
Memory-efficient inference in dynamic graphical models
using multiple cores

Galen Andrew Jeff Bilmes
University of Washington

Department of CSE
University of Washington

Departments of EE & CSE

Abstract

We introduce the archipelagos algorithm
for memory-efficient multi-core inference in
dynamic graphical models. By making
use of several processors running in par-
allel, the archipelagos algorithm uses ex-
ponentially less memory compared to ba-
sic forward-backward message passing al-
gorithms (O(log T ) compared to O(T ) on
sequences of length T ) and, under often-
satisfied assumptions on the relative speed
of passing forward and backward messages,
runs no slower. We also describe a simple
variant of the algorithm that achieves a factor
of two speedup over forward-backward on a
single core. Experiments with our implemen-
tation of archipelagos for the computation of
posterior marginal probabilities in an HMM
validate the space/time complexity analysis:
using four cores, the required memory on our
test problem was reduced from 8 GB to 319
KB (a factor of 25000) relative to forward-
backward, but completed in essentially the
same time. The archipelagos algorithm ap-
plies to any dynamic graphical model, includ-
ing dynamic Bayesian networks, conditional
random fields, and hidden conditional ran-
dom fields.

1 Introduction

The basic forward-backward message-passing algo-
rithms (FB) for inference in Dynamic Graphical Mod-
els (DGMs) (which include hidden Markov mod-
els (HMMs) [Ephraim, 2002, Rabiner, 1989, Eddy,

Appearing in Proceedings of the 15th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume XX of JMLR:
W&CP XX. Copyright 2012 by the authors.

1998], dynamic Bayesian networks (DBNs) [Dean and
Kanazawa, 1988], conditional random fields (CRFs)
[Lafferty et al., 2001], and hidden conditional random
fields (HCRFs) [Gunawardana et al., 2005]) are quite
limited. These message passing algorithms typically
run in O(T ) time and require O(T ) storage space,
where T is the length of the sequence. In applications
that have extremely long sequences, as are frequently
encountered in bioinformatics, there may not be suf-
ficient RAM to store all of the forward messages for
every frame. In applications that have extremely large
state spaces, as are frequently encountered in speech
recognition and natural language processing, there also
may not be sufficient RAM to store all of the forward
messages for every frame since there is sufficient mem-
ory to store only a very small number of such messages.
Forward messages could be paged to a larger store such
as a hard disk or even a network, but that would entail
enormous overhead, as sustained reading speeds from
hard disk are orders of magnitude slower than DRAM
[Hennessy et al., 2003].

The Island algorithm (IA) manages to reduce the
memory requirements dramatically while increasing
the time slightly [Binder et al., 1997, Murphy, 2002].
By repeating some computation, IA gets away with
storing only a tiny fraction of the forward messages,
so that it uses only O(T 1/d) memory while increas-
ing the running time by at most a constant factor d,
for any d ∈ {2, 3, . . .}. If d is allowed to vary so that
d = dlogb T e for fixed parameter b, then it requires
only O(log T ) space, at the cost of increasing the time
complexity to O(T log T ). The stored messages are
“islands” placed at regular intervals of T/b, giving the
algorithm its name.

Another desire in such sequential models is paralleliza-
tion. Considering any DGM as a (“fat”) chain, a
simple and näıve parallelization of forward-backward
would send messages simultaneously starting from
both the left and the right end of the chain, eventu-
ally meeting in the middle of the chain. At that point,
message propagation proceeds from the middle back



Running heading title breaks the line

out to the ends. Using two processors, this gives a fac-
tor of two speedup. The Residual Splash algorithm of
[Gonzalez et al., 2009] performs parallel inference that
is exact for chain graphical models and achieves an
approximation guarantee for arbitrary cyclic graphical
models. Without redundant or approximate computa-
tion, however, there is no way to further utilize many
threads (� 2) to exploit modern multi-core and future
many-core microprocessors for simultaneous schedul-
ing of DGM inference messages.

