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Abstract
We describe a new objective for graph-based semi-supervised learning based on minimizing the
Kullback-Leibler divergence between discrete probability measures that encode class membership
probabilities. We show how the proposed objective can be efficiently optimized using alternating
minimization. We prove that the alternating minimization procedure converges to the correct op-
timum and derive a simple test for convergence. In addition,we show how this approach can be
scaled to solve the semi-supervised learning problem on very large data sets, for example, in one
instance we use a data set with over 108 samples. In this context, we propose a graph node or-
dering algorithm that is also applicable to other graph-based semi-supervised learning approaches.
We compare the proposed approach against other standard semi-supervised learning algorithms
on the semi-supervised learning benchmark data sets (Chapelle et al., 2007), and other real-world
tasks such as text classification on Reuters and WebKB, speech phone classification on TIMIT
and Switchboard, and linguistic dialog-act tagging on Dihana and Switchboard. In each case, the
proposed approach outperforms the state-of-the-art. Lastly, we show that our objective can be gen-
eralized into a form that includes the standard squared-error loss, and we prove a geometric rate of
convergence in that case.

Keywords: graph-based semi-supervised learning, transductive inference, large-scale semi-supervised
learning, non-parametric models

1. Introduction

In many applications, annotating training data is time-consuming, costly, tedious,and error-prone.
For example, training an accurate speech recognizer requires large amounts of well annotated speech
data (Evermann et al., 2005). In the case of document classification for Internet search, it is not
feasible to accurately annotate sufficient number of web-pages for all categories of interest. The
process of training classifiers with small amounts of labeled data and relatively large amounts of
unlabeled data is known as semi-supervised learning (SSL). SSL lends itself as a useful technique
in many machine learning applications as one only needs to annotate small amountsof data for
training models.

While SSL may be used to solve a variety of learning problems, such as clustering and re-
gression, in this paper we address only the semi-supervised classificationproblem—henceforth,
SSL will refer to semi-supervised classification. Examples of SSL algorithms include self-training
(Scudder, 1965) and co-training (Blum and Mitchell, 1998). A thoroughsurvey of SSL algorithms
is given in Seeger (2000), Zhu (2005b), Chapelle et al. (2007) and Blitzer and Zhu (2008). SSL
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is also related to the problem oftransductive learning(Vladimir, 1998). In general, a learner is
transductive if it is designed only for a closed data set, where the test setis revealed at training time.
In practice, however, transductive learners can be modified to handle unseen data (Sindhwani et al.,
2005; Zhu, 2005b). Chapelle et al. (2007, Chapter 25) gives a nice discussion on the relationship
between SSL and transductive learning.

Graph-based SSL algorithms are an important sub-class of SSL techniques that have received
much attention in the recent past (Zhu, 2005b; Chapelle et al., 2007). Here one assumes that the
data (both labeled and unlabeled) is embedded within a low-dimensional manifoldthat may be rea-
sonably expressed by a graph. Each data sample is represented by a vertex in a weighted graph with
the weights providing a measure of similarity between vertices. Most graph-based SSL algorithms
fall under one of two categories – those that use the graph structure to spread labels from labeled to
unlabeled samples (Szummer and Jaakkola, 2001; Zhu and Ghahramani, 2002a) and those that op-
timize a loss function based on smoothness constraints derived from the graph (Blum and Chawla,
2001; Zhu et al., 2003; Joachims, 2003; Belkin et al., 2005; Corduneanu and Jaakkola, 2003; Tsuda,
2005). In some cases, for example, label propagation (Zhu and Ghahramani, 2002a) and the har-
monic functions algorithm (Zhu et al., 2003; Bengio et al., 2007), it can be shown that the two
categories optimize a similar loss function (Zhu, 2005a; Bengio et al., 2007).

A large number of graph-based SSL algorithms attempt to minimize a loss function that is
inherently based on squared-loss (Zhu et al., 2003; Bengio et al., 2007; Joachims, 2003). While
squared-loss is optimal under a Gaussian noise model, it is not optimal in the case of classification
problems. Another potential drawback in the case of some graph-based SSL algorithms (Blum and
Chawla, 2001; Joachims, 2003) is that they assume binary classification tasks and thus require the
use of sub-optimal (and often computationally expensive) approaches such as one vs. rest to solve
multi-class problems. While it is often argued that the use of binary classifierswithin a one vs. rest
framework performs as well as true multi-class solutions (Rifkin and Klautau,2004), our results on
SSL problems suggest otherwise (see Section 7.2.2).

Further, there is a lack of principled approaches to incorporate label priors in graph-based SSL
algorithms. Approaches such asclass mass normalization(CMN) and label biddingare used as a
post-processing step rather than being tightly integrated with the inference (Zhu and Ghahramani,
2002a). In this context, it is important to distinguish label priors from balance priors. Balance priors
are used in some algorithms such as Joachims (2003) and discourage the scenario where all the
unlabeled samples are classified as belonging to a single class (i.e., a degenerate solution). Balance
priors impose selective pressure collectively on the entire set of resultinganswers. Label priors, on
the other hand, select the more desirable configuration for each answerindividually without caring
about properties of the overall set of resulting answers. In addition, many SSL algorithms, such as
Joachims (2003) and Belkin et al. (2005), are unable to handlelabel uncertainty, where there may
be insufficient evidence to justify only a single label for a labeled sample.

Another area for improvement over previous work in graph-based SSL(and SSL in general) is
the lack of algorithms that scale to very large data sets. SSL is based on the premise that unlabeled
data is easily obtained, and adding large quantities of unlabeled data leads to improved performance.
Thus practical scalability (e.g., parallelization), is important to apply SSL algorithms on large real-
world data sets. Collobert et al. (2006) and Sindhwani and Keerthi (2006) discuss the application
of TSVMs to large-scale problems. Delalleau et al. (2005) suggests an algorithm for improving the
induction speed in the case of graph-based algorithms. Karlen et al. (2008) solve a graph transduc-
tion problem with 650,000 samples. To the best of our knowledge, the largest graph-based problem
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solved to date had about 900,000 samples (includes both labeled and unlabeled data) (Tsang and
Kwok, 2006). Clearly, this is a fraction of the amount of unlabeled data at our disposal. For exam-
ple, on the Internet alone, we create 1.6 billion blog posts, 60 billion emails, 2 millionphotos and
200,000 videos every day (Tomkins, 2008). In general, graph-based SSL algorithms that use matrix
inversion (Zhu et al., 2003; Belkin et al., 2005) or eigen-based matrix decomposition (Joachims,
2003) do not scale very easily.

In Subramanya and Bilmes (2008), we proposed a new framework for graph-based SSL that in-
volves optimizing a loss function based on Kullback-Leibler divergence (KLD) between probability
measures defined for each graph vertex. These probability measures encode the class membership
probabilities. The advantages of this new convex objective are: (a) it is naturally amenable to multi-
class (> 2) problems; (b) it can handle label uncertainty; and (c) it can integrate priors. Furthermore,
the use of probability measures allows the exploitation of other well-defined functions of measures,
such as entropy, to improve system performance. Subramanya and Bilmes (2008) also showed how
the proposed objective can be optimized using alternating minimization (AM) (Csiszar and Tus-
nady, 1984) leading to simple update equations. This new approach to graph-based SSL was shown
to outperform other state-of-the-art SSL algorithms for the document andweb page classification
tasks. In this paper we extend the above work along the following lines –

1. We prove that AM on the proposed convex objective for graph-based SSL converges to the
global optima. In addition we derive a test for convergence that does not require the compu-
tation of the objective.

2. We compare the performance of the proposed approach against other state-of-the-art SSL
approaches, such as manifold regularization (Belkin et al., 2005), labelpropagation (Zhu and
Ghahramani, 2002a), and spectral graph transduction (Joachims, 2003) on a variety of tasks
ranging from synthetic data sets to SSL benchmark data sets (Chapelle et al.,2007) to real-
world problems such as phone classification, text classification, web-page classification and
dialog-act tagging.

3. We propose a graph node ordering algorithm that is cache cognizantand makes obtaining a
linear speedup with a parallel symmetric multi-processor (SMP) implementation morelikely.
As a result, the algorithms are able to scale to very large data sets. The node ordering al-
gorithm is quite general and can be applied to graph-based SSL algorithms such as Zhu and
Ghahramani (2002a); Zhu et al. (2003). In one instance, we solve a SSL problem over a
graph with 120 million vertices (which is quite a bit more than the previous largestsize of
900,000 vertices). A useful byproduct of this experiment is thesemi-supervised switchboard
transcription project(S3TP) which consists of phone level annotations of theSwitchboard-
I corpus generated in a semi-supervised manner (see Section 8.1, Subramanya and Bilmes,
2009).

4. We propose a graph-based SSL objective using Bregman divergence in Section 9.1. This
objective generalizes previously proposed approaches such as label propagation (Zhu and
Ghahramani, 2002a), the harmonic functions algorithm (Zhu et al., 2003),the quadratic cost
criterion (Bengio et al., 2007) and our proposed approach. This objective can potentially be
optimized using AM which portends well for solving general learning problems over objects
for which a Bregman divergence can be defined (Tsuda et al., 2005).
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5. A specific case of the Bregman divergence form is the standard squared-loss based objective,
and we prove a geometric rate of convergence in this case in Appendix F

6. We discuss a principled approach to integrating label priors into the proposed objective (see
Section 9.2).

7. We also show how our proposed objective can be extended to directedgraphs (see Sec-
tion 9.3).

2. Graph Construction

Let Dl = {(xi , r i)}
l
i=1 be the set of labeled samples,Du = {xi}

l+u
i=l+1 the set of unlabeled samples

andD , {Dl ,Du}. Herer i is an encoding of the labeled data and will be explained shortly. We are
interested in solving the transductive learning problem, that is, givenD, the task is to predict the
labels of the samples inDu (for inductive see Section 7.4). We are given an undirected weighted
graphG = (V,E), where the vertices (nodes)V = {1, . . . ,m} (m, l +u) are the data points inD
and the edgesE ⊆V×V. Let V = Vl ∪Vu whereVl is the set of labeled vertices andVu the set of
unlabeled vertices.G may be represented via a matrixW referred to as the weight or affinity matrix.

There are many ways of constructing the graph. In some applications, it mightbe a natural
result of relationship between the samples inD, for example, consider the case where each vertex
represents a web-page and the edges represent the links between web-pages. In other cases, such as
the work of Fei and Changshui (2006), the graph is generated by performing an operation similar to
local linear embedding (LLE) but constraining the LLE weights to be non-negative. In a majority of
the applications, including those considered in this paper, we use k-nearest neighbor (NN) graphs.
In our case here, we make use of symmetric k-NN graphs and so the edge weight wi j = [W]i j is
given by

wi j =

{

sim(xi ,x j) if j ∈K (i) or i ∈K ( j)

0 otherwise

whereK (i) is the set of k-NN ofxi (|K (i)| = k, ∀i) and sim(xi ,x j) is a measure of similarity
betweenxi andx j (which are represented by nodesi and j). It is assumed that the similarity measure
is symmetric, that is, sim(x,y) = sim(y,x). Further sim(x,y)≥ 0. Some popular similarity measures
include

sim(xi ,x j) = e−
‖xi−x j ‖

2
2

2σ or sim(xi ,x j) = cos(xi ,x j) =
〈xi ,x j〉

‖ xi ‖2‖ x j ‖2

where‖ xi ‖2 is the ℓ2 norm, and〈xi ,x j〉 is the inner product ofxi and x j . The first similarity
measure is a radial-basis function (RBF) kernel of widthσ applied to the squared Euclidean distance
while the second is cosine similarity. Choosing the correct similarity measure andk are crucial
steps in the success of any graph-based SSL algorithm as it determines thegraph. At this point,
graph construction “is more of an art, than science” (Zhu, 2005a) and isan active research area
(Alexandrescu and Kirchhoff, 2007b). The choice ofW depends on a number of factors such as,
whetherxi is continuous or discrete and characteristics of the problem at hand. We discuss more
about the choice ofW in the context of the appropriate problem in Section 7.
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3. Proposed Approach for Graph-based Semi-Supervised Learning

For eachi ∈ V and j ∈ Vl , we define discrete probability measurespi andr j respectively over the
measurable space(Y,Y ). That is, for each vertex in the graph, we define a measurepi and for all
the labeled vertices, in addition to thep’s we also definer i (recall,Dl = {(xi , r i)}

l
i=1). HereY is

theσ-field of measurable subsets of Y and Y⊂ N (the set of natural numbers) is the discrete space
of classifier outputs. Thus|Y|= 2 yields binary classification while|Y|> 2 yields multi-class. As
we only consider classification problems here,pi andr i are in essence multinomial distributions and
so pi(y) represents the probability that the sample represented by vertexi belongs to classy. We
assume that there is at least one labeled sample for every class. Note that the objective we propose
is actually more general and can be easily extended to other learning problems such as regression.

The{r i}i ’s represent the labels of the supervised portion of the training data and are derived in
one of the following ways: (a) if ˆyi is the single supervised label for inputxi thenr i(y) = δ(y= ŷi),

which means thatr i gives unity probability fory equaling the label ˆyi ; (b) if ŷi = {ŷ
(1)
i , . . . , ŷ(t)i },

t ≤ |Y| is a set of possible outputs for inputxi , meaning an object validly falls into all of the
corresponding categories, we setr i(y) = (1/k)δ(y ∈ ŷi) meaning thatr i is uniform over only the
possible categories and zero otherwise; (c) if the labels are somehow provided in the form of a set
of non-negative scores, or even a probability distribution itself, we just set r i to be equal to those
scores (possibly) normalized to become a valid probability distribution. As canbe seen, ther i ’s can
handle a wide variety of inputs ranging from the most certain case where a single input yields a
single output to cases where there is anuncertaintyassociated with the output for a given input. It
is important to distinguish between the classical multi-label problem and the use of uncertainty in
r j . In our case, if there are two non-zero outputs during training as inr j(ȳ1), r j(ȳ2)> 0, ȳ1, ȳ2 ∈ Y,
it does not imply that the inputx j necessarily possesses the properties of the two corresponding
classes. Rather, this means that there is uncertainty regarding truth, and we use a discrete probability
measure over the labels to represent this uncertainty.

As pi andr i are discrete probability measures, we have that∑y pi(y) = 1, pi(y)≥ 0, ∑y r i(y) = 1,
andr i(y) ≥ 0. In other words,pi andr i lie within a |Y|-dimensional probability simplex which we
represent using△|Y| and sopi , r i ∈△|Y| (henceforth denoted as△). Also p, (p1, . . . , pm) ∈△

m

denotes the set of measures to be learned, and r, (r1, . . . , r l ) ∈△
l are the set of measures that are

given. Here,△m,△ × . . .× △ (m times). Finally letu be the uniform probability measure on
(Y,Y ), that is,u(y) = 1

|Y| ∀ y ∈ Y. In other words,u evenly distributes all the available probability
mass across all possible assignments.

Consider the optimization problemPKL : min
p∈△m

CKL(p) where

CKL(p) =
l

∑
i=1

DKL
(

r i ||pi
)

+µ
m

∑
i=1

∑
j∈N (i)

wi j DKL
(

pi ||p j
)

−ν
n

∑
i=1

H(pi).

HereH(p) = −∑y p(y) logp(y) is the Shannon entropy ofp andDKL(pi ||q j) is the KLD between

measurespi andq j and is given byDKL(p||q) = ∑y p(y) log p(y)
q(y) . (µ,ν) are hyper-parameters whose

choice we discuss in Section 7. Given a vertexi ∈V,N (i) denotes the set of neighbors of the vertex
in the graph corresponding towi j and thus|N (i)| represents vertexi’s degree.

Lemma 1 If µ,ν,wi j ≥ 0, ∀ i, j thenCKL(p) is convex.
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Proof This follows asDKL(pi ||q j) is convex in the pair(pi ,q j), negative entropy is convex (Cover
and Thomas, 1991), and we have a non-negative weighted combination ofconvex functions.

The goal of the above objective is to find the best set of measurespi that attempt to: 1) agree
with the labeled datar j wherever it is available (the first term inCKL); 2) agree with each other when
they are close according to a graph (the second graph-regularizer term in CKL); and 3) be smooth in
some way (the last term inCKL). In essence, SSL on a graph consists of finding a labeling forDu

that is consistent with both the labels provided inDl and the geometry of the data induced by the
graph. In the following we discuss each of the above terms in detail.

The first term ofCKL will penalize the solutionpi , i ∈ {1, . . . , l}, when it is far away from the
labeled training dataDl , but it does not insist thatpi = r i , as allowing for deviations fromr i can
help especially with noisy labels (Bengio et al., 2007) or when the graph is extremely dense in
certain regions. As explained above, our framework allows for the casewhere supervised training
is uncertain or ambiguous.

The second term ofCKL penalizes a lack of consistency with the geometry of the data and can
be seen as a graph regularizer. Ifwi j is large, we prefer a solution in whichpi and p j are close
in the KLD sense. One question about the objective relates to the asymmetric nature of KLD (i.e.,
DKL(p||q) 6=DKL(q||p)) (see Section 9.3 for a discussion about this issue in the directed graph case).

Lemma 2 While KLD is asymmetric, given an undirected graphG , the second term in the proposed
objective,CKL(p), is inherently symmetric.

Proof As we have an undirected graph,W is symmetric, that is,wi j = w ji and for every
wi j DKL(pi ||p j), we also havew ji DKL(p j ||pi).

The last term encourages eachpi to be close to the uniform distribution (i.e., a maximum en-
tropy configuration) if not preferred to the contrary by the first two terms. This acts as a guard
against degenerate solutions commonly encountered in graph-based SSL(Blum and Chawla, 2001;
Joachims, 2003). For example, consider the case where a part of the graph is almost completely
disconnected from any labeled vertex—that is, a “pendant” graph component. This occurs some-
times in the case of k-NN graphs. In such situations the third term ensures that the nodes in this
disconnected region are encouraged to yield a uniform distribution, validlyexpressing the fact that
we do not know the labels of these nodes based on the nature of the graph. More generally, we
conjecture that by maximizing the entropy of eachpi , the classifier has a better chance of producing
high entropy results in graph regions of low confidence (e.g., close to the decision boundary and/or
low density regions). This overcomes a common drawback of a large numberof state-of-the-art
classifiers (e.g., Gaussian mixture models, multi-layer perceptrons, Gaussian kernels) that tend to
be confident even in regions far from the decision boundary.

