

Logistics

Announcements, Assignments, and Reminders

- Homework 3, available at our assignment dropbox (https://canvas.uw.edu/courses/1039754/assignments), due (electronically) Monday (5/2) at 11:55pm.
- Homework 2, available at our assignment dropbox (https://canvas.uw.edu/courses/1039754/assignments), due (electronically) Monday (4/18) at 11:55pm.
- Homework 1, available at our assignment dropbox (https://canvas.uw.edu/courses/1039754/assignments), due (electronically) Friday (4/8) at 11:55pm.
- Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google hangout (set up meeting via our our discussion board (https: //canvas.uw.edu/courses/1039754/discussion_topics)).

EE596b/Spring 2016/Submodularity - Lecture 9 - Apr 27, 2016

F3/59 (pg.3/67)

Revie

Logistics	Review
Class Road Map - IT-I	
 L1(3/28): Motivation, Applications, & Basic Definitions L2(3/30): Machine Learning Apps (diversity, complexity, parameter, learning target, surrogate). L3(4/4): Info theory exs, more apps, definitions, graph/combinatorial examples, matrix rank example, visualization L4(4/6): Graph and Combinatorial Examples, matrix rank, Venn diagrams, examples of proofs of submodularity, some useful properties L5(4/11): Examples & Properties, Other Defs., Independence L6(4/13): Independence, Matroids, Matroid Examples, matroid rank is submodular L7(4/18): Matroid Rank, More on Partition Matroid, System of Distinct Reps, Transversals, Transversal Matroid, L11(5/2): L12(5/4): L13(5/9): L13(5/9): L14(5/11): L13(5/25): L16(5/18): L16(5/18): L18(5/25): L19(6/1): L20(6/6): Final Presentations maximization. 	
 L8(4/20): Transversals, Matroid and representation, Dual Matroids, 	
 L9(4/25): Dual Matroids, Properties, Combinatorial Geometries, Matroid and Greedy, Polyhedra, Matroid Polytopes 	
• L10(4/27):	
Finals Week: June 6th-10th, 2016.	
Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 9 - Apr 27, 2016	F4/59 (pg.4/67)

Prof. Jeff Bilmes

Spanning Sets

• We have the following definitions:

Definition 9.2.4 (spanning set of a set)

Given a matroid $\mathcal{M} = (V, \mathcal{I})$, and a set $Y \subseteq V$, then any set $X \subseteq Y$ such that r(X) = r(Y) is called a spanning set of Y.

Definition 9.2.5 (spanning set of a matroid)

Given a matroid $\mathcal{M} = (V, \mathcal{I})$, any set $A \subseteq V$ such that r(A) = r(V) is called a spanning set of the matroid.

- A base of a matroid is a minimal spanning set (and it is independent) but supersets of a base are also spanning.
- V is always trivially spanning.
- Consider the terminology: "spanning tree in a graph", comes from spanning in a matroid sense.

EE596b/Spring 2016/Submodularity - Lecture 9 - Apr 27, 2016

```
Prof. Jeff Bilmes
```

Logistics

Dual of a Matroid

- Given a matroid M = (V, I), a dual matroid M* = (V, I*) can be defined on the same ground set V, but using a very different set of independent sets I*.
- We define the set of sets \mathcal{I}^* for M^* as follows:

 $\mathcal{I}^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \}$ (9.11)

$$= \{V \setminus S : S \subseteq V \text{ is a spanning set of } M\}$$
(9.12)

i.e., \mathcal{I}^* are complements of spanning sets of M.

• That is, a set A is independent in the dual matroid M^* if removal of A from V does not decrease the rank in M:

$$\mathcal{I}^* = \{A \subseteq V : \mathsf{rank}_M(V \setminus A) = \mathsf{rank}_M(V)\}$$
(9.13)

 In other words, a set A ⊆ V is independent in the dual M* (i.e., A ∈ I*) if its complement is spanning in M (residual V \ A must contain a base in M).

• Dual of the dual: Note, we have that $(M^*)^* = M$.

