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Cumulative Outstanding Reading

@ Read chapters 2 and 3 from Fujishige's book.
@ Read chapter 1 from Fujishige's book.
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Announcements, Assignments, and Reminders

@ Homework 2, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (4/18) at 11:55pm.

@ Homework 1, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Friday (4/8) at 11:55pm.

@ Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google
hangout (set up meeting via our our discussion board (https:
//canvas.uw.edu/courses/1039754/discussion_topics)).
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Class Road Map - IT-I

@ L1(3/28): Motivation, Applications, & @ L11(5/2):
Basic Definitions @ L12(5/4):
@ L2(3/30): Machine Learning Apps @ L13(5/9):
(diversity, complexity, parameter, learning o L14(5/11)
t t, te).
arget, surrogate) o L15(5/16):
@ L3(4/4): Info theory exs, more apps,
L . ) @ L16(5/18):
definitions, graph/combinatorial examples,
matrix rank example, visualization @ L17(5/23):
@ L4(4/6): Graph and Combinatorial © L18(5/25):
Examples, matrix rank, Venn diagrams, @ L19(6/1):
examples of proofs of submodularity, some @ L20(6/6): Final Presentations

useful properties maximization.

@ L5(4/11): Examples & Properties, Other
Defs., Independence

@ L6(4/13): Independence, Matroids,
Matroid Examples, matroid rank is
submodular

@ L7(4/18): Matroid Rank, More on
Partition Matroid, System of Distinct
Reps, Transversals, Transversal Matroid,
Matroid and representation, Dual Matroid

@ L8(4/20):

@ L9(4/25):

@ L10(4/27):

Finals Week: June 6th-10th, 2016.
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Matroid

Independent set definition of a matroid is perhaps most natural. Note, if
J € Z, then J is said to be an independent set.

Definition 7.2.3 (Matroid)

A set system (F,7) is a Matroid if
(1) PeZ
(12) ViIeZ,JCcI=Jel

(13) VI,J € Z, with |I| = |J| + 1, then there exists x € I \ J such that
JU{z} €T

v

Why is (11) is not redundant given (12)? Because without (I1) could have a
non-matroid where Z = {}.
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Matroids - important property

Proposition 7.2.3

In a matroid M = (E,I), for any U C E(M), any two bases of U have the
same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

@ In fact, under (11),(12), this condition is equivalent to (13). Exercise:
show the following is equivalent to the above.

Definition 7.2.4 (Matroid)

A set system (V,Z) is a Matroid if
(I1") @ € Z (emptyset containing)
(12" YI €Z,J C I = J € Z (down-closed or subclusive)

(I13") VX CV, and I1, I € maxInd(X), we have |I;| = |I2] (all maximally
independent subsets of X have the same size).
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Partition Matroid

@ Let V' be our ground set.
o Let V=ViUVoU---UV, be a partition of V into ¢ blocks (i.e.,
disjoint sets). Define a set of subsets of V' as

I={XCV:|XNVij<kiforalli=1,..., 0} (7.5)

where ki, ..., kg are fixed parameters, k; > 0. Then M = (V,Z) is a
matroid.

@ Note that a k-uniform matroid is a trivial example of a partition
matroid with / =1, V; =V, and k1 = k.

@ Parameters associated with a partition matroid: ¢ and ki, ko, ..., ky
although often the k;'s are all the same.

@ We'll show that property (13') in Def ?? holds. First note, for any
X CV,|X|=X, XNV since {Vi,Va,...,V;} is a partition.

o If X, Y €7 with |Y| > |X]|, then there must be at least one ¢ with
Y NV;| > |X NV;|. Therefore, adding one element e € V; N (Y \ X)
to X won't break independence.
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Matroids - rank function is submodular

The rank function r : 2¥ — Z. of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

@ Let X € 7 be an inclusionwise maximal set with X C AN B

@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

© Since M is a matroid, we know that 7(AN B) = r(X) = | X]|, and
r(AuB) =r(Y)=|Y|. Also, forany U € Z, r(A) > |ANU|.

