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Cumulative Outstanding Reading

@ Read chapters 2 and 3 from Fujishige's book.
@ Read chapter 1 from Fujishige's book.
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Announcements, Assignments, and Reminders

@ Homework 3, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (5/2) at 11:55pm.

@ Homework 2, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (4/18) at 11:55pm.

@ Homework 1, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Friday (4/8) at 11:55pm.

o Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google
hangout (set up meeting via our our discussion board (https:
//canvas.uw.edu/courses/1039754/discussion_topics)).
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Class Road Map - IT-

L1(3/28): Motivation, Applications, &

Basic Definitions

L2(3/30): Machine Learning Apps
(diversity, complexity, parameter, learning

target, surrogate).

definitions, graph/combinatorial examples,
matrix rank example, visualization
L4(4/6): Graph and Combinatorial
Examples, matrix rank, Venn diagrams,
examples of proofs of submodularity, some

useful properties

o
o
o
o
o
L3(4/4): Info theory exs, more apps, °
o
)
o
o

L11(5/2):
L12(5/4):
L13(5/9):
L14(5/11):
L15(5/16):
L16(5/18):
L17(5/23):
L18(5/25):
L19(6/1):
L20(6/6): Final Presentations
maximization.

L5(4/11): Examples & Properties, Other

Defs., Independence

L6(4/13): Independence, Matroids,
Matroid Examples, matroid rank is

submodular

L7(4/18): Matroid Rank, More on
Partition Matroid, System of Distinct
Reps, Transversals, Transversal Matroid,
L8(4/20): Transversals, Matroid and
representation, Dual Matroids, Geometries

L9(4/25):
L10(4/27):

Prof. Jeff Bilmes

Finals Week: June 6th-10th, 2016.
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System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vi : 4 € I) where V; C V for all
i), and I is an index set. Hence, |I| = |V|.

o A family (v; : ¢ € I) with v; € V is said to be a system of distinct
representatives of 1V if 3 a bijection 7 : I > I such that v; € V(;) and
v; # v; for all i # j.

@ In a system of distinct representatives, there is a requirement for the
representatives to be distinct. We can re-state (and rename) this as a:

Definition 8.2.2 (transversal)

Given a set system (V,V) and index set I for V as defined above, a set
T C V is a transversal of V if there is a bijection 7 : T <+ [ such that

T € Vi) forallz e T (8.19)

@ Note that due to 7 : 1" <> I being a bijection, all of I and T are
“covered” (so this makes things distinct automatically).
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When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
@ Given a set system (V,V) with V = (V;:i € I), and V; CV for all 4.
Then, for any J C I, let
V(J) =UjesV; (8.19)

so |V(J)| : 2 — Z, is the set cover func. (we know is submodular).
@ We have

Theorem 8.2.2 (Hall's theorem)

Given a set system (V. V), the family of subsets V = (V; : i € I) has a
transversal (v; : i € I) iff for all J C I

V(D = 1] (8.20)
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Review

When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?

@ Given a set system (V,V) with V = (V;:i € I), and V; CV for all 4.
Then, for any J C I, let

V(J) = UjesV; (8.19)

so |V(J)| : 2 — Z, is the set cover func. (we know is submodular).
e Hall's theorem (VJ C I, |V (J)| > |J]) as a bipartite graph.

Vv I

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 8 - Apr 25th, 2016 F6/40 (pg.7/162)



Review
i

When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?

@ Given a set system (V,V) with V = (V;:i € I), and V; CV for all 4.
Then, for any J C I, let

V(J) = UjesV; (8.19)

so |V(J)| : 2 — Z, is the set cover func. (we know is submodular).
e Hall's theorem (VJ C I, |V (J)| > |J]) as a bipartite graph.

Vv I
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When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
@ Given a set system (V,V) with V = (V; :i € I), and V; C V for all 4.
Then, for any J C I, let

V(J) =UjesV; (8.19)

so |V(J)| : 2 — Z, is the set cover func. (we know is submodular).
@ Moreover, we have

Theorem 8.2.3 (Rado’s theorem (1942))

If M =(V,r) is a matroid on V' with rank function r, then the family of
subsets (V; :i € I) of V has a transversal (v; : i € I) that is independent in
M iff forall J C 1

r(V(J)) = |J]| (8.21)

e Note, a transversal T independent in M means that »(T") = |T].
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Application’s of Hall's theorem

@ Consider a set of jobs I and a set of applicants V' to the jobs. If an
applicant v € V is qualified for job i € I, we add edge (v, i) to the
bipartite graph G = (V, [, E).
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Application’s of Hall's theorem

o Consider a set of jobs I and a set of applicants V' to the jobs. If an
applicant v € V' is qualified for job i € I, we add edge (v, i) to the
bipartite graph G = (V, I, E).

@ We wish all jobs to be filled, and hence Hall's condition
(VJ C IV (J)| = |J]) is a necessary and sufficient condition for this
to be possible.
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Application’s of Hall's theorem

o Consider a set of jobs I and a set of applicants V' to the jobs. If an
applicant v € V' is qualified for job i € I, we add edge (v, i) to the
bipartite graph G = (V, I, E).

@ We wish all jobs to be filled, and hence Hall's condition
(VJ C 1,|V(J)| > |J]) is a necessary and sufficient condition for this
to be possible.

e Note if [V| = |I], then Hall's theorem is the Marriage Theorem
(Frobenious 1917), where an edge (v, ) in the graph indicate
compatibility between two individuals v € V' and ¢ € I coming from
two separate groups V' and I.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 8 - Apr 25th, 2016 F7/40 (pg.12/162)



Review
IR

Application’s of Hall's theorem

o Consider a set of jobs I and a set of applicants V' to the jobs. If an
applicant v € V' is qualified for job i € I, we add edge (v, i) to the
bipartite graph G = (V, I, E).

@ We wish all jobs to be filled, and hence Hall's condition
(VJ C 1,|V(J)| > |J]) is a necessary and sufficient condition for this
to be possible.

e Note'if |[V| = |I|], then Hall's theorem is the Marriage Theorem
(Frobenious 1917), where an edge (v, ) in the graph indicate
compatibility between two individuals v € V' and ¢ € I coming from
two separate groups V and I.

o IfVJ C I,|V(J)| = |J], then all individuals in each group can be
matched with a compatible mate.
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More general conditions for existence of transversals

Theorem 8.2.2 (Polymatroid transversal theorem)

IfV = (V; :i € I) is a finite family of non-empty subsets of V', and
f:2Y — Z, is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (v; : i € I)
such that

f(UieJ{’l)i}) > |J| forall J C 1 (819)
if and only if

FV(J)) > |J| forall J C I (8.20)

@ Given Theorem ??, we immediately get Theorem 8.2.2 by taking
f(S) =S| for S C V.

o We get Theorem ?? by taking f(S) = r(S) for S C V, the rank
function of the matroid.
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Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 8.3.1

If V is a family of finite subsets of a ground set V', then the collection of
partial transversals of V is the set of independent sets of a matroid
M= (V,V)onV.
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Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 8.3.1

If V is a family of finite subsets of a ground set V', then the collection of
partial transversals of V is the set of independent sets of a matroid
M= (V,V)onV.

@ This means that the transversals of V are the bases of matroid M.
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Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 8.3.1

If V is a family of finite subsets of a ground set V', then the collection of
partial transversals of V is the set of independent sets of a matroid
M= (V,V)onV.

@ This means that the transversals of V are the bases of matroid M.

@ Therefore, all maximal partial transversals of V have the same
cardinality!
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Transversals and Bipartite Matchings

@ Transversals correspond exactly to matchings in bipartite graphs.
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Transversals and Bipartite Matchings

@ Transversals correspond exactly to matchings in bipartite graphs.

@ Given a set system (V, V), with ¥ = (V; : @ € I), we can define a
bipartite graph/G = (V, I, E) associated with ) that has edge set
{(v,i):veViel,veV}.

-
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Transversals and Bipartite Matchings

@ Transversals correspond exactly to matchings in bipartite graphs.

e Given a set system (V, V), with V = (V; : ¢ € I), we can define a
bipartite graph G = (V, I, E) associated with ) that has edge set
{(v,7):veVyiel,veV}.

@ A matching in this graph is a set of edges no two of which that have a
common endpoint. g
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Transversals and Bipartite Matchings

@ Transversals correspond exactly to matchings in bipartite graphs.

e Given a set system (V, V), with V = (V; : ¢ € I), we can define a
bipartite graph G = (V, I, E) associated with ) that has edge set
{(v,7):veVyiel,veV}.

@ A matching in this graph is a set of edges no two of which that have a
common endpoint. In fact, we easily have:
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Transversals and Bipartite Matchings

@ Transversals correspond exactly to matchings in bipartite graphs.

e Given a set system (V, V), with V = (V; : ¢ € I), we can define a
bipartite graph G = (V, I, E) associated with ) that has edge set
{(v,7):veVyiel,veV}.