Review

F5/59 (pg.5/67)

Dual of a Matroid: Bases

- The smallest spanning sets are bases. Hence, a base B of M (where B = V \ B^{*} is as small as possible while still spanning) is the complement of a base B^{*} of M^{*} (where B^{*} = V \ B is as large as possible while still being independent).
- In fact, we have that

Theorem 9.2.4 (Dual matroid bases)

Let $M=(V,\mathcal{I})$ be a matroid and $\mathcal{B}(M)$ be the set of bases of M. Then define

$$\mathcal{B}^*(M) = \{ V \setminus B : B \in \mathcal{B}(M) \}.$$
(9.11)

Then $\mathcal{B}^*(M)$ is the set of basis of M^* (that is, $\mathcal{B}^*(M) = \mathcal{B}(M^*)$.

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 9 - Apr 27, 2016

F7/59 (pg.7/67)

Review

 Dual Matroid
 Other Matroid Properties
 Combinatorial Geometries
 Matroid and Greedy
 Polyhedra
 Matroid Polytopes

 The dual of a matroid is (indeed) a matroid
 a matroid
 a matroid
 a matroid
 a matroid
 b m

Theorem 9.3.1

Given matroid $M = (V, \mathcal{I})$, let $M^* = (V, \mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.

Proof.

- Consider $I, J \in \mathcal{I}^*$ with |I| < |J|. We need to show that there is some member $v \in J \setminus I$ such that I + v is independent in M^* , which means that $V \setminus (I + v) = (V \setminus I) \setminus v = \overline{I} v$ is still spanning in M. That is, removing v from $V \setminus I$ doesn't make $(V \setminus I) \setminus v$ not spanning in M.
- Since V \ J is spanning in M, V \ J contains some base (say B_J ⊆ V \ J) of M. Also, V \ I contains a base of M, say B_I ⊆ V \ I.
- Since $B_{\bar{J}} \setminus I \subseteq V \setminus I$, and $B_{\bar{J}} \setminus I$ is independent in M, we can choose the base $B_{\bar{I}}$ of M s.t. $B_{\bar{J}} \setminus I \subseteq B_{\bar{I}} \subseteq V \setminus I$.
- Since B_{J̄} and J are disjoint, we have both: 1) B_{J̄} \ I and J \ I are disjoint; and 2) B_{J̄} ∩ I ⊆ I \ J. Also note, B_Ī and I are disjoint.

 Dual Matroid
 Other Matroid Properties
 Combinatorial Geometries
 Matroid and Greedy
 Polyhedra
 Matroid

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <

Matroid Duals and Representability

Theorem 9.3.2

Let M be an \mathbb{F} -representable matroid (i.e., one that can be represented by a finite sized matrix over field \mathbb{F}). Then M^* is also \mathbb{F} -representable.

Hence, for matroids as general as matric matroids, duality does not extend the space of matroids that can be used.

Theorem 9.3.3

Let M be a graphic matroid (i.e., one that can be represented by a graph G = (V, E)). Then M^* is not necessarily also graphic.

Hence, for graphic matroids, duality can increase the space and power of matroids, and since they are based on a graph, they are relatively easy to use: 1) all cuts are dependent sets; 2) minimal cuts are cycles; 3) bases are one edge less than minimal cuts; and 4) independent sets are edges that are not cuts (minimal or otherwise).

 Dual Matroid
 Other Matroid Properties
 Combinatorial Geometries
 Matroid and Greedy
 Polyhedra
 Matroid Polytopes

 Dual Matroid Rank
 Matroid Rank
 Matroid and Greedy
 Polyhedra
 Matroid Polytopes

Theorem 9.3.4

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V)$$
 (9.4)

Proof.

A set X is independent in (V, r_{M^*}) if and only if

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V) = |X|$$
(9.5)

or

$$r_M(V \setminus X) = r_M(V) \tag{9.6}$$

But a subset X is independent in M^* only if $V \setminus X$ is spanning in M (by the definition of the dual matroid).