© Then we have (since X CANB, X CY,and Y C AU B),

r(A)+r(B) > |YNAl+|Y NB| :
=YN(ANB)|+|Y N(AUB)| (7.6)
>|X|+|Y|=r(AnB)+r(AUB) (7.7)
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A matroid is defined from its rank function

Theorem 7.2.3 (Matroid from rank)

Let E be a set and let v : 2F — 7 be a function. Then r(-) defines a
matroid with r being its rank function if and only if for all A, B C E:

(R1) VACFE 0<r(A) <|A]| (non-negative cardinality bounded)

(R2) r(A) < r(B) whenever A C B C E (monotone non-decreasing)

(R3) r(AUB)+r(ANB) <r(A)+r(B) forall A, B C E (submodular) )

@ So submodularity and non-negative monotone non-decreasing, and unit
increase is necessary and sufficient to define the matroid.

e Can name matroid as (F,r), E is ground set, r is rank function.

e Given above, unit increment (if »(A) = k, then either r(AU {v}) =k
or (AU {v}) =k + 1) holds.

e From above, r()) = 0. Let v ¢ A, then by monotonicity and
submodularity, 7(A) < r(AU{v}) <r(A) + r({v}) which gives only
two possible values to (A U {v}).
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Matroids from rank

Proof of Theorem 7.2.3 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. ?7 satisfies (R1), (R2), and, as we saw in Lemma 7.2.3, (R3) too.

@ Next, assume we have (R1), (R2), and (R3). Define
IT={XCFE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € 7.
@ Also, if Y € Z and X C Y then by submodularity,

r(X)>rY)—r(Y\ X)+r(D) (7.1)
> Y- Y\ X]| :
- 1x (3)

implying 7(X) = | X|, and thus X € T.
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Matroids from rank

Proof of Theorem 7.2.3 (matroid from rank) cont.

o Let A, B €Z, with |[A| < |B|, sor(A4) =|A| <r(B)=|B]|. Let
B \ A= {bl,bg, ce ,bk} (note k< ’BD
@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means for
all such b, r(A+b) =r(A) =|A| <|A+b|. Then
r(B) <r(AuUB) (7.4)
<r(AU(B\{bi})) +r(AU{bi}) —r(4) (7.5)
=r(AU (B\{bh}) (7.6)
<r(AU(B\{b1,02})) + r(AU{b2}) — r(4) (7.7)
=r(AU (B \ {b1,b2})) (7.8)
<...<r(A)=|Al < |B| (7.9)
giving a contradiction since B € 7. .
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Matroids from rank Il

Another way of using function r to define a matroid.
Theorem 7.3.1 (Matroid from rank II)

Let E be a finite set and let r : 2 — 7 be a function. Then r(-) defines
a matroid with r being its rank function if and only if for all A C E, and
x,y € B:

(R1") (@) =0;

(R2) r(X) < r(XU{y}) <r(X)+1;

(R3") Ifr(X U{zx}) =r(X U{y}) =r(X), then r(X U{x,y}) = r(X).
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Matroids by submodular functions

Theorem 7.3.2 (Matroid by submodular functions)

Let f :2F — 7 be a integer valued monotone non-decreasing submodular
function. Define a set of sets as follows:

C(f)= {C C E : C is non-empty,
is inclusionwise-minimal,

and has f(C) < |C] } (7.10)

Then C(f) is the collection of circuits of a matroid on E.

v

Inclusionwise-minimal in this case means that if C' € C(f), then there exists
no C' C C with C" € C(f) (i.e., C' C C would either be empty or have
f(C") > |C"|). Also, recall inclusionwise-minimal in Definition 7.9.5, the
definition of a circuit.
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Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to uniquely
define a matroid based on any of:

@ Independence (define the independent sets).
Base axioms (exchangeability)

Circuit axioms

°
°

@ Closure axioms (we didn't see this, but it is possible)

@ Rank axioms (normalized, monotone, cardinality bounded, submodular)
°

Matroids by submodular functions.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 7 - Apr 20th, 2016 F14/48 (pg.14/56)



Matroid Rank
LILLinl

Maximization problems for matroids

@ Given a matroid M = (E,Z) and a modular cost function ¢: F — R,
the task is to find an X € Z such that ¢(X) =) .y c(x) is
maximum.