@ A matching in this graph is a set of edges no two of which that have a
common endpoint. In fact, we easily have:

Lemma 8.3.2

C V is a partial transversal of V iff there is a matching in
hich every edge has one endpoint in T (I' matched into I).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 8 - Apr 25th, 2016 F10/40 (pg.22/162)



Transversal Matroid
(NLRNRRN

Arbitrary Matchings and Matroids?

@ Are arbitrary matchings matroids?
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Transversal Matroid

Arbitrary Matchings and Matroids?

@ Are arbitrary matchings matroids?

e Consider the following graph (left), and two max-matchings (two right
instances)
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Transversal Matroid
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Arbitrary Matchings and Matroids?

@ Are arbitrary matchings matroids?

e Consider the following graph (left), and two max-matchings (two right
instances)

e {AC} is a maximum matching, as is {AD, BC'}, but they are not the
same size.

0 AN 5 stot mebdie 5 puph (=(V)E) 5 (B, M) 0
w b Gptom T Aty T2 (chidain poptn) ol e )
Ty foot MG ol 0 b e eyt + (B
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Partition Matroid, rank as matching

@ Example where £ =5,
(K1, ko, k3, kq, ks) =
(2,2,1,1,3). @ Recall, T': 2V — R as the neighbor
V | function in a bipartite graph, the
neighbors of X is defined as I'(X) =
{veV(G)\ X : E(X,{v}) #0}, and
recall that |T'(X)| is submodular.
L o Here, for X C V, we have I'(X) =
{iel:(v,i) € E(G)and v e X}.
@ For such a constructed bipartite graph,
the rank function of a-partition matroid
la is r(X) = 220 min(|X N V|, k;) = the
maximum matching involving X

~
=

I3
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Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note/k; = |;| in the bipartite
graph representation, and since a matroid, w.l.o.g.{ |m1 (also, recall,
V(J) = UjesVj).
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Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the bipartite
graph representation, and since a matroid, w.l.o.g., |Vi| > k; (also, recall,
V(J) = UjesVy).

@ Start with partition matroid rank function in the subsequent equations.
r(A)=>_ min(ANVi|, k) (8.1)

ie{1,...0}
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Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note,(k; = |;| in the bipartite
graph representation, and since a matroid, w.l.o.g., |Vi| > k; (also, recall,
V(J) = UjesV)).

@ Start with partition matroid rank function in the subsequent equations.

r(A)= Y min(AN Vil k) (8.1)
ie{1,....0}
¢
= > min(|ANV(Z)],|L]) (8.2)
=1
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Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the bipartite
graph representation, and since a matroid, w.l.o.g., |Vi| > k; (also, recall,
V(J) = UjesV)).

@ Start with partition matroid rank function in the subsequent equations.

r(A) = Z min(|A N V|, k;) 61)
i€{1,...,0}
V4
= > min(|An V(L) [5]) 62)
=1
= i ANV (L) if Ji #0 o
_ ie{lz ) eI ({ 0 £ T, 0 }+ I\ JZ|> (8.3)
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Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the bipartite
graph representation, and since a matroid, w.l.o.g., |Vi| > k; (also, recall,
V(J) = UjesV)).

@ Start with partition matroid rank function in the subsequent equations.

r(A)=>_ min(ANVi|, k) .
i€{1,...,0}
¢
=D min(| A0 V(L) 1) ©2)
=1
_ . ANV(E)| if Ji #0 } )
= Z min o + | L\ Ji (8.3)
ie {10 JEl0y ({ 0 if J;, =0
= i ANV(L)| if Ji # 0 o
= jAS ({ 0 if J, = 0 } + 11\ le) (8.4)
1€{1,....0}
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Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the bipartite
graph representation, and since a matroid, w.l.o.g., |Vi| > k; (also, recall,
V(J) = UjesV)).

@ Start with partition matroid rank function in the subsequent equations.

r(A) = Z min(|A N V;|, k;) 1)

i€{1,...,0}
¢

— Zmin(\Am V(L)L) 62)
=1

_ : ANV (L) if J; #0 L

R 'E{lz @Jé%l?fi} <{ 0 if J; =0 }+IIZ\J11) (8.3)

= i ANV (L) if J; #0 R

_'6{1 5}5?@1% ({ 0 if J, =0 }+IIZ\J@I) > (8.4)
Y m g0) ¢V

} {Z AL V(@) (85)
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. Morphing Partition Matroid Rank

e Continuing,

= Z min )NV (L) N Al & |0 | + |5 (8.6)
i—1 JiCI; -—
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... Morphing Partition Matroid Rank

e Continuing,

r(4) =3 min (V(H) NV VAl = [0+ L) (86)

l
= min (Z V()N V(L) NA| - |LnJ|+ ym) (8.7)
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... Morphing Partition Matroid Rank

e Continuing,

i=1
L
= min ; V() NV(E) N Al < L0 ]+ mw) (8.7)
= min (|V(J) NV(1) N A| < |J] + 1) (8:8)
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... Morphing Partition Matroid Rank

e Continuing,
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... Morphing Partition Matroid Rank

e Continuing,

r(A) =Y min V() NV VAl =[O+ L) (86)

l
=min [ > [V(J)N V(L) NAl - |LNnJ|+ ym) (8.7)

JCI

- =1
=min ([V(/) N V(1) 0 A] = [J] + 1) (8.8)
= A= (8.9)

@ In fact, this bottom (more general) expression is the expression for the
rank of a transversal matroid.
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Partial Transversals Are Independent Sets in a Matroid

In fact, we have

Theorem 8.3.3

Let (V,V) where V = (V1,Va,..., V) be a subset system. Let
I ={1,...,0}. LetT be the set of partial transversals of V. Then (V,I) is
a matroid.

Proof.

D |
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Transversal Matroid

Partial Transversals Are Independent Sets in a Matroid

In fact, we have

Theorem 8.3.3

Let (V,V) where V = (V1,Va,..., V) be a subset system. Let
I ={1,...,0}. LetT be the set of partial transversals of V. Then (V,I) is
a matroid.

Proof.

@ We note that () € 7 since the empty set is a transversal of the empty
subfamily of V, thus (I1") holds.
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Transversal Matroid

Partial Transversals Are Independent Sets in a Matroid

In fact, we have

Theorem 8.3.3

Let (V,V) where V = (V1,Va,..., V) be a subset system. Let
I ={1,...,0}. LetT be the set of partial transversals of V. Then (V,I) is
a matroid.

Proof.

@ We note that () € 7 since the empty set is a transversal of the empty
subfamily of V, thus (I1") holds.

@ We already saw that if T is a partial transversal of V, and if T/ C T,
then 7" is also a partial transversal. So (12') holds.
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Partial Transversals Are Independent Sets in a Matroid

In fact, we have

Theorem 8.3.3

Let (V,V) where V = (V1,Va,..., V) be a subset system. Let
I ={1,...,0}. LetT be the set of partial transversals of V. Then (V,I) is
a matroid.

Proof.

@ We note that () € 7 since the empty set is a transversal of the empty
subfamily of V, thus (I1") holds.

@ We already saw that if T is a partial transversal of V, and if T/ C T,
then 7" is also a partial transversal. So (12') holds.

@ Suppose that 77 and 75 are partial transversals of V such that
|T1| < |T3|. Exercise: show that (I13") holds.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 8 - Apr 25th, 2016 F15/40 (pg.41/162)



Transversal Matroid
(NNANNAT |

Transversal Matroid Rank

@ Transversal matroid has rank
A S (R QA I SR (8.10)
= min ()
Jg &l
m (1) |V2ak) ~19)+13)
v [_/__’__(’
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Transversal Matroid Rank

@ Transversal matroid has rank

r(4) = min (V) 0 A = 1] +12) (8.10)

@ Therefore, this function is submodular.
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Transversal Matroid Rank

@ Transversal matroid has rank
r(4) = min ([V(J) N A] = |J| + |1]) (8.10)

@ Therefore, this function is submodular.
@ Note that it is a minimum over a set of modular functions. Is this true
in general? Exercise:
0 or
, Wt g et Zom,/l frorofied
n Sﬂ'l' o mAyVIN "0‘”‘4""’\] ‘
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Matroid loops

@ A circuit in a matroids is well defined, a subset A C E is circuit if it is
an inclusionwise minimally dependent set (i.e., if 7(A) < |A| and for
any a € A, r(A\ {a}) = |A| — 1).
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Matroid loops

(WI) (U)I)

@ A circuit in a matroids is well defined, a subset A C E'is circuit if it is
an inclusionwise minimally dependent set (i.e., if 7(A) < |A| and for
anya € A, r(A\ {a}) = |A] - 1).

@ There is no reason in a matroid such an A could not consist of a single

(v, ) (/%)
(€ )
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Matroid loops

@ A circuit in a matroids is well defined, a subset A C E is circuit if it is
an inclusionwise minimally dependent set (i.e., if 7(A) < |A| and for

any a € A, r(A\ {a}) = |[A| - 1).
@ There is no reason in a matroid such an A could not consist of a single

element. A= f,,"5 (‘(J)'—D—

@ Such an {a} is called a loop.