Dual MatroidOther Matroid PropertiesCombinatorial GeometriesMatroid and GreedyPolyhedraMatroid PolytopesMatroidcontractionM/Z

- Contraction by Z is dual to deletion, and is like a forced inclusion of a contained base B_Z of Z, but with a similar ground set removal by Z.
 Contracting Z is written M/Z. Updated ground set in M/Z is V \ Z.
- Let Z ⊆ V and let B_Z be a base of Z. Then a subset I ⊆ V \ Z is independent in M/Z iff I ∪ B_Z is independent in M.
- The rank function takes the form

$$r_{M/Z}(Y) = r(Y \cup Z) - r(Z) = r(Y|Z)$$
(9.9)

$$= r(Y \cup B_Z) - r(B_Z) \tag{9.10}$$

- So given $I \subseteq V \setminus Z$ and B_Z is a base of Z, $r_{M/Z}(I) = |I|$ is identical to $r(I \cup Z) = |I| + r(Z) = |I| + |B_Z|$ but $r(I \cup Z) = r(I \cup B_Z)$. This implies $r(I \cup B_Z) = |I| + |B_Z|$, or $I \cup B_Z$ is independent in M.
- A minor of a matroid is any matroid obtained via a series of deletions and contractions of some matroid.
- In fact, it is the case $M/Z = (M^* \setminus Z)^*$ (Exercise: show why).

Dual Matroid	Other Matroid Properties	Combinatorial Geometries		Matroid Polytopes
Convo	lution and H	all's Theorem	ו	

- Recall Hall's theorem, that a transversal exists iff for all X ⊆ V, we have |Γ(X)| ≥ |X|.
- $\bullet \ \Leftrightarrow \ \ |\Gamma(X)| |X| \ge 0, \forall X$
- $\Leftrightarrow \quad \min_X |\Gamma(X)| |X| \ge 0$
- $\Leftrightarrow \quad \min_X |\Gamma(X)| + |V| |X| \ge |V|$
- $\Leftrightarrow \min_X \left(|\Gamma(X)| + |V \setminus X| \right) \ge |V|$
- $\bullet \ \Leftrightarrow \ \ [\Gamma(\cdot)*|\cdot|](V) \ge |V|$
- So Hall's theorem can be expressed as convolution. Exercise: define $g(A) = [\Gamma(\cdot) * | \cdot |](A)$, prove that g is submodular.
- Note, in general, convolution of two submodular functions does not preserve submodularity (but in certain special cases it does).

Note $A \uplus B$ designates the disjoint union of A and B.

Theorem 9.4.3

Let $M_1 = (V_1, \mathcal{I}_1)$, $M_2 = (V_2, \mathcal{I}_2)$, ..., $M_k = (V_k, \mathcal{I}_k)$ be matroids, with rank functions r_1, \ldots, r_k . Then the union of these matroids is still a matroid, having rank function

$$r(Y) = \min_{X \subseteq Y} \left(|Y \setminus X| + r_1(X \cap V_1) + \dots + r_k(X \cap V_k) \right)$$
(9.14)

for any $Y \subseteq V_1 \uplus \ldots V_2 \uplus \cdots \uplus V_k$.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 9 - Apr 27

F16/59 (pg.19/67)

Dual Matroid Exerci	Other Matroid Propertie	d Union, and N	Matroid and Greedy	Polyhedra ality	Matroid Polytopes
Exercise:	Fully charact	erize $M \lor M^*$.			