@ This seems remarkably similar to the max spanning tree problem.
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Minimization problems for matroids

@ Given a matroid M = (E,Z) and a modular cost function ¢: E — R,
the task is to find a basis B € B such that ¢(B) is minimized.

@ This sounds like a set cover problem (find the minimum cost covering
set of sets).
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Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

¢
r(A) =) min(|ANVi|, k;) (7.11)
i=1
which we also immediately see is submodular using properties we spoke
about last week. That is:

Q |ANV;| is submodular (in fact modular) in A
@ min(submodular(A), k;) is submodular in A since |A N V;| is monotone.
© sums of submodular functions are submodular.

@ r(A) is also non-negative integral monotone non-decreasing, so it
defines a matroid (the partition matroid).
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From 2-partition matroid rank to truncated matroid rank

@ Example: 2-partition matroid rank function: Given natural numbers
a,b € Zy with a < b, and any set R C V with |R| =b.

o Create two-block partition V = (R, R), where R =V \ R so
|R| = |V| — b. Gives 2-partition matroid rank function as follows:

r(A) = min(J]A N R|,a) + min(|]A N R|,|R|)
= min(|A N R|,a) + |AN R
=min(|[ANR|+ |ANR|,|[ANR| + a)
= min(|4|,|AN R| + a)
@ Figure showing partition blocks and partition matroid limits.

Since |R| = [V]| —b v Since |R| = |V|—b

the limit on R is vacuous. the limit on R is vacuo

7.12
7.13
7.14
7.15

~ A~ A~ ~
N N N N
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Truncated Matroid Rank Function

@ Define truncated matroid rank function. Start with 2-partition matroid
rank 7(A) = min(|AN R|,a) + min(JAN R|, |R|), a < b. Define:

fr(A) = mm{ r(A) ,b} (7.16)
zmin{ min(|A|,]AN B| + a) ,b} (7.17)
= min {|A],a + |AN R|,b} (7.18)
@ Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
I={ICV:|I|<band |[INR|<a}, (7.19)

Useful for showing hardness of constrained submodular minimization.
Consider sets B C V with |B| =b.

@ For R, we have fr(R) = min(b,a,b) = a < b.
For any B with |[BN R| < a, fr(B) =0b.
For any B with |[BN R| = ¢, with a <{¢ <b, fr(B)=a+b— /.
R, the set with minimum valuation amongst size-b sets, is hidden

within an exponentially larger set of size-b sets with larger valuation.
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Partition Matroid, rank as matching

A partition matroid can be viewed using a bipartite graph.

Letting V' denote the ground set, and Vi, V5, ... the partition, the
graph is G = (V, I, E) where V is the ground set, [ is a set of
“indices”, and F is the set of edges.

I=(L,I...,1) is a set of k = Zle k; nodes, grouped into ¢
clusters, where there are k; nodes in the it group I;.

(v,9) € E(G) iff v € Vj and ¢ € I;.
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Partition Matroid, rank as matching

@ Example where ¢ =5,
(b1, k2, k3, kq, k) =
(2,2,1,1,3). @ Recall, I : 2V — R as the neighbor
V | function in a bipartite graph, the
neighbors of X is defined as I'(X) =
{fveV(G)\ X : E(X,{v}) # 0}, and
recall that |I'(X)| is submodular.
%3 L o Here, for X C V, we have I'(X) =
{iel:(v,i) € E(G) and v € X}.
/3 o For such a constructed bipartite graph,
the rank function of a partition matroid
la is 7(X) = S>¢_, min(|X N V|, k;) = the
maximum matching involving X.

~—~
[y

Vi
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Laminar Family and Laminar Matroid

@ We can define a matroid with structures richer than just partitions.

@ A set system (V,F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets AN B, A\ B, or B\ A is empty.

A B B A A B

A.‘

@ Family is laminar 3 no two properly intersecting members: VA, B € F,
either A, B disjoint (AN B = ()) or comparable (A C B or B C A).