Finally, while the second graph-regularizer term encourages high-entropy solutions for nodes
that have high entropy neighbors, the graph regularizer alone is insufficient to yield high-entropy
solutions in other cases where it may be desirable. For example, consider aconnected pendant
component that is “separated” from the rest of the graph by labeled nodes that have the same value.
We can view this as a “lolly-pop” component, where the base of the stem is labeled, but the rest of
the stem and the round portion of the lolly-pop are unlabeled. In such a configuration, the optimum
configuration will set the label of all nodes to be equal to the labels of the stem. There can be cases,
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however, where more uncertainty should be expressed about such a large mass of unlabeled nodes
distantly situated from the nearest labeled node. The last term in the objective allows a solution
where uncertainty is encouraged when a node is geodesically very distant from any label.

We conclude this section by summarizing some of the highlights and features of our framework:

1. Manifold assumption:CKL uses the “manifold assumption” for SSL (see chapter 2 in Chapelle
et al., 2007)—it assumes that the input data may be reasonably embedded within a low-
dimensional manifold which in turn can be represented by a graph.

2. Naturally multiclass:As the objective is defined in terms of probability distributions over
integers rather than just integers (or real-valued relaxations of integersJoachims, 2003; Zhu
et al., 2003), the framework generalizes in a straightforward manner to multi-class problems.
As a result, all the parameters are estimated jointly (compare to one vs. rest approaches which
involve solving|Y| independent classification problems).

3. Label uncertainty:The objective is capable of handling uncertainty in the labels (encoded
usingr i) (Pearl, 1990). We present an example of this in the scenario of text classification in
Section 7.3.

4. Ability to incorporate priors:Priors can be incorporated by either

(a) minimizing the KLD between an agglomerative measure and a prior, that is,C ′KL(p) =
CKL(p)+ κDKL(p0||p̃) where p̃ can for example be the arithmetic or geometric mean
over pi ’s or

(b) minimizing the KLD betweenpi and the priorp0. First note thatCKL(p) may be re-
written asCKL(p) = ∑l

i=1DKL
(

r i ||pi
)

+µ∑i, j wi j DKL
(

pi ||p j
)

+ν∑i DKL
(

pi ||u
)

whereu
is uniform measure. This follows asDKL

(

pi ||u
)

= −H(pi)+const. Now if we replace
the uniform measure,u, in the above byp0 then we are asking for eachpi to be close to
p0. Even more generally, we may replace the uniform measure by a distinct fixed prior
distribution for each vertex.

While the former is more global, in the latter case, the prior effects each vertexindividually.
Also, the global prior is closer to the balance prior used in the case of algorithms like spectral
graph transduction (Joachims, 2003). In both of the above cases, the resulting objective re-
mains convex. It is also important to point out that using one of the above does not preclude
us from using the other. We consider this to be a unique feature of our approach as we can
incorporate both the balance and label priors simultaneously.

5. Directed graphs:The proposed objective can be used with directed graphs without any mod-
ification (see Section 9.3).

3.1 SolvingPKL

As CKL is convex and the constraints are linear,PKL is a convex programming problem (Bertsekas,
1999). However,PKL does not admit a closed form solution because the gradient ofCKL(p) w.r.t.
pi(y) is of the form,k1pi(y) logpi(y)+k2pi(y)+k3 (k1, k2, k3 are constants). Further, optimizing
the dual ofPKL requires solving a similar equation. One of the reasons thatPKL does not admit
a closed form solution is because we are optimizing w.r.t. to both variables in a KLD. Thus, we
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are forced to use one of the numerical convex optimization techniques (Boyd and Vandenberghe,
2006) such as barrier methods (a type of interior point method, or IPM) orpenalty methods (e.g., the
method of multipliers (Bertsekas, 1999)). In the following we explain how method of multipliers
(MOM) with quadratic penalty may be used to solvePKL. We choose a MOM based solver as it has
been shown to be more numerically stable and has similar rates of convergence as other gradient
based convex solvers (Bertsekas, 1999).

It can be shown that the update equations forpi(y) for solvingPKL using MOM are given by
(see appendix A for details)

p(n)i (y) =

[

p(n−1)
i (y)−α(n−1)

(

∂LCKL(p,Λ)
∂pi(y)

)

{p=p(n−1),Λ=Λ(n−1),c=c(n−1)}

]+

wheren = 1, . . . , is the iteration index,α(n−1) is the learning rate which is determined using the
Armijo rule (Bertsekas, 1999),[x]+ = max(x,0) and

∂LCKL(p,Λ)
∂pi(y)

= µ ∑
j∈N (i)

[

we j
(

1+ logpi(y)− logp j(y)
)

−
w jep j(y)

pi(y)

]

−
r i(y)
pi(y)

δ(e≤ l)

+ν(logpi(y)+1)+λi +2c
(

1−∑
y

pi(y)
)

.

In the aboveΛ = {λi} are the Lagrange multipliers andc is the MOM coefficient (see appendix A).
While the MOM-based approach to solvingPKL is simple to derive, it has a number of draw-

backs:

1. Hyper(Extraneous)-Parameters:Solving PKL using MOM requires the careful tuning of a
number of extraneous parameters including, the learning rate (α) which is obtained using
the Armijo rule which has 3 other parameters, MOM penalty parameter (c), stopping criteria
(ζ), and penalty update parameters (γ andβ). In general, in the interest of scalability, it is
advantageous to have as few tuning parameters in an algorithm as possible,especially in the
case of SSL where there is relatively little labeled data available to “hold out” for use in cross
validation tuning. The success of MOM based optimization depends on the careful tuning
of all the 7 extraneous parameters (this is in addition toµ and ν, the hyper-parameters in
the original objective). This is problematic as settings of these parameters that yield good
performance on a particular data set have no generalization guarantees. In Section 7.2.1, we
present an analysis that shows sensitivity of MOM to the settings of these parameters.

2. Convergence guarantees:For most problems, MOM lacks convergence guarantees. Bert-
sekas (1999) only provides a proof of convergence for cases when c(n) → ∞, a condition
rarely satisfied in practice.

3. Computational cost:The termination criteria for the MOM based solver forPKL requires
that one compute the value of the objective function for every iteration leading to increased
computational complexity.

4. Lack of intuition in update equations:While the update equations forpi(y) are easy to obtain,
they lack an intuitive explanation.
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As stated above, there are other alternatives for numerical optimization of convex functions. In
particular, we could use an IPM for solvingPKL, but barrier methods also have their own drawbacks
(e.g., each step involves solvingn linear equations). It is important to point out that we are not
arguing against the use of gradient based approaches in general asthey been quite successful for
training multi-layer perceptrons, hidden conditional random fields, and soon where the objective
is inherently non-convex. Sometimes even when the objective is convex, weneed to rely on MOM
or IPM for optimization like in our case in Section 9.2. However, asPKL is a convex optimization
problem, in this paper we explore and prefer other techniques for its optimization which do not have
the aforementioned drawbacks.

4. Alternating Minimization (AM)

Given a distance functiond(p,q) between objectsp∈ P ,q∈ Q whereP ,Q are sets, consider the
problem finding thep,q that minimizesd(p,q). Sometimes solving this problem directly is hard,
and in such cases the method of alternating minimization (AM) lends itself as a valuable tool for
efficient optimization. AM refers to the case where we alternately minimized(p,q) with respect to
p while q is held fixed and then vice-versa, that is,

p(n) = argmin
p∈P

d(p,q(n−1)) andq(n) = argmin
q∈Q

d(p(n),q).

Figure 1 illustrates the two steps of AM over two convex sets. We start with an initial arbitrary
Q0 ∈ Q which is held fixed while we minimize w.r.t.P ∈ P which leads toP1. The objective is
then held fixed w.r.t.P at P = P1 and minimized overQ ∈ Q and this leads toQ1. The above is
then repeated withQ1 playing the role ofQ0 and so on until (in the best of cases) convergence. The
Expectation-Maximization (EM) (Dempster et al., 1977) algorithm is an example of AM. Moreover,
the above objective over two variables can be extended to an objective overn variables. In such cases
n− 1 variables are held fixed while the objective is optimized with respect to the oneremaining
variable and the procedure iterates in a similar round-robin fashion.

An AM procedure might or might not have the following properties: 1) a closed-form solution
to each of the alternating minimization steps of AM; 2) convergence to a final solution, and 3)
convergence to a correct minimum ofd(p,q). In some cases, even when there is no closed-form
solution to the direct minimization ofd(p,q), each step of AM has a closed form solution. In other
cases, however (see Corduneanu and Jaakkola, 2003), one or both the steps of AM do not have
closed form solutions.

Depending ond(p,q) and on the nature ofP ,Q , an AM procedure might never converge. Even
when AM does converge, it might not converge to the true correct minimum of d(p,q). In general,
certain conditions need to hold for AM to converge to the correct solution. Some approaches, such
as Cheney and Goldstien (1959), Zangwill (1969) and Wu (1983), relyon the topological properties
of the objective and the space over which it is optimized, while others such asCsiszar and Tusnady
(1984) use geometrical arguments. Still others (Gunawardena, 2001) use a combination of the
above.

In this paper, we take theinformation geometryapproach proposed by Csiszar and Tusnady
(1984) where the so-called5-points property(5-pp) is fundamental to determining whether AM on
an objective converges to the global optima. 5-pp is defined as follows:
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Figure 1: Alternating Minimization
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Figure 2: Illustration of the 5-point property

Definition 3 If P, Q are convex sets of finite measures, given a divergence d(p,q), p∈ P, q∈ Q,
then the 5-pp is said to hold for p∈ P if ∀ q,q0 ∈ Q we have

d(p,q)+d(p,q0)≥ d(p,q1)+d(p1,q1)

where p1 ∈ argmin
p∈P

d(p,q0) and q1 ∈ argmin
q∈Q

d(p1,q).

Figure 2 shows an illustration of 5-pp. Here we start with someQ0 ∈ Q , P1 = argmin
P∈P

d(P,Q0)

andQ1 = argmin
Q∈Q

d(P1,Q). 5-pp is said hold ford(P,Q) if for any P∈ P and anyQ∈ Q , the sum

of the lengths of the red lines is greater than or equal to the sum of the lengthsof the blue lines in
Figure 2. Here the lengths are measured using the objectived(P,Q). Csiszar and Tusnady (1984)
have shown that the 5-pp holds for allp whend(p,q) = DKL(p||q).

So now the question is whether our proposed objectiveCKL(p) can be optimized using AM and
whether it converges to the correct optimum. This is the topic of discussion in thenext section.
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4.1 Graph-based SSL using AM

PKL cannot be solved using AM and so we reformulate it in a manner amenable to AM. The follow-
ing are the desired properties of such a reformulation –

1. The new (reformulated) objective should be a valid graph-based SSLcriterion.

2. AM on the reformulated objective should converge to the global optimum ofthis objective.

3. The optimal solution in the case of the original (PKL) and reformulated problem should be
identical.

4. Each step of the AM process should have a closed form and easily computable solution.

5. The resulting algorithm should scale to large data sets.

In this section, we formulate an objective that satisfies all of these properties. Consider the
following reformulated objective –

PMP : min
p,q∈△m

CMP(p,q) where

CMP(p,q) =
l

∑
i=1

DKL
(

r i ||qi
)

+µ
m

∑
i=1

∑
j∈N ′ (i)

w′i j DKL
(

pi ||q j
)

−ν
m

∑
i=1

H(pi)

where for each vertexi in G , we define a third discrete probability measureqi over the measurable

space(Y,Y ), w′i j =
[

W
′
]

i j
, W

′
=W+αIn,N

′
(i) = {i}∪N (i) andα≥ 0. Here theqi ’s play a sim-

ilar role as thepi ’s and can potentially be used to obtain a final classification result (argmaxyqi(y)).
Thus, it would seem that we now have two classification results for each sample – one the most
likely assignment according topi and another given byqi . However,CMP includes terms of the
form (wii +α)DKL(pi ||qi) which encouragepi andqi to be close to each other. Thusα, which is a
hyper-parameter, plays an important role in ensuring thatpi = qi , ∀ i. It should be clear that

argmin
p∈△n

CKL(p) = lim
α→∞

argmin
p,q∈△n

CMP(p,q).

In the following we will show that there exists a finiteα such that at a minima,pi(y) = qi(y) ∀ i,y
(henceforth we will denote this as eitherpi = qi ∀ i or p= q).

We note that the new objectiveCMP(p,q) can itself be seen as an intrinsically valid SSL criterion.
While the first term encouragesqi for the labeled vertices to be close to the labels,r i , the last term
encourages higher entropyp’s. The second term, in addition to acting as a graph regularizer, also
acts as a glue between thep’s andq’s.

A natural question that arises at this point is why we choose this particular form for CMP and
not other alternatives. First note that−H(pi) = DKL(pi ||u)+const whereu is the uniform measure.
KLD is a function of two variables (say the left and the right). InCMP, the p’s always occur on the
left hand side while theq’s occur on the right. Recall that the reasonCKL did not admit a closed
form solution is because we were attempting to optimize w.r.t. both the variables in a KLD. Thus
going fromCKL to CMP accomplishes two goals – (a) it makes optimization via AM possible, and
(b) as we see shortly, it leads to closed form updates. Next we addressthe question of whether AM
onCMP converges to the correct optimum.
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Lemma 4 If µ,ν,w′i j ≥ 0 ∀ i, j thenCMP(p,q) is convex.

Proof This follows asDKL(p||q) is convex in the pair, and we have a weighted sum of convex
functions with non-negative weights.

The previous lemma guarantees that any local minimum is a global minimum. The nexttheorem
gives the powerful result that the AM procedure on our objectiveCMP is guaranteed to converge to
the true global minimum ofCMP.

Theorem 5 (Convergence of AM onCMP, see appendix B)If

p(n) = argmin
p∈△m

CMP(p,q
(n−1)), q(n) = argmin

q∈△m
CMP(p

(n),q) and q(0)i (y)> 0 ∀ y∈ Y, ∀i then

(a) CMP(p,q)+CMP(p,p
(0))≥ CMP(p,q

(1))+CMP(p
(1),q(1)) for all p,q∈△m, and

(b) lim
n→∞

CMP(p
(n),q(n)) = infp,q∈△m CMP(p,q).

Next we address the issue of showing that the solutions obtained in the caseof the original
and reformulated objectives are the same. We already know that ifα→ ∞ then we have equality,
but we are interested in obtaining a finite lower-bound onα for which this is still the case. In the
below, we letCMP(p,q;{w′ii = 0}i) be the objectiveCMP shown with the weight matrix parameterized
with w′ii = 0 for all i, and we letCMP(p,q;α) be the objective function shown with a particular
parameterized value ofα. For the proof of the next lemma and the two theorems that follow, see
appendix C.

Lemma 6 We have that

min
p,q∈△m

CMP(p,q;w′ii = 0)≤ min
p∈△m

CKL(p).

Theorem 7 Given any A,B,S∈△m (i.e., A= [a1, . . . ,an] , B = [b1, . . . ,bn] , S= [s1, . . . ,sn]) such
that ai(y),bi(y),si(y) > 0, ∀ i,y and A6= B (i.e., not all ai(y) = bi(y)) then there exists a finiteα
such that

CMP(A,B)≥ CMP(S,S) = CKL(S).

The above theorem states that there exists a finiteα that ensuresCMP(p,q) evaluated on any
positive p 6= q will be larger than anyCKL(·). This is a stronger statement than we need, since we
are interested only in what happens at the objective functions’ minima. The following theorem does
just this.

Theorem 8 (Equality of Solutions ofCKL and CMP) Let

p̂= argmin
p∈△m

CKL(p) and(p∗α̃,q
∗
α̃) = argmin

p,q∈△m
CMP(p,q;α̃)

for an arbitrary α̃ > 0 wherep∗α̃ = (p∗1;α̃, · · · , p
∗
m;α̃) andq∗α̃ = (q∗1;α̃, · · · ,q

∗
m;α̃). Then there exists a

finite α̂ such that at convergence of AM, we have thatp̂ = p∗α̂ = q∗α̂. Further, it is the case that if
p∗α̃ 6= q∗α̃, then

α̂≥
CKL(p̂)−CMP(p∗α̃,q

∗
α̃;α = 0)

µ∑n
i=1DKL(p∗i;α̃||q

∗
i;α̃)

and ifp∗α̃ = q∗α̃ thenα̂≥ α̃.

3322



GRAPH-BASED SEMI-SUPERVISEDLEARNING WITH MEASUREPROPAGATION

We note that the above theorem guarantees the existence of a finiteα that equates the minimum
of CKL andCMP but it does not say how to find it since we do not know the true optimum ofCMP.
Nevertheless, if we use anα such that we end up withp∗ = q∗ (or in practice, approximately so)
then we are assured that this is the true optimum forCKL.

As mentioned above, AM is not always guaranteed to have closed form updates at each step,
but in our case closed form updates may be achieved. The AM updates (see Appendix E for the
derivation) are given by

p(n)i (y) =
exp{ µ

γi
∑ j w

′
i j logq(n−1)

j (y)}

∑yexp{ µ
γi

∑ j w
′
i j logq(n−1)

j (y)}
and

q(n)i (y) =
r i(y)δ(i ≤ l)+µ∑ j w

′

ji p
(n)
j (y)

δ(i ≤ l)+µ∑ j w
′

ji

whereγi = ν+µ∑ j w
′

i j .
Thus,CMP satisfies all the desired properties of the reformulation. In addition, it is alsopossible

to derive a test for convergence that does not require that one compute the value ofCMP(p,q) (i.e.,
evaluate the objective).

Theorem 9 (Test for convergence, see Appendix D)If {(p(n),q(n))}∞
n=1 is generated by AM ofCMP(p,q)

andCMP(p∗,q∗), inf
p,q∈△n

CMP(p,q) then

CMP(p
(n),q(n))−CMP(p

∗,q∗)≤
n

∑
i=1

(

δ(i ≤ l)+di
)

βi ,

βi , logsup
y

q(n)i (y)

q(n−1)
i (y)

, d j = ∑
i

wi j .