. “)89-
" (¢)

§ ’ :f‘(r‘l\{,'j)
g =0
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Matroid loops

@ A circuit in a matroids is well defined, a subset A C FE is circuit if it is
an inclusionwise minimally dependent set (i.e., if 7(A) < |A| and for
anya € A, r(A\ {a}) = |A] - 1).

@ There is no reason in a matroid such an A could not consist of a single
element.

@ Such an {a} is called a loop.

@ In a matric (i.e., linear) matroid, the only such loop is the value 0, as
all non-zero vectors have rank 1. The O can appear > 1 time with
different indices, as can a self loop in a graph appear on different
nodes.
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Matroid loops

@ A circuit in a matroids is well defined, a subset A C FE is circuit if it is
an inclusionwise minimally dependent set (i.e., if 7(A) < |A| and for
anya € A, r(A\ {a}) = |A] - 1).

@ There is no reason in a matroid such an A could not consist of a single
element.

@ Such an {a} is called a loop.

@ In a matric (i.e., linear) matroid, the only such loop is the value 0, as
all non-zero vectors have rank 1. The 0 can appear > 1 time with
different indices, as can a self loop in a graph appear on different
nodes.

@ Note, we also say that two elements s, ¢ are said to be parallel if {s,t}

is a circuit. O

€
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Matroid and representation
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Representable

Definition 8.4.1 (Matroid isomorphism)

Two matroids M; and My respectively on ground sets V7 and V5 are
isomorphic if there is a bijection 7 : V4 — V5 which preserves independence
(equivalently, rank, circuits, and so on).
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Matroid and representation
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Representable

Definition 8.4.1 (Matroid isomorphism)

Two matroids M; and My respectively on ground sets V; and V5 are
isomorphic if there is a bijection 7 : V4 — V5 which preserves independence

(equivalently, rank, circuits, and so on).

o Let FF be any field (such as R, Q, or some finite field IF, such as a
Galois field GF(p) where p is prime (such as GF(2)), but not Z.
Succinctly: (A field is a set with +, *, closure, associativity,
commutativity, and additive and multiplictyive identities and inverses.

F18/40 (pg.51/162)
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Matroid and representation
101

Representable

Definition 8.4.1 (Matroid isomorphism)

Two matroids M; and My respectively on ground sets V7 and V5 are
isomorphic if there is a bijection 7 : V4 — V5 which preserves independence
(equivalently, rank, circuits, and so on).

@ Let F be any field (such as R, Q, or some finite field IF, such as a
Galois field GF(p) where p is prime (such as GF(2)), but not Z.
Succinctly: A field is a set with +, *, closure, associativity,
commutativity, and additive and multiplictaive identities and inverses.

@ We can more generally define matroids on a field.
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Matroid and representation
101

Representable

Definition 8.4.1 (Matroid isomorphism)

Two matroids M; and My respectively on ground sets V7 and V5 are
isomorphic if there is a bijection 7 : V4 — V5 which preserves independence
(equivalently, rank, circuits, and so on).

@ Let F be any field (such as R, Q, or some finite field IF, such as a
Galois field GF(p) where p is prime (such as GF(2)), but not Z.
Succinctly: A field is a set with +, *, closure, associativity,
commutativity, and additive and multiplictaive identities and inverses.

@ We can more generally define matroids on a field.

Definition 8.4.2 (linear matroids on a field)

Let X be an n x m matrix and £ = {1,...,m}, where X;; € I for some
field, and let Z be the set of subsets of E such that the columns of X are
linearly independent over F.
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Matroid and representation
11

Representable

Definition 8.4.1 (Matroid isomorphism)

Two matroids M; and My respectively on ground sets V; and V5 are
isomorphic if there is a bijection 7 : V4 — V5 which preserves independence
(equivalently, rank, circuits, and so on).

@ Let F be any field (such as R, Q, or some finite field IF, such as a
Galois field GF(p) where p is prime (such as GF(2)), but not Z.
Succinctly: A field is a set with +, *, closure, associativity,
commutativity, and additive and multiplictaive identities and inverses.

@ We can more generally define matroids on a field.

Definition 8.4.3 (representable (as a linear matroid))

Any matroid isomorphic to a linear matroid on a field is called representable
over F
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Matroid and representation
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Representability of Transversal Matroids

o Piff and Welsh in 1970, and Adkin in 1972 proved an important
theorem about representability of transversal matroids.
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Matroid and representation
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Representability of Transversal Matroids

o Piff and Welsh in 1970, and Adkin in 1972 proved an important
theorem about representability of transversal matroids.

@ In particular:

Theorem 8.4.4

Transversal matroids are representable over all finite fields of sufficiently
large cardinality, and are representable over any infinite field.
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Converse: Representability of Transversal Matroids

The converse is not true, however.

Example 8.4.5

Let V ={1,2,3,4,5,6} be a ground set and let M = (V,Z) be a set
system where 7 is all subsets of V' of cardinality < 2 except for the pairs

{1,2}, {3,4}, {5,6}.
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Converse: Representability of Transversal Matroids

The converse is not true, however.

Example 8.4.5

Let V ={1,2,3,4,5,6} be a ground set and let M = (V,Z) be a set
system where 7 is all subsets of V' of cardinality < 2 except for the pairs

{1,2}, {3,4}, {5,6}.

@ It can be shown that this is a matroid and is representable.
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Matroid and representation
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Converse: Representability of Transversal Matroids

The converse is not true, however.

Example 8.4.5

Let V ={1,2,3,4,5,6} be a ground set and let M = (V,Z) be a set
system where 7 is all subsets of V' of cardinality < 2 except for the pairs

{1,2}, {3,4}, {5,6}.

@ It can be shown that this is a matroid and is representable.

@ However, this matroid is not isomorphic to any transversal matroid.
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Review from Lecture 6

The next frame comes from lecture 6.
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Matroids, other definitions using matroid rank r : 2V — Z_

Definition 8.5.3 (closed/flat/subspace)

A subset A C E is closed (equivalently, a flat or a subspace) of matroid M
if forallz € E\ A, r(AU{x}) =r(A) + 1.

Definition: A hyperplane is a flat of rank (M) — 1.

Definition 8.5.4 (closure)

Given A C E, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(A4)}.

Therefore, a closed set A has span(A) = A.

Definition 8.5.5 (circuit)

A subset A C E is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if r(A) < |A| and for any a € A, r(A\ {a}) = |A| —1).
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Spanning Sets

@ We have the following definitions:
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Spanning Sets

@ We have the following definitions:

Definition 8.5.1 (spanning set of a set)

Given a matroid M = (V,Z), and a set Y C V, then any set X C Y such
that 7(X) = r(Y) is called a spanning set of Y.

Y:V /((A’/): C‘/V)
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Dual Matroid

Spanning Sets

@ We have the following definitions:

Definition 8.5.1 (spanning set of a set)

Given a matroid M = (V,Z), and a set Y C V, then any set X C Y such
that 7(X) = r(Y) is called a spanning set of Y.

Definition 8.5.2 (spanning set of a matroid)

Given a matroid M = (V,Z), any set A C V such that 7(A) =r(V) is
called a spanning set of the matroid.
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Dual Matroid

Spanning Sets

@ We have the following definitions:

Definition 8.5.1 (spanning set of a set)

Given a matroid M = (V,Z), and a set Y C V, then any set X C Y such
that 7(X) = r(Y) is called a spanning set of Y.

Definition 8.5.2 (spanning set of a matroid)

Given a matroid M = (V,Z), any set A C V such that r(A) = r(V) is
called a spanning set of the matroid.

@ A base of a matroid is a minimal spanning set (and it is independent)
but supersets of a base are also spanning

A
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Dual Matroid

Spanning Sets

@ We have the following definitions:

Definition 8.5.1 (spanning set of a set)

Given a matroid M = (V,Z), and a set Y C V, then any set X C Y such
that 7(X) = r(Y) is called a spanning set of Y.

Definition 8.5.2 (spanning set of a matroid)

Given a matroid M = (V,Z), any set A C V such that r(A) = r(V) is
called a spanning set of the matroid.

@ A base of a matroid is a minimal spanning set (and it is independent)
but supersets of a base are also spanning.

e V is always trivially spanning.
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Dual Matroid

Spanning Sets

@ We have the following definitions:

Definition 8.5.1 (spanning set of a set)

Given a matroid M = (V,Z), and a set Y C V, then any set X C Y such
that 7(X) = r(Y) is called a spanning set of Y.

Definition 8.5.2 (spanning set of a matroid)

Given a matroid M = (V,Z), any set A C V such that r(A) = r(V) is
called a spanning set of the matroid.

@ A base of a matroid is a minimal spanning set (and it is independent)
but supersets of a base are also spanning.

e V is always trivially spanning.
@ Consider the terminology: “spanning tree in a graph”, comes from
spanning in a matroid sense.
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Dual of a Matroid

e Given a matroid M = (V,I), a dual matroid M* = (V,Z*) can be
defined on the same ground set V, but using a very different set of
independent sets 7%,
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Dual of a Matroid

e Given a matroid M = (V,I), a dual matroid M* = (V,Z*) can be
defined on the same ground set V, but using a very different set of
independent sets Z*.