@ Suppose we have a laminar family F of subsets of V' and an integer k4 for
every set A € F. Then (V,Z) defines a matroid where

I={ICE:|INA|<kyforall Aec F} (7.20)

@ Exercise: what is the rank function here?
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System of Representatives

o Let (V,V) be a set system (i.e., V= (V;:i€ 1) where ) CV; CV for
all i), and I is an index set. Hence, |I| = |V|.

@ Here, the sets V; € V are like “groups” and any v € V with v € V; is a
member of group i. Groups need not be disjoint (e.g., interest groups
of individuals).

o A family (v; : i € I) with v; € V is said to be a system of
representatives of V if 3 a bijection 7 : [ — I such that v; € V).

@ v; is the representative of set (or group) V(;), meaning the 3th
representative is meant to represent set V).

@ Example: Consider the house of representatives, v; = “Jim
McDermott”, while ¢ = “King County, WA-7".

@ In a system of representatives, there is no requirement for the
representatives to be distinct. l.e., we could have some v; € V] N V5,
where v represents both V; and V5.

@ We can view this as a bipartite graph.
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System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked by
color tags on the left, and also via right neighbors in the graph.
@ Here, ¢/ = 6 groups, with V = (V1, V5, ..., Vs)

~ (e e, NN, oy . )

@ A system of representatives would make
V I sure that there is a representative for
each color group. For example,

=
L @ The representatives ({a,c,d, f,h}) are
shown as colors on the left.

@ Here, the set of representatives is not
distinct. Why? In fact, due to the red
and pink group, a distinct group of
representatives is impossible (since there
is only one common choice to represent
both color groups).
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System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked by
color tags on the left, and also via right neighbors in the graph.
@ Here, £ =6 groups, with V = (V1, V5, ..., Vg)

(e e, ENEREN. ey, . )

@ A system of representatives would make
sure that there is a representative for
each color group. For example,

@ The representatives ({a,c,d, f,h}) are
shown as colors on the left.

@ Here, the set of representatives is not
distinct. Why? In fact, due to the red
and pink group, a distinct group of
representatives is impossible (since there
is only one common choice to represent

both color groups).
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System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked by
color tags on the left, and also via right neighbors in the graph.
@ Here, £ =6 groups, with V = (V1, V5, ..., Vg)

~ (e e, NN, oy . )

@ A system of representatives would make
V I sure that there is a representative for
[ each color group. For example,

@ The representatives ({a,c,d, f,h}) are
shown as colors on the left.

@ Here, the set of representatives is not
distinct. Why? In fact, due to the red
and pink group, a distinct group of
representatives is impossible (since there
is only one common choice to represent
both color groups).
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System of Distinct Representatives

o Let (V,V) be a set system (i.e., V = (Vi :i € I) where V; C V for all
i), and I is an index set. Hence, |I| = |V|.

e A family (v; : i € I) with v; € V is said to be a system of distinct
representatives of V if 3 a bijection 7 : I <> I such that v; € V(;) and
v; # v; for all i # 7.

@ In a system of distinct representatives, there is a requirement for the
representatives to be distinct. We can re-state (and rename) this as a:

Definition 7.5.1 (transversal)

Given a set system (V, V) and index set I for V as defined above, a set
T C V is a transversal of V if there is a bijection 7 : T' <+ I such that

T € Vi) forallz €T (7.21)

@ Note that due to 7 : T <> I being a bijection, all of I and T are
“covered” (so this makes things distinct automatically).
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Transversals are Subclusive

@ Aset T C V is a partial transversal if T" is a transversal of some
subfamily V' = (V; :i € I') where I' C I.

@ Therefore, for any transversal T', any subset 7" C T is a partial
transversal.

