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Cumulative Outstanding Reading

@ Read chapters 2 and 3 from Fujishige's book.
@ Read chapter 1 from Fujishige's book.
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Announcements, Assignments, and Reminders

o Homework 2, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically):Monday (4/18) at 11:55pm.

@ Homework 1, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Friday (4/8) at 11:55pm.

@ Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google
hangout (set up meeting via our our discussion board (https:
//canvas.uw.edu/courses/1039754/discussion_topics)).
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Class Road Map - IT-

@ L1(3/28): Motivation, Applications, & @ L11(5/2):
Basic Definitions @ L12(5/4):
@ L2(3/30): Machine Learning Apps @ L13(5/9):
(diversity, complexity, parameter, learning o L14(5/11):
t t te).
arget, surrogate) o L15(5/16):
@ L3(4/4): Info theory exs, more apps,
> > mors o L16(5/18):
definitions, graph/combinatorial examples,
matrix rank example, visualization @ L17(5/23):
@ L4(4/6): Graph and Combinatorial © L18(5/25):
Examples, matrix rank, Venn diagrams, @ L19(6/1):
examples of proofs of submodularity, some @ L20(6/6): Final Presentations

useful properties maximization.
L5(4/11): Examples & Properties, Other
Defs., Independence

L6(4/13): Independence, Matroids,
Matroid Examples, Matroid Rank,
Partition Matroid

L7(4/18):
L8(4/20):
L9(4/25):
L10(4/27):

Finals Week: June 6th-10th, 2016.
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Composition of non-decreasting submodular and
non-decreasing concave

Theorem 6.2.1

Given two functions, one defined on sets
f:2¥ >R

and another continuous valued one:
g:R—R

the composition formed as h = go f : 2V — R (defined as

Review
[NRNNR

(6.1)

(6.2)

h(S) = g(f(S))) is nondecreasing submodular, if g is non-decreasing

concave and f is nondecreasing submodular.
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Monotone difference of two functions

Let f and g both be submodular functions on subsets of V' and let
(f — g)(-) be either monotone increasing or monotone decreasing. Then
h: 2" — R defined by

h(A) = min(f(A),g(A4)) (6.1)
is submodular.
Proof.

If h(A) agrees with f on both X and Y (or g on both X and Y), and since
BX) +B(Y) = f(X) + (V) > f(XUY) + (X NY)  (62)

or
WMX) +h(Y) = g(X) +9(Y) 2 g(X UY) +g(X NY), (6.3)
the result (Equation ?? being submodular) follows since

fX)+f&) _
() + g(Y) 2mm(f(XUY),g(XUY))+m1n(f(XﬂY),g(Xﬂ(};)))
A
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Arbitrary functions: difference between submodular funcs.

Theorem 6.2.1

Given an arbitrary set function h, it can be expressed as a difference
between two submodular functions (i.e., Yh € 2V 5 R,
3f,g s.t. VAMR(A) = f(A) — g(A) where both f and g are submodular).

Proof.
Let h be given and arbitrary, and define:

al ey (h(X) +R(Y) = (X UY) - h(X N Y)) (6.4)

If « > 0 then h is submodular, so by assumption a < 0. Now let f be an
arbitrary strict submodular function and define

e Xﬁyz)%r/l’ygx(f(X) +fY) - f(XUY) - f(XnN Y)). (6.5)

Strict means that g > 0.
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Many (Equivalent) Definitions of Submodularity

fLA+fB)>f(AUB)+ f(ANB), YA, BCV (6.16)
fG1S) > f(IT), VSCT CV, withj e V\T (6.17)
f(C|S) > f(C|T),YS CT CV, with CCV\T (6.18)
FG1S) > FGISULRY), VS CV with je V\ (SU{k})  (6.19)
f(AUB|ANB) < f(A|JANB) + f(BJANB), VA, BCV (6.20)
FO) < FS)+ Y FGIS) = Y. fGISUT = {5}), VS, T CV
JET\S JES\T
6.21)
FI)<FS)+ Y 1U1S), vScTCV (6.22)
JET\S

F@ <) = > FGIS\NUGH+ D FUISNT)VS,TCV

jeS\T JET\S
6.23)
F@)<FS) = Y FGIS\{iH, VT cScVv (6.24)
JES\T
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L

On Rank

o Let rank : 2V — Z, be the rank function.