In this paper, we show how the redundant computa-
tion of the IA (which achieves the improved mem-
ory behavior) can be handled using parallel compu-
tation. Specifically, we show how the IA’s repeated
computation can be performed simultaneously on d
threads running on multiple cores without additional
memory overhead. The communication and schedul-
ing overhead of the algorithm is quite small, and un-
der often-satisfied assumptions on the relative speed of
performing the forward and backward recursions, the
algorithm runs as fast as standard forward-backward
inference, while using only a logarithmic amount of
memory.

We also describe a simple modification to the algo-
rithm that brings an additional factor of two speedup
(at the cost of using twice as many processors and
memory), thereby achieving the same factor of two
speedup mentioned above but with only logarithmic
memory. We note that the new points of achievability
for the time-space tradeoff in dynamic graphical mod-
els apply both to exact inference and also to approxi-
mate inference methods such as beam pruning, sequen-
tial Monte Carlo, or any DGM algorithm that passes
approximate messages. Because multiple threads cre-
ate and store groups of islands at different locations,
we call our resulting new algorithm the “archipelagos
algorithm” (AA).

In the next section, we describe the island and
archipelagos algorithms in more detail. We then
present results of experiments with our implementa-
tion of AA for the computation of posterior marginal
probabilities in an HMM demonstrating the excellent
empirical memory and time complexity of AA with
respect to FB and IA.

2 Forward-Backward, Island, and
Archipelagos

Consider a DGM and a forward-backward message
passing inference algorithm. Such an algorithm could
be used, say, to compute posterior marginals, or find
the most likely hidden sequence, or to compute the
k-best (most probable) sequences. The total size of

the message passed at each time slice (i.e., the state
space) is denoted nm, and the total size of the set
of observed variables at each time slice is no, over a
sequence of length T . We are interested particularly
in applications where either nm � no as commonly
occurs in speech and language processing, or where T
is very large (e.g., hundreds of millions) as commonly
occurs in bioinformatics applications, or both. Under
these conditions, the memory required to exactly
store all forward messages is O(nmT ) which can easily
be too large to fit even in todays’ machines with large
main memory.

For concreteness, we can consider standard forward-
backward inference for smoothing in an HMM. Let
Yt ∈ {1 . . . nY } be a random variable representing the
hidden state at time t, and Xt ∈ {1 . . . nX} be the ob-
servation at time t, for t ∈ {0, . . . , T − 1} (note, the
zero offset). The parameters of the HMM model are
p(i) ≡ Pr(Y0 = i) for all i, qi(j) ≡ Pr(Yt+1 = j|Yt = i)
for all i and j, and ei(k) ≡ Pr(Xt = k|Yt = i), for
all i and k. For simplicity, we assume the HMM is
time-homogeneous, so that the transition and output
probability tables do not depend on t (although this as-
sumption is not required for either IA or AA to work).
Given a sequence of observations x̂0:T−1, we will de-
scribe things in terms of the “smoothing” problem:
that is, to compute the posterior marginal probabili-
ties Pr(Yt = i|X0:T−1 = x̂0:T−1) for all t and i. We
note that an almost identical analysis can be used to
describe the problem of computing the k-best assign-
ments to Y1, . . . , YT for any k ≥ 1 but we do not in-
clude this in the paper.

2.1 Forward-backward

The forward-backward algorithm for computing all
posterior marginals proceeds as follows. First, for
t = 0 . . . T − 1, we compute the forward probabilities

αt(i) = Pr(Yt = i,X0:t = x̂0:t)

according to α0(i) = p(i)ei(x̂0) and the recursion

αt+1(j) = ej(x̂t+1)
∑
i

αt(i)qi(j). (1)

Then, for t = T − 1 . . . 0, we compute the backward
probabilities

βt(i) = Pr(Xt+1:T−1 = x̂t+1:T−1|Yt = i)

using βT−1(i) = 1 and

βt−1(i) =
∑
j

qi(j)ej(x̂t)βt(j). (2)

Finally, the desired posterior marginals are

Pr(Yt = i|X0:T−1 = x̂0:T−1) =
αt(i)βt(i)∑
i αt(i)βt(i)

. (3)



Galen Andrew, Jeff Bilmes

The algorithm requires O(Tn2Y ) operations for both
the forward and backward passes. The βt vectors can
be updated in place, but all αt vectors must be stored
concurrently, so O(TnY ) memory is required.