@ We define the set of sets Z* for M* as follows:

I*={ACV:V\ Ais aspanning set of M} (8.11)
={V\S:8CVisaspanning set of M} (8.12)

i.e., Z* are complements of spanning sets of M.
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Dual of a Matroid

e Given a matroid M = (V,I), a dual matroid M* = (V,Z*) can be
defined on the same ground set V, but using a very different set of
independent sets Z*.

o We define the set of sets Z* for M* as follows:

I ={ACV:V\ Ais a spanning set of M} (8.11)
={V\S:S5CV isa spanning set of M} (8.12)
i.e., Z* are complements of spanning sets of M.

@ That is, a set A is independent in the dual matroid M* if removal of A
from V does not decrease the rank in M:

" ={ACV :ranky (V \ A) = ranky (V)} (8.13)
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Dual of a Matroid

e Given a matroid M = (V,I), a dual matroid M* = (V,Z*) can be
defined on the same ground set V, but using a very different set of
independent sets Z*.

o We define the set of sets Z* for M* as follows:

" ={ACV:V\ Ais aspanning set of M} (8.11)
={V\S§:8 CVisaspanning set of M} (8.12)
i.e., Z* are complements of spanning sets of M.

@ That is, a set A is independent in the dual matroid M* if removal of A
from V does not decrease the rank in M:

IZ* ={A CV:ranky (V \ A) = rankp(V)} (8.13)
@ In other words, a set A C V is independent in the dual M* (i.e.,

A € T*) if its complement is spanning in M (residual V' \ A must
contain a base in M).
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Dual of a Matroid

e Given a matroid M = (V,I), a dual matroid M* = (V,Z*) can be
defined on the same ground set V, but using a very different set of
independent sets Z*.

o We define the set of sets Z* for M* as follows:

I*={ACV:V\ Ais a spanning set of M} (8.11)
={V\S:S5CV isa spanning set of M} (8.12)
i.e., Z* are complements of spanning sets of M.

@ That is, a set A is independent in the dual matroid M* if removal of A
from V does not decrease the rank in M:

IZ* ={A CV:ranky (V \ A) = rankp(V)} (8.13)

@ In other words, a set A C V is independent in the dual M* (i.e.,
A € T*) if its complement is spanning in M (residual V' \ A must
contain a base in M).

@ Dual of the dual: Note, we have that{(M*)* = M.
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Dual of a Matroid: Bases

@ The smallest spanning sets are bases.
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Dual of a Matroid: Bases

@ The smallest spanning sets are bases. Hence, @ base B of M (where
B =V \ B* is as small as possible while still spanning) is the
complement of a base B* of M* (where B* =V \ B is as large as
possible while still being independent).
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Dual of a Matroid: Bases

@ The smallest spanning sets are bases. Hence, a base B of M (where
B =V \ B* is as small as possible while still spanning) is the
complement of a base B* of M* (where B* =V \ B is as large as
possible while still being independent).

@ In fact, we have that
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Dual of a Matroid: Bases

@ The smallest spanning sets are bases. Hence, a base B of M (where
B =V \ B* is as small as possible while still spanning) is the
complement of a base B* of M* (where B* =V \ B is as large as
possible while still being independent).

@ In fact, we have that

Theorem 8.5.3 (Dual matroid bases)

Let M = (V,Z) be a matroid and B(M) be the set of bases of M. Then
define

B*(M)={V\B: B e B(M)}. (8.14)

Then B*(M) is the set of basis of M* (that is, B*(M) = B(M*).
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An exercise in duality Terminology

@ B*(M), the bases of M*, are called cobases of M.
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An exercise in duality Terminology

@ B*(M), the bases of M*, are called cobases of M.

@ The circuits of M™ are called cocircuits of M.
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An exercise in duality Terminology

@ B*(M), the bases of M*, are called cobases of M.
@ The circuits of M™ are called cocircuits of M.

@ The hyperplanes of M* are called cohyperplanes of M.
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An exercise in duality Terminology

@ B*(M), the bases of M*, are called cobases of M.
@ The circuits of M™* are called cocircuits of M.
@ The hyperplanes of M* are called cohyperplanes of M.

@ The independent sets of M™* are called coindependent sets of M.
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An exercise in duality Terminology

@ B*(M), the bases of M*, are called cobases of M.

@ The circuits of M™* are called cocircuits of M.

@ The hyperplanes of M* are called cohyperplanes of M.

@ The independent sets of M* are called coindependent sets of M.

@ The spanning sets of M™ are called cospanning sets of M.
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An exercise in duality Terminology

@ B*(M), the bases of M*, are called cobases of M.

@ The circuits of M™* are called cocircuits of M.

@ The hyperplanes of M* are called cohyperplanes of M.

@ The independent sets of M* are called coindependent sets of M.

@ The spanning sets of M™ are called cospanning sets of M.

Proposition 8.5.4 (from Oxley 2011)
Let M = (V,Z) be a matroid, and let X C'V. Then
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Dual Matroid
(NRRNT RNRRN

An exercise in duality Terminology

@ B*(M), the bases of M*, are called cobases of M.

@ The circuits of M™* are called cocircuits of M.

@ The hyperplanes of M* are called cohyperplanes of M.

@ The independent sets of M* are called coindependent sets of M.

@ The spanning sets of M™ are called cospanning sets of M.

Proposition 8.5.4 (from Oxley 2011)
Let M = (V,Z) be a matroid, and let X C'V. Then
Q@ X is independent in M iff V' \ X is cospanning in M (spanning in M*).
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An exercise in duality Terminology

@ B*(M), the bases of M*, are called cobases of M.

@ The circuits of M™* are called cocircuits of M.

@ The hyperplanes of M* are called cohyperplanes of M.

@ The independent sets of M* are called coindependent sets of M.

@ The spanning sets of M™ are called cospanning sets of M.

Proposition 8.5.4 (from Oxley 2011)
Let M = (V,Z) be a matroid, and let X C'V. Then
@ X is independent in M iff V' \ X is cospanning in M (spanning in M*).

@ X is spanning in M iff V'\ X is coindependent in M (independent in
M*).
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An exercise in duality Terminology

@ B*(M), the bases of M*, are called cobases of M.

@ The circuits of M™* are called cocircuits of M.

@ The hyperplanes of M* are called cohyperplanes of M.

@ The independent sets of M* are called coindependent sets of M.

@ The spanning sets of M™ are called cospanning sets of M.

Proposition 8.5.4 (from Oxley 2011)

Let M = (V,Z) be a matroid, and let X C'V. Then
@ X is independent in M iff V' \ X is cospanning in M (spanning in M*).
@ X is spanning in M iff V'\ X is coindependent in M (independent in
© X is a hyperplane in M iff V'\ X is a cocircuit in M (circuit in M*).
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An exercise in duality Terminology

@ B*(M), the bases of M*, are called cobases of M.

@ The circuits of M™ are called cocircuits of M.

@ The hyperplanes of M* are called cohyperplanes of M.

@ The independent sets of M* are called coindependent sets of M.

@ The spanning sets of M™ are called cospanning sets of M.

Proposition 8.5.4 (from Oxley 2011)

Let M = (V,Z) be a matroid, and let X C'V. Then
Q X is independent in M iff V '\ X is cospanning in M (spanning in M*).
@ X isspanning in M iff V' \ X is coindependent in M (independent in
Q X is a hyperplane in M iff V' \ X is a cocircuit in M (circuit in M*).

Q X isacircuit in M iff V'\ X is a cohyperplane in M (hyperplane in M*).
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Example duality: graphic matroid

@ Using a graphic/cycle matroid, we can already see how dual matroid
concepts demonstrates the ‘extraordinary flexibility and power that a
matroid can have.
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Example duality: graphic matroid

e Using a graphic/cycle matroid, we can already see how dual matroid
concepts demonstrates the extraordinary flexibility and power that a
matroid can have.

@ Recall, in cycle matroid, a spanning set of (G is any set of edges that are
incident to all nodes (i.e., any superset of a spanning forest), a minimal

spanning set is a spanning tree (or forest), and a circuit has a nice V|sual

interpretation (a cycle in the graph).

0/@\

—_—
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Example duality: graphic matroid

e Using a graphic/cycle matroid, we can already see how dual matroid
concepts demonstrates the extraordinary flexibility and power that a
matroid can have.

@ Recall, in cycle matroid, a spanning set of GG is any set of edges that are
incident to all nodes (i.e., any superset of a spanning forest), a minimal
spanning set is a spanning tree (or forest), and a circuit has a nice visual
interpretation (a cycle in the graph).

o A cutinva graph G is a set of edges, the removal of which increases the
number of connected components. l.e., X C E(G) is a cut in G if
k(G) < k(G \ X),
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Example duality: graphic matroid

e Using a graphic/cycle matroid, we can already see how dual matroid
concepts demonstrates the extraordinary flexibility and power that a
matroid can have.