@ In general, rank(A) < |A|, and vectors in A are linearly independent if
and only if rank(A4) = |A|.

o If A, B are such that rank(A) = |A| and rank(B) = |B|, with
|A| < |B|, then the space spanned by B is greater, and we can find a
vector in B that is linearly independent of the space spanned by
vectors in A.

@ To stress this point, note that the above condition is |A| < |B|, not
A C B which is sufficient (to be able to find an independent vector)
but not required.

@ In other words, given A, B with rank(A) = |A| & rank(B) = |B|, then
|A| < |B| < 3 an b € B such that rank(AU {b}) = |A| + 1.
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Review

Spanning trees/forests & incidence matrices

@ A directed version of the graph
(right) and its adjacency matrix
(below).

@ Orientation can be arbitrary.

@ Note, rank of this matrix is 7.

1 3 4 5 6 7 8 9 10 11 12
1 /=1 1 0 0 0 0 0 0 0 0 0 0
211 0 -1 0 1 0 0 0 0 0 0 0
310 -1 0 1 0 -1 0 0 0 0 0 0
41 0 0 1 -1 0 0 1 -1 0 0 0 0
51 0 0 0 0 0 1 -1 0 0 1 0 0
61 0 0 0 0 0 0 0 1 -1 0 -1 0
7 O 0 0 0 -1 0 0 0 1 0 0 1

0 0
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Independence
(NN}

Spanning trees

@ We can consider edge-induced subgraphs and the corresponding matrix
columns.

0O O Ui W N+
OO OO OO

Here, rank({z1}) = 1.
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Independence
(NN}

Spanning trees

@ We can consider edge-induced subgraphs and the corresponding matrix
columns.

1 2
1 /-1 1
21 1 0
31 0 -1
41 0 0
sl o o (6.1)
6] 0 0
7{ O 0
8\ 0 0

Here, rank({z1,x2}) = 2.
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Independence
(NN}

Spanning trees

@ We can consider edge-induced subgraphs and the corresponding matrix
columns.

1 3
1/-1 1 0
2l 1 0 -1
31 0 -1 0
410 o0 1

1
510 0 o0 (6-1)
6l 0 0 o0
710 o0 o
s\0 0 0

Here, rank({z1, 2, z3}) = 3.
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Independence
(NN}

Spanning trees

@ We can consider edge-induced subgraphs and the corresponding matrix
columns.

1 3 5
1 /-1 1 0 0
21 1 0o -1 1
310 -1 0 0
41 0 0 1 0
500 0 0 O (6-1)
6] 0 0 0 O
710 0 0 -1
8\0 0 0 O

Here, rank({z1, 22, z3,25}) = 4.
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Independence
(NN}

Spanning trees

@ We can consider edge-induced subgraphs and the corresponding matrix
columns.

1 2 3 4 5
1 /-1 1 0 0 O
21 1 0 -1 0 1
310 -1 0 1 0
41 0 0 1 -1 0
510 0 0 0 O (6-1)
6 0 0 0 0 O
7{o0 0 0 0 -1
§8\0 0 0 0 O

Here, rank({z1, 2, x3, 24, 25}) = 4.
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Independence
(NN}

Spanning trees

@ We can consider edge-induced subgraphs and the corresponding matrix

columns.
1 3 4
1 /-1 1 0 0
2 1 0O -1 0
3 0O -1 0 1
4 0 0 1 -1
6.1
5 0 0 0 0 (6.1)
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
Here, rank({z1, z2,x3,24}) = 3 since x4 = —x1 — T3 — X3.
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Independence
1

Spanning trees, rank, and connected components

@ In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.
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Independence
1

Spanning trees, rank, and connected components

@ In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.

@ This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.
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Independence
1

Spanning trees, rank, and connected components

@ In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.

@ This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.

@ Consider a “rank” function defined as follows: given a set of edges
A C E(G), the rank(A) is the size of the largest forest in the A-edge
induced subgraph of G.
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Independence
1

Spanning trees, rank, and connected components

@ In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.

@ This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.

@ Consider a “rank” function defined as follows: given a set of edges
A C E(G), the rank(A) is the size of the largest forest in the A-edge
induced subgraph of G.

@ The rank of the entire graph then is then a spanning forest of the
graph (spanning tree if the graph is connected).
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Independence
1

Spanning trees, rank, and connected components

@ In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.

@ This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.