@ Thus, transversals are down closed (subclusive).
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When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
e Given a set system (V,V) with V = (V; :i € I), and V; C V for all i,
Then, for any J C I, let

V(J) =UjesV; (7.22)

so |V(J)|: 27 — Z, is the set cover func. (we know is submodular).
@ We have

Theorem 7.6.1 (Hall's theorem)

Given a set system (V,V), the family of subsets V = (V; :i € I) has a
transversal (v; : i € I) iff for all J C I

V(NI = ]| (7.23)
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When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
e Given a set system (V,V) with V = (V; :i € I), and V; C V for all i,
Then, for any J C I, let

V(J) =UjesV; (7.22)

so |V(J)|: 2! — Z, is the set cover func. (we know is submodular).
e Hall's theorem (VJ C I,|V(J)| > |J]) as a bipartite graph.

v I I

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 7 - Apr 20th, 2016 F27/48 (pg.30/56)



Transversals
IRt

When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
e Given a set system (V,V) with V = (V; :i € I), and V; C V for all i,
Then, for any J C I, let

V(J) =UjesV; (7.22)

so |V(J)|: 2! — Z, is the set cover func. (we know is submodular).
@ Moreover, we have

Theorem 7.6.2 (Rado's theorem (1942))

If M = (V,r) is a matroid on V' with rank function r, then the family of
subsets (V; :i € I) of V has a transversal (v; : i € I) that is independent in
M iff for all J C I

r(V({J)) =z |J] (7.24)

@ Note, a transversal T" independent in M means that r(T) = |T|.
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More general conditions for existence of transversals

Theorem 7.6.3 (Polymatroid transversal theorem)

IfV = (V; :i € 1) is a finite family of non-empty subsets of V', and
f:2YV — Z. is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (v; : i € I)
such that

f(Uieg{vi}) > |J| forall J C I (7.25)
if and only if

FV(I) > |J| forall JC T (7.26)

v

@ Given Theorem 7.6.3, we immediately get Theorem 7.6.1 by taking
f(S) = ‘S‘ for S C V. In which case, Eq. 7.25 requires the system of
representatives to be distinct.

@ We get Theorem 7.6.2 by taking f(S) = r(S) for S C V, the rank

function of the matroid. where, Eq. 7.25 insists the system of representatives is

....... 1l Al mlala ar=la Q2 alla 1l
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Submodular Composition with Set-to-Set functions

@ Note the condition in Theorem 7.6.3 is f(V(J)) > |J| for all J C I,
where f: 2V — 7. is non-negative, integral, monotone
non-decreasing and submodular, and V(J) = U;csV; with V; C V.

@ Note V(-) : 2T — 2V is a set-to-set function, composable with a
submodular function.

e Define g : 2! — Z with g(J) = f(V(J)) — |J|, then the condition for
the existence of a system of representatives, with quality
Equation 7.25, becomes:

i > 2
r}lgu?g(J) >0 (7.27)

@ What kind of function is g7
Proposition 7.6.4

g as given above is submodular.

@ Hence, the condition for existence can be solved by (a special case of)

submodular function minimization, or vice verse!
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More general conditions for existence of transversals

first part proof of Theorem 7.6.3.
@ Suppose V has a system of representatives (v; : i € I) such that
Eq. 7.25 (i.e., f(Ujes{vi}) > |J| for all J C I) is true.

@ Then since f is monotone, and since V(J) D U;ej{v;} when
(v; 14 € I) is a system of representatives, then Eq. 7.26 (i.e.,
f(V(J)) > |J| for all J C I) immediately follows.
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More general conditions for existence of transversals

Lemma 7.6.5 (contraction lemma)

Suppose Eq. 7.26 (f(V(J)) > |J|,VYJ C 1) is true for V = (V; :i € I), and
there exists an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there exists

v € V4 such that the family of subsets (V1 \ {v}, Va,..., V) also satisfies

Eq 7.26

Proof.

@ When Eq. 7.26 holds, this means that for any subsets J;, Jo C I\ {1},
we have that, for J € {J1, Jo2},

|

fV(JU{l})) > |JU{1}] (7.28)
and hence

fViuV()) > |4l +1 (7.29)

fViuV(Je)) > |Jo| +1 (7.30)
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More general conditions for existence of transversals

Lemma 7.6.5 (contraction lemma)

Suppose Eq. 7.26 (f(V(J)) > |J|,¥YJ C 1) is true for V = (V; :i € I), and
there exists an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there exists

v € V4 such that the family of subsets (V1 \ {v}, Va,..., V) also satisfies

Eq 7.26

Proof.