2.2 Island algorithm

The idea of the island algorithm [Binder et al., 1997]
is to discard most of the forward messages αt, pro-
duced by the recursion (1), storing them only at b− 1
regularly-spaced intervals. Then the algorithm is re-
cursively applied to each of the b segments between the
stored vectors until it bottoms out in standard forward
recursion over much shorter sequences after d = logb T
applications. After producing the islands from left to
right, the intervals are processed recursively from right
to left, so that the first contiguous section to have all
forward messages completed is at the end of the se-
quence. As each completed section is produced, the
backward recursion can be applied and the posteriors
computed. When the posteriors have been computed,
the memory used to store the section can be overwrit-
ten to store the forward messages of the next section to
the left. As with FB, the posteriors are produced from
the end to the beginning of the sequence so backward
probabilities need never be stored.

The time and space complexity of IA depends on the
choice of d and b. Since each αt (except for the is-
lands) must be recomputed d times, IA performs d
times as much work in the forward pass as FB. How-
ever, it requires storing only bd forward messages αt

at a time. If we choose a fixed b and set d = logb T ,
then IA requires O(T log T ) time and O(log T ) space.
This is a log factor slower than FB, but uses exponen-
tially less memory. Alternatively, we could fix d and
set b = T 1/d, so that it uses O(T ) time and O(T 1/d)
space: only a constant factor of d slower than FB, but
polynomially less memory. For example, if d = 2, IA
takes no more than twice as long as FB, but uses 2/

√
T

as much memory.1

2.3 Archipelagos algorithm

Our proposed algorithm uses d compute threads (po-
tentially running on separate cores/processors) to per-
form the work of the island algorithm with depth d.
In order to explain the operation of AA, consider the
moment during a run of the island algorithm when
the first contiguous section of forward messages has
been produced, at the end of the sequence, so that the
backward probabilities can begin to be produced. The

1We say “no more than twice as long” because the for-
ward recursion (1) is slowed down by a factor of two while
the backward recursion (2) and posterior computation (3)
are unchanged.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Level 1 

Level 2 

(a) Just before starting backward thread

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Level 1 

Level 2 

Backward 

(b) Two threads simultaneously running

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Level 1 

Level 2 

Backward 

(c) Rendezvous point

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Level 1 

Level 2 

Backward 

(d) Both threads running again

Figure 1: Illustration of archipelagos algorithm with
T = 16, b = 4 and d = 2. In 1(a), the level 1 thread
has finished, and the level 2 thread produced its first
group of forward messages. In 1(b), the level 2 thread
and the backward thread run concurrently. In 1(c),
the level 2 thread and the backward thread have com-
pleted their sections (one having waited for the other
before continuing). Finally, in 1(d), they both begin
to process the next section.



Running heading title breaks the line

0 

Level 1 

Level 2 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

Level 3 

(a) Just before starting backward thread

0 

Level 1 

Level 2 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

Level 3 

Backward 

(b) Three threads running

0 

Level 1 

Level 2 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

Level 3 

Backward 

(c) First group finished

0 

Level 1 

Level 2 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

Level 3 

Backward 

(d) Level 2 thread finished

0 

Level 1 

Level 2 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

Level 3 

Backward 

(e) Backward finishes level 2 section

Figure 2: Illustration of archipelagos algorithm with
T = 27, b = 3 and d = 3. In the following, Li refers to
the forward thread at level i, and B to the backward
thread. In 2(a), L1 has finished, L2 has finished its
first group of islands, and L3 produced its first group
of forward messages. In 2(b), all three threads run
concurrently. In 2(c), L3 and B have completed their
sections (one having waited for the other before contin-
uing), while L2 continues (probably having produced
its first island at about this time). In 2(d), L2 has fin-
ished and waits. L3 consumes the last island produced
by L2, and B processes one more group. Finally,
in 2(e), B reaches the beginning of its level 2 section,
so L2 starts to work on the immediately preceding one.