Dual Matroid Other Matroid Properties Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes Affine Matroids
 Given an n×m matrix with entries over some field F, we say that a subset S ⊆ {1,,m} of indices (with corresponding column vectors {v_i : i ∈ S}, with S = k) is affinely dependent if m ≥ 1 and there exists elements {a₁,,a_k} ∈ F, not all zero with ∑^k_{i=1} a_i = 0, such that ∑^k_{i=1} a_iv_i = 0. Otherwise, the set is called affinely independent. Concisely: points {v₁, v₂,,v_k} are affinely independent if v₂ - v₁, v₃ - v₁,, v_k - v₁ are linearly independent. Example: in 2D, three collinear points are affinely <u>dependent</u>, three non-collinear points are affinely <u>independent</u>, and ≥ 4 collinear or non-collinear points are affinely <u>dependent</u>.
Proposition 9.5.1 (affine matroid)
Let ground set $E = \{1,, m\}$ index column vectors of a matrix, and let \mathcal{I} be the set of subsets X of E such that X indices affinely independent vectors. Then (E, \mathcal{I}) is a matroid. Exercise: prove this.
Exercise:prove this.Prof. Jeff BilmesEE596b/Spring 2016/Submodularity - Lecture 9 - Apr 27, 2016F19/59 (pg.22/67)

Dual Matroid Other Matroid Properties Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes Euclidean Representation of Low-rank Matroids
 In general, for a matroid <i>M</i> of rank <i>m</i> + 1 with <i>m</i> ≤ 3, then a subset <i>X</i> in a geometric representation in ℝ^m is dependent if: <i>X</i> ≥ 2 and the points are identical; <i>X</i> ≥ 3 and the points are collinear; <i>X</i> ≥ 4 and the points are coplanar; or <i>X</i> ≥ 5 and the points are anywhere in space.
 When they exist, loops are represented in a geometry by a separate box indicating how many loops there are. Parallel elements, when they exist in a matroid, are indicated by a multiplicity next to a point.
Theorem 9.5.2 Any matroid of rank $m \le 4$ can be represented by an affine matroid in \mathbb{R}^{m-1} .
Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 9 - Apr 27, 2016 F22/59 (pg.25/67)

Geometries Matroid	nd Greedy	Polyhedra 	Matroid Polytopes
flats correspon	id to po	oints (res	sp. lines,
,	es not t	ouch and	other set of
<i>i</i> o points (not	depend	lent unles	ss > 2).
a line (often l	not drav	wn when	only two)
three non-coll	near po	oints (not	dependent
ar points lie oi	n a plan	ne	
lane, then any	two dis	stinct line	es meet in
ints do so in a o in at most o ot lying on a p	line; 2) ne point) any two t and lie	o distinct in on a
ails).			
	nk Matroids flats correspon l be size 1) doe 1). wo points (not a line (often r three non-colli ear points lie or blane, then any e plane, then any bints do so in a o in at most or	nk Matroids: Cor flats correspond to pe d be size 1) does not to 1). wo points (not depend a line (often not draw three non-collinear po ear points lie on a plar plane, then any two dis e plane, then any two dis e plane, then: 1) any pints do so in a line; 2 o in at most one point ot lying on a plane int	nk Matroids: Conditions flats correspond to points (res d be size 1) does not touch and 1). wo points (not dependent unles a line (often not drawn when three non-collinear points (not ear points lie on a plane blane, then any two distinct line e plane, then: 1) any two distinct bints do so in a line; 2) any two o in at most one point and lie ot lying on a plane intersects in

Dual Matroid Other Matroid Properties Combinatorial Geometries Matroid and Greedy Polyhedra Matroid Polytopes Matroids, Representation and Equivalence: Summary

- Matroids with $|V| \leq 3$ are graphic.
- Matroids with $r(V) \leq 4$ can be geometrically represented in \mathbb{R}^3 .
- Not all matroids are linear (i.e., matric) matroids.
- Matroids can be seen as related to projective geometries (and are sometimes called combinatorial geometries).
- Exists much research on different subclasses of matroids, and if/when they are contained in (or isomorphic to) each other.

- Often, however, greedy is heuristic (it might work well in practice, but worst-case performance can be unboundedly poor).
- We will next see that the greedy algorithm working optimally is a defining property of a matroid, and is also a defining property of a polymatroid function.

Dual Matroid	Other Matroid Properties	Combinatorial Geometries	Matroid and Greedy	Polyhedra	Matroid Polytopes
Review	v from Lectu	re 6			
• The	next slide is from	m Lecture 6			
• The		In Lecture 0.			

