between hidden units improves upon a competitive baseline model that does not.

8

References
J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for

segmenting and labeling sequence data. In Proceedings of the Eighteenth International Conference
on Machine Learning, pages 282–289, 2001.

H. Hermansky and S. Sharma. Temporal patterns (TRAPS) in ASR of noisy speech. In International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), volume 1, pages 289–292.
IEEE, 2002. ISBN 0780350413.

A. Gunawardana, M. Mahajan, A. Acero, and J. C. Platt. Hidden conditional random fields for phone
classification. In Interspeech, 2005.

Y.-H. Sung and D. Jurafsky. Hidden conditional random fields for phone recognition. In Automatic
Speech Recognition and Understanding, 2009.

D. Yu, S. Wang, and L. Deng. Sequential labeling using deep-structured conditional random fields.
IEEE Journal of Selected Topics in Signal Processing, 4(6), 2010.

G. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural
Computation, 18, 2006.

Christian Plahl, Tara N Sainath, Bhuvana Ramabhadran, and David Nahamoo. Improved pre-training
of deep belief networks using sparse encoding symmetric machines. In International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 4165–4168. IEEE, 2012.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012.

A. Mohamed, G. Dahl, and G. Hinton. Deep belief networks for phone recognition. In Advances in
Neural Information Processing Systems 22 (Workshops), 2009.

A. Mohamed, D. Yu, and L. Deng. Investigation of full-sequence training of deep belief networks. In
Interspeech, 2010.

Karel Veselỳ, Arnab Ghoshal, Lukáš Burget, and Daniel Povey. Sequence-discriminative training of
deep neural networks. In Interspeech, Lyon, France, 2013.

Galen Andrew and Jeff Bilmes. Sequential deep belief networks. In International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 4265–4268. IEEE, 2012.

K.F. Lee and H.-W. Hon. Speaker-independent phone recognition using hidden markov models. IEEE
Transactions on Acoustics, Speech and Signal Processing, 37, 1989.

G. E. Dahl, M. Ranzato, A. Mohamed, and G. Hinton. Phone recognition with the mean-covariance
restricted boltzmann machine. In Advances in Neural Information Processing Systems 23, 2010.

J. Keshet, S. Shalev-Shwartz, S. Bengio, Y. Singer, and D. Chazan. Discriminative kernel-based
phoneme sequence recognition. In Interspeech, 2006.

K. Crammer. Efficient online learning with individual learning-rates for phoneme sequence recogni-
tion. Journal of Machine Learning Research, 7, 2006.

C.-C. Cheng, F. Sha, and L. K. Saul. A fast online algorithm for large margin training of continuous-
density hidden markov models. In Interspeech, 2009.

J. Morris and E. Fosler-Lussier. Conditional random fields for integrating local discriminative
classifiers. IEEE Trans. on Acoustics, Speech, and Language Processing, 16(3), 2008.

J. Keshet, D. McAllester, and T. Hazan. Pac-bayesian approach for minimization of phoneme error
rate. In International Conference on Acoustics Speech and Signal Processing, 2011.

F. Sha and L. K. Saul. Comparison of large margin training to other discriminative methods for
phonetic recognition by hidden markov models. In International Conference on Acoustics Speech
and Signal Processing, 2007.

László Tóth. Convolutional deep rectifier neural nets for phone recognition. In International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013.

9

	Learning deep representations for sequential labeling
	Notation

	The Sequential Restricted Boltzmann Machine
	The Sequential Deep Neural Network
	Backpropagation algorithm
	Experiments