While a large number of optimization procedures resort to computing the change in the objective
function with n (iteration index), in this case we have a simple check for convergence. This test
does not require that one compute the value of the objective function whichcan be computationally
expensive especially in the case of large graphs. Table 1 summarizes the advantages of the proposed
AM approach to solvingPMP over that of using MOM to directly solvePKL. We also provide an
empirical comparison of these approaches in Section 7.2.1. Henceforth, we refer to the process of
using AM to solvePMP asmeasure propagation(MP).

5. Squared-Loss Formulation

In this section, we show how the popular squared-loss objective may be formulated over measures.
We then discuss its relationship to the proposed objective. Consider the optimization problemPSQ :
min
p∈△m

CSQ(p) where

CSQ(p) =
l

∑
i=1

‖ r i− pi ‖
2 +

m

∑
i=1

∑
j∈N (i)

wi j ‖ pi− p j ‖
2 +ν

m

∑
i=1

‖ pi−u ‖2

and‖ p‖2= ∑y p2(y). PSQcan also be seen as a multi-class extension of thequadratic cost criterion
(Bengio et al., 2007) or as a variant of one of the objectives in Zhu and Ghahramani (2002b).
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Criteria MOM AM

Iterative YES YES
Learning Rate Armijo Rule None

Number of Hyper-parameters 7 1 (α)
Test for Convergence Requires Tuning Automatic

Update Equations Not Intuitive Intuitive and easily Parallelized

Table 1: There are two ways to solving the proposed objective, namely, thepopular numerical op-
timization tool method of multipliers (MOM), and the proposed approach based on alter-
nating minimization (AM). This table compares the two approaches on various fronts.

Lemma 10 (Relationship betweenCKL and CSQ) We have that

CKL(p)≥
CSQ(p)
log4

−mν log|Y|.

Proof By Pinsker’s inequality we have thatDKL(p||q) ≥ (1/ log4)
(

∑y |p(y) − q(y)|
)2
≥

(1/ log4)∑y |p(y)−q(y)|2. As a result

CKL(p) =
l

∑
i=1

DKL
(

r i ||pi
)

+µ
m

∑
i=1

∑
j∈N (i)

wi j DKL
(

pi ||p j
)

−ν
m

∑
i=1

H(pi)

=
l

∑
i=1

DKL
(

r i ||pi
)

+µ
m

∑
i=1

∑
j∈N (i)

wi j DKL
(

pi ||p j
)

+ν
m

∑
i=1

DKL(pi ||u)−mν log|Y|

≥
1

log4

[

l

∑
i=1

‖ r i− pi ‖
2 +

m

∑
i=1

∑
j∈N (i)

wi j ‖ pi− p j ‖
2 +ν

m

∑
i=1

‖ pi−u ‖2
]

−mν log|Y|

=
CSQ(p)
log4

−mν log|Y|.

PSQ can be reformulated as the following equivalent optimization problemPSQ : min
p∈△m

CSQ(p)

where

CSQ(p) = Tr
(

(Sp− r′)(Sp− r′)T)+2µTr(LppT)+νTr((p−u)(p−u)T),

S,

(

I l 0
0 0

)

, r′ ,

(

r 0
0 0

)

, u, (u, . . . ,u) ∈△m,

1m ∈ R
m is a column vector of 1’s, andI l is the l × l identity matrix. HereL , D−W is the

unnormalized graph Laplacian,D is a diagonal matrix given bydi = [D]ii = ∑ j wi j . CSQ is convex if
µ,ν≥ 0 and, as the constraints that ensure p∈△ are linear, we can make use of the KKT conditions
(Bertsekas, 1999) to show that the solution toPSQ is given by

p̂= (S+2µL +νIn)
−1

[

Sr+νu+
2µ
|Y|

L1n1T
c

]

.
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The above closed-form solution involves inverting a matrix of sizem×m. Henceforth we refer to
the above closed form solution ofPSQ asSQ-Loss-C(C stands for closed form). Returning to the
original formulation, using Lagrange multipliers, setting the gradient to zero and solving for the
multipliers we get the update forpi ’s to be

p(n)i (y) =
r i(y)δ(i ≤ l)+νu(y)+µ∑ j wi j p

(n−1)
j (y)

δ(i ≤ l)+ν+µ∑ j wi j
. (1)

Heren is the iteration index. It can be shown that p(n)→ p̂ (Bengio et al., 2007). In the following
we refer to the iterative method of solvingPSQ asSQ-Loss-I. There has not been any work in the
past addressing the rate at which p(n) → p̂ in the case of SQ-Loss-I. We address this issue in the
following but first we define the rate of convergence of a sequence.

Definition 11 (Rate of Convergence Bertsekas, 1999 )Let {xn} be a convergent sequence such
that xn→ 0. It is said to have a linear rate of convergence if either

xn≤ qηn ∀ n or limsup
n→∞

xn

xn−1
≤ η

whereη ∈ (0,1) and q> 0.

As “geometric” rate of convergence is a more appropriate description of linear convergence, we use
this term in the paper.

Theorem 12 (Rate of Convergence for SQ-Loss, see Appendix D)If

(a) ν > 0, and

(b) W has at least one non-zero off-diagonal element in every row (i.e.,W is irreducible)

then the sequence of updates given in Equation 1 has a geometric rate of convergence for all i and
y.

Thus we have that p(n)→ p̂ very quickly. It is interesting to consider a reformulation ofCSQ in
a manner similar toCMP (see Section 4.1), as we do next.

5.1 AM Amenable Formulation of PSQ

Consider the following reformulation ofCSQ

C ′SQ(p,q) =
l

∑
i=1

‖ r i−qi ‖
2 +

n

∑
i=1

∑
j∈N (i)

w′i j ‖ pi−q j ‖
2 +ν

n

∑
i=1

‖ pi−u ‖2 .

This form is amenable to AM and can be shown to satisfy 5-pp. Further the updates for two steps
of AM have a closed form solution and are given by

p(n)i (y) =
νu(y)+µ∑ j w

′
i j q

(n−1)
j (y)

ν+∑ j w
′
i j

,
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q(n)i (y) =
r i(y)δ(i ≤ l)+µ∑ j w

′

ji p
(n)
j (y)

δ(i ≤ l)+µ∑ j w
′

ji

.

We call this methodSQ-Loss-AM. It is important to point out that for solvingPSQ, one always
resorts to either SQ-Loss-I or SQ-Loss-C depending on the nature of the problem. We will be using
SQ-Loss-AM in the next section to provide more insights into the relationship betweenPKL and
PSQ.

6. Connections to Other Approaches

In this section we explore connections between our proposed approachand other previously pro-
posed SSL algorithms.

6.1 Squared-Loss Based Algorithms

A majority of previously proposed graph-based SSL algorithms (Zhu et al.,2003; Joachims, 2003;
Belkin et al., 2005; Bengio et al., 2007) are based on minimizing squared-loss. In the following we
refer to the squared-loss based SSL algorithm proposed in Zhu and Ghahramani (2002a) as label
propagation (LP) (this is the standard version of label propagation, seeTable 2), the algorithm in
Zhu et al. (2003) as the harmonic functions algorithms (HF). Also QC denotes the quadratic cost
criterion (Bengio et al., 2007). While the objectives used in the case of LP,HF and QC are similar in
spirit to ourCSQ, there are some important differences. In the case of both HF and QC, theobjective
is defined over the reals whereas in our caseCSQ is defined over discrete probability measures. This
leads to two important benefits – (a) it allows easy generalization to multi-class problems, (b) it
allows us to exploit well-defined functions of measures in order to improve performance. Further,
both the HF and LP algorithms do not have guards against degenerate solutions (i.e., the third term
in CSQ). QC, on the other hand, employs a regularizer similar to the third term inCSQ but QC is
limited to only two-class problems (for multi-class problems one resorts to one vs.rest). Both the LP
and HF algorithms optimize the same objective but LP uses a iterative solution whileHF employs
the closed form solution (it has been shown that LP converges to the solution given by HF Zhu,
2005a). QC is a generalization of HF and has been shown to outperform it(Bengio et al., 2007).
Our squared-loss formulation,CSQ, is a generalization of QC for multi-class problems and as we
show in Section 7.2.2, it outperforms QC. Thus, to compare against squared-loss based objectives,
we simply use our formulationCSQ.

Table 2 summarizes the update equations in the case of some of the graph-based SSL algorithms.
It is interesting to compare the update equations for SQ-Loss-AM and MP. It can be seen that the
update equations forqi(y) in the case of SQ-Loss-AM and MP are the same. In the case of MP, the
pi(y) update may be re-written as

p(n)i (y) =
∏ j

(

q(n−1)
j (y)

)µw′i j

∑y ∏ j

(

q(n−1)
j (y)

)µw′i j
.

Thus, while squared loss makes use of a weighted arithmetic-mean, MP uses aweighted geometric-
mean to updatepi(y). In other words, while squared-error leads to additive updates, the use of KLD
leads to multiplicative updates.
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Algorithm Update Equation(s)

MP

p(n)i (y) =
exp{ µ

γi
∑ j w′i j logq(n−1)

j (y)}

∑y exp{ µ
γi

∑ j w′i j logq(n−1)
j (y)}

q(n)i (y) =
r i(y)δ(i≤l)+µ∑ j w

′
ji p

(n)
j (y)

δ(i≤l)+µ∑ j w
′
ji

γi = ν+µ∑ j w
′

i j

SQ-Loss-C
p̂= (S+2µL +νIm)

−1
[

Sr+νu+ 2µ
|Y|L1m1T

c

]

L , D−W, [D]ii = ∑ j wi j

SQ-Loss-I p(n)i (y) =
r i(y)δ(i≤l)+νu(y)+µ∑ j wi j p(n−1)

j (y)
δ(i≤l)+ν+µ∑ j wi j

SQ-Loss-AM
p(n)i (y) =

νu(y)+µ∑ j w′i j q
(n−1)
j (y)

ν+∑ j w′i j

q(n)i (y) =
r i(y)δ(i≤l)+µ∑ j w

′
ji p

(n)
j (y)

δ(i≤l)+µ∑ j w
′
ji

LP p(n)i (y) =
r i(y)δ(i≤l)+δ(i>l)∑ j wi j p(n−1)

j (y)
δ(i≤l)+δ(i>l)∑ j wi j

Table 2: A summary of update equations for various graph-based SSL algorithms. MP stands for
our proposed measure propagation approach, SQ-Loss-C, SQ-Loss-I and SQ-Loss-AM
represent the closed-form, iterative and alternative-minimization based solutions for the
objective based on squared-error. LP is label propagation (Zhu andGhahramani, 2002a).
In all casesµ andν are hyper-parameters.

Spectral graph transduction (SGT) (Joachims, 2003) is an approximate solution to the NP-hard
norm-cut problem. The use of norm-cut instead of a mincut (as in Blum and Chawla, 2001) ensures
that the number of unlabeled samples in each of the cuts is more balanced. SGTrequires that
one compute the eigen-decomposition of am×m matrix which can be challenging for very large
data sets. Manifold regularization (Belkin et al., 2005) proposes a general framework in which
a parametric loss function that is defined over the labeled samples and is regularized by graph
smoothness term defined over both the labeled and unlabeled samples. Whenthe loss function
satisfies certain conditions, it can be shown that the representer theoremapplies and so the solution is
a weighted sum over kernel computations. Thus the goal of the learning process is to discover these
weights. When the parametric loss function is based on least squares, the approach is referred to as
Laplacian regularized least squares(LapRLS) (Belkin et al., 2005) and when the loss function is
based on hinge loss, the approach is calledLaplacian support vector machines(LapSVM)) (Belkin
et al., 2005). In the case of LapRLS, the weights have a closed form solution which involves
inverting am×m matrix while in the case of LapSVM, optimization techniques used for SVM
training may be used to solve for the weights. In general, it has been observed that LapRLS and
LapSVM give similar performance (see Chapter 11 in Chapelle et al., 2007). It very important
to point out here that while LapSVM minimizes hinge loss (over the labeled samples) which is
considered more appropriate than squared loss for classification, the graph regularizer is still based
on squared error.
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So is there a reason to prefer KLD based loss over squared-error? In this context we quote two
relevant statements from Bishop (1995)

1. Page 226: “In fact, the sum-of-squares error function is not the most appropriate forclas-
sification problems. It was derived from maximum likelihood on the assumption of Gaussian
distributed target data. However, the target values for a l-of-c coding scheme are binary, and
hence far from having a Gaussian distribution.”

2. Page 235: “Minimization of the cross-entropy error function tends to result in similar relative
errors on both small and large target values. By contrast, the sum-of-squares error function
tends to give similar absolute errors for each pattern, and will therefore givelarge relative
errors for small output values. This suggests that the cross-entropy error function is likely to
perform better than sum-of-squares at estimating small probabilities.”

While the above quotes were made in the context of a multi-layered perceptron(MLP), they apply
to learning in general. While squared-error has worked well in the case of regression problems
(Bishop, 1995),1 for classification, it is often argued that squared-loss is not the optimal criterion and
alternative loss functions such as the cross-entropy (Bishop, 1995),logistic (Ng and Jordan, 2002),
hinge-loss (Vladimir, 1998) have been proposed. When attempting to measure the dissimilarity
between measures, KLD is said to be asymptotically consistent w.r.t. the underlying probability
distributions (Bishop, 1995). The second quote above furthers the case in favor of adopting KLD
based loss as it is based on relative error rather absolute error as in thecase of squared-error. In
addition, KLD is an ideal measure for divergence of probability distributions as it has description-
length consequences (coding with the wrong distribution will lead to longer description bit length
than necessary). Most importantly, as we will show in Section 7, MP outperforms the squared-
error basedPSQ on a number of tasks. We also present further empirical comparison of these two
objectives in Section 7.2.4.

We would like to note that Wang et al. (2008) proposed a graph-based SSL algorithm that
also employs alternating minimization style optimization. However, it is inherently squared-loss
based which MP outperforms (see Section 7). Further, they do not provide or state convergence
guarantees and one side of their updates is not only not in the closed-form, but also it approximates
an NP-complete optimization problem.

6.2 Information Regularization (Corduneanu and Jaakkola, 2003)

The information regularization (IR) (Corduneanu and Jaakkola, 2003)algorithm also makes use of
a KLD based loss for SSL but is different from our proposed approach in following ways

1. IR is motivated from a different perspective. Here the input space isdivided into regions
{Ri} which may or may not overlap. For a given pointx j ∈ Ri , IR attempts to minimize the
KLD betweenp j(y|x j) and p̂Ri (y), the agglomerative distribution for regionRi . The intuition
behind this is that, if a particular sample is a member of a region, then its posterior must be
similar to the posterior of the other members. Given a graph, one can define aregion to be
a vertex and its neighbors thus making IR amenable to graph-based SSL. InCorduneanu and
Jaakkola (2003), the agglomeration is performed by a simple averaging (arithmetic mean).

1. Assuming a Gaussian noise model in a regression problem leads to an objective based on squared-loss.
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2. While IR suggests (without proof of convergence) the use of AM foroptimization, one of the
steps of the optimization does not admit a closed-form solution. This is a serious practical
drawback especially in the case of large data sets.

3. It does not make use of a entropy regularizer. But as our results show, the entropy regularizer
leads to much improved performance.

Tsuda (2005) (hereafter referred to as PD) is an extension of the IR algorithm to hyper-graphs where
the agglomeration is performed using the geometric mean. This leads to closed form solutions in
both steps of the AM procedure. However, like IR, PD does not make useof a entropy regularizer.
Further, the update equation for one of the steps of the optimization in the caseof PD (Equation 13
in Tsuda, 2005) is actually a special case of our update equation forpi(y) and may be obtained by
settingwi j = 1/2. Further, our work here can be easily extended to hyper-graphs (see Section 9.3).

7. Results

Table 3 lists the data sets that we use in this paper. These corpora come froma diverse set of
domains, including image processing (handwritten digit recognition), natural language processing
(document classification, webpage classification, dialog-act tagging), and speech processing (phone
classification). The sizes vary fromm= 400 (BCI) to the largest data set, Switchboard, which has
120 million samples. The number of classes vary from|Y| = 2 to |Y| = 72 in the case of Dihana.
The goal is to show that the proposed approach performs well on both small and large data sets,
for binary and multi-class problems. Further, in each case we compare the performance of MP
against the state-of-the-art algorithm for that task. Each data set is described in detail in the relevant
sections.

7.1 Synthetic 2D Two-Moon Data Set

In order to understand the advantages of MP over other state-of-the-art SSL algorithms, we eval-
uated their performance on the synthetic 2D two-moon data set. This is a binaryclassification
problem. We compare against SQ-Loss-I (see Section 5), LapRLS (Belkin et al., 2005), and SGT
(Joachims, 2003). For all approaches, we constructed a symmetrized 10-NN graph using an RBF
kernel. In the case of LapRLS and SGT, the hyper-parameter values were set in accordance to the
recipe in Belkin et al. (2005) and Joachims (2003) respectively. In the case of MP, we setµ= 0.2,
ν = 0.001 andα = 1.0. For SQ-Loss-I, we setµ= 0.2 andν = 0.001. These values were found to
give reasonable performance for most data sets.

We used three different types of labelings: (a) two labeled samples from each class, (b) 4 sam-
ples from one class and 1 sample from the other class, and (c) 10 samples from one class and 1
sample from the other class. While the first represents the ‘balanced’ case, that is, equal number of
labeled samples from the two classes, the others are ‘imbalanced’ conditions. In other words, (b)
and (c) are representative of cases where the distribution over the labeled samples is not reflective of
the underlying distribution over the classes (there are equal number of samples in each class). The
results for each of the different labeling are shown in Figure 3. The first column shows the results
obtained using SQ-Loss-I, the second column shows the results of LapRLS, the third is SGT and
the fourth (last) column is MP. The following observations can be made from these results
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Data Set m |Y| HN(p0) Task

2D Two-Moon 500 2 1 Synthetic
BCI 400 2 1 Brain Computer Interface

USPS 1500 2 0.7 HandWritten Digits
Digit1 1500 2 1 Synthetic
COIL 1500 6 1 Image Recognition
Text 1500 2 1 Newsgroups Newswires

OPT-Digits 1797 10 1 HandWritten Digits
Reuters-21578 9603 10 0.8 Document Classification

WebKB 8282 4 0.9 Webpage Classification
Dihana 23,500 72 0.8 Dialog-Act Tagging

Switchboard-DA 185,000 18 0.6 Dialog-Act Tagging
TIMIT 1.4 million 48 0.9 Phone Classification

Switchboard 120 million 53 0.8 Phone Classification

Table 3: List of Data Sets we used to compare the performance of various SSL algorithms.
HN(p0) = H(p0)/ log|Y| is the normalized entropy of the prior and a value of 1 indi-
cates a perfectly balanced data set while values closer to 0 imply imbalance. Inthe case of
the Switchboard data set,HN(p0) was computed over the STP data (see Section 8.1).
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Figure 3: Results on the 2D two-moon data set. Each row shows results for different labelings and
in each case the labeled points are shown in “black”. The first column shows results
obtained using SQ-Loss-I, the second column results were obtained usingLapRLS, SGT
was used for the third column and the last column shows the results in the case of MP.
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1. MP is able to achieve perfect classification in the first two cases, and essentially perfect (2
errors) in the third case.