Matro	oids by bases	Combinatorial Geometries	Matroid and Greedy	Polyhedra	Matroid Polytopes
•	al, besides indepe nt ways to charae			, there ar	e other
Theorem	n 9.6.3 (Matroid	(by bases))			
following	e a set and B be g are equivalent.			ets of E .	Then the
•	s the collection o		,	C	
	$B,B'\in \mathcal{B},$ and $x\in B,$ $B,B'\in \mathcal{B},$ and $x\in B$,	0		о (
Proof he	es 2 and 3 are ca ere is omitted but nd matrices, and	think about th	is for a momer		s of linear
Prof. Jeff Bi	lmes EE596b/S	Spring 2016/Submodularity	/ - Lecture 9 - Apr 27, 20:	16 F3	3/59 (pg.37/67)

- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0.
- If we don't want elements with weight 0, we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.
- We don't need non-negativity, we can use any $w \in \mathbb{R}^E$ and keep going until we have a base.
- If we stop at a negative value, we'll once again get a maximum weight independent set.
- Exercise: what if we keep going until a base even if we encounter negative values?
- We can instead do as small as possible thus giving us a minimum weight independent set/base.

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 9 - Apr 27, 2016

F37/59 (pg.43/67)

Dual Matroid	Other Matroid Properties	Combinatorial Geometries	Matroid and Greedy	Polyhedra ∎ I I I I I I	Matroid Polytopes
Conve	x Polyhedra				

• Convex polyhedra a rich topic, we will only draw what we need.

Definition 9.7.1

A subset $P \subseteq \mathbb{R}^E$ is a polyhedron if there exists an $m \times n$ matrix A and vector $b \in \mathbb{R}^m$ (for some $m \ge 0$) such that

$$P = \left\{ x \in \mathbb{R}^E : Ax \le b \right\}$$
(9.17)

 Thus, P is intersection of finitely many affine halfspaces, which are of the form a_ix ≤ b_i where a_i is a row vector and b_i a real scalar.

Dual Matroid Other Matroid Properties Combinatorial Geometries Matroid and Greedy **Polyhedra** Matroid Polytopes

Convex Polytope - key representation theorem

EE596b/Spring 2016/Submodularity - Lecture 9 - Apr 27, 2016

• A polytope can be defined in a number of ways, two of which include

Theorem 9.7.3

Prof leff Bilmes

A subset $P \subseteq \mathbb{R}^E$ is a polytope iff it can be described in either of the following (equivalent) ways:

- *P* is the convex hull of a finite set of points.
- If it is a bounded intersection of halfspaces, that is there exits matrix A and vector b such that

$$P = \{x : Ax \le b\} \tag{9.19}$$

• This result follows directly from results proven by Fourier, Motzkin, Farkas, and Carátheodory.

F39/59 (pg.45/67)

	Other Matroid Properties	Combinatorial Geometries		Polyhedra	Matroid Polytopes
Linear	Programmin	ng duality for	ms		

There are many ways to construct the dual. For example,

$$\max\{c^{\mathsf{T}}x|x \ge 0, Ax \le b\} = \min\{y^{\mathsf{T}}b|y \ge 0, y^{\mathsf{T}}A \ge c^{\mathsf{T}}\}$$
(9.22)

$$\max\left\{c^{\mathsf{T}}x|x\geq 0, Ax=b\right\} = \min\left\{y^{\mathsf{T}}b|y^{\mathsf{T}}A\geq c^{\mathsf{T}}\right\}$$
(9.23)

$$\min\{c^{\mathsf{T}}x|x \ge 0, Ax \ge b\} = \max\{y^{\mathsf{T}}b|y \ge 0, y^{\mathsf{T}}A \le c^{\mathsf{T}}\}$$
(9.24)

$$\min\left\{c^{\mathsf{T}}x|Ax \ge b\right\} = \max\left\{y^{\mathsf{T}}b|y \ge 0, y^{\mathsf{T}}A = c^{\mathsf{T}}\right\}$$
(9.25)

Linear Programming duality forms

How to form the dual in general? We quote V. Vazirani (2001)

Intuitively, why is [one set of equations] the dual of [another quite different set of equations]? In our experience, this is not the right question to be asked. As stated in Section 12.1, there is a purely mechanical procedure for obtaining the dual of a linear program. Once the dual is obtained, one can devise intuitive, and possibly physical meaningful, ways of thinking about it. Using this mechanical procedure, one can obtain the dual of a complex linear program in a fairly straightforward manner. Indeed, the LP-duality-based approach derives its wide applicability from this fact.