@ Suppose, to the contrary, the consequent is false. Then we may take
any 91,09 € Vi as two distinct elements in V; ...

@ ...and there must exist subsets Ji, Jo of I\ {1} such that

|

F(\{o}) UV () <Ll +1, (7.31)
F(Vi\{v2}) UV (J2)) < |2 +1, (7.32)

(note that either one or both of Ji, Jy could be empty).
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More general conditions for existence of transversals

Lemma 7.6.5 (contraction lemma)

Suppose Eq. 7.26 (f(V(J)) > |J|,VYJ C 1) is true for V = (V; :i € I), and
there exists an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there exists

v € V4 such that the family of subsets (V1 \ {v}, Va,..., V) also satisfies

Eq 7.26

Proof.
e Taking X = (Vi \ {o1}) UV (J1) and Y = (V1 \ {02}) UV (J2), we
have f(X) < |J1|, f(Y) < |J2|, and that:
XUY =ViUV(Ji U, (7.33)
XNY DV(ND), (7.34)

|

and
[J1l + 2] = f(X) + f(Y)
> f(XUY)+ f(XNnY) (7.35)
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More general conditions for existence of transversals

Lemma 7.6.5 (contraction lemma)

Suppose Eq. 7.26 (f(V(J)) > |J|,¥YJ C 1) is true for V = (V; :i € I), and
there exists an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there exists

v € V4 such that the family of subsets (V1 \ {v}, Va,..., V) also satisfies

Eq 7.26

Proof.
@ since f submodular monotone non-decreasing, & Eqs 7.33-7.35,
|1 + [J2] = fF(Vi UV (LU J2)) + f(V(JiN J2)) (7.36)
@ Since V satisfies Eq. 7.26, 1 ¢ J; U Jo, & Eqs 7.29-7.30, this gives

|

|J1|+|J2‘ > |J1UJ2|+1+‘J1QJ2‘ (7.37)

which is a contradiction since cardinality is modular.
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More general conditions for existence of transversals

Theorem 7.6.3 (Polymatroid transversal theorem)

IfY = (V; :i € 1) is a finite family of non-empty subsets of V', and
f:2V — Z. is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (v; : i € I)
such that

f(Uieg{vi}) > |J| forall J C 1 (7.25)
if and only if

fV(J)) > |J| forall JC I (7.26)

v

@ Given Theorem 7.6.3, we immediately get Theorem 7.6.1 by taking
f(S) = ‘S‘ for S C V. In which case, Eq. 7.25 requires the system of

representatives to be distinct.

@ We get Theorem 7.6.2 by taking f(S) = r(S) for S C V, the rank

Transversals
[NEREENN |

More general conditions for existence of transversals

converse proof of Theorem 7.6.3.

@ Conversely, suppose Eq. 7.26 is true.
o If each Vj is a singleton set, then the result follows immediately.

e W.lo.g., let |Vi| > 2, then by Lemma 7.6.5, the family of subsets
(Vi \{v}, Va,...,V|p) also satisfies Eq 7.26 for the right .

@ We can continue to reduce the family, deleting elements from V; for
some i while |V;| > 2, until we arrive at a family of singleton sets.

@ This family will be the required system of representatives.

[

o

This theorem can be used to produce a variety of other results quite easily,
and shows how submodularity is the key ingredient in its truth.
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Transversal Matroid

Transversals, themselves, define a matroid.

If V is a family of finite subsets of a ground set V', then the collection of
partial transversals of V is the set of independent sets of a matroid
M= (V,V)onV.

@ This means that the transversals of V are the bases of matroid M.

@ Therefore, all maximal partial transversals of ¥V have the same
cardinality!
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Transversal Matroid
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Transversals and Bipartite Matchings

@ Transversals correspond exactly to matchings in bipartite graphs.

e Given a set system (V, V), with V = (V; : i € I), we can define a
bipartite graph G = (V, I, E) associated with V that has edge set
{(v,i) ;v e VyielveV}.