process is illustrated in Figure 1, using T = 16, b = 4
and d = 2. At this moment we have top-level islands
at t ∈ {4, 8, 12}, and the contiguous section of forward
messages for t = 12 . . . 15. Next, in Figure 1(b), AA
begins to compute the backward probabilities and pos-
teriors on a separate thread, and the thread that pro-
duced the forward messages begins to produce the next
needed contiguous section, for t = 8 . . . 11. The two
threads continue until both the forward thread finishes
producing frames 8–11, and the backward thread fin-
ishes using frames 12–15 (one or the other may block to
wait for this rendezvous point), shown in Figure 1(c).
Islands 12–15 are no longer needed, and the memory
can be recycled. Then the forward thread can be-
gin producing frames 4–7, while the backward thread
works on 8–11 (Figure 1(d)).

If d > 2 the process is similar, except we then use d
simultaneous compute threads. We use a dedicated
thread for each level l ∈ {1 . . . d}, plus one that does
the backward recursion. Note that the level 1 thread
proceeds continuously from 0 to b−1

b T and then fin-
ishes. Its work does not overlap with that of the back-
ward thread, so there are at most d concurrently work-
ing threads, and exactly d cores suffice. Each thread at
level l ∈ {2 . . . d− 1} consumes islands from the adja-
cent lower numbered level (l−1) and produces islands
spaced at intervals of T/bl−1. The thread at level d
produces contiguous sub-sections of forward messages
to be consumed by the backward thread. Once each
thread finishes producing forward messages in a given
segment, it can wait until its consumer is ready to use
those messages, then begin to produce messages in the
immediately preceding segment. The process is illus-
trated in Figure 2 using T = 27, b = 3 and d = 3.

2.4 Space/Runtime analysis of AA

The memory requirements of AA are very similar to
IA. As described, AA requires a factor of two more is-
lands to be stored than IA, because each thread holds
one section of islands that is being consumed while
producing another section of the same size. With finer-
grained locking the islands could potentially be recy-
cled exactly as they are consumed, which would bring
the memory requirements down to exactly that of IA.
This would typically not be worth the synchroniza-
tion overhead since the memory requirements of IA
are already so small, but an additional factor of two is
available as an option to AA when memory resources
are very tight or the underlying models are very big.

Running on a real system with a finite number of
available cores, we cannot simply hold b fixed and set
d = logb T for arbitrarily long sequences to achieve
true asymptotic O(log T ) space. But if b is moder-
ately large (like 10), extremely long sequences could



Galen Andrew, Jeff Bilmes

still be handled (e.g., up to T = 1016 on a 16-core
system). In any case, the analysis of IA in the fixed-
d scenario still applies to achieve asymptotic O(T 1/d)
space complexity on a d-core system. In practice, one
would choose d depending on whether memory or CPU
is the limiting factor and use b = T 1/d so as to use the
minimal amount of memory given d.

Whether AA runs as fast as FB depends on the rela-
tive speed of forward and backward message passing.
Assume that each iteration of forward message passing
takes a constant amount τf of time, while a backward
iteration takes τb time. We consider two scenarios de-
pending on whether τf ≤ τb.

In smoothing over unstructured DGMs like HMMs or
CRFs, it can be reasonable to assume that τf ≤ τb. For
example, in HMM smoothing, evaluating (1) requires
the same amount of work as (2), and the backward
pass also has to compute the marginals using (3). In
this case, we show that AA runs in approximately the
same time as FB. Both algorithms begin by running
T iterations of forward message passing in Tτf time,
after which the backward pass begins. We claim that
if τf ≤ τb, the backward thread in AA never has to
block, and therefore the time required is just the same
as FB.