2. In the balanced case (first row), all approaches achieve perfect classification. Here, all ap-
proaches are able to correctly learn the nature of the manifold.

3. In the imbalanced cases (second and third rows), all three other approaches (SQ-Loss-I,
LapRLS, and SGT) fail to correctly classify a significant portion of samples. This is not
surprising and has been observed by others in the past (see Figure 1 inWang et al., 2008).

4. Finally, in the case of SQ-Loss-I, we tried using class mass normalization (CMN) (Zhu and
Ghahramani, 2002a) as a post-processing step. While the results did not change in the bal-
anced case, CMN in fact resulted in worse error rate performance in theimbalanced cases.
Note that Figure 3 for SQ-Loss-I does not include CMN.

7.2 Results on Benchmark SSL Data Sets

We also evaluated the performance of MP on a number of benchmark SSL data sets including,
USPS, Text, Digit1, BCI, COIL and Opt-Digits. All the above data sets, with theexception of
Opt-Digits (obtained from the UCI machine learning repository), came fromhttp://www.kyb.
tuebingen.mpg.de/ssl-book . Digit1 is a synthetic data set, USPS is a handwritten digit recog-
nition task, BCI involves classifying signals obtained from a brain computer interface, COIL is a
part of the Columbia object image recognition library and involves classifyingobjects using images
taken at different orientations. Text involves classifying IBM vs. the rest for documents taken from
the top 5 categories in comp.* newswire. Opt-Digits is also a handwritten digit recognition task. We
note that most of these data sets are perfectly balanced (see Table 3)—further details may be found
in Chapelle et al. (2007).

We compare MP against four other algorithms: 1) k-nearest neighbors;2) Spectral Graph Trans-
duction (SGT) (Joachims, 2003); 3) Laplacian Regularized Least Squares (LapRLS) (Belkin et al.,
2005); and 4)PSQ solved using SQ-Loss-I. Here k-nearest neighbors is the fully-supervised ap-
proach, while others are graph-based SSL approaches. We used thestandard features supplied with
the corpora without any further processing. For the graph-based approaches we constructed sym-
metrized k-NN graphs using an RBF kernel. We discuss the choice ofk and the width of the kernel
shortly. For each data set, we generated transduction sets with differentnumber of labeled samples,
l ∈ {10,20,50,80,100,150}. In each case, we generated 11 different transduction sets. The first set
was used to tune the hyper-parameters which were then held fixed over theremaining sets. In the
case of thek-nearest neighbors approach, we triedk ∈ {1,2,4,5,10,20,30,40,50,70,90,100,120,
140,150,160,180,200}. For the graph-based approaches, k (for the k-NN graph) was tuned on the
first transduction set over the following valuesk∈ {2,5,10,50,100,200,m}. The optimal width of
the RBF kernel,σ, in the case of SQ-Loss-I, SGT and MP was determined over the following set
σ ∈ {ga/3 : a ∈ {2,3, · · · ,10}} wherega is the average distance between each sample and itsath

nearest neighbor over the entire data set (Bengio et al., 2007).
In the case of LapRLS, we followed the setup described in Section 21.2.5 ofChapelle et al.

(2007). Here, as per the recipe in Joachims (2003), the optimalσ was determined in a slightly differ-
ent manner—we triedσ∈ {σ0

8 ,
σ0
4 ,

σ0
2 ,σ0,2σ0,4σ0,8σ0}whereσ0 is the average norm of the feature

vectors. In addition the hyper-parametersγA, r (see Belkin et al., 2005) associated with LapRLS
were tuned over the following values:γA ∈ {1e–6, 1e–4, 1e–2, 1, 100}, r ∈ {0, 1e–4, 1e–2, 1, 100,
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USPS Digit1
l 10 20 50 80 100 150 10 20 50 80 100 150

k-NN 80.0 80.4 90.7 92.7 93.6 94.9 67.6 79.5 90.2 93.2 91.2 95.2
SGT 86.2 87.9 94.0 95.7 96.0 97.0 92.1 93.6 96.2 97.1 97.4 97.7

LapRLS 83.9 86.9 93.7 94.7 95.4 95.9 92.4 95.3 95.7 96.2 97.1 97.4
SQ-Loss-I 81.4 82.0 93.6 95.8 95.2 95.2 91.2 94.9 96.9 96.6 97.2 97.1

MP 88.1 90.4 93.9 95.0 96.2 96.8 92.1 95.1 96.1 97.4 97.4 97.8

BCI Text
l 10 20 50 80 100 150 10 20 50 80 100 150

k-NN 48.5 52.4 53.3 50.6 53.1 53.5 60.2 64.2 71.6 72.4 72.3 74.5
SGT 49.7 50.4 52.2 52.4 53.6 54.5 70.4 70.9 73.1 76.9 77.0 78.1

LapRLS 53.3 53.4 52.7 53.6 53.9 56.1 68.2 69.1 71.2 73.4 74.2 76.2
SQ-Loss-I 51.0 51.3 50.7 53.2 53.3 53.1 67.9 72.0 74.1 76.8 76.8 76.6

MP 53.0 53.2 52.8 53.9 54.0 57.0 70.3 72.6 73.0 75.9 75.4 77.9

COIL OPT
l 10 20 50 80 100 150 10 20 50 80 100 150

k-NN 34.5 53.9 66.9 77.9 79.2 83.5 79.6 83.9 85.5 90.5 92.0 93.8
SGT 40.1 61.2 78.0 88.5 89.0 89.9 90.4 90.6 91.4 94.7 97.4 97.4

LapRLS 49.2 61.4 78.4 80.1 84.5 87.8 89.7 91.2 92.3 96.1 97.6 97.3
SQ-Loss-I 48.9 63.0 81.0 87.5 89.0 90.9 92.2 90.2 95.9 97.2 97.3 97.7

MP 47.7 65.7 78.5 89.6 90.2 91.1 90.6 90.8 94.7 96.6 97.0 97.1

Table 4: Comparison of accuracies for different number of labeled samples (l ) across USPS, Digit1,
BCI, Text, COIL and Opt-Digits data sets. In each column, the best performing system
and all approaches that are not significantly different at the 0.001 level (according to the
difference of proportions significance test) are shown bold-faced.

1e4, 1e6}. Also, as per Belkin et al. (2005), we setp = 5 in the case of Text data set andp = 2
for all the other data sets. In the case of SGT, the search was overc ∈ {3000, 3200, 3400, 3800,
5000, 100000} (Joachims, 2003). Finally, the trade-off parameters,µ andν (associated with both
MP and SQ-Loss-I) were tuned over the following sets:µ∈ {1e–8, 1e–6, 1e–4, 1e–2, 0.1, 1, 10}
andν ∈ {1e–8, 1e–6, 1e–4, 1e–2, 0.1}. In the case of SQ-Loss-I, the results were obtained after
the application of CMN as a post-processing step as this has been shown to be beneficial to the
performance on benchmark data sets (Chapelle et al., 2007). For MP, weinitialized p(0) such that
all assignments had non-zero probability mass as this is a required condition for convergence and
setα = 1. As LapRLS and SGT assume binary classification problems, results for the multi-class
data sets (COIL and OPT) were obtained using one vs. rest.

The mean accuracies over the 10 transduction sets (i.e., excluding the set used for tuning the
hyper-parameters) for each corpora is shown in Table 4. The followingobservations may be made
from these results

1. As expected, for all approaches, an increase in number of labeled samples leads to increased
accuracy.
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USPS Text Digit1 BCI COIL Opt-Digits
LP-3 77.2 65.1 70.1 51.5 31.3 81.2
MOM 88.1 70.3 91.4 53.0 46.1 91.2
MP 88.2 70.3 92.1 53.0 47.7 93.4

MOM′ 81.1 67.6 79.4 51.7 41.2 90.4

Table 5: Comparison of performance of MOM and MP. Results are in accuracies for thel = 10 case.
We also show the results obtained after three iterations of LP (LP-3) (Zhu and Ghahramani,
2002a) as this was used to initialize MOM. MOM′ are the results obtained using the MOM
setup with a small change in the setting of the hyper-parameters.

2. MP performs best in 15 out of the 36 cases, SQ-Loss is best in 10 outof the 36 cases, SGT
in 8 out of the 36 cases and LapRLS in 7 out of the 36 cases. In 13 of cases in which MP
was not the best, it was not significantly different compared to the winner (we characterize an
improvement as being significant if it is significant at the 0.001 level according to a difference
of proportions significance test).

3. It can be seen that SGT does best in the case of the Text corpus fora majority of the values
of l , while MP is the best in a majority of the cases in the COIL and BCI data sets. SQ-Loss
does best in the case of OPT. Thus in the case of the two multi-class data sets,the twotrue
multi-class approaches perform better than the SSL approaches that useone vs. rest.

4. We also tried SQ-Loss-C and SQ-Loss-AM for solving the squared-loss based objective and
in a majority of the cases the performance was the same as SQ-Loss-I. In other cases, the
difference was insignificant. It should however be noted that using SQ-Loss-C to solve large
problems can be rather difficult.

5. While there are no silver bullets in SSL (Zhu, 2005b), our MP algorithm outperforms other
approaches in a majority of the cases. We would like to point out the diversityof the data sets
used in the above experiment.

6. Finally note that while we have a used a simple approach to hyper-parameter selection, there
are other ways of choosing them such as Goldberg and Zhu (2009)

7.2.1 MPVS. MOM

In this section we compare the results obtained from using MP against resultsobtained by directly
optimizing the original objective,CKL (henceforth we refer to this as MOM). As explained in Sec-
tion 3.1, implementing MOM requires the careful tuning of a number optimization related hyper-
parameters (in addition toµandν). After extensive experimentation, we found that setting,γ= 0.25,
β = 5 andζ =1e–6 gave reasonable results. Further, as MOM is gradient based, weinitialized p(0)

(see Section 3.1) to the distributions obtained after 3 iterations of the label propagation algorithm
described in Zhu and Ghahramani (2002a) (henceforth referred to as LP-3).

Table 5 shows average accuracies over all transduction sets forl = 10 (the trends were similar
for other values ofl ) in the case of the corpora described in the previous section for (a) LP-3, (b)
MOM (c) MP, and (d) MOM′. In the case of MOM′, we changed the values of the optimization

3333



SUBRAMANYA AND BILMES

related hyper-parameters toγ = 0.2 and β = 3. The goal here is to show the sensitivity of MOM′

to the exact settings of the hyper-parameter values. The following observations can be made from
these results

1. MOM outperforms LP-3. This implies MOM is able to learn over and beyond the set of
distributions that result from 3 iterations of LP.

2. In the case of USPS, Digit1, COIL, Opt-Digits, MP outperforms MOM. Further, the per-
formance gap between MP and MOM grows with the size of the data set. MP significantly
outperforms MOM at the 0.0001 level in the case of the Opt-Digits. This might seem surpris-
ing because when we have that p∗ = q∗ in the case of MP, the results obtained using MOM
cannot be any worse than those obtained using MP (because the objective is convex). We con-
jecture that this is because MOM involves using a penalty parameterc(n) that tends to increase
with n leading to slow convergence. This is more likely to happen in the neighborhood of p∗

(Bertsekas, 1999). As a result MOM is terminated when the rate of the change of p(n) falls
below someζ and so it is possible that the objective has not attained the optimal value. In the
case of MP, on the other hand, no such issues exist. Further we have a test for convergence
(see Theorem 9).

3. The results obtained in the case of MOM′ show that this approach can be very sensitive to the
settings of the hyper-parameters. While it may be possible to tune the various MOM related
hyper-parameters in the case of small data sets, it is much less feasible in the case of large
data sets.

7.2.2 ONE VS. REST AGAINST TRUE MULTI -CLASS

It is often argued binary classifiers when used within a one vs. rest framework perform at least as
well as true multi-class solutions (Rifkin and Klautau, 2004). In this section, we test this claim in
the context of SSL. We make use of the two multi-class data sets, COIL and OPT-Digits. Figure 4
shows a comparison of the performance ofPSQ (solved using SQ-Loss-C) and QC (Bengio et al.,
2007). Even though SQ-Loss-I converges to SQ-Loss-C, in this casewe used SQ-Loss-C as the size
of the data set is small. As QC can handle only binary classification problems, the results for QC
were generated using one vs. rest. Note that SQ-Loss-C is simply the closed form solution ofPSQ

which is the multi-class extension of the QC objective. In the case of both the approaches, (a) the
graph was generated by using an RBF kernel over the Euclidean distance, (b) we used the closed
form solution, and (c) hyper-parameter search was done over exactlythe same set of values. It can
be seen that SQ-Loss-C outperforms QC in all cases. As the objectives are both inherently based
on squared-error, the performance improvement in going from QC toPSQ is likely becausePSQ is a
true multi-class objective, that is, all the parameters are estimated jointly.

7.2.3 EFFECTS OFENTROPY REGULARIZATION

We also wish to explore the effects of the entropy regularizer. We ran MP using the same setup
described in Section 7.2 but withν = 0. The results in thel = 10 case are shown in Table 6. Similar
trends were observed in the case of other values ofl . It can be seen that entropy regularization
leads to improved performance in the case of all data sets. We moreover have seen this trend in the
other data sets (results not reported herein). The entropy regularizerencourages solutions closer to
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Figure 4: Comparison of the one vs. rest approach against true multi-class classifier. Figures show
accuracy (in %) vs. Number of Labeled Samples (l ) for (a)-left COIL and (b)-right OPT-
DIGITS data sets. SQ-Loss-I is the solution to a true multi-class objective whileQC
makes use of one vs. rest approach for multi-class problems.

USPS Text Digit1 BCI COIL Opt-Digits
MP (ν = 0) 85.7 70.0 91.7 51.1 45.2 89.5

MP 88.2 70.3 92.1 53.0 47.7 93.4

Table 6: Comparison of performance of MP with and without (ν = 0) entropy regularization. Re-
sults are in accuracies for thel = 10 case.

the uniform distribution, and we mentioned above that this helps to retain uncertainty in portions
of graph very isolated from label information. To explain why this could leadto actualimproved
performance, however, we speculate that the entropy term is beneficialfor the same reason as that
of maximum entropy estimation—except for evidence to the contrary, we should prefer solutions
that are as indifferent as possible.

7.2.4 SENSITIVITY OF MP AND SQ-LOSS-I TO σ

In this section, we examine the effects of change in hyper-parameters settings on the performance
of PSQ (solved using SQ-Loss-I) and MP. In particular, we look at the effectsof varying the width of
the RBF kernel used to generate the weighted graph. Figure 5 shows results obtained for thel = 50
case in the USPS and Opt-Digits data sets (in each case the value ofσ at the mode of each curve
is its optimal value). It can be seen that in the case of both the data sets, the performance variation
is larger in the case of SQ-Loss-I while MP is more robust to the value ofσ. Note that in the case
of Opt-Digits, at the optimal value forσ, SQ-Loss-I outperforms MP. Similar trends were observed
in the case of other data sets. As the choice of hyper-parameters in an issue in SSL, we prefer
approaches that are more robust to the value of the hyper-parameters.We believe the robustness
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Figure 5: Figures showing the variation of accuracy with change in the width(σ) of the RBF kernel.
The left figure was generated using the USPS data set for thel = 50 case while the right
figure was generated using the Opt-Digits data set for thel = 50 case. The vertical lines
(blue for SQ-Loss-I and red for MP) depict theσ given by the algorithm described in the
previous section.

of MP is due to the fact that it is inherently based on KLD which is more suited for classification
compared to squared error.

7.3 Text Classification

Text classification involves automatically assigning a given document to a fixed number of semantic
categories. Each document may belong to one, many, or none of the categories. In general, text clas-
sification is amulti-classproblem (more than 2 categories). Training fully-supervised text classifiers
requires large amounts of labeled data whose annotation can be expensive (Dumais et al., 1998). As
a result there has been interest is using SSL techniques for text classification (Joachims, 1999,
2003). However past work in semi-supervised text classification has relied primarily on one vs.
rest approaches to overcome the inherent multi-class nature of this problem. We compare our algo-
rithm (MP) with other state-of-the-art text categorization algorithms, namely:(a) SVM (Joachims,
1999); (b) Transductive-SVM (TSVM) (Joachims, 1999); (c) Spectral Graph Transduction (SGT)
(Joachims, 2003); and (d)PSQ solved using SQ-Loss-I. Apart from MP, SGT and SQ-Loss-I are
graph-based algorithms, while SVM is fully-supervised (i.e., it does not make use of any of the un-
labeled data). As shown by the results in Joachims (2003), SGT outperforms other SSL algorithms
for this task. Thus we choose to compare against SGT. We implemented SVM and TSVM using
SVM Light(Joachims, 2002) and SGT usingSGT Light(Joachims, 2004). In the case of SVM,
TSVM and SGT we trained|Y| classifiers (one for each class) in a one vs. rest manner precisely
following Joachims (2003). We used two real-world data sets: (a) Reuters-21578 and (b) WebKB.
In the following we discuss the application of the above algorithms to these data sets.
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7.3.1 REUTERS-21578

We used the “ModApte” split of the Reuters-21578 data set collected fromthe Reuters newswire in
1987 (Lewis et al., 1987). The corpus has 9,603 training (not to be confused withD) and 3,299 test
documents (which representsDu). Of the 135 potential topic categories only the 10 most frequent
categories are used (Joachims, 1999). Categories outside the 10 most frequent were collapsed into
one class and assigned a label “other”. For each documenti in the data set, we extract features
xi in the following manner: stop-words are removed followed by the removal ofcase and infor-
mation about inflection (i.e., stemming) (Porter, 1980). We then compute TFIDF features for each
document (Salton and Buckley, 1987). We constructed symmetrized k-NN graphs with weights
generated using cosine similarity between TFIDF features generated as explained above.