@ A matching in this graph is a set of edges no two of which that have a
common endpoint. In fact, we easily have:

A subset T' C V is a partial transversal of V iff there is a matching in
(V,I,E) in which every edge has one endpoint in T' (I' matched into I ).
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Transversal Matroid

Arbitrary Matchings and Matroids?

@ Are arbitrary matchings matroids?

e Consider the following graph (left), and two max-matchings (two right
instances)

o {ACY} is a maximum matching, as is {AD, BC'}, but they are not the
same size.
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Transversal Matroid
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Partition Matroid, rank as matching

@ Example where ¢ =5,
(b1, k2, k3, kq, ks) =

(2,2,1,1,3). @ Recall, I : 2V — R as the neighbor
V | function in a bipartite graph, the
neighbors of X is defined as I'(X) =
Vi I {veV(G)\ X : E(X,{v}) #0}, and
recall that |I'(X)| is submodular.
Vo L o Here, for X C V, we have I'(X) =

{iel:(v,i) € E(G)and v e X}.
/3 o For such a constructed bipartite graph,
the rank function of a partition matroid
la is 7(X) = S>¢_, min(|X N V|, k;) = the
maximum matching involving X.
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Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the bipartite
graph representation, and since a matroid, w.l.o.g., |V;| > k; (also, recall,
V(J) = UjesVj).

@ Start with partition matroid rank function in the subsequent equations.

r(A)= > min(|[ANVi| k) (7.38)
e{l,...,0}
y4
=Y min(|ANV(L)], L) (7.39)
=1
= ¥ L ({72 i) g
ie{l,...,0} Jie{d, L} o
B , ANV (L) ifJ; £0 o
1€{1,...,0}
= min ([V(J;) N Al + |1\ Ji]) (7.42)
€{1,...,0} =T
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Transversal Matroid
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... Morphing Partition Matroid Rank

e Continuing,

r(A) = . min V(i) NV (L) N Al = [I; N Ji| + | 1) (7.43)

0
mm(zjvuwwqmmA-—hﬂJ%-m> (7.44)
=Sl

JCI
zx}lgixll(|V(J)ﬁV(I)ﬂA|—|J|+|I|) (7.45)
Zrygigl(lV(J) NA|l—=[J]+|I]) (7.46)

@ In fact, this bottom (more general) expression is the expression for the
rank of a transversal matroid.
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Partial Transversals Are Independent Sets in a Matroid

In fact, we have

Let (V,V) where V = (V1,Va,...,Vy) be a subset system. Let
I={1,...,¢}. Let T be the set of partial transversals of V. Then (V,I) is
a matroid.

Proof.

@ We note that () € Z since the empty set is a transversal of the empty
subfamily of V, thus (11') holds.

@ We already saw that if T is a partial transversal of ¥V, and if T/ C T,
then 7" is also a partial transversal. So (I12") holds.

@ Suppose that 77 and 75 are partial transversals of V such that
|T1| < |T2|. Exercise: show that (I13") holds.
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Transversal Matroid
Lrrrrnnn

Transversal Matroid Rank

@ Transversal matroid has rank

Al = mm (7Y 1 A] =[] 3+ ) (7.47)

@ Therefore, this function is submodular.

@ Note that it is a minimum over a set of modular functions. Is this true
in general? Exercise:
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Matroid loops

A circuit in a matroids is well defined, a subset A C FE is circuit if it is
an inclusionwise minimally dependent set (i.e., if r(A) < |A| and for
any a € A, r(A\ {a}) = |A] = 1).

@ There is no reason in a matroid such an A could not consist of a single
element.

@ Such an {a} is called a loop.

@ In a matric (i.e., linear) matroid, the only such loop is the value 0, as
all non-zero vectors have rank 1. The 0 can appear > 1 time with
different indices, as can a self loop in a graph appear on different
nodes.

@ Note, we also say that two elements s,t are said to be parallel if {s,t}
IS a circuit.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 7 - Apr 20th, 2016 F42/48 (pg.49/56)

Matroid and representation
1

Representable

Definition 7.8.1 (Matroid isomorphism)

Two matroids M; and My respectively on ground sets V; and V5 are
isomorphic if there is a bijection 7 : V; — V5 which preserves independence
(equivalently, rank, circuits, and so on).