For l > 1, let δl ≡ T/bl−1 be length of a level-l section.
We use Ll to denote the (forward) thread at level l,
and B to denote the backward thread. We first show
that for all l, Ll+1 never has to block waiting for Ll

to produce islands. The statement is clearly true for
l = 1 because L1 completes all of its islands for the
entire run before L2 begins. Now suppose (for an in-
ductive argument) that it is true for all l ≤ k for some
k. When the B reaches the beginning of a level-l sec-
tion, Ll has the islands it needs to begin processing,
by hypothesis. It takes (δl − δl+1)τf time to produce
its last island. Ll+1 will require that island when B
reaches the first level-(l + 1) subsection. Before that,
Ll+1 has to operate on (b−1) level-(l+1) subsections,
which also takes at least (δl − δl+1)τf time (it could
take more time, if Ll+1 has to block waiting for the
backward thread to catch up). Therefore Ll finishes
first, and Ll+1 will not need to wait for it. Note that
this part of the argument did not rely on the assump-
tion that τf ≤ τb.

By the preceding argument, whenever B is ready to
work on a level-d section, Ld can start producing for-
ward messages for the preceding section immediately.
It requires (T/bd−1− 1)τf time to complete, while the
backward thread needs (T/bd−1)τb time. Therefore the
forward thread finishes first and the backward thread
does not need to block.

Now consider if τf > τb. This may be the case if the

forward pass has to perform expensive memory alloca-
tions that the backward pass may presume to exist, if
the forward pass needs to compile factors of a factored
DGM into tables, or in Viterbi decoding where the
backward pass essentially only has to follow a back-
trace. In this case, B finishes sections at each level
before the next level-d section is ready for it. How-
ever, it is still the case that the forward threads never
have to block to wait for their parents, and in partic-
ular Ld can work continuously because it needn’t wait
for either Ld−1 or B. It starts after (T − δd)τf time
and finishes Tτf time after that. So the total time is
no more than 2Tτf , a factor of two more than FB.

2.5 Double-ended Archipelagos

A simple modification to AA provides an additional
factor of two speedup at the cost of using twice as
many cores. We have described message passing al-
gorithms on DGMs as going forward first, storing the
forward messages, and then aggregating them during
the backward pass, but one could just as well first go
backward and then forward. The double-ended vari-
ant of AA uses two cores to pass messages from both
ends of the chain simultaneously towards the chain
center. When the two processes meet in the middle of
the DGM, they can exchange messages and then begin
the multi-core stage of AA in opposite directions, us-
ing d cores each. Using this modification, AA is about
twice as fast, and based on the analysis in the previous
section, it is clear that double-ended AA is no slower
than FB on a single core, even when τf > τb.

2.6 Structured State Spaces

We have described AA when Yt was assumed to be
an unstructured monolithic integer random variable.
For many applications, however, it is important to
be able to factor the state space into a structured
model. Such a property is true in (DBNs) [Dean and
Kanazawa, 1988, Ghahramani, 1998] and more gener-
ally dynamic graphical models (DGMs) [Bilmes, 2010]
such as CRFs with a structured state space. In this
case, each state variable Yt consists of a set compo-
nents Yt = (Y 1

t , Y
2
t , . . . , Y

m
t ) and factors associating

two successive state variables may themselves factor
so that φ(Yt, Yt+1) =

∏
f φf (Y f1

t+tfa
, Y f2

t+tfb
) for appro-

priate values of f1, f2 and tfa , tfb ∈ {0, 1}.

Both the IA and AA can easily be applied in this con-
text by first turning the structured model into a tem-
poral junction tree. To make the description simple,
we describe this process using a particular example.

Figure 3 shows an example DGM, where instead of a
single Yt at each time, we have the four-element vector
(At, Bt, Ct, Dt). Note that only the hidden variables



Running heading title breaks the line

1 2 3 4 5 6 7

...

A

B

C

D

Figure 3: Example structured state space where
at each frame there are four random variables
(At, Bt, Ct, Dt) and the interaction relationships be-
tween random variables are as indicated in the graph.

are shown — e.g., if the model came from a DBN, then
any coupling via observations with shared parents is
already represented by undirected edges.

A naive temporal junction tree can be pro-
duced for this model by grouping together
two successive frames of variables (i.e.,
At, Bt, Ct, Dt, At+1, Bt+1, Ct+1, Dt+1) into one large
clique at time t, and where two successive cliques have
their intersection, the four variables (At, Bt, Ct, Dt),
as a separator. Assuming variable At has nA values
(and similarly for B,C, and D), the memory size
for one separator would be nAnBnCnD, which in
general is exponential in the number of variables in
the separator. Thus, the overall memory cost for
standard inference would be O(TnAnBnCnD). This
junction tree for this case is shown at the top of
Figure 4.