@ Recall, in cycle matroid, a spanning set of GG is any set of edges that are
incident to all nodes (i.e., any superset of a spanning forest), a minimal
spanning set is a spanning tree (or forest), and a circuit has a nice visual
interpretation (a cycle in the graph).

@ A cut in a graph G is a set of edges, the removal of which increases the
number of connected components. l.e., X C E(G) is a cut in G if
kE(G) < k(G \ X).

@ A minimal cut in G is a cut X C E(G) such that X \ {z} is not a cut
for any z € X.
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Example duality: graphic matroid

e Using a graphic/cycle matroid, we can already see how dual matroid
concepts demonstrates the extraordinary flexibility and power that a
matroid can have.

@ Recall, in cycle matroid, a spanning set of GG is any set of edges that are
incident to all nodes (i.e., any superset of a spanning forest), a minimal
spanning set is a spanning tree (or forest), and a circuit has a nice visual
interpretation (a cycle in the graph).

@ A cut in a graph G is a set of edges, the removal of which increases the
number of connected components. l.e., X C E(G) is a cut in G if
kE(G) < k(G \ X).

@ A minimal cut in G is a cut X C E(G) such that X \ {z} is not a cut
for any z € X.

@ A cocycle (cocircuit) in a graphic matroid is a minimal graph cut.
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Example duality: graphic matroid

Using a graphic/cycle matroid, we can already see how dual matroid
concepts demonstrates the extraordinary flexibility and power that a
matroid can have.

Recall, in cycle matroid, a spanning set of (G is any set of edges that are
incident to all nodes (i.e., any superset of a spanning forest), a minimal
spanning set is a spanning tree (or forest), and a circuit has a nice visual
interpretation (a cycle in the graph).

A cut in a graph G is a set of edges, the removal of which increases the
number of connected components. l.e., X C E(G) is a cut in G if
kE(G) < k(G \ X).

A minimal cut in G is a cut X C E(G) such that X \ {z} is not a cut
for any z € X.

A cocycle (cocircuit) in a graphic matroid is a minimal graph cut.

A mincut is a circuit in the dual“cocycle” (or “cut” ) matroid.
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Example duality: graphic matroid

Using a graphic/cycle matroid, we can already see how dual matroid
concepts demonstrates the extraordinary flexibility and power that a
matroid can have.

Recall, in cycle matroid, a spanning set of (G is any set of edges that are
incident to all nodes (i.e., any superset of a spanning forest), a minimal
spanning set is a spanning tree (or forest), and a circuit has a nice visual
interpretation (a cycle in the graph).

A cut in a graph G is a set of edges, the removal of which increases the
number of connected components. l.e., X C E(G) is a cut in G if
kE(G) < k(G \ X).

A minimal cut in G is a cut X C E(G) such that X \ {z} is not a cut
for any z € X.

A cocycle (cocircuit) in a graphic matroid is a minimal graph cut.

A mincut is a circuit in the dual “cocycle” (or “cut”) matroid.

All dependent sets in a cocycle matroid are cuts (i.e., a dependent set is
a minimal cut or contains one).
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Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\ Ais a spanning set of M}
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Dual Matroid

Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I* ={ACV:V\Ais a spanning set of M}

@ |t consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that, if
removed, would render the graph non-spanning.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 8 - Apr 25th, 2016 F28/40 (pg.95/162)



Dual Matroid
(ARRNRRY RN

Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\ Ais a spanning set of M}

@ It consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that, if
removed, would render the graph non-spanning.

Minimally spanning in M (and thus Maximally independent in M* (thus
a base (maximally independent) in M) a base, minimally spanning, in M*)
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Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\ Ais a spanning set of M}

@ It consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that, if
removed, would render the graph non-spanning.

Minimally spanning in M (and thus Maximally independent in M* (thus
a base (maximally independent) in M)  a base, minimally spanning, in M¥)
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Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\ Ais a spanning set of M}

@ It consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that, if
removed, would render the graph non-spanning.

Independent but not spanning Dependent in M* (contains
in M, and not closed in M. a cocycle, is\a nonminimal cut)
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Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\ Ais a spanning set of M}

@ It consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that, if
removed, would render the graph non-spanning.

Spanning in M, but not a base, and  Independent in M* (does
not independent (has cycles) not contain a cut)
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Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\ Ais a spanning set of M}

@ It consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that, if
removed, would render the graph non-spanning.

Independent but not spanning Dependent in M* (contains
in M, and not closed in M. a cocycle, is a nonminimal cut)
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Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\ Ais a spanning set of M}

@ It consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that, if
removed, would render the graph non-spanning.

A hyperplane in M, dependent A cycle in M* (minimally dependent
but not spanning in M in M*, a cocycle, or a minimal cut)
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Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\ Ais a spanning set of M}

@ It consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that, if
removed, would render the graph non-spanning.

A hyperplane in M, dependent A cycle in M* (minimally dependent
but not spanning in M in M*, a cocycle, or a minimal cut)
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The dual of a matroid is (indeed) a matroid

Theorem 8.5.5
Given matroid M = (V,I), let M* = (V,Z*) be as previously defined.
Then M* is a matroid.

o Clearly ) € 7%, so (11") holds.
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The dual of a matroid is (indeed) a matroid

Theorem 8.5.5
Given matroid M = (V,I), let M* = (V,Z*) be as previously defined.
Then M* is a matroid.

Proof.
o Clearly ) € 7%, so (11") holds.

@ Also, if I C J € I*, then clearly also I € Z* since if V' \ J is spanning
in M, so must V' \ I. Therefore, (12") holds.

VT ¢ V=
- —
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The dual of a matroid is (indeed) a matroid

Theorem 8.5.5
Given matroid M = (V,I), let M* = (V,Z*) be as previously defined.
Then M* is a matroid

| A\

Proof

o Consider I,J € T* with |I| < |J|. We need to show that there is some
member v € J \ I such that I + v is independent in M*, which means
that V'\ (I +v) = (V' \ I)\ v is still spanning in M. That is, removing
v from V' \ I doesn't make (V' '\ I) \ v not spanning in M.

Vit = V\&+)
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The dual of a matroid is (indeed) a matroid

Theorem 8.5.5
Given matroid M = (V,I), let M* = (V,Z*) be as previously defined.
Then M* is a matroid.

~

o Consider I,J € T* with |I| < |J|. We need to show that there is some
member v € J \ I such that I + v is independent in M*, which means
that V'\ (I +v) = (V' \ I)\ v is still spanning in M. That is, removing
v from V' \ I doesn't make (V' \ I) \ v not spanning in M.

@ Since V' \ J is spanning in M, V' \ J contains some base (say
B CV\J)of M. Also, V'\ I contains a base of M, say B’ C V'\ I.
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The dual of a matroid is (indeed) a matroid

Theorem 8.5.5
Given matroid M = (V,I), let M* = (V,Z*) be as previously defined.
Then M* is a matroid.

~

Proof.

o Consider I,J € T* with |I| < |J|. We need to show that there is some
member v € J \ I such that I + v is independent in M*, which means
that V'\ (I +v) = (V' \ I)\ v is still spanning in M. That is, removing
v from V' \ I doesn't make (V' \ I) \ v not spanning in M.

@ Since V' \ J is spanning in M, V' \ J contains some base (say
B CV\J)of M. Also, V '\ I contains a base of M, say B’ C V'\ I.

@ Since B\ I C V' \ I, and B\ I is independent in M, we can choose
the base B’ of M s.t. B\I C B'CV\I.
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The dual of a matroid is (indeed) a matroid

Theorem 8.5.5

Given matroid M = (V,I), let M* = (V,Z*) be as previously defined.
Then M* is a matroid.

~

Proof.

o Consider I,J € T* with |I| < |J|. We need to show that there is some
member v € J \ I such that I + v is independent in M*, which means
that V'\ (I +v) = (V' \ I)\ v is still spanning in M. That is, removing
v from V' \ I doesn't make (V' \ I) \ v not spanning in M.

@ Since V' \ J is spanning in M, V' \ J contains some base (say
B CV\J)of M. Also, V'\ I contains a base of M, say B’ C V'\ I.