For this task Y= { earn, acq, money, grain, crude, trade, interest, ship, wheat, corn, average}.
For SQ-Loss-I and MP, we use the output space Y′ = Y ∪{ other}. For documents inDl that are
labeled with multiple categories, we initializer i to have equal non-zero probability for each such
category. For example, if documenti is annotated as belonging to classes{ acq, grain, wheat},
thenr i(acq) = r i(grain) = r i(wheat) = 1/3. Note that there might be other (non-uniform) ways of
initializing r i (e.g., using word counts).

We created 21 transduction sets by randomly samplingl documents from the standard Reuters
training set with the constraint that each of 11 categories (top 10 categories and the classother) are
represented at least once in each set. These samples constituteDl . All algorithms used the same
transduction sets. In the case of SGT, SQ-Loss-I and MP, the first transduction set was used to tune
the hyper-parameters which we then held fixed for all the remaining 20 transduction sets. For all the
graph-based approaches, we ran a search overk∈ {2, 10, 50, 100, 250, 500, 1000, 2000,m} (note
k= m represents a fully connected graph, i.e., a clique). In addition, in the caseof MP, we setα = 2
for all experiments, and we ran a search overµ∈ {1e–8, 1e–4, 0.01, 0.1, 1, 10, 100} andν ∈ {1e–8,
1e–6, 1e–4, 0.01, 0.1}. In the case of SGT, the search was overc∈ {3000, 3200, 3400, 3800, 5000,
100000} (Joachims, 2003).

We report precision-recall break even point (PRBEP) results on the 3,299 test documents in
Table 7. PRBEP has been a popular measure in information retrieval (see,e.g., Raghavan et al.,
1989). It is defined as that value for which precision and recall are equal. Results for each category
in Table 7 were obtained by averaging the PRBEP over the 20 transduction sets. The final row
“average” was obtained by macro-averaging (average of averages). The optimal value of the hyper-
parameters in case of SQ-Loss-I wask= 100; in case of MP,k= 1000, µ= 1e–4, ν = 1e–4; and in
the case of SGT,k = 100, c= 3400. The results show that MP outperforms the state-of-the-art on
6 out of 10 categories and is competitive in 3 of the remaining 4 categories. Further it significantly
outperforms all other approaches in case of the macro-averages. MP issignificantly better at the
0.001 level over its nearest competitor (SGT) according to a difference of proportions significance
test.

Figure 6 shows the variation of “average” PRBEP (last row in Table 7) against the number of
labeled documents (l ). For each value ofl , we tuned the hyper-parameters over the first transduction
set and used these values for all the other 20 sets. Figure 6 also shows error-bars (± standard
deviation) for all the experiments. As expected, the performance of all theapproaches improves
with increasing number of labeled documents. Once again in this case, MP, outperforms the other
approaches for all values ofl .
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Category SVM TSVM SGT SQ-Loss-I MP
earn 91.3 95.4 90.4 96.3 97.9
acq 67.8 76.6 91.9 90.8 97.2

money 41.3 60.0 65.6 57.1 73.9
grain 56.2 68.5 43.1 33.6 41.3
crude 40.9 83.6 65.9 74.8 55.5
trade 29.5 34.0 36.0 56.0 47.0

interest 35.6 50.8 50.7 47.9 78.0
ship 32.5 46.3 49.0 26.4 39.6

wheat 47.9 44.4 59.1 58.2 64.3
corn 41.3 33.7 51.2 55.9 68.3

average 48.9 59.3 60.3 59.7 66.3

Table 7: P/R Break Even Points (PRBEP) for the top 10 categories in the Reuters data set with
l = 20 andu = 3299. All results are averages over 20 randomly generated transduction
sets. The last row is the macro-average over all the categories.
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Figure 6: Average PRBEP over all classes vs. number of labeled documents (l ) for Reuters data set

7.3.2 WEBKB COLLECTION

World Wide Knowledge Base (WebKB) is a collection of 8282 web pages obtained from four aca-
demic domains. The web pages in the WebKB set are labeled using two different polychotomies.
The first is according to topic and the second is according to web domain. Inour experiments we
only considered the first polychotomy, which consists of 7 categories:course, department, faculty,
project, staff, student, andother. Following Nigam et al. (1998) we only use documents from cat-
egoriescourse, department, faculty, project which gives 4199 documents for the four categories.
Each of the documents is in HTML format containing text as well as other information such as
HTML tags, links, etc. We used both textual and non-textual information to construct the feature
vectors. In this case we did not use either stop-word removal or stemming asthis has been found
to hurt performance on this task (Nigam et al., 1998). As in the case of the Reuters data set we
extracted TFIDF features for each document and constructed the graph using cosine similarity.
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Figure 7: Average PRBEP over all classes vs. number of labeled documents (l ) for WebKB collec-
tion.

Class SVM TSVM SGT SQ-Loss-I MP
course 46.5 43.9 29.9 45.0 67.6
faculty 14.5 31.2 42.9 40.3 42.5
project 15.8 17.2 17.5 27.8 42.3
student 15.0 24.5 56.6 51.8 55.0

average 23.0 29.2 36.8 41.2 51.9

Table 8: P/R Break Even Points (PRBEP) for the WebKB data set withl = 48 andu= 3148. All
results are averages over 20 randomly generated transduction sets. The last row is the
macro-average over all the classes

As in Bekkerman et al. (2003), we created four roughly-equal random partitions of the data set.
In order to obtainDl , we first randomly choose a split and then sampledl documents from that split.
The other three splits constituteDu. We believe this is more realistic than sampling the labeled
web-pages from a single university and testing web-pages from the other universities (Joachims,
1999). This method of creating transduction sets allows us to better evaluate the generalization
performance of the various algorithms. Once again we create 21 transduction sets and the first set
was used to tune the hyper-parameters. Further, we ran a search overthe same grid as used in
the case of Reuters. We report precision-recall break even point (PRBEP) results on the 3,148 test
documents in Table 8. For this task, we found that the optimal value of the hyper-parameter were:
in the case of SQ-Loss-I,k = 1000; in case of AM,k = 1000,µ = 1e–2,ν = 1e–4; and in case
of SGT,k = 100,c= 3200. Once again, MP significantly outperforms the state-of-the-art (results
are significant at the 0.0001 level). Figure 7 shows the variation of PRBEPwith number of labeled
documents (l ) and was generated in a similar fashion as in the case of the Reuters data set.

3339



SUBRAMANYA AND BILMES

7.4 TIMIT Phone Recognition

The TIMIT corpus of read speech was designed to provide speech data for acoustic-phonetic stud-
ies and for the development and evaluation of automatic speech recognition systems (Zue et al.,
1990). TIMIT contains broadband recordings of 630 speakers of eight major dialects of American
English, each reading ten phonetically rich sentences. The corpus includes time-aligned phonetic
transcriptions and has standard training (3896 utterances) and test (196 utterances) sets. For hyper-
parameter tuning, as TIMIT does not define a development set, we created one with 50 TIMIT
utterances (independent of the training and test sets). In the past, TIMIT has been used almost
exclusively to evaluate the performance of supervised learning algorithms(Halberstadt and Glass,
1997; Somervuo, 2003). Here, we use it to evaluate SSL algorithms by using fractions of the stan-
dard TIMIT training set obtained by random sampling. This simulates the casewhen only small
amounts of data are labeled. We compare the performance of MP against that of

(a) ℓ2 regularized 2-layer multi-layered perceptron (MLP) (Bishop, 1995), and

(b) PSQ solved using SQ-Loss-I.

Recall that, while MLPs are fully-supervised, SQ-Loss-I and MP are both graph-based SSL algo-
rithms. We chooseℓ2 regularized MLPs as they have been shown to beat SVMs for the phone
classification task (Li and Bilmes, 2006).

To obtain the acoustic observations,xi , the signal was first pre-emphasized (α = 0.97) and then
windowed using a Hamming window of size 25ms at 100Hz. We then extracted 13mel-frequency
cepstral coefficients (MFCCs) (Lee and Hon, 1989) from these windowed features. Deltas were
appended to the above resulting in 26 dimensional features. As phone classification performance
is improved by context information, we appended each frame with 3 frames from the immediate
left and right contexts and used these 182 dimensional feature vectors as inputs to the classifier.
These features were used to construct a symmetrized 10-NN graph overthe entire training and
development sets. This graph had 1,382,342 vertices. The weights are given by

wi j = sim(xi ,x j) = exp{−(xi−x j)
TΣ−1(xi−x j)}

whereΣ is the covariance matrix computed over the entire TIMIT training set. We follow the
standard practice of mapping the original set of 61 phones in TIMIT downto 48 phones for modeling
(|Y|= 48) and then a further mapping to 39 phones for scoring (Lee and Hon, 1989).

For each approach the hyper-parameters were tuned on the development set by running an ex-
tensive search. In the case of the MLP, the hyper-parameters include the number of hidden units
and the regularization coefficient. For MP and SQ-Loss-I, the hyper-parameters were tuned over
the following setsµ∈ {1e–8, 1e–4, 0.01, 0.1} andν ∈ {1e–8, 1e–6, 1e–4, 0.01, 0.1}. We found
that settingα = 1 in the case of MP ensured that p= q at convergence. As both MP and SQ-Loss-I
are transductive, in order to measure performance on an independenttest set, we induce the labels
using the Nadaraya-Watson estimator, that is, given an input sample,x̂, that we wish to classify, the
output is given by

ŷ= argmax
y∈Y

p̂(y) wherep̂(y) =
∑ j∈N (x̂) sim(x̂,x j)p∗j (y)

∑ j∈N (x̂) sim(x̂,x j)
,
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Figure 8: Phone Accuracy (PA) on the TIMIT development set (left) and TIMIT NIST core eval-
uation/test set (right). The x-axis shows the percentage of standard TIMIT training data
that was treated as being labeled.

N (x̂) is the set of nearest neighbors ofx̂ in the training data (i.e., all the samples over which
the graph was constructed) andp∗j is the converged value ofp j . In our experiments we have that
|N (x̂)|= 50.

The left plot in Figure 8 shows the phone classification results on the TIMITdevelopment set
while the right plot shows the results on the NIST Core test set. The y-axis shows phone ac-
curacy (PA) which represents the percentage of frames correctly classified and the x-axis shows
the fraction f of the training set that was treated as being labeled. We show results forf ∈
{0.005,0.05,0.1,0.25,0.3}. Note that in each case we use the same graph, that is, only the set
of labeled verticesVl changes depending onf . The following observations may be made from these
results:

1. MP outperforms the SQ-Loss-I objective for all cases off . This lends further weight to the
claim that KLD based loss is more suitable for classification problems.

2. When little labeled training data is available, both SQ-Loss-I and MP significantly outperform
the MLP. For example when 0.5% of the training set is labeled, the PA in the caseof MP was
52.3% while in the MLP gave a PA of 19.6%. This is not surprising as the MLP does not make
use of the unlabeled data. It remains to be tested if semi-supervised MLP training (Malkin
et al., 2009) would reduce or reverse this difference.

3. Even when 10% of the original TIMIT training set is used, MP gives a PA of about 60% and
outperforms both the MLP and SQ-Loss-I.

4. It is interesting to note that an MLP trained using the entire training set (i.e., ithad 100% of
the labeled samples) resulted in a PA of 63.1%. But using about 30% of this data, MP gives a
PA of about 62.4%.
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Bigram Trigram
SQ-Loss-I 75.6% 76.9%

MP 81.0% 81.9%

Table 9: Dialog-Act Tagging Accuracy results on the Dihana Corpus. The results are for the case
of classifying user turns. The baseline DA accuracy was 76.4% (Martı́nez-Hinarejos et al.,
2008)

5. We also found that for larger values off (e.g., atf = 1), the performances of MLP and MP did
not differ significantly. But those are more representative of the supervised training scenarios
which is not the focus here.

6. A comparison of the curves for MP with and without entropy regularization illustrates the
importance of the graph-regularizer (second term inCKL andCMP).

7.5 Dialog-Act Tagging

Discourse patterns in natural conversations and meetings are well knownindicators of interesting
and useful information about human conversational behavior. Dialog acts (DA) which reflect the
functions that utterances serve in discourse are one type of such patterns. Detecting and understand-
ing dialog act patterns can provide benefit to systems such as automatic speech recognition, machine
translation and general natural language processing (NLP). In this section we present dialog-act tag-
ging results on two tasks: (a) Dihana, and (b) SWB.

7.5.1 DIHANA DA TAGGING

Dihana is a Spanish dialog corpus. It is composed of 900 task-oriented computer-human spoken
dialogs collected via a train reservation system. Typical topics include timetables, fares, and services
offered on trains. The size of the vocabulary is 823 words. Dihana wasacquired from 225 different
speakers (153 male and 72 female). On average, each dialog consisted of 7 user turns and 10
system turns, with an average of 7.7 words per user turn. The corpus has three tasks which include
classifying the DAs of the (a) user turns, (b) system turns, and (c) bothuser and system turns.
Each of these tasks has training, test and development sets setup for 5-fold cross validation. As the
system turns are more structured compared to the user turns, the task of classifying user turns is
more challenging. For more information, see Martı́nez-Hinarejos et al. (2008).

Here we compare the performance of MP against that of SQ-Loss-I anda HMM-based DA
tagging system described in Martı́nez-Hinarejos et al. (2008). We extracted two sets of features
from the text: (a) bigram TFIDF and (b) trigram TFIDF (Salton and Buckley, 1987). We constructed
symmetrized k-NN graphs using each of the above features making use of cosine similarity. The
graphs were defined over the training, test and development sets for thetask that involved classifying
user turns. The hyper-parameters were tuned overk ∈ {2,10,20,50,100}, µ∈ {1e–8, 1e–4, 0.01,
0.1, 1, 10, 100} andν ∈ {1e–8, 1e–6, 1e–4, 0.01, 0.1} on the development set. In the case of MP,
we found that settingα = 2 gave p= q at convergence.

The DA tagging results averaged over the 5-folds for the Dihana corpusare shown in Table 9.
Unlike previous experiments, in this case, we treat the entire training set as being labeled, whereas

3342



GRAPH-BASED SEMI-SUPERVISEDLEARNING WITH MEASUREPROPAGATION

Bigram Trigram
SQ-Loss-I 79.1% 81.3%

MP 83.2% 85.6%

Table 10: Dialog-Act Tagging Accuracy results on the Switchboard DA Corpus. The baseline DA
accuracy was 84.2% (Ji and Bilmes, 2005)

the test set is unlabeled. This simulates the case when SSL algorithms are usedfor supervised
learning but in a transductive manner (i.e., the test set is assumed to be given). The HMM-based
DA tagger which was trained on the same set gave an accuracy of 76.4%. It can be seen from
Table 9 that MP outperforms both SQ-Loss-I and the HMM based tagger in both the bigram-TFIDF
and trigram-TFIDF cases. We conjecture that the performance improvement of MP over HMM is
due to two reasons: (a) MP is a discriminative model while the HMM was trained ina generative
fashion, (b) as MP is transductive, it is able to exploit the knowledge of thegraph over the test set.

7.5.2 SWITCHBOARD DA TAGGING

The goal of the Switchboard discourse language modeling project was to annotate the utterances
in the Switchboard-I (SWB) training set with their corresponding discourse acts (Jurafsky and Ess-
Dykema, 1997). SWB is a collection of telephone conversations (see Section 8.1). Every utterance
in a each conversation was given one of the 42 different dialog act tags(see Table 2 in Jurafsky and
Ess-Dykema, 1997). For our work here we only use the 11 most frequent tags. This covers more
than 86% of all the utterances in SWB. These utterances were split into training, development and
test sets containing 180314, 5192 and 4832 utterances respectively.

As in the case of Dihana, we generated both bigram and trigram TFIDF features and constructed
graphs in the manner described above. Here we compare the performanceof MP and SQ-Loss-
I against the performance of a parametric dynamic Bayesian Network (DBN) that makes use of a
hidden back-off model (Ji and Bilmes, 2005). The DBN, however, madeuse of only bigram features.
The hyper-parameters were tuned overk∈ {2,10,20}, µ∈ {1e–8, 1e–4, 0.01, 0.1, 1, 10, 100} and
ν ∈ {1e–8, 1e–6, 1e–4, 0.01, 0.1} on the development set. In the case of MP, we found that setting
α = 2 ensured that p= q at convergence.

The test set DA tagging accuracy is shown in Table 10. We see that when we use trigram TFIDF
features, MP outperforms the bigram DBN. More importantly, it performs better than SQ-Loss-I in
all cases.

8. Parallelism and Scalability to Large Data Sets

In this section we discuss how MP can be scaled to very large data sets. We use the Switchboard
I (SWB) data set which is a collection of about 2,400 two-sided telephone conversations among
543 speakers (302 male, 241 female) from all areas of the United States (Godfrey et al., 1992). A
computer-driven system handled the calls, giving the caller appropriate recorded prompts, selecting
and dialing another person (the callee) to take part in a conversation, introducing a topic for discus-
sion and recording the speech from the two subjects into separate channels until the conversation
was finished. SWB is very popular in the speech recognition community and is used almost ubiq-
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uitously for the training of large vocabulary conversational speech recognition systems (Evermann
et al., 2005; Subramanya et al., 2007) and consists of about 300 hoursof speech data.

In order to construct a graph using the SWB data, we exact featuresxi in the following manner—
the wave files were first segmented and then windowed using a Hamming windowof size 25ms at
100Hz. We then extracted 13 perceptual linear prediction (PLP) coefficients from these windowed
features and appended both deltas and double-deltas resulting in a 39 dimensional feature vector.
As phone classification performance is improved by context, we used a 7 frame context window (3
frames in the past and 3 in the future) yielding a 273 dimensionalxi . This procedure resulted in 120
million samples.