The relationship, however, between the four ran-
dom variables at frame t and those of the suc-
cessor frame is not that of single factor, say
φ(At, Bt, Ct, Dt, At+1, Bt+1, Ct+1, Dt+1), directly re-
lating all variables to each other. Rather, the advan-
tage of structured models is that more nuanced re-
lationships may be expressed between individual ele-
ments of the vector, as shown in Figure 3. An alter-
native strategy, therefore, that considerably reduces
memory requirements has fewer variables both in each
clique and each separator. This junction tree is shown
in the middle of Figure 4. This temporal junction tree
uses six (rather than eight) variables in each clique and
only two (rather than four) variables in each separa-
tor. The per-frame memory requirements, therefore,
are reduced to nBnD. See [Bilmes, 2010] for more de-
tails on how to find such junction trees automatically.

Once such a junction tree is defined, then either IA
or the AA may be defined using junction tree mes-
sages, analogously to the way IA and AA were previ-
ously defined using the HMM messages described in
Section 2.1. Indeed, in the HMM, the implicit tempo-
ral junction tree uses two successive variables Yt, Yt+1

...A2, B2,
 C2, D2

A3, B3,
 C3, D3

A4, B4,
 C4, D4

A1, B1, C1, D1

A2, B2, C2, D2

A2, B2, C2, D2

A3, B3, C3, D3

A3, B3, C3, D3

A4, B4, C4, D4

...B1, C1, D1,

A2, B2, D2

B2, C2, D2,

A3, B3, D3

B3, C3, D3,

A4, B4, D4
B2, D2

 A

D1

1, B1,
B1, D1 B3, D3 B4, D4

...Y1 Y2 Y3 Y4Y1, Y2 Y2, Y3 Y3, Y4

Figure 4: Top: A naive temporal junction tree corre-
sponding to Figure 3. Middle: an improved temporal
junction tree with reduced per-frame memory require-
ments. Bottom: The analogous unstructured temporal
junction tree corresponding to an HMM.

for each clique and one variable Yt for each separator
(see the bottom of Figure 4). The only difference be-
tween the top two figures of Figure 4 and the bottom
figure is that the cliques and separators consist of vec-
tors of variables rather than scalars, but the forward
and backward message definitions between successive
cliques have exactly the same form. Therefore, all of
the preceding analysis for both IA and AA, including
(and especially) the consideration of the various rela-
tionships between τf and τb, applies in the structured
case as well.

3 Experiments

We implemented AA to compute the sum of the pos-
terior marginal probabilities of an HMM. We com-
pare the memory usage and runtime of IA and AA
for d = 1 . . . 4 on problems with large state space, long
sequences, or both. In all experiments, the size of the
observations is nX = 2. The parameters are randomly
generated (dense), as are the observations Xt. Experi-
ments were run on an Intel Core i7-920 processor with
12GB RAM. The Core i7-920 has four cores and 8 MB
L2 cache. For each problem, each setting of d and each
algorithm, we perform ten runs and report the mini-
mum wall-clock time to complete inference (not in-
cluding generation of the HMM parameters and data).
Results are summarized in tables 1, 2, and 3.

Not surprisingly, IA requires approximately a constant
amount more time per level. AA on the other hand
uses almost exactly the same time regardless of the
number of levels in every scenario, as predicted for
HMM smoothing, where the forward recursion is faster
than backward. Note that d = 1 corresponds to stan-
dard FB in both columns, so we are observing that AA
runs in exactly the same amount of time as basic FB.
Interestingly, AA with d ∈ {2, 3} was always slightly
faster than d = 1, which we attribute to the fact that
d = 1 must fill in all 8GB of forward messages, so it



Galen Andrew, Jeff Bilmes

d IA mem AA mem IA time AA time
1 8000 8000 296.9 297.5
2 12.2 16.8 403.5 297.2
3 0.52 0.86 493.6 298.4
4 0.182 0.319 624.6 301.1