@ Since B\ I C V' \ I, and B\ I is independent in M, we can,choose
the base B' of M s.t. B\IC B'CV\ L. O )T

@ Since B and J are disjoint, we have both: 1) B\ I and J \ [ are
disjoint; and 2) BN I C I\ J. Also note, B’ and I are disjoint.
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The dual of a matroid is (indeed) a matroid

Theorem 8.5.5
Given matroid M = (V,I), let M* = (V,Z*) be as previously defined.
Then M* is a matroid.

e Now J\ I € B’, since otherwise (i.e., assuming J \ I C B’):

IB|=|BNI|+|B\I (8.15)
<|[I\J|+|B\I| (8.16)
<|J\I|+|B\1I| <|B (8.17)

which is a contradiction. The last inequality on the right follows since
J\ I C B’ (by assumption) and B\ I C B’ implies that (J\ I)U(B\I) C B’, but
since J and B are disjoint, we have that |J\ I| + |B\ I| < |B’|.
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The dual of a matroid is (indeed) a matroid

Theorem 8.5.5
Given matroid M = (V,I), let M* = (V,Z*) be as previously defined.
Then M* is a matroid.

e Now J\ I € B’, since otherwise (i.e., assuming J \ I C B’):

IB|=|BNI|+|B\I (8.15)
<|[I\J|+|B\I| (8.16)
<|J\I|+|B\1I| <|B (8.17)

which is a contradiction.
@ Therefore, J\ I € B’, and thereisave J\ st v¢ B’
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The dual of a matroid is (indeed) a matroid

Theorem 8.5.5
Given matroid M = (V,I), let M* = (V,Z*) be as previously defined.
Then M* is a matroid.

e Now J\ I € B’, since otherwise (i.e., assuming J \ I C B’):

IB|=|BNI|+|B\I (8.15)
<|[I\J|+|B\I| (8.16)
<|J\I|+|B\1I| <|B (8.17)

which is a contradiction.
@ Therefore, J\ I € B’, and thereisave J\ st v¢ B’

e So B’ is disjoint with I U {v}, means B’ C V' \ (I U{v}), or
V'\ (L U{v}) is spanning in M, and therefore I U {v} € Z*.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 8 - Apr 25th, 2016



Dual Matroid
(ARRRRRNRT N

Matroid Duals and Representability

Theorem 8.5.6

Let M be an F-representable matroid (i.e., one that can be represented by
a finite sized matrix over field F). Then M* is also [F-representable.

Hence, for matroids as general as matric matroids, duality does not extend
the space of matroids that can be used.
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Matroid Duals and Representability

Theorem 8.5.6

Let M be an F-representable matroid (i.e., one that can be represented by
a finite sized matrix over field F). Then M* is also [F-representable.

Hence, for matroids as general as matric matroids, duality does not extend
the space of matroids that can be used.

Theorem 8.5.7

Let M be a graphic matroid (i.e., one that can be represented by a graph
G = (V,E)). Then M* is not necessarily also graphic.

Hence, for graphic matroids, duality can increase the space and power of
matroids, and since they are based on a graph, they are relatively easy to
use: 1) all cuts are dependent sets; 2) minimal cuts are cycles; 3) bases are
one edge less than minimal cuts; and 4) independent sets are edges that are
not cuts.
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Dual Matroid Rank

Theorem 8.5.8
The rank function rp;+ of the dual matroid M* may be specified in terms
of the rank rp; in matroid M as follows. For X C V :

ra+(X) = |X|+ru(V\X) —ry(V) (8.18)

@ Note, we again immediately see that this is submodular by the
properties of submodular functions we saw in lectures 1 and 2. le,
is modular, complement f(V \ X) is submodular if f is submodular, rp; (V') is a
constant, and summing submodular functions and a constant preserves
submodularity.

X|
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Dual Matroid Rank

Theorem 8.5.8

The rank function rp;+ of the dual matroid M* may be specified in terms
of the rank rp; in matroid M as follows. For X C V :

ra+(X) = |X|+ru(V\X) —ry(V) (8.18)

@ Note, we again immediately see that this is submodular by the
properties of submodular functions we saw in lectures 1 and 2.

@ Non-negativity integral follows since
| X|+rm(V\X)>rp(X)+ 7y (V\X) >ry (V). The right inequality

follows since ry; is submodular.
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Dual Matroid Rank

Theorem 8.5.8

The rank function rp;+ of the dual matroid M* may be specified in terms
of the rank rp; in matroid M as follows. For X C V :

ra+(X) = |X|+ru(V\X) —ry(V) (8.18)

@ Note, we again immediately see that this is submodular by the
properties of submodular functions we saw in lectures 1 and 2.

@ Non-negativity integral follows since
’X‘ +ruy(VAX)>ry(X)+ry(V\X) > ’I”M(V)

@ Monotone non-decreasing follows since, as X increases by one, |X|
always increases by 1, while 73;/(V \ X') decreases by one or zero.
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Dual Matroid Rank

Theorem 8.5.8
The rank function rp;+ of the dual matroid M* may be specified in terms
of the rank rp; in matroid M as follows. For X C V :

ra+(X) = |X|+ru(V\X) —ry(V) (8.18)

@ Note, we again immediately see that this is submodular by the
properties of submodular functions we saw in lectures 1 and 2.

@ Non-negativity integral follows since
’X‘ +ruy(VAX)>ry(X)+ry(V\X) > ’I”M(V)

@ Monotone non-decreasing follows since, as X increases by one, |X|
always increases by 1, while 73;/(V \ X') decreases by one or zero.

@ Therefore, rps+ is the rank function of a matroid. That it is the dual
matroid rank function is shown in the next proof.
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Dual Matroid Rank

The rank function rp;+ of the dual matroid M* may be specified in terms
of the rank rp; in matroid M as follows. For X C V :

ra+(X) = |X|+ru(V\X) —ry(V) (8.18)

Proof.
A set X is independent in (V,rps+) if and only if

ra=(X) = | X[+ ru (VA X) —rp(V) = |X] (8.19)
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Dual Matroid Rank

The rank function rp;+ of the dual matroid M* may be specified in terms
of the rank rp; in matroid M as follows. For X C V :

ra+(X) = |X|+ru(V\X) —ry(V) (8.18)

Proof.
A set X is independent in (V,rps+) if and only if

ra=(X) = | X[+ ru (VA X) —rp(V) = |X] (8.19)

ru(V\X) =ru(V) (8.20)
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Dual Matroid Rank

Theorem 8.5.8

The rank function rp;+ of the dual matroid M* may be specified in terms
of the rank rp; in matroid M as follows. For X C V :

ra+(X) = |X|+ru(V\X) —ry(V) (8.18)

Proof.
A set X is independent in (V,rps+) if and only if

ra=(X) = | X[+ ru (VA X) —rp(V) = |X] (8.19)

ru(V\X) =ru(V) (8.20)

But a subset X is independent in M* only if V' '\ X is spanning in M (by
the definition of the dual matroid). Ol
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Matroid restriction/deletion

@ Let M = (V,T) be a matroid and let Y C V, then
Iy ={Z:ZCY,ZcT} (8.21)

is such that My = (Y, Zy) is a matroid with rank r(My) = r(Y).
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Other Matroid Properties
[NNNARN

Matroid restriction/deletion

o Let M = (V,Z) be a matroid and let Y C V, then
Iy ={Z:Z2CY,Z€T)} (8.21)

is such that My = (Y, Zy) is a matroid with rank r(My ) = r(Y).
@ This is called the restriction of M to Y, and is often written M|Y".
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Other Matroid Properties
[NNNARN

Matroid restriction/deletion

o Let M = (V,Z) be a matroid and let Y C V, then
Iy ={Z:Z2CY,Z€T)} (8.21)

is such that My = (Y,Zy) is a matroid with rank 7(My) = r(Y).
@ This is called the restriction of M to Y, and is often written M|Y".
e If Y =V \ X, then we have that M|Y has the form:

Iy ={Z:ZnX=0,Z €T} (8.22)

is considered a deletion of X from M, and is often written M \ X.
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Other Matroid Properties
[NNNARN

Matroid restriction/deletion

o Let M = (V,Z) be a matroid and let Y C V, then
Iy ={Z:Z2CY,Z€T)} (8.21)

is such that My = (Y,Zy) is a matroid with rank 7(My) = r(Y).
This is called the restriction of M to Y, and is often written M |Y.
If Y =V \ X, then we have that M|Y has the form:

Iy ={Z:ZnX=0,Z €T} (8.22)

is considered a deletion of X from M, and is often written M \ X.
Hence, MY =M\ (V\Y), and M|(V\X)=M\ X.
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Other Matroid Properties
[NNNARN

Matroid restriction/deletion

o Let M = (V,Z) be a matroid and let Y C V, then
Iy ={Z:Z2CY,Z€T)} (8.21)

is such that My = (Y,Zy) is a matroid with rank 7(My) = r(Y).
@ This is called the restriction of M to Y, and is often written M|Y".
o If Y =V \ X, then we have that M|Y has the form:

Iy ={Z:ZnX=0,Z €T} (8.22)

is considered a deletion of X from M, and is often written M \ X.
@ Hence, MY =M\ (V\Y),and M|(V\X)= M)\ X.

@ The rank function is of the same form. l.e., ry : 2¥ — Z,, where
ry(Z)=r(Z)for ZCY.
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Other Matroid Properties
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Matroid contraction M/Z

@ Contraction is dual to deletion, and is like a forced inclusion of
contained base, but with a similar ground set removal. Contracting Z
is written M /Z.
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Other Matroid Properties
(L ERARN

Matroid contraction M/Z

@ Contraction is dual to deletion, and is like a forced inclusion of
contained base, but with a similar ground set removal. Contracting Z
is written M /Z.