Also see the text "Convex Optimization" by Boyd and Vandenberghe, chapter 5, for a great discussion on duality.

```
Prof. Jeff Bilmes
```

EE596b/Spring 2016/Submodularity - Lecture 9 - Apr 27, 2016

F43/59 (pg.49/67)

 Dual Matroid
 Other Matroid Properties
 Combinatorial Geometries
 Matroid and Greedy
 Polyhedra
 Matroid Polytopes

 Vector, modular, incidence
 Incidence

• Recall, any vector $x \in \mathbb{R}^E$ can be seen as a normalized modular function, as for any $A \subseteq E$, we have

$$x(A) = \sum_{a \in A} x_a \tag{9.26}$$

Given an A ⊆ E, define the incidence vector 1_A ∈ {0,1}^E on the unit hypercube as follows:

$$\mathbf{1}_A \stackrel{\text{def}}{=} \left\{ x \in \{0,1\}^E : x_i = 1 \text{ iff } i \in A \right\}$$
(9.27)

equivalently,

$$\mathbf{1}_{A}(j) \stackrel{\text{def}}{=} \begin{cases} 1 & \text{if } j \in A \\ 0 & \text{if } j \notin A \end{cases}$$
(9.28)

Dual Matroid	Other Matroid Properties	Combinatorial Geometries	Matroid and Greedy	Polyhedra	Matroid Polytopes
Matro	id				

Slight modification (non unit increment) that is equivalent.

Definition 9.8.3 (Matroid-II)

A set system (E, \mathcal{I}) is a Matroid if

(I1') $\emptyset \in \mathcal{I}$

- (12') $\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$ (down-closed or subclusive)
- (13') $\forall I, J \in \mathcal{I}$, with |I| > |J|, then there exists $x \in I \setminus J$ such that $J \cup \{x\} \in \mathcal{I}$

Note (I1)=(I1'), (I2)=(I2'), and we get $(I3)\equiv(I3')$ using induction.

Independence Polyhedra

- For each I ∈ I of a matroid M = (E, I), we can form the incidence vector 1_I.
- Taking the convex hull, we get the independent set polytope, that is

$$P_{\text{ind. set}} = \operatorname{conv}\left\{\bigcup_{I \in \mathcal{I}} \left\{\mathbf{1}_{I}\right\}\right\}$$
(9.29)

- Since $\{\mathbf{1}_I : I \in \mathcal{I}\} \subseteq P_{\text{ind. set}}$, we have $\max\{w(I) : I \in \mathcal{I}\} \leq \max\{w^{\mathsf{T}}x : x \in P_{\text{ind. set}}\}.$
- Now take the rank function r of M, and define the following polyhedron:

$$P_r^+ = \left\{ x \in \mathbb{R}^E : x \ge 0, x(A) \le r(A), \forall A \subseteq E \right\}$$
(9.30)

• Now, take any $x \in P_{\text{ind. set}}$, then we have that $x \in P_r^+$ (or $P_{\text{ind. set}} \subseteq P_r^+$). We show this next.