Due to the large sizem= 120M of the SWB data set, it is not currently feasible to generate the
graph using the conventional brute-force search which isO(m2). Nearest neighbor search is a well
researched problem with many approximate solutions. A large number of solutions to this problem
are based on variations of the classickd-treedata structure (Friedman et al., 1977). Here we make
use of the Approximate Nearest Neighbor (ANN) library (seehttp://www.cs.umd.edu/ ˜ mount/
ANN/) (Arya and Mount, 1993; Arya et al., 1998). It constructs a modified version of the kd-tree
data structure which is then used to query the NNs. The query process requires that one specify an
error term,ε, and guarantees that

d(xi ,N (xi))

d(xi ,Nε(xi))
≤ 1+ ε

whereN (xi) is a function that returns the actual NN ofxi while Nε(xi) returns the approximate
NN. Larger values ofε improve the speed of the nearest neighbor search at the cost of accuracy. For
more details about the algorithm, see Arya and Mount (1993); Arya et al. (1998). In our case we
constructed a symmetrized 10-NN graph withε = 2.0.

Next we describe how MP can be parallelized on a shared-memory symmetric multiprocessor
(SMP). The update equations in the case of MP are amenable to a parallel implementation and also to
further optimizations that lead to a near linear speedup. In the MP update equations (see Section 3),
we see that one set of measures is held fixed while the other set is updated without any required
communication amongst set members, so there is no write contention. This immediatelyyields a
T-threaded implementation where the graph is evenlyT-partitioned and each thread operates over
only a sizem/T = (l +u)/T subset of the graph nodes.

We used the graph constructed using the SWB data above and ran a timing teston a 16 core
symmetric multiprocessor with 128GB of RAM, each core operating at 1.6GHz.We varied the
numberT of threads from 1 (single-threaded) up to 16, in each case running 3 iterations of MP (i.e.,
3 each of p and q updates). Each experiment was repeated 10 times, and we measured the minimum
CPU time over these 10 runs. CPU time does not include the time taken to load data-structures
from disk. The speedup forT threads is typically defined as the ratio of time taken for single thread
to time taken forT threads. The solid (black) line in Figure 9(a) represents the ideal case (a linear
speedup), that is, when usingT threads results in a speedup ofT. The pointed (green) line shows the
actual speedup of the above procedure, typically less than ideal due to inter-process communication
and poor shared L1 and/or L2 microprocessor cache interaction. WhenT ≤ 4, the speedup (green)
is close to ideal, but for increasingT the algorithm increasingly falls away from the ideal case. Note
that in the figure (and henceforth) we refer to the green pointed line as ‘speech temporal ordering’
as the nodes in the graph are ordered based on the sequence in which they occur in the utterance.
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Our contention is that the sub-linear speedup is due to the poor cache cognizance of the al-
gorithm. At a given point in time, suppose threadt ∈ {1, . . . ,T} is operating on nodeit . The
collective set of neighbors that are being used by theseT threads are{∪T

t=1N (it)} and this, along
with nodes∪T

t=1{it} (and all memory for the associated measures), constitute the currentworking
set. The working set should be made as small as possible to increase the chance it will fit in any
shared machine caches, but this becomes decreasingly likely asT increases since the working set
is monotonically increasing withT. Our goal, therefore, is for the nodes that are being simultane-
ously operated on to have a large amount of neighbor overlap thus minimizing the working set size.
Viewed as the optimization problem, we must find a partition(V1,V2, . . . ,Vm/T) of V that minimizes
maxj∈{1,...,m/T} |∪v∈Vj N (v)|. With such a partition, we may also order the subsets so that the neigh-
bors ofVi would have maximal overlap with the neighbors ofVi+1. We then schedule theT nodes
in Vj to run simultaneously, and schedule theVj sets successively.

Algorithm 1 : Graph Node Ordering Algorithm Pseudocode, SMP Case

Input : A GraphG= (V,E)
Result: A node ordering, by when they are marked.
Select an arbitrary nodev ;
while There are unselected nodes remainingdo

Select an unselectedv′ ∈N 2(v) that maximizes|N (v)∩N (v′)|. If the intersection is
empty, select an arbitrary unselectedv′. ;
Mark v′ as selected.; // v′ is next node in the order
v← v′. ;

Of course, the time to produce such a partition cannot dominate the time to run the algorithm
itself. Therefore, we propose a simple fast node ordering procedure(Algorithm 1) that can be run
once before the parallelization begins. The algorithm orders the nodes such that successive nodes are
likely to have a high amount of neighbor overlap with each other and, by transitivity, with nearby
nodes in the ordering. It does this by, given a nodev, choosing another nodev′ (from amongst
v’s neighbors’ neighbors, meaning the neighbors ofv’s neighbors) that has the highest neighbor
overlap. We need not search allV nodes for this, since anything other thanv’s neighbors’ neighbors
has no overlap with the neighbors ofv. Given such an ordering, thetth thread operates on nodes
{t, t +m/T, t + 2m/T, . . .}. If the threads proceed synchronously (which we do not enforce) the
set of nodes being processed at any time instant are{1+ jm/T,2+ jm/T, . . . ,T + jm/T}. This
assignment is beneficial not only for maximizing the set of neighbors being simultaneously used,
but also for successive chunks ofT nodes since once a chunk ofT nodes have been processed, it is
likely that many of the neighbors of the next chunk ofT nodes will already have been pre-fetched
into the caches. With the graph represented as an adjacency list, and sets of neighbor indices sorted,
our algorithm isO(mk3) in time and linear in memory since the intersection between two sorted
lists may be computed inO(k) time. This is typically even better thanO(mlogm) sincek3 < logm
for largem.

We ordered the SWB graph nodes, and ran timing tests as explained above.The CPU time
required for the node ordering step is included in each run along with the time for MP. The results
are shown in Figure 9(a) (pointed red line) where the results are much closer to ideal, and there are
no obvious diminishing returns like in the unordered case. Running times are given in Figure 9(b).
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Figure 9: (a) speedup vs. number of threads for the SWB graph (see Section 7). The process was
run on a 128GB, 16 core machine with each core at 1.6GHz. (b) The actual CPU times
in seconds on alog scalevs. number of threads for with and without ordering cases.
“Random” corresponds to the case where we choose a random unselected node rather
than the one with maximum overlap (see Algorithm 1).

Moreover, the ordered case showed better performance even for a single threadT = 1. Note that
since we made use of speech data to generate the graph, it is already naturally well-ordered by
time. This is because human speech is a slowly changing signal, so the nodes corresponding to
consecutive frames are similar, and can be expected to have similar neighbors. Therefore, we expect
our “baseline” speech graph to be better than an arbitrary order, one that might be encountered in a
different application domain. In order to measure performance for sucharbitrarily ordered graphs,
we took the original graph and reordered uniformly at random (a uniform node shuffle). We ran
timing experiments on the resulting graph and the results are shown in Figure 9 as “Random”. As
can be seen, there is indeed a benefit from the speech order, and relative to this random baseline,
our node ordering heuristic improves machine efficiency quite significantly.

We conclude this section by noting that (a) re-ordering may be considereda pre-processing
(offline) step, (b) the SQ-Loss algorithm may also be implemented in a multi-threaded manner and
this is supported by our implementation, (c) our re-ordering algorithm is general and fast and can be
used for any graph-based algorithm where the iterative updates for a given node are a function of its
neighbors (i.e., the updates are harmonic w.r.t. the graph Zhu et al., 2003), and (d) while the focus
here was on parallelization across different processors on a SMP, a similar approach also applies for
distributed processing across a network with a shared disk (Bilmes and Subramanya, 2011).

8.1 Switchboard Phonetic Annotation

In this section we consider how MP can be used to annotate the SWB data set. Recall that SWB
consists of 300 hours of speech with word-level transcriptions. In addition, less reliable phone level
annotations generated in an automatic manner by a speech recognizer with a non-zero error rate are
also available (Deshmukh et al., 1998). TheSwitchboard Transcription Project(STP) (Greenberg,
1995) was undertaken to accurately annotate SWB at the phonetic and syllable levels. One of the
goals was that such data could then be used to improve the performance of conversational speech
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Figure 10: Phone Accuracy vs. Percentage of switchboard (SWB) I training data. STP portion of
SWB was excluded. Phone Accuracy was measured on the STP data. Notethat when
all the Switchboard I data was added, the resulting graph had120 million vertices. The
dashed black line shows the performance of a MLP measured using thes= 0% case
over the same training, development and test sets as MP and LP.

recognition systems. As the task was time-consuming, costly, and error-prone, only 75 minutes of
speech segments selected from different SWB conversations were annotated at the phone level and
about 150 minutes annotated at the syllable level. Having access to such annotations for all of SWB
could be useful for large vocabulary speech recognition research and speech science research in
general. Thus, this an ideal real-world task for SSL.

For our experiments here we only make use of the phonetic labels ignoring thesyllable anno-
tations. Our goal here is two-fold: (a) treat the phonetically annotated portion of STP as labeled
data and use it to annotate all of SWB in STP style, that is, at the phonetic level,yielding the S3TP
corpus and (b) show that our approach scales to very large data sets.

We randomly split the 75 minute phonetically annotated part of STP into three sets, one each for
training, development and testing containing 70%, 10% and 20% of the data respectively (the size
of the development set is considerably smaller than the size of the training set). This procedure was
repeated 10 times (i.e., we generated 10 different training, development and test sets by random
sampling). In each case, we trained a phone classifier using the training set, tuned the hyper-
parameters on the development set and evaluated the performance on the test set. In the following,
we refer to SWB that is not a part of STP asSWB-STP. We added the unlabeled SWB-STP data
in stages. The percentage,s, of unlabeled data included, 0%, 2%, 5%, 10%, 25%, 40%, 60%, and
100% of SWB-STP. We ran both MP and SQ-Loss-I in each case. Whens=100%, there were about
120 million nodes in the graph. As far as we know, this is by far the largest (by about two orders of
magnitude) size graph ever reported for an SSL procedure.

We constructed graphs using the STP data ands% of (unlabeled) SWB-STP data following the
recipe described in the previous section. For all the experiments here we used a symmetrized 10-
NN graph andε = 2.0. The labeled and unlabeled points in the graph changed based on training,
development and test sets used. In each case, we ran both the MP and SQ-Loss-I objectives. For each
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set, we ran a search overµ∈ {1e–8, 1e–4, 0.01, 0.1} andν ∈ {1e–8, 1e–6, 1e–4, 0.01, 0.1} for both
the approaches. The best value of the hyper-parameters were chosen based on the performance on
the development set and the same value was used to measure the accuracy on the test set. The mean
phone accuracy over the different test sets (and the standard deviations) are shown in Figure 10 for
the different values ofs. We would like to point out that our results ats=0% outperform the state-
of-the-art. As a reference, ats=0%, anℓ2 regularized MLP with a 9 frame context window gave
a mean phone accuracy of 37.2% and standard deviation of 0.83 (note thatthis MLP was trained
fully-supervised). Phone classification in the case of conversational speech is a much harder task
compared to phone classification of read speech (Morgan, 2009). It can be seen that MP outperforms
SQ-Loss-I in all cases. More importantly, we see that the performance onthe STP data improves
with the addition of increasing amounts of unlabeled data, and MP seems to get abetter benefit with
this additional unlabeled data, although even SQ-Loss-I has not reached the point where unlabeled
data starts becoming harmful (Nadler et al., 2010).

9. Discussion

In this section, we discuss possible extensions of the proposed approach.

9.1 Generalizing Graph-based Learning via Bregman Divergence

Given a strictly convex real-valued functionφ :△→R, the Bregman divergenceBφ(ψ1||ψ2) between
two measuresψ1,ψ2 ∈△ is given by Lafferty et al. (1997)

Bφ(ψ1||ψ2), φ(ψ1)−φ(ψ2)−〈▽φ(ψ2),ψ1−ψ2〉.

It can be shown that a number of popular distance measures, such as Euclidean distance, KLD,
Itakura-Satio distance are special cases of Bregman divergence (Banerjee et al., 2005). Consider
the optimization problemPBR : min

p∈△m
CBR(p) where

CBR(p) =
l

∑
i=1

Bφ
(

r i ||pi
)

+µ
m

∑
i=1

∑
j∈N (i)

wi j Bφ
(

pi ||p j
)

+ν
m

∑
i=1

Bφ(pi ||u).

WhenBφ(p||q) is convex in the pair(p,q) (Banerjee et al., 2005),CBR is also convex. ClearlyCBR is
a valid graph-based learning objective and it can be seen that it generalizes objectives based on both
squared loss (φ = ∑y p2(y)) and KLD based loss (φ = ∑y p(y) logp(y)). While in the case graph
Laplacian-based techniques, one can generate a large family of regularizers by iterating the Lapla-
cian or taking various transformations of its spectrum to create new ways ofmeasuring smoothness
on the graph, here in the Bregman case, the same can be achieved by usingdifferentφ’s.

The graph regularizer is central to any graph-based SSL algorithm, andthere are two factors that
effect this regularizer: (a) the graph weights and (b) the loss function used to measure the disparity
between the distributions. In the cases we have discussed thus far, the loss function has been either
based on squared-error or KLD. Further, while there have been efforts in the past to learn the graph
(and thus the graph weights) (Zhu and Ghahramani, 2002a; Zhang and Lee, 2006; Zhu et al., 2005;
Alexandrescu and Kirchhoff, 2007a), to the best of our knowledge,there has been no efforts directed
towards learning the loss function. So the natural question is whether it is possible to learnφ jointly
with p?
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One simple idea would be to setφ = ∑y

(

λp2(y)+(1−λ)p(y) logp(y)
)

which leads to a combi-
nation of the popular squared loss and proposed KLD based loss objectives (henceforth we refer to
this asC ′BR(p,λ)). We then need to learnλ jointly with p. However, directly minimizingC ′BR w.r.t.
both p andλ will always leads toλ∗ = 1 as KLD is lower bounded by squared loss (by Pinsker’s
inequality). Thus other criteria such as those based on minimizing the leave-one-out error (Zhang
and Lee, 2006) or minimum description length may be required. There might also be other con-
vex parametrization ofφ. This would amount to learning the loss function while the actual graph
weights are held fixed.

While we have defined Bregman divergence over simplices, they are actually quite general and
can be defined over other general sets of objects such as vectors or matrices (Tsuda et al., 2005). This
can be used to solve general learning problems using alternating-minimization using a reformulation
similar to the one suggested in Section 4. We believe that this is another contribution of our work
here as our proposed objective, and the use of alternating-minimization to efficiently optimize it are
in fact very general and can be used to solve other learning problems (Tsuda et al., 2005).

9.2 Incorporating Priors

As discussed in Section 1, there are two types of priors in SSL—label priors and balance priors.
They are useful in the case of imbalanced data sets. We have seen that MPis less sensitive to
imbalance compared to other graph-based SSL approaches (see the results in the cases of two-
moon, USPS, Reuters, TIMIT and SWB data sets). However, in cases ofextreme imbalance, even
the performance of MP might suffer and so we show how to modify our proposed objective to
handle both the above priors in a principled manner. Label priors are useful when the underlying
data set is imbalanced. For example, in the case of phone classification, as a result of the nature
of human speech and language production, some classes of sounds tendto occur at a higher rate
compared to others. Clearly ignoring such domain knowledge can hurt performance particularly in
the case of SSL where labeled data is sparse. On the other hand, balancepriors are useful to prevent
degenerate solutions. An extreme example of a degenerate solution would beall unlabeled samples
being classified as belonging to the same class when the underlying data set has a uniform prior.
This can occur due to a number of reasons such as, (a) improper graphconstruction, (b) improperly
sampled labeled data, that is, the case where a majority of the labeled samples come from one class
(similar to the scenario discussed in the case of the 2D two-moon data set).

Label Priors: This is more akin to the classical integration of priors within a Bayesian learn-
ing setting. There has been some work in the past directed towards integrating priors for para-
metric (non-graph-based) SSL (Mann and McCallum, 2007). In the caseof graph-based SSL,
class mass normalization (CMN) (Zhu and Ghahramani, 2002a; Bengio et al.,2007) and label bid-
ding (Zhu and Ghahramani, 2002a), are the two approaches that have been used to-date. How-
ever, these are applicable only after the inference process has converged. In other words, they
represent ways in which the posteriors may be influenced so that the average probability mass
over all the posteriors for a given class matches that given by the prior.Ideally, like in gen-
eral Bayesian learning, it is imperative that the priors are tightly integrated into the inference
process rather than influencing the results at a later point. Our proposedobjective can be ex-
tended to incorporate label priors. We first remind the reader thatCKL(p) may be re-written as
CKL(p) = ∑l

i=1DKL
(

r i ||pi
)

+µ∑i, j wi j DKL
(

pi ||p j
)

+ ν∑i DKL
(

pi ||u
)

whereu is uniform measure.
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Now consider minimizing over p∈△m

C ′KL(p) =
l

∑
i=1

DKL
(

r i ||pi
)

+µ∑
i, j

wi j DKL
(

pi ||p j
)

+ν∑
i

DKL
(

pi ||p0
)

.

The above objective is convex and the last term encourages eachpi to be close top0 without actually
insisting thatpi(y) = p0(y) ∀ i,y. It is possible to reformulate the above objective as

C ′MP(p,q) =
l

∑
i=1

DKL
(

r i ||qi
)

+µ∑
i, j

w′i j DKL
(

pi ||q j
)

+ν∑
i

DKL
(

pi ||p0
)

.

which can be easily solved using AM. Further each of the update equationshas a closed form
solution. This represents the case where the prior effects each vertex directly (i.e., a more local
influence) .

Balance Priors:There has been some work in graph-based SSL for incorporating balance priors.
SGT (Joachims, 2003) which is an approximation to the NP-hard norm cut problem attempts to
incorporate priors by influencing the nature of the final cut. But there are other drawbacks associated
with SGT such as computational complexity. We can incorporate a balance termin our objective by
first definingp̃(y) as the agglomerative measure over all thep’s and then minimizing

C′1(p) = CKL(p)+κDKL(p0||p̃)

wherep0(y) is the prior probability that Y= y. The above retains the nice convexity properties of
the original objective. There are many ways of defining ˜p, such as,

p̃(y) =
1
n

n

∑
i=1

pi(y) or p̃(y) ∝
n

∏
i=1

(pi(y)+ ε).