@ Let Z CV and let X be a base of Z. Then a subset [ of V'\ Z is
independent in M/Z iff I U X is independent in M.
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Other Matroid Properties
(L ERARN

Matroid contraction M/Z

@ Contraction is dual to deletion, and is like a forced inclusion of
contained base, but with a similar ground set removal. Contracting Z
is written M /Z.

o Let Z CV and let X be a base of Z. Then a subset [ of V'\ Z is
independent in M/Z iff I U X is independent in M.

@ The rank function takes the form

Tvz(Y)=r(YUZ)—r(Z)=r(Y|Z) (8.23)
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Other Matroid Properties
(L ERARN

Matroid contraction M/Z

@ Contraction is dual to deletion, and is like a forced inclusion of
contained base, but with a similar ground set removal. Contracting Z
is written M /Z.

o Let Z CV and let X be a base of Z. Then a subset [ of V'\ Z is
independent in M/Z iff I U X is independent in M.

@ The rank function takes the form
rM/Z(Y) =rYUZ)—r(Z)=rY|2) (8.23)

@ Sogiven I CV'\ Z and X is a base of Z, r;/,(I) = |I| is identical to
rfUZ)=I|+r(Z)=|I|+|X| butr({UZ) =r(IUX). This
implies (1 U X) = |I| + | X]|, or I U X is independent in M.
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Other Matroid Properties
(L ERARN

Matroid contraction M/Z

@ Contraction is dual to deletion, and is like a forced inclusion of
contained base, but with a similar ground set removal. Contracting Z
is written M /Z.

o Let Z CV and let X be a base of Z. Then a subset [ of V'\ Z is
independent in M/Z iff I U X is independent in M.

@ The rank function takes the form
rM/Z(Y) =rYUZ)—r(Z)=rY|2) (8.23)

@ Sogiven I C V' \ Z and X is a base of Z, r;/,(I) = |I| is identical to
r(IUZ)=I|4+r(Z)=|I|+|X|butr(IUZ)=r(IUX). This
implies (1 U X) = |I| + | X]|, or I U X is independent in M.

@ A minor of a matroid is any matroid obtained via a series of deletions
and contractions of some matroid.
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Other Matroid Properties
(L ERARN

Matroid contraction M/Z

@ Contraction is dual to deletion, and is like a forced inclusion of
contained base, but with a similar ground set removal. Contracting Z
is written M /Z.

o Let Z CV and let X be a base of Z. Then a subset [ of V'\ Z is
independent in M/Z iff I U X is independent in M.

@ The rank function takes the form
rM/Z(Y) =rYUZ)—r(Z)=rY|2) (8.23)

@ Sogiven I C V' \ Z and X is a base of Z, r;/,(I) = |I| is identical to
r(IUZ)=I|4+r(Z)=|I|+|X|butr(IUZ)=r(IUX). This
implies (1 U X) = |I| + | X]|, or I U X is independent in M.

@ A minor of a matroid is any matroid obtained via a series of deletions
and contractions of some matroid.

@ In fact, it is the case M/Z = (M™* \ Z)* (Exercise: show why).
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Other Matroid Properties
(RERRRN

Matroid Intersection

e Let My = (V,Zy) and My = (V,Z3) be two matroids. Consider their
common independent sets 77 N Zs.
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Other Matroid Properties
(RERRRN

Matroid Intersection

e Let My = (V,Zy) and My = (V,Z3) be two matroids. Consider their
common independent sets 77 N Zs.

e While (V,Z; NZy) is typically not a matroid (Exercise: show graphical
example.), we might be interested in finding the maximum size
common independent set. That is, find max | X| such that both
X eIy and X € Is.
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Other Matroid Properties
(RERRRN

Matroid Intersection

e Let My = (V,Zy) and My = (V,Z3) be two matroids. Consider their
common independent sets 77 N Zs.

e While (V,Z; NZy) is typically not a matroid (Exercise: show graphical
example.), we might be interested in finding the maximum size
common independent set. That is, find max | X| such that both
X eIy and X € Is.

Theorem 8.6.1
Let My and My be given as above, with rank functions r1 and ro. Then the
size of the maximum size set in Iy N Ly is given by

(r1 x7m9)(V) 2 )r(nglr‘} (7’1 (X) +r2(V'\ X)) (8.24)
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Other Matroid Properties
(RERRRN

Matroid Intersection

e Let My = (V,Zy) and My = (V,Z3) be two matroids. Consider their
common independent sets 77 N Zs.

e While (V,Z; NZy) is typically not a matroid (Exercise: show graphical
example.), we might be interested in finding the maximum size
common independent set. That is, find max | X| such that both
X eIy and X € Is.

Theorem 8.6.1
Let My and My be given as above, with rank functions r1 and ro. Then the
size of the maximum size set in Iy N Ly is given by

(r1 x7m9)(V) 2 )r(nglr‘} (7’1 (X) +r2(V'\ X)) (8.24)

This is an instance of the convolution of two submodular functions, f;
and fo that, evaluated at Y C V, is written as:

(fix £)(Y) = min (A1) + fa(¥ \ X)) (8.25)
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Other Matroid Properties
(RRLARN

Convolution and Hall's Theorem

@ Recall Hall's theorem, that a transversal exists iff for all X C V', we
have |T'(X)| > | X]|.
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Other Matroid Properties
(RRLARN

Convolution and Hall's Theorem

@ Recall Hall's theorem, that a transversal exists iff for all X C V', we
have |T'(X)| > | X]|.
o & [I'X)|—1|X|>0,VX
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Other Matroid Properties
(RRLARN

Convolution and Hall's Theorem

@ Recall Hall's theorem, that a transversal exists iff for all X C V, we
have |T'(X)| > | X]|.

o & [I'X)|—-1|X|>0,VX

e & miny |['(X)|—|X|>0
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Other Matroid Properties
(RRLARN

Convolution and Hall's Theorem

@ Recall Hall's theorem, that a transversal exists iff for all X C V, we
have |T'(X)| > | X]|.

o & [I'X)|—-1|X|>0,VX

e & miny|I'(X)|—|X|>0

e & miny |I'(X)|+ |V|—|X]|>|V]
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Other Matroid Properties
(RRLARN

Convolution and Hall's Theorem

@ Recall Hall's theorem, that a transversal exists iff for all X C V', we
have |T'(X)| > | X]|.
o & [I'X)|—-1|X|>0,VX

e & miny|I'(X)|—|X|>0
o & miny [D(X)|+ V] - X] > V]
o & miny (|IP(X) + \V\X|) > |V
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Other Matroid Properties
(RRLARN

Convolution and Hall's Theorem

@ Recall Hall's theorem, that a transversal exists iff for all X C V', we
have |T'(X)| > | X]|.
o & [I'X)|—-1|X|>0,VX

e & miny|I'(X)|—|X|>0

° & miny [[(X)|+|V]—[X[>|V]
o & miny (ID(X)|+|V\ X|) > |V
o & [LO)=[-I(V) =]V
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Other Matroid Properties
(RRLARN

Convolution and Hall's Theorem

@ Recall Hall's theorem, that a transversal exists iff for all X C V', we
have |T'(X)| > | X]|.
o & [I'X)|—-1|X|>0,VX

e & miny|I'(X)|—|X|>0

° & miny [[(X)|+|V]—[X[>|V]
o & miny (ID(X)|+|V\ X|) > |V
o & [LO)x|-I(V)=|V]

@ So Hall's theorem can be expressed as convolution. Exercise: define
g(A) =[['(-) *| - |](A), prove that g is submodular.
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Other Matroid Properties
(RRLARN

Convolution and Hall's Theorem

@ Recall Hall's theorem, that a transversal exists iff for all X C V', we
have |T'(X)| > | X]|.

o & [I(X)—|X|>0,¥X
e & miny|I'(X)|—|X|>0

e & miny |['(X)|+|V|—|X|>|V]
o & miny (ID(X)|+|V\ X|) > |V
o & [LO)x|-I(V)=|V]

@ So Hall's theorem can be expressed as convolution. Exercise: define
g(A) = [['(-) *| - |](A), prove that g is submodular.

@ Note, in general, convolution of two submodular functions does not
preserve submodularity (but in certain special cases it does).
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Other Matroid Properties
(RERL AN

Matroid Union

Definition 8.6.2
Let M; = (Vl,Il), My = (VQ,IQ), e, My = (Vk,Zk) be matroids. We

define the union of matroids as
M MyV ---NV M, = (V1&JVQ&J"'&JVk,Il\/IQ\/---\/Ik), where

Il\/ZQ\/-"\/Ik:{IlU'JIQLﬂ'”LﬂIk‘Il el,... Iy, EIk} (826)

Note A W B designates the disjoint union of A and B.
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Other Matroid Properties
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Matroid Union

Definition 8.6.2

Let M; = (Vl,Il), My = (VQ,IQ), e, My = (Vk,Ik) be matroids. We
define the union of matroids as

M MyV ---NV M, = (Vl&JVQ&J-“ErJVk,Il VIQV"'VIk), where

Il\/IQ\/-”\/Ik:{IlH'JIQHﬂ”-H'JIk‘Il 611,...,Ik€Ik} (826)

Note A W B designates the disjoint union of A and B.