@ Let IF be any field (such as R, @, or some finite field I, such as a
Galois field GF(p) where p is prime (such as GF(2)).
Succinctly: A field is a set with +, *, closure, associativity,
commutativity, and additive and multiplictaive identities and inverses.

@ We can more generally define matroids on a field.

Definition 7.8.2 (linear matroids on a field)

Let X be an n x m matrix and E = {1,...,m}, where X;; € F for some
field, and let Z be the set of subsets of E such that the columns of X are
linearly independent over F.
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Matroid and representation
1

Representable

Definition 7.8.1 (Matroid isomorphism)

Two matroids M; and My respectively on ground sets V; and V5 are
isomorphic if there is a bijection 7 : V; — V5 which preserves independence
(equivalently, rank, circuits, and so on).

@ Let IF be any field (such as R, @, or some finite field I, such as a
Galois field GF(p) where p is prime (such as GF(2)).
Succinctly: A field is a set with +, *, closure, associativity,
commutativity, and additive and multiplictaive identities and inverses.

@ We can more generally define matroids on a field.

Definition 7.8.3 (representable (as a linear matroid))
Any matroid isomorphic to a linear matroid on a field is called representable
over I
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Matroid and representation
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Representability of Transversal Matroids

e Piff and Welsh in 1970, and Adkin in 1972 proved an important
theorem about representability of transversal matroids.

@ In particular:

Theorem 7.8.4

Transversal matroids are representable over all finite fields of sufficiently
large cardinality, and are representable over any infinite field.
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Matroid and representation
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Converse: Representability of Transversal Matroids

The converse is not true, however.

Example 7.8.5

Let V ={1,2,3,4,5,6} be a ground set and let M = (V,Z) be a set
system where Z is all subsets of V' of cardinality < 2 except for the pairs

{1,2}, {3,4}, {5,6}.

@ It can be shown that this is a matroid and is representable.

@ However, this matroid is not isomorphic to any transversal matroid.
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Dual Matroid
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Matroids, other definitions using matroid rank 7 : 2" — 7

Definition 7.9.3 (closed /flat/subspace)

A subset A C E is closed (equivalently, a flat or a subspace) of matroid M
if forallz € B\ A, r(AUu{z}) =r(4) + 1.

Definition: A hyperplane is a flat of rank (M) — 1.

Definition 7.9.4 (closure)

Given A C F, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(A4)}.

Therefore, a closed set A has span(A) = A.

Definition 7.9.5 (circuit)

A subset A C FE is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if 7(A) < |A| and forany a € A, r(A\ {a}) = |A] - 1).
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Spanning Sets

@ We have the following definitions:

Definition 7.9.1 (spanning set of a set)

Given a matroid M = (V,Z), and aset Y C V, then any set X C Y such
that r(X) = r(Y) is called a spanning set of Y.

Definition 7.9.2 (spanning set of a matroid)

Given a matroid M = (V,Z), any set A C V such that r(A) =r(V) is
called a spanning set of the matroid.

@ A base of a matroid is a minimal spanning set (and it is independent)
but supersets of a base are also spanning.

@ V is always trivially spanning.
@ Consider the terminology: “spanning tree in a graph”, comes from
spanning in a matroid sense.
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Dual Matroid
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Dual of a Matroid

e Given a matroid M = (V,Z), a dual matroid M* = (V,Z*) can be
defined on the same ground set V', but using a very different set of
independent sets Z*.

@ We define the set of sets Z* for M* as follows:
I*={ACV:V\ Ais a spanning set of M} (7.48)

@ That is, a set A is independent in the dual matroid M™ if removal of A
from V does not decrease the rank in M:

I ={ACV :rankpy (V \ A) = rankps(V)} (7.49)

@ In other words, a set A C V is independent in the dual M* (i.e.,
A € T%) if its complement is spanning in M (residual V' \ A must
contain a base in M).

@ Dual of the dual: Note, we have that (M*)* = M.
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