The first case above represents the arithmetic mean while the second one is the geometric mean.
Here the prior only indirectly influences the individualp’s, that is, via ˜p. Unfortunately, this form
cannot be optimized in the closed form using alternating-minimization. However,the MOM ap-
proach proposed in Section 3.1 or IPMs or any other numerical convex optimization approach may
be used to solve the above problem.

9.3 Directed Graphs

In some applications, the graphs are directed in nature. Examples include the Internet (a vertex
might represent a web-page and directed links for hyper-links betweenpages), or a graph repre-
senting the routes taken by a delivery system. In such applications there is useful information that
is expressed by the direction of the connection between two vertices. While we could convert any
given directed graph into an undirected one, SSL algorithms in this case should exploit the informa-
tion in the directed links. Thus far we have been using symmetrized k-NN graphs, but without the
symmetrization step, k-NN graphs are not necessarily symmetric.

As KLD is an asymmetric measure of dissimilarity between measures, our proposed objective
can very easily be extended to work for directed graphs. Note that, as in the case of an undirected
graph, a directed graph can also be represented as a matrixW, but here the matrix is asymmetric.
There has been some work on graph-based SSL using directed graphs. For example, Zhou et al.
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(2005), use a squared-loss based objective on directed graphs. Webelieve that this may not be ideal,
as squared error is symmetric and as a result it might be difficult to fully exploit the information
encoded by the directed links. An asymmetric measure of dissimilarity would havea better chance
of correctly representing the problem of SSL on directed graphs.

It turns our thatCMP may be modified for directed graphs. We assume that ifj is a NN of i
then there is a directed arrow fromi to j. There are in fact two scenarios that one needs to consider.
Given a nodei ∈V, letN (in)(i) be the set of nodes that have directed edges that lead into vertexi.
Consider the following objective

C
(D1)
MP (p,q) =

l

∑
i=1

DKL
(

r i ||pi
)

+µ
m

∑
i=1

∑
j∈N (in)(i)

wi j DKL
(

pi ||q j
)

−ν
m

∑
i=1

H(pi).

In this case, for nodei, the second term in the above objective encouragespi to be close to the
q’s of all its neighbors,N (in)(i). In other words, the above form expresses the rule “each vertex
should resemble its neighbors but not necessarily vice-versa.” In a similar manner we can define
a complementary form—letN (out)(i) be the set of nodes which are on the other end of out-going
links from nodei ∈V. Consider minimizing

C
(D2)
MP (p,q) =

l

∑
i=1

DKL
(

r i ||pi
)

+µ
m

∑
i=1

∑
j∈N (out)(i)

wi j DKL
(

pi ||q j
)

−ν
m

∑
i=1

H(pi).

This form encourages, “the neighbors of a vertex should resemble it but not necessarily vice-versa.”
BothC (D1)

MP (p,q) andC (D2)
MP (p,q) can be efficiently optimized using our alternating-minimization

(the update equations are similar to MP). In a similar manner as the above, our objective can also
be easily extended to hyper-graphs.

9.4 Connections to Entropy Minimization (Grandvalet and Bengio, 2005)

Entropy Minimization uses the entropy of the unlabeled data as a regularizer while optimizing a
parametric loss function over the labeled data. The loss function here is given by

C(Θ) =−
l

∑
i=1

logp(yi |xi ;Θ)+ν
l+u

∑
i=l+1

H(Yi |Xi ;Θ)

whereH(Yi |Xi ;Θ) is the Shannon entropy of the probability distributionp(yi |xi ;Θ). While both our
proposed approach and entropy minimization make use of the Shannon entropy as a regularizer,
there are several important differences between the two approaches:

1. entropy minimization is not graph-based,

2. entropy minimization is parametric whereas our proposed approach is non-parametric

3. the objective in case of entropy minimization is not convex, whereas in ourcase we have a
convex formulation with simple update equations and convergence guarantees.

4. most importantly, entropy minimization attempts to minimize entropy while the proposed
approach aims to maximize entropy. While this may seem a triviality, it has significant con-
sequences on the optimization problem.
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It is however possible to derive an interesting relationship between the proposed objective and
entropy minimization. Consider

CKL(p) =
l

∑
i=1

DKL
(

r i ||pi)
)

+µ
n

∑
i, j=1

wi j DKL
(

pi ||p j
)

−ν
n

∑
i=1

H(pi)

≤
l

∑
i=1

DKL
(

r i ||pi)
)

−µ
n

∑
i, j=1

wi j ∑
y

pi(y) logp j(y)

aswi j ,ν,H(pi)≥ 0. Consider a degenerate graph in whichwi j = δ(i = j ∧ i > l) then

CKL(p)≤
l

∑
i=1

DKL
(

r i ||pi)
)

−µ
n

∑
i=l+1

∑
y

pi(y) logpi(y)

=
l

∑
i=1

∑
y

(

r i(y) logr i(y)− r i(y) logpi(y)

)

+µ
n

∑
i=l+1

H(pi)

≤−
l

∑
i=1

∑
y

r i(y) logpi(y)+µ
n

∑
i=l+1

H(pi).

Settingwi j = δ(i = j ∧ i > l) amounts to not using a graph regularizer. If we assume hard labels
(i.e.,H(r i) = 0) and that eachpi is parameterized by, sayθi , then we can rewrite the above as

CKL(p)≤−
l

∑
i=1

logpi(yi ;θi)+µ
n

∑
i=l+1

H(pi ;θi).

Now if all the θi were tied to a singleθ then we have that

CKL(p)≤−
l

∑
i=1

logpi(yi ;θ)+µ
n

∑
i=l+1

H(pi ;θ)

which is equal to the entropy minimization objective. Thus entropy minimization minimizesa non-
convex upper bound on a special case of our proposed loss function. This is perhaps one of the
reasons why graph-based approaches outperform entropy minimizationon manifold-like data sets
(see chapter 21 in Chapelle et al., 2007).

9.5 Rate of Convergence of MP

Recall that in Section 5 we showed that the rate of convergence of SQ-Loss-I is geometric (linear).
Here we empirically compare the rate of convergence of MP and SQ-Loss-I. While we have so
far been unable to derive theoretical bounds on the convergence rateof MP, our empirical analysis
shows that MP convergences faster than SQ-Loss-I. The difficulties associated with analyzing the
rate of convergence of MP are mostly due to the non-linear nature of the update equation forp(n)i (y).

We ran both MP and SQ-Loss-I to convergence on a number of data sets taken from a variety of
domains (see Table 3). For both algorithms we measured

f (n) =
C(n)−C∗

C(n−1)−C∗
(2)
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Figure 11: Plots showing the rate of convergence of MP and SQ-Loss-Iin the case of the Text and
USPS corpora. The x-axis represents iteration index and the y-axis rateof convergence,
f (n) (see Equation 2).

and the plots of these quantities are shown in Figure 11 (similar trends were observed in the case of
other data sets). In the above,C is the appropriate objective (i.e.,CMP in case of MP andCSQ in the
case of SQ-Loss-I) andC∗ is thecorrespondingoptimum value. While we have a standard test for
convergence in the case of MP (see Theorem 9), for the purposes ofcomparison against SQ-Loss-I
here, we use the following criteria: in either case we say that the algorithm has converged if the
rate of change of the parameters falls below 0.5%. Figure 11 shows that MPconverges faster in
comparison to SQ-Loss-I. Based on these results, we make the following conjecture:

Conjecture 13 MP has a geometric convergence rate, if not better.

Finally a note on how to setα. Recallα is the hyperparameter that ensures that p= q in the final
solution in the case of MP. Recall that in theorem 8, we have shown that there exists a finite value
of α such that p∗ = q∗. In practice, we found that settingα = 2 ensures the equality of p and q at
convergence. As expected, we also found that increasingα leads to a slower rate of convergence in
practice.

10. Conclusions

In this paper we presented a objective based on KLD for graph-basedSSL. We have shown how the
objective can be efficiently solved using alternating-minimization. In addition, we showed that the
sequence of updates has a closed form solution and that it converges tothe correct optima. We also
derived a test for convergence of the iterative procedure that doesnot require the computation of
the objective. A version of the squared-error graph-based SSL objective defined over measures was
also presented. In this context we showed that squared-error has a geometric rate of convergence.

Our results show that MP is able to outperform other state-of-the-art graph-based SSL algo-
rithms on a number of tasks from diverse set of domains ranging from speech to natural language
to image processing. We have also shown how our algorithm can be scaled tovery large data sets.
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Appendix A. SolvingPKL using Method of Multipliers

The first step in the application of MOM to solvePKL is the construction of the augmented La-
grangian function forCKL(p) which is given by

LC1(p,Λ) = CKL(p)+
n

∑
i=1

λi

(

1−∑
y

pi(y)

)

+c
n

∑
i=1

(

1−∑
y

pi(y)

)2

whereΛ = {λ1, . . . ,λn} are the Lagrange multipliers andc≥ 0 is the penalty parameter. Recall
that we require∑y pi(y) = 1, ∀ i and thatpi(y)≥ 0, ∀ i,y. Notice that the objectiveLC1(p,Λ) only
penalizes deviations from the equality constraints. In order to ensure thatthe inequality constraints
in PKL are met we make use of thegradient projection method(Bertsekas, 1999). Thus the update
equation is given by

p(n)i (y) =

[

p(n−1)
i (y)−α(n−1)

(

∂LC1(p,Λ)
∂pi(y)

)

{p=p(n−1),Λ=Λ(n−1)}

]+

.

Heren= 1, . . . , is the iteration index,α(n−1) is the learning rate, and[x]+ = max(x,0). Determining
an appropriate learning rate is often one of the biggest challenges associated with the application
of gradient descent based optimization approaches. We use the Armijo rule(Bertsekas, 1999) to
compute the learning rate,α. It can be shown that

∂LC1(p,Λ)
∂pi(y)

= µ
n

∑
j=1

[

we j
(

1+ logpi(y)− logp j(y)
)

−
w jep j(y)

pi(y)

]

−
r i(y)
pi(y)

δ(e≤ l)+

ν(logpi(y)+1)+λi +2c
(

1−∑
y

pi(y)
)

.

Under MOM, the update equation for the Lagrange multipliers is

λ(n)
i = λ(n−1)

i +c(n−1)
(

∑
y

p(n−1)
i (y)−1

)

and the penalty parameter is updated using

c(n) =







βc(n−1) if ∑i

(

τ(n)i − γτ(n−1)
i

)

> 0

c(n−1) otherwise

whereτ(n)i =
(

1−∑y p(n)i (y)
)2

. Intuitively, the above update rule for the penalty parameter increases
its value only if the constraint violation is not decreased by a factorγ over the previous iteration.
The iterative procedure terminates when

LC1(p
(n−1),Λ(n−1))−LC1(p

(n),Λ(n))

LC1(p(n−1),Λ(n−1))
≤ ζ.
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Appendix B. Proof of Convergence

In this section we show that AM onCMP converges to the correct optimum. We first show that
the three-and-four points properties (to be defined shortly) hold forCMP which then implies that
the five-points property holds forCMP. We note that our proof is inspired by Csiszar and Tusnady
(1984).

Definition 14 If P, Q are convex sets of finite measures, given a divergence d(p,q), p∈ P, q∈ Q,
then the “three points property” (3-pp) is said to hold for p∈ P if ∀ q,q(0) ∈ Q we have

δ(p,p(1))+d(p(1),q(0))≤ d(p,q(0)) where p(1) ∈ argmin
p∈P

d(p,q(0)) and

δ(p, p(1)) : P×P→ R
+ is arbitrary andδ(p, p) = 0.

Lemma 15 CMP(p,q) satisfies the 3-pp.

Proof Let

δ(p,p(1)), µ
n

∑
i, j=1

w′i j DKL(pi ||p
(1)
i ), f (t), CMP(p

(t),q(0))

where p(t) = (1− t)p+ tp(1), 0< t ≤ 1 and thusp(t)i = (1− t)pi + t p(1)i . As f (t) attains its minimum
at t = 1, f (1)≤ f (t), ∀ 0< t ≤ 1 and so

f (1)− f (t)
1− t

≤ 0. (3)

We have that

f (t) =
l

∑
i=1

∑
y∈Y

r i log
r i

q(0)i

+µ
n

∑
i, j=1

w′i j ∑
y∈Y

p(t)i log
p(t)i

q(0)j

+ν
n

∑
i=1

∑
y∈Y

p(t)i log
p(t)i

u

where we ignore the argumenty in every measure for brevity (e.g.,r i is r i(y)). Using the above in
Equation 3 and taking the limit ast→ 1, we get

lim
t→1

(

µ
n

∑
i, j=1

w′i j ∑
y∈Y

1
1− t

(

p(1)i log
p(1)i

q(0)j

− p(t)i log
p(t)i

q(0)j

)

+ν
n

∑
i=1

∑
y∈Y

1
1− t

(

p(1)i log
p(1)i

u
− p(t)i log

p(t)i

u

)

)

(a)
=µ

n

∑
i, j=1

w′i j ∑
y∈Y

lim
t→1

[

1
1− t

(

p(1)i log
p(1)i

q(0)j

− p(t)i log
p(t)i

q(0)j

)

]

+ν
n

∑
i=1

∑
y∈Y

lim
t→1

[

1
1− t

(

p(1)i log
p(1)i

u
− p(t)i log

p(t)i

u

)

]

(b)
=µ

n

∑
i, j=1

w′i j ∑
y∈Y

[

∂
∂t

(

p(t)i log
p(t)i

q(0)j

)

]

t=1

+ν
n

∑
i=1

∑
y∈Y

[

∂
∂t

(

p(t)i log
p(t)i

u

)

]

t=1
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where(a) follows as bothp(t)i log p(t)i

q(0)j

and p(t)i log p(t)i
u are convex int, and thus the terms within

the summations are difference quotients of convex functions which are non-increasing. As a result
we can use the monotone convergence theorem (MCT) (see page 87, Theorem 6 in H.L.Royden,
1988) to exchange the limit with the summations. Finally(b) follows from the definition of the
derivative. Note that(a) can also be explained via the dominated convergence theorem (DCT) (see

page 84, proposition 6 in H.L.Royden, 1988). Ifq(0)j (y)> 0, ∀ y, j then there existsγ < ∞ such that

p(1)i log p(1)i

q(0)j

− p(t)i log p(t)i

q(0)j

< γ because the difference of two finite real numbers is always bounded

above which implies that the DCT can be used to distribute the limits within the summations. Thus
we have that

0≥ µ
n

∑
i, j=1

w′i j ∑
y∈Y

[

∂
∂t

(

p(t)i log
p(t)i

q(0)j

)

]

t=1

+ν
n

∑
i=1

∑
y∈Y

[

∂
∂t

(

p(t)i log
p(t)i

u

)

]

t=1

= µ
n

∑
i, j=1

w′i j ∑
y∈Y

(

p(1)i log
p(1)i

q(0)j

− pi log
p(1)i

q(0)j

)

+ν
n

∑
i=1

∑
y∈Y

(

p(1)i log
p(1)i

u
− pi log

p(1)i

u

)

.

The last equation follows as∑y∈Y(p
(1)
i − pi) = 0. As a result we have that

0≥ µ
n

∑
i, j=1

w′i j ∑
y∈Y

(

p(1)i log
p(1)i

q(0)j

− pi log
p(1)i

q(0)j

)

+ν
n

∑
i=1

∑
y∈Y

(

p(1)i log
p(1)i

u
− pi log

p(1)i

u

)

= µ
n

∑
i, j=1

w′i j DKL(p
(1)
i ||q

(0)
j )+ν

n

∑
i=1

DKL(p
(1)
i ||u)−

(

µ
n

∑
i, j=1

w′i j ∑
y∈Y

pi log
p(1)i

q(0)j

+ν
n

∑
i=1

∑
y∈Y

pi log
p(1)i

u

)

From the definition ofCMP(p,q) we have that

µ
n

∑
i, j=1

w′i j DKL(p
(1)
i ||q

(0)
j )+ν

n

∑
i=1

DKL(p
(1)
i ||u) = CMP(p

(1),q(0))−
l

∑
i=1

DKL
(

r i ||q
(0)
i

)

.

Using the above we get

0≥ CMP(p
(1),q(0))−

l

∑
i=1

DKL
(

r i ||q
(0)
i

)

−

(

µ
n

∑
i, j=1

w′i j ∑
y∈Y

pi log
p(1)i

q(0)j

+ν
n

∑
i=1

∑
y∈Y

pi log
p(1)i

u

)

. (4)

Consider

∑
y∈Y

pi log
p(1)i

q(0)j

= ∑
y∈Y

pi log
p(1)i

q(0)j

pi

pi
= ∑

y∈Y

pi

(

log
pi

q(0)j

+ log
p(1)i

pi

)

= DKL(pi ||q
(0)
j )−DKL(pi ||p

(1)
i ).

Similarly

∑
y∈Y

pi log
p(1)i

u
= ∑

y∈Y

pi log
p(1)i

u
pi

pi
= ∑

y∈Y

pi

(

log
pi

u
+ log

p(1)i

pi

)

= DKL(pi ||u)−DKL(pi ||p
(1)
i ).
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Using the above two equations in Equation 4 we have that

0≥ CMP(p
(1),q(0))−

l

∑
i=1

DKL
(

r i ||q
(0)
i

)

−µ
n

∑
i, j=1

w′i j

(

DKL(pi ||q
(0)
j )−DKL(pi ||p

(1)
i )

)

−ν
n

∑
i=1

(

DKL(pi ||u)−DKL(pi ||p
(1)
i )

)

(a)
≥CMP(p

(1),q(0))−CMP(p,q
(0))+µ

n

∑
i, j=1

w′i j DKL(pi ||p
(1)
i )

= CMP(p
(1),q(0))−CMP(p,q

(0))+δ(p,p(1))

where(a) follows asν≥ 0 andDKL(pi ||p
(1)
i )≥ 0.

Thus we have show that 3-pp holds forCMP.

Definition 16 If P, Q are convex sets of finite measures, given a divergence d(p,q), p∈ P, q∈ Q,
then the “four points property” (4-pp) is said to hold for q∈ Q if ∀ p, p(1) ∈ P we have

d(p,q(1))≤ δ(p, p(1))+d(p,q)

where q(1) ∈ argmin
q∈Q

d(p(1),q) andδ(p, p(1)) should match the definition ofδ(., .) used in 3-pp.