Theorem 8.6.3
Let My = (V1,1h), My = (Va,I3), ..., My = (Vk,Zx) be matroids, with
rank functions r1,...,r,. Then the union of these matroids is still a
matroid, having rank function

r(Y) (|Y\X|+r1(XﬂV1)+-~+rk(XﬂVk)) (8.27)

= min
XCY

foranyY CViU... V.
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Other Matroid Properties
(RERR B

Exercise: Matroid Union, and Matroid duality

Exercise: Describe M \V M*.
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Other Matroid Properties
[RERERN ]

Matroids of three or fewer elements are graphic

@ All matroids up to and including three elements (edges) are graphic.
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Other Matroid Properties
[RERERN ]

Matroids of three or fewer elements are graphic

@ All matroids up to and including three elements (edges) are graphic.

<J

[ ]
*r——0
(a) The only (b) The two
matroid with zero  one-element
elements. matroids.

.9 O—
C D._._.
—_ —_—

—_ s

N

*r—ao—o—0

(c) The four (d) The eight
two-element three-element
matroids. matroids.
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Other Matroid Properties
[RERERN ]

Matroids of three or fewer elements are graphic

@ All matroids up to and including three elements (edges) are graphic.

S,
9 o =

— e —_——
*r——0
—_ s
*r———0
(a) The only (b) The two (c) The four (d) The eight
matroid with zero  one-element two-element three-element
elements. matroids. matroids. matroids.

@ This is a nice way to show matroids with low ground set sizes. What
about matroids that are low rank but with many elements?
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Combinatorial Geometries
L}

Affine Matroids

@ Given an n x m matrix with entries over some field F, we say that a

subset S C {1,...,m} of indices (with corresponding column vectors
{vi 1 € S}, with |S| = k) is affinely dependent if m > 1 and there
exists elements {ay,...,a;} € T, not all zero with Z§:1 a; =0, such

that Zle a;v; = 0.
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Combinatorial Geometries
L}

Affine Matroids

@ Given an n X m matrix with entries over some field IF, we say that a

subset S C {1,...,m} of indices (with corresponding column vectors
{vi : i € S}, with |S| = k) is affinely dependent if m > 1 and there
exists elements {ay,...,a;} € IF, not all zero with Zle a; =0, such

that Z?:l a;v; = 0.
@ Otherwise, the set is called affinely independent.
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Combinatorial Geometries
L}

Affine Matroids

@ Given an n X m matrix with entries over some field IF, we say that a
subset S C {1,...,m} of indices (with corresponding column vectors
{vi : i € S}, with |S| = k) is affinely dependent if m > 1 and there
exists elements {ay,...,a;} € IF, not all zero with Zle a; =0, such
that Z?:l a;v; = 0.

o Otherwise, the set is called affinely independent.

e Concisely: points {vy,vs,...,v;} are affinely independent if
V9 — V1,V3 — V1, ...,V — vy are linearly independent.
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Combinatorial Geometries
L}

Affine Matroids

@ Given an n X m matrix with entries over some field IF, we say that a

subset S C {1,...,m} of indices (with corresponding column vectors
{vi : i € S}, with |S| = k) is affinely dependent if m > 1 and there
exists elements {ay,...,a;} € IF, not all zero with Zle a; =0, such

that Z?:l a;v; = 0.

o Otherwise, the set is called affinely independent.

e Concisely: points {vy,va,...,v;} are affinely independent if
V9 — V1,V3 — V1, ...,V — U1 are linearly independent.

@ Example: in 2D, three collinear points are affinely dependent, three
non-collear points are affinely independent, and > 4 non-collinear
points are affinely dependent.
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Combinatorial Geometries
L}

Affine Matroids

@ Given an n X m matrix with entries over some field IF, we say that a

subset S C {1,...,m} of indices (with corresponding column vectors
{vi : i € S}, with |S| = k) is affinely dependent if m > 1 and there
exists elements {ay,...,a;} € IF, not all zero with Zle a; =0, such

that Zle a;v; = 0.

o Otherwise, the set is called affinely independent.

e Concisely: points {vy,va,...,v;} are affinely independent if
V9 — V1,V3 — V1, ...,V — U1 are linearly independent.

@ Example: in 2D, three collinear points are affinely dependent, three
non-collear points are affinely independent, and > 4 non-collinear
points are affinely dependent.

Proposition 8.7.1 (affine matroid)

Let ground set E = {1,...,m} index column vectors of a matrix, and let T
be the set of subsets X of E such that X indices affinely independent
vectors. Then (E,T) is a matroid.
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Combinatorial Geometries
L}

Affine Matroids

@ Given an n X m matrix with entries over some field IF, we say that a

subset S C {1,...,m} of indices (with corresponding column vectors
{vi : i € S}, with |S| = k) is affinely dependent if m > 1 and there
exists elements {ay,...,a;} € IF, not all zero with Zle a; =0, such

that Zle a;v; = 0.

o Otherwise, the set is called affinely independent.

e Concisely: points {vy,va,...,v;} are affinely independent if
V9 — V1,V3 — V1, ...,V — U1 are linearly independent.

@ Example: in 2D, three collinear points are affinely dependent, three
non-collear points are affinely independent, and > 4 non-collinear
points are affinely dependent.

Proposition 8.7.1 (affine matroid)

Let ground set E = {1,...,m} index column vectors of a matrix, and let T
be the set of subsets X of E such that X indices affinely independent
vectors. Then (E,T) is a matroid.

Exercise: prove this.
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Combinatorial Geometries
i

Euclidean Representation of Low-rank Matroids

@ Consider the affine matroid with n x m = 2 x 6 matrix on the field
F =R, and let the elements be {(0,0), (1,0),(2,0),(0,1),(0,2),(1,1)}.
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Combinatorial Geometries
i

Euclidean Representation of Low-rank Matroids

@ Consider the affine matroid with n x m = 2 x 6 matrix on the field
F =R, and let the elements be {(0,0), (1,0), (2,0), (0,1),(0,2),(1,1)}.

@ We can plot the points in R? as on the right:

= <

(2,0

(1,0 (1,1)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 8 - Apr 25th, 2016



Combinatorial Geometries
i

Euclidean Representation of Low-rank Matroids

@ Consider the affine matroid with n x m = 2 x 6 matrix on the field
F =R, and let the elements be {(0,0), (1,0), (2,0), (0,1),(0,2),(1,1)}.

@ We can plot the points in R? as on the right:

@ Points have rank 1, lines have rank 2, planes have
rank 3.

= <

(2,0

(1,0 (1,1)
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Combinatorial Geometries
i

Euclidean Representation of Low-rank Matroids

@ Consider the affine matroid with n x m = 2 x 6 matrix on the field
F =R, and let the elements be {(0,0), (1,0), (2,0), (0,1),(0,2),(1,1)}.
@ We can plot the points in R? as on the right:

@ Points have rank 1, lines have rank 2, planes have
rank 3.

. ) y
e Flats (points, lines, planes, etc.) have rank equal 0
to one more than their geometric dimension.

(1,0 (1,1)
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Combinatorial Geometries
i

Euclidean Representation of Low-rank Matroids

@ Consider the affine matroid with n x m = 2 x 6 matrix on the field
F =R, and let the elements be {(0,0), (1,0), (2,0), (0,1),(0,2),(1,1)}.

@ We can plot the points in R? as on the right:

@ Points have rank 1, lines have rank 2, planes have
rank 3.

: . y
e Flats (points, lines, planes, etc.) have rank equal 0
to one more than their geometric dimension.

@ Any two points constitute a line, but lines with (1,0 a,1)
only two points are not drawn.
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Combinatorial Geometries
i

Euclidean Representation of Low-rank Matroids

@ Consider the affine matroid with n x m = 2 x 6 matrix on the field
F =R, and let the elements be {(0,0), (1,0), (2,0), (0,1),(0,2),(1,1)}.
@ We can plot the points in R? as on the right:
@ Points have rank 1, lines have rank 2, planes have
rank 3.
e Flats (points, lines, planes, etc.) have rank equal .0
to one more than their geometric dimension.
@ Any two points constitute a line, but lines with (1,0 a,1)
only two points are not drawn.
@ Lines indicate collinear sets with > 3 points, while
any two points have rank 2.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 8 - Apr 25th, 2016



Combinatorial Geometries
i

Euclidean Representation of Low-rank Matroids

@ Consider the affine matroid with n x m = 2 x 6 matrix on the field
F =R, and let the elements be {(0,0), (1,0), (2,0), (0,1),(0,2),(1,1)}.
@ We can plot the points in R? as on the right:

@ Points have rank 1, lines have rank 2, planes have
rank 3.

: . y
e Flats (points, lines, planes, etc.) have rank equal 0
to one more than their geometric dimension.

@ Any two points constitute a line, but lines with (1,0 a,1)
only two points are not drawn.

@ Lines indicate collinear sets with > 3 points, while o
any two points have rank 2. 00 oy 02 *

@ Dependent sets consist of all subsets with > 4
elements (rank 3), or 3 collinear elements (rank
2). Any two points have rank 2.
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