Table 1: Results of experiments with nY = 100, nX =
2 and T = 107. Memory is in MB, time in seconds.

d IA mem AA mem IA time AA time
1 800 800 249.4 249.5
2 5.06 7.59 360.2 248.4
3 1.18 2.52 466.0 248.2
4 0.55 1.01 572.1 252.3

Table 2: Results of experiments with nY = 1000,
nX = 2 and T = 100000. Memory is in MB, time in
seconds.

d IA mem AA mem IA time AA time
1 80.0 80.0 284.5 284.5
2 5.12 7.68 463.5 282.7
3 2.40 4.00 679.1 284.6
4 1.92 3.36 922.2 287.4

Table 3: Results of experiments with nY = 10000,
nX = 2 and T = 1000. Memory is in MB, time in
seconds.

experiences more cache misses. Note that all model
parameters plus several islands’ worth of forward mes-
sages require under 1MB, so they fit comfortably in
this machine’s 8MB L2 cache.

4 Conclusions

The usual reason for parallelizing an algorithm is to
accelerate it, where the gold standard is to achieve an
n-fold speedup via the use of n processors. In this pa-
per we have shown how to use multiple cores not to ac-
celerate an algorithm, but to make it use less memory,
and the reduction in the amount of required memory
is not linear, but exponential in the number of pro-
cessors. As compute cores become cheaper to produce
and the size of problems we wish to tackle grows ever
larger, we believe that techniques like the archipelagos
algorithm will become more and more necessary.

5 Acknowledgments

This research was supported by NSF grant IIS-
0535100. The opinions expressed in this work are those
of the authors and do not necessarily reflect the views
of the funding agency.

References

Jeff Bilmes. Dynamic graphical models. IEEE Signal
Processing Magazine, 27(6):29–42, November 2010.
doi: 10.1109/MSP.2010.938078.

J. Binder, K. Murphy, and S. Russell. Space-efficient
inference in dynamic probabilistic networks. Int’l,
Joint Conf. on Artificial Intelligence, 1997.

T. Dean and K. Kanazawa. Probabilistic temporal
reasoning. AAAI, pages 524–528, 1988.

S.R. Eddy. Profile hidden markov models. Bioinfor-
matics, 14(9):755, 1998.

Y. Ephraim. Hidden markov processes. IEEE Trans.
Info. Theory, 48(6):1518–1569, June 2002.

Z. Ghahramani. Lecture Notes in Artificial Intel-
ligence, chapter Learning Dynamic Bayesian Net-
works, pages 168–197. Springer-Verlag, 1998.

Joseph Gonzalez, Yucheng Low, and Carlos Guestrin.
Residual splash for optimally parallelizing belief
propagation. In In Artificial Intelligence and Statis-
tics (AISTATS), Clearwater Beach, Florida, April
2009.

A. Gunawardana, M. Mahajan, A. Acero, and J.C.
Platt. Hidden conditional random fields for phone
classification. In Proc. Interspeech, volume 2, page 1.
Citeseer, 2005.

J.L. Hennessy, D.A. Patterson, and D. Goldberg.
Computer architecture: a quantitative approach.
Morgan Kaufmann, 2003.

John Lafferty, Andrew McCallum, and Fernando
Pereira. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence
data. In Proc. 18th International Conf. on Machine
Learning, pages 282–289. Morgan Kaufmann, San
Francisco, CA, 2001.

K. Murphy. Dynamic Bayesian Networks: Represen-
tation, Inference and Learning. PhD thesis, U.C.
Berkeley, Dept. of EECS, CS Division, 2002.

L.R. Rabiner. A tutorial on hidden markov models and
selected applications in speech recognition. Proceed-
ings of the IEEE, 77(2):257–286, 1989.


	Introduction
	Forward-Backward, Island, and Archipelagos
	Forward-backward
	Island algorithm
	Archipelagos algorithm
	Space/Runtime analysis of AA
	Double-ended Archipelagos
	Structured State Spaces

	Experiments
	Conclusions
	Acknowledgments