Lemma 17 CMP(p,q) satisfies the 4-pp.

Proof Let

g(t), CMP(p
(1),q(t))

where q(t) = (1− t)q+ tq(1), 0< t ≤ 1 and thusq(t)i = (1− t)qi + tq(1)i andq(1) is as defined above.

Also recall thatδ(p,p(1)), µ∑n
i, j=1w′i j DKL(pi ||p

(1)
i ). The proof for this lemma proceeds in a man-

ner similar to the proof of lemma 15. It should be clear thatg(t) achieves its minimum att = 1 and
as a result we have that

g(1)−g(t)
1− t

≤ 0 (5)

and

g(t) =
l

∑
i=1

∑
y∈Y

r i log
r i

q(t)i

+µ
n

∑
i, j=1

w′i j ∑
y∈Y

p(1)i log
p(1)i

q(t)j

+ν
n

∑
i=1

∑
y∈Y

p(1)i log
p(1)i

u
.

3357



SUBRAMANYA AND BILMES

Using the above in Equation 5 and passing it to the limit we get

lim
t→1

( l

∑
i=1

∑
y∈Y

1
1− t

(

r i log
r i

q(1)i

− r i log
r i

q(t)i

)

+µ
n

∑
i, j=1

w′i j ∑
y∈Y

1
1− t

(

p(1)i log
p(1)i

q(1)j

− p(1)i log
p(1)i

q(t)j

)

)

(a)
=

l

∑
i=1

∑
y∈Y

lim
t→1

[

1
1− t

(

r i log
r i

q(1)i

− r i log
r i

q(t)i

)

]

+µ
n

∑
i, j=1

w′i j ∑
y∈Y

lim
t→1

[

1
1− t

(

p(1)i log
p(1)i

q(1)j

− p(1)i log
p(1)i

q(t)j

)

]

(b)
=

l

∑
i=1

∑
y∈Y

[

∂
∂t

(

r i log
r i

q(t)i

)

]

t=1

+µ
n

∑
i, j=1

w′i j ∑
y∈Y

[

∂
∂t

(

p(1)i log
p(1)i

q(t)j

)

]

t=1

=−
l

∑
i=1

∑
y∈Y

r i +
l

∑
i=1

∑
y∈Y

r i

q(1)i

qi−µ
n

∑
i, j=1

w′i j ∑
y∈Y

p(1)i +µ
n

∑
i, j=1

w′i j ∑
y∈Y

p(1)i

q(1)j

q j

where(a) once again follows from using DCT. This is becauseCMP(p,q(1)), CMP(p,q) < ∞ (else
4-pp trivially holds) and asCMP(p,q) is the sum of all positive terms, it implies each term is finite
and thus bounded above. Also(b) follows from the definition of the derivative. As a result we have
that

0≥−
l

∑
i=1

∑
y∈Y

r i +
l

∑
i=1

∑
y∈Y

r i

q(1)i

qi−µ
n

∑
i, j=1

w′i j ∑
y∈Y

p(1)i +µ
n

∑
i, j=1

w′i j ∑
y∈Y

p(1)i

q(1)j

q j

=−l −µ
n

∑
i, j=1

w′i j +
l

∑
i=1

∑
y∈Y

r i

q(1)i

qi +µ
n

∑
i, j=1

w′i j ∑
y∈Y

p(1)i

q(1)j

q j . (6)

Now consider

CMP(p,q)−CMP(p,q
(1))

=
l

∑
i=1

∑
y∈Y

(

r i log
r i

qi
− r i log

r i

q(1)i

)

+µ
n

∑
i, j=1

w′i j ∑
y∈Y

(

pi log
pi

q j
− pi log

pi

q(1)j

)

=
l

∑
i=1

∑
y∈Y

r i log
q(1)i

qi
+µ

n

∑
i, j=1

w′i j ∑
y∈Y

pi log
q(1)j pi

q j p
(1)
i

−µ
n

∑
i, j=1

w′i j DKL(pi ||p
(1)
i ).

Thus we have that

CMP(p,q)−CMP(p,q
(1))+δ(p,p(1))

=
l

∑
i=1

∑
y∈Y

r i log
q(1)i

qi
+µ

n

∑
i, j=1

w′i j ∑
y∈Y

pi log
q(1)j pi

q j p
(1)
i

.
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Using the variational inequality− log(x)≥ (1−x) in the above we get

CMP(p,q)−CMP(p,q
(1))+δ(p,p(1))

≥
l

∑
i=1

∑
y∈Y

r i

(

1−
qi

q(1)i

)

+µ
n

∑
i, j=1

w′i j ∑
y∈Y

pi

(

1−
q j p

(1)
i

q(1)j pi

)

= l +µ
n

∑
i, j=1

w′i j −
l

∑
i=1

∑
y∈Y

r i

q(1)i

qi−µ
n

∑
i, j=1

w′i j ∑
y∈Y

p(1)i

q(1)j

q j

(a)
≥0

where(a) follows from Equation 6.

Which implies 4-pp holds forCMP.

Theorem 18 CMP(p,q) satisfies the 5-pp.

Proof Follows asCMP(p,q) satisfies both 3-pp and 4-pp.

Theorem 5 (Convergence of AM onCMP) If

p(n) = argmin
p∈△m

CMP(p,q
(n−1)), q(n) = argmin

q∈△m
CMP(p

(n),q) and q(0)i (y)> 0 ∀ y∈ Y, ∀i then

(a) CMP(p,q)+CMP(p,p
(0))≥ CMP(p,q

(1))+CMP(p
(1),q(1)) for all p,q∈△m, and

(b) lim
n→∞

CMP(p
(n),q(n)) = infp,q∈△m CMP(p,q).

Proof (a) follows as a result of Theorem 18.(b) is the direct result of(a) and theorem 3 in Csiszar
and Tusnady (1984).

Appendix C. Equality of Solutions

Lemma 19 If p= q= p̃ then we have thatCMP(p̃, p̃) = CKL(p̃).

Proof Follows from the definitions ofCKL andCMP.

Lemma 6 We have that

min
p,q∈△m

CMP(p,q;w′ii = 0)≤ min
p∈△m

CKL(p).
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Proof Follows from the observation that

min
p∈△m

CKL(p) = min
p,q∈△m,p=q

CMP(p,q;w′ii = 0)≥ min
p,q∈△m

CMP(p,q;w′ii = 0 ∀ i)

The last step follows since the unconstrained minimum can never be larger than the constrained
minimum.

Theorem 7 Given any A,B,S∈△m (i.e., A= [a1, . . . ,am] , B = [b1, . . . ,bm] , S= [s1, . . . ,sm]) such
that ai(y),bi(y),si(y) > 0, ∀ i,y and A6= B (i.e., not all ai(y) = bi(y)) then there exists a finiteα
such that

CMP(A,B)≥ CMP(S,S) = CKL(S).

Proof First

CMP(A,B) =
l

∑
i=1

DKL
(

r i ||bi
)

+µ
n

∑
i=1

∑
j∈N ′ (i)

w′i j DKL
(

ai ||b j
)

−ν
n

∑
i=1

H(ai)

=
l

∑
i=1

DKL
(

r i ||bi
)

+µ
n

∑
i=1

∑
j∈N (i)

wi j DKL
(

ai ||b j
)

−ν
n

∑
i=1

H(ai)

+µ
m

∑
i=1

(wii +α)DKL
(

ai ||bi
)

and so we want

l

∑
i=1

DKL
(

r i ||bi
)

+µ
n

∑
i=1

∑
j∈N (i)

wi j DKL
(

ai ||b j
)

−ν
n

∑
i=1

H(ai)

+µ
m

∑
i=1

(wii +α)DKL
(

ai ||bi
)

−CMP(S,S)≥ 0

which holds if

α≥
CMP(S,S)−∑l

i=1DKL
(

r i ||bi
)

−µ∑i, j wi j DKL
(

ai ||b j
)

+ν∑i H(ai)

µ∑i DKL
(

ai ||bi
)

=
CMP(S,S)−CMP(A,B;α = 0)

µ∑i DKL
(

ai ||bi
) =

CKL(S)−CMP(A,B;α = 0)

µ∑i DKL
(

ai ||bi
) .

Theorem 8 (Equality of Solutions ofCKL and CMP) Let

p̂= argmin
p∈△m

CKL(p) and(p∗α̃,q
∗
α̃) = argmin

p,q∈△m
CMP(p,q;α̃)
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for an arbitraryα = α̃ > 0 wherep∗α̃ = (p∗1;α̃, · · · , p
∗
m;α̃) andq∗α̃ = (q∗1;α̃, · · · ,q

∗
m;α̃). Then there exists

a finite α̂ such that at convergence of AM, we have thatp̂= p∗α̂ = q∗α̂. Further, it is the case that if
p∗α̃ 6= q∗α̃, then

α̂≥
CKL(p̂)−CMP(p∗α̃,q

∗
α̃;α = 0)

µ∑n
i=1DKL(p∗i;α̃||q

∗
i;α̃)

and ifp∗α̃ = q∗α̃ thenα̂≥ α̃.

Proof First if p∗α̃ = q∗α̃, this means the minimum of the unconstrained version atα̃ resulted in
equality, and since this also considers all solutions wherep = q, and since bothCKL and CMP

are strictly convex, we must haveCMP(p∗α̃,q
∗
α̃; α̃) = CKL(p̂). Also, since for anyp 6= q we have

CMP(p,q;α̂)> CMP(p,q;α̃) wheneverα̂≥ α̃, then for allα̂≥ α̃, CMP(p∗α̂,q
∗
α̂; α̂) = CKL(p̂). Next if

p∗α̃ 6= q∗α̃, then from Theorem 7 we have that if

∞ > α̂≥
CKL(p̂)−CMP(p∗α̃,q

∗
α̃;α = 0)

µ∑n
i=1DKL(p∗i;α̃||q

∗
i;α̃)

we are guaranteed that p∗α̂ = q∗α̂, thereby making the first case applicable.

Appendix D. Test for Convergence

Theorem 9 (Test for Convergence)If {(p(n),q(n))}∞
n=1 is generated by AM ofCMP(p,q) and

CMP(p∗,q∗), inf
p,q∈△n

CMP(p,q) then

CMP(p
(n),q(n))−CMP(p

∗,q∗)≤
n

∑
i=1

(

δ(i ≤ l)+di
)

βi ,

βi , logsup
y

q(n)i (y)

q(n−1)
i (y)

, d j = ∑
i

wi j .

Proof As CMP(p,q) satisfies the 5-pp we have that

CMP(p,q)+CMP(p,q
(n−1))≥ CMP(p,q

(n))+CMP(p
(n),q(n)) ∀p,q∈ P.

Rearranging the terms we have that

CMP(p
(n),q(n))−CMP(p,q)≤ CMP(p,q

(n−1))−CMP(p,q
(n)).

As the above holds for all p,q∈ P, it follows that

CMP(p
(n),q(n))−CMP(p

∗,q∗)≤ CMP(p
∗,q(n−1))−CMP(p

∗,q(n)).
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Now

CMP(p
∗,q(n−1))−CMP(p

∗,q(n)) =
l

∑
i=1

∑
y

r i(y) log
q(n)i (y)

q(n−1)
i (y)

+µ
m

∑
i, j=1

wi j ∑
y

p∗i (y) log
q(n)j (y)

q(n−1)
j (y)

=
l

∑
i=1

Er i

[

log
q(n)i (y)

q(n−1)
i (y)

]

+µ
m

∑
i, j=1

wi j Ep∗i

[

log
q(n)j (y)

q(n−1)
j (y)

]

(a)
≤

l

∑
i=1

sup
y

[

log
q(n)i (y)

q(n−1)
i (y)

]

+µ
m

∑
i, j=1

wi j sup
y

[

log
q(n)j (y)

q(n−1)
j (y)

]

=
l

∑
i=1

logsup
y

[

q(n)i (y)

q(n−1)
i (y)

]

+µ
m

∑
i, j=1

wi j logsup
y

[

q(n)j (y)

q(n−1)
j (y)

]

=
m

∑
i=1

(

δ(i ≤ l)+di
)

logsup
y

q(n)i (y)

q(n−1)
i (y)

where(a) follows asE( f (x))≤ supf (x) and recalld j = ∑i wi j .

Appendix E. Update Equations forp(n) and q(n)

The Lagrangian (ignoring the non-negativity constraints) for solving min
p∈△n

CMP(p,q(n−1)) is given by

L(p,Λ) =
l

∑
i=1

DKL
(

r i ||qi
)

+µ
n

∑
i, j=1

w′i j DKL
(

pi ||q
(n−1)
j

)

−ν
n

∑
i=1

H(pi)+∑
i

λi

(

∑
y

pi(y)−1

)

whereΛ = {λ1, . . . ,λn}. As KKT conditions apply (since we have a convex optimization problem),
we have that▽pi(y)L(p,Λ) = 0 and p∈△n at the optimal solution. Solving the above we have

logpi(y) =
−λi−β(n−1)

i (y)
αi

.

Recallαi = ν+µ∑ j w
′

i j , β(n−1)
i (y) =−ν+µ∑ j w

′

i j (logq(n−1)
j (y)−1). Using the above in Equation 7

leads to the dual problem inΛ which admits a closed form solution given by

λi = αi log

(

∑
y

exp
β(n−1)
i (y)

αi

)

=⇒ p(n)
i (y) =

1
Zi

exp
β(n−1)
i (y)

αi .

Clearly p(n)i (y)≥ 0, ∀ i,y.
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The update for q(n) may be obtained by constructing the Lagrangian for the optimization prob-
lem min

q∈△n
CMP(p(n),q) which is given by

L(q,Λ) =
l

∑
i=1

DKL
(

r i ||qi
)

+µ
n

∑
i, j=1

w
′

i j DKL
(

p(n)i ||q j
)

−ν
n

∑
i=1

H(p(n)i )

+∑
i

λi

(

∑
y

qi(y)−1

)

+∑
i,y

σiyqi(y)

whereΛ = {λ1, . . . ,λn,σ11, . . . ,σn|Y|}. In this case KKT conditions require that▽qi(y)L(q,Λ) = 0,
∑yqi(y)−1 ∀ y, σiyqi(y) = 0 ∀ i,y solving which yields

q(n)
i (y) =

r i(y)δ(i ≤ l)+µ∑j w
′

ji p
(n)
j (y)

δ(i ≤ l)+µ∑j w′ji
.

Appendix F. Convergence Rate of SQ-Loss

Lemma 21 (Linear Rate of Convergence, see page 64 in Bertsekas,1999) If {xn} is a convergent
sequence such that xn→ 0 and xn > 0 ∀ n, then xn is said to converge linearly if

limsup
n→∞

xn

xn−1
≤ η

whereη ∈ (0,1).

Theorem 11 (Geometric Rate of Convergence for SQ-Loss)If

(a) ν > 0, and

(b) W has at least one non-zero off-diagonal element in every row (i.e.,W is irreducible)

then the sequence of updates

p(n)i (y) =
r i(y)δ(i ≤ l)+νu(y)+µ∑ j wi j p

(n−1)
j (y)

δ(i ≤ l)+ν+µ∑ j wi j

has a linear (geometric) rate of convergence for all i and y.

Proof
The updates can re-written in matrix form as

p(n) = [S+νIm+µD]−1
(

r′+
ν
|Y|

1m×|Y|+µWp(n−1)
)

where

S,

(

I l 0
0 0

)

, r′ ,

(

r
0(m−l)×|Y|

)

,
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[D]ii = ∑ j wi j , 1m×|Y| is a matrix of all 1’s of sizem×|Y| and0(m−l)×|Y| is similarly defined to be
matrix of all 0’s . It can be shown that p(n)→ p∗ and so we have that

p∗ = [S+νIm+µD]−1
(

r′+
ν
|Y|

1m×|Y|+µWp∗
)

.

As a result

p(n)−p∗ = [S+νIm+µD]−1(µW(p(n−1)−p∗)
)

which implies that

‖ p(n)−p∗ ‖=‖ [S+νIm+µD]−1(µW(p(n−1)−p∗)
)

‖

where‖ A ‖ is the 2-norm (Euclidean norm) of the matrixA. Thus

‖ p(n)−p∗ ‖=‖ [S+νIm+µD]−1(µW(p(n−1)−p∗)
)

‖

≤ µ‖ [S+νIm+µD]−1W ‖ ‖ p(n−1)−p∗ ‖

and so

‖ p(n)−p∗ ‖

‖ p(n−1)−p∗ ‖
≤ µ‖ [S+νIm+µD]−1W ‖ .

Let Z , 1
µS+ ν

µIm+D and so

‖ p(n)−p∗ ‖

‖ p(n−1)−p∗ ‖
≤ ‖ Z−1W ‖ .

It should be clear thatZ is a diagonal matrix.
The Perron-Frobenius theorem states that given any irreducible matrixA such thatai j ≥ 0 and

ai j are real then

min
i

∑
j

ai j ≤ λmax(A)≤max
i

∑
j

ai j

whereλmax(A) represents the maximum eigenvalue ofA. If we apply the above theorem to the
matrix D−1W, then we have thatλmax(D−1W) = 1. If we apply the same toZ−1W, then we have
that

min
i

∑
j

wi j
1
µδ(i ≤ l)+ ν

µ +∑k wik
≤ λmax(Z

−1W)≤max
i

∑
j

wi j
1
µδ(i ≤ l)+ ν

µ +∑k wik
.

But we have that

∑
j

wi j

∑k wik
= 1 (7)

and so ifν > 0 then we have that

∑
j

wi j
1
µδ(i ≤ l)+ ν

µ +∑k wik
< 1.
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As a result

min
i

∑
j

wi j
1
µδ(i ≤ l)+ ν

µ +∑k wik
≤ λmax(Z

−1W)< 1.

In addition we also have that∑ j wi j > 0 for all i and so

0< λmax(Z
−1W)< 1.

As a result

‖ Z−1W ‖=
√

λmax
(

(Z−1W)TZ−1W
)

=

√

λmax
(

Z−1W
)2

= λmax(Z
−1W).

The above implies that

limsup
n→∞

‖ p(n)−p∗ ‖

‖ p(n−1)−p∗ ‖
≤ ‖ Z−1W ‖= λmax(Z

−1W).

As 0< λmax(Z−1W)< 1, we have that p(n) has a linear rate of convergence.
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