EE596b/Spring 2016/Submodularity - Lecture 9 - Apr 27, 2016

```
Polyhed
                                                                                                                              Matroid Polytopes
P_{\text{ind. set}} \subseteq P_r^+
  • If x \in P_{\text{ind, set}}, then
                                                             x = \sum_{i} \lambda_i \mathbf{1}_{I_i}
                                                                                                                                    (9.31)
      for some appropriate vector \lambda = (\lambda_1, \lambda_2, \dots, \lambda_n).
  • Clearly, for such x, x > 0.
  • Now, for any A \subseteq E,
                                       x(A) = x^{\mathsf{T}} \mathbf{1}_A = \sum_i \lambda_i \mathbf{1}_{I_i}^{\mathsf{T}} \mathbf{1}_A
                                                                                                                                    (9.32)
                                                  \leq \sum_{i} \lambda_{i} \max_{j: I_{j} \subseteq A} \mathbf{1}_{I_{j}}(E)
                                                                                                                                    (9.33)
                                                   = \max_{j:I_j \subseteq A} \mathbf{1}_{I_j}(E) = \max_{I \in \mathcal{I}} |A \cap I|
                                                                                                                                    (9.34)
                                                   = r(A)
                                                                                                                                    (9.35)
  • Thus, x \in P_r^+ and hence P_{\text{ind. set}} \subseteq P_r^+.
```

Prof Leff Bilme

Matroid Proper

		Combinatorial Geometries	Matroid and Greedy	Polyhedra	Matroid Polytopes
Matroid	Polyhedron	in 3D			

$$P_r^+ = \left\{ x \in \mathbb{R}^E : x \ge 0, x(A) \le r(A), \forall A \subseteq E \right\}$$
(9.42)

• Consider this in three dimensions. We have equations of the form:

$$x_1 \ge 0 \text{ and } x_2 \ge 0 \text{ and } x_3 \ge 0 \tag{9.43}$$

$$x_1 \le r(\{v_1\}) \tag{9.44}$$

$$x_2 \le r(\{v_2\}) \tag{9.45}$$

$$x_3 \le r(\{v_3\}) \tag{9.46}$$

$$x_1 + x_2 \le r(\{v_1, v_2\}) \tag{9.47}$$

$$x_2 + x_3 \le r(\{v_2, v_3\}) \tag{9.48}$$

$$x_1 + x_3 \le r(\{v_1, v_3\}) \tag{9.49}$$

$$x_1 + x_2 + x_3 \le r(\{v_1, v_2, v_3\})$$
(9.50)

0.6 0.8

x2

0.6

x1

0.8

х1

0.6

0.4

0.2

0.2

x2

04

0.6

0.8

Let $M = (V, \mathcal{I})$ be a matroid, with rank function r, then for any weight function $w \in \mathbb{R}^V_+$, there exists a chain of sets $U_1 \subset U_2 \subset \cdots \subset U_n \subseteq V$ such that

$$\max\left\{w(I)|I \in \mathcal{I}\right\} = \sum_{i=1}^{n} \lambda_i r(U_i)$$
(9.52)

where $\lambda_i \geq 0$ satisfy

$$w = \sum_{i=1}^{n} \lambda_i \mathbf{1}_{U_i} \tag{9.53}$$

Maximum weight independent set via weighted rank Proof. • Now, again assuming $w \in \mathbb{R}^E_+$, order the elements of V as (v_1, v_2, \ldots, v_n) such that $w(v_1) \ge w(v_2) \ge \cdots \ge w(v_n)$ • Define the sets U_i based on this order as follows, for $i = 0, \ldots, n$ $U_i \stackrel{\text{def}}{=} \{v_1, v_2, \dots, v_i\}$ (9.55)• Define the set I as those elements where the rank increases, i.e.: $I \stackrel{\text{def}}{=} \{ v_i | r(U_i) > r(U_{i-1}) \}.$ (9.56)Hence, given an *i* with $v_i \notin I$, $r(U_i) = r(U_{i-1})$. • Therefore, I is the output of the greedy algorithm for $\max \{w(I) | I \in \mathcal{I}\}$. since items v_i are ordered decreasing by $w(v_i)$, and we only choose the ones that increase the rank, which means they don't violate independence. And therefore, I is a maximum weight independent set (even a base,

Prof. Jeff Bilme

EE596b/Spring 2016/Submodularity - Lecture 9 - Apr 27, 2016