@ Consider a “rank” function defined as follows: given a set of edges
A C E(G), the rank(A) is the size of the largest forest in the A-edge
induced subgraph of G.

@ The rank of the entire graph then is then a spanning forest of the
graph (spanning tree if the graph is connected).

@ The rank of the graph is rank(E(G)) = |V| — k where k is the number
of connected components of G. [,)A%_
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Independence
1

Spanning trees, rank, and connected components

@ In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.

@ This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.

@ Consider a “rank” function defined as follows: given a set of edges
A C E(G), the rank(A) is the size of the largest forest in the A-edge
induced subgraph of G.

@ The rank of the entire graph then is then a spanning forest of the
graph (spanning tree if the graph is connected).

@ The rank of the graph is rank(E(G)) = |V| — k where k is the number
of connected components of G.

e For A C E(G), define kg(A) as the number of connected components
of the edge-induced spanning subgraph((V(G), A). Recall, kg (A) is
supermodular, so |V(G)| — kg(A) is-submodular.
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Independence
1

Spanning trees, rank, and connected components

@ In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.

@ This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.

@ Consider a “rank” function defined as follows: given a set of edges
A C E(G), the rank(A) is the size of the largest forest in the A-edge
induced subgraph of G.

@ The rank of the entire graph then is then a spanning forest of the
graph (spanning tree if the graph is connected).

@ The rank of the graph is rank(E(G)) = |V| — k where k is the number
of connected components of G.

e For A C E(G), define kg (A) as the number of connected components
of the edge-induced spanning subgraph (V(G), A). Recall, kg(A) is
supermodular, so |V (G)| — kg(A) is submodular.

e We have rank(4) = |V(G)| — ka(A).
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Independence

Spanning Tree Algorithms

a B W =

We are now given a positive edge-weighted connected graph

G = (V, E,w) where w : E — R, is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of

the graph. G.‘.:CV)T, w}

Given a tree T, the cost of the tree is cost(T") = > .y w(e), the sum
of the weights of the edges.

There are several algorithms for MST:

Algorithm 1: Kruskal's Algorithm

Sort the edges so that/w(e;) < w(ez) < -+ < w(em) ;
T« (V(G),0) = (V,0) ;

for i =1tom do

L if CE(T ) U {ez} does not create a cycle in T then

| B(T) « B(T)U{es} ;

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 6 - Apr 18th, 2016 F13/53 (pg.24/199)



Independence
L1

Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E — R is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.

o Given a tree T', the cost of the tree is cost(T") = ) . w(e), the sum
of the weights of the edges.

@ There are several algorithms for MST: (
Algorithm 2: Jarnik/Prim/Dijkstra Algorithm / \J

17T+ 0;

2 while T is not a spanning tree do

L T + T U{e} for e = the minimum weight edge extending the

w

tree T' to a new vertex ;
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Independence
L1

Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E — R is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.

o Given a tree T', the cost of the tree is cost(T") = ) . w(e), the sum
of the weights of the edges.

@ There are several algorithms for MST:

Algorithm 3: Boriivka's Algorithm

F < ) /¥ We build up the edges of a forest in F’ */
while G(V;F) is disconnected do
forall the components Ci’ofF do
L F < FU/{e;} for e; = the min-weight edge out of C;;

B W NN =
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Independence
L1

Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E— R is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.

o Given a tree T', the cost of the tree is cost(T") = ) . w(e), the sum
of the weights of the edges.

@ There are several algorithms for MST:

@ These three algorithms are all guaranteed to find the optimal minimum
spanning tree in (low order) polynomial time.
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Independence
L1

Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E— R is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.

o Given a tree T', the cost of the tree is cost(T") = ) . w(e), the sum
of the weights of the edges.

@ There are several algorithms for MST:

@ These three algorithms are all guaranteed to find the optimal minimum
spanning tree in (low order) polynomial time.

@ These algorithms are all related to the “greedy” algorithm. l.e/, “add
next whatever looks best”.
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Independence
Lt

Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E— R is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.

o Given a tree T', the cost of the tree is cost(T") = ) . w(e), the sum
of the weights of the edges.

@ There are several algorithms for MST:

@ These three algorithms are all guaranteed to find the optimal minimum
spanning tree in (low order) polynomial time.

@ These algorithms are all related to the “greedy” algorithm. l.e., “add
next whatever looks best”.

@ These algorithms will also always find a basis (a set of linearly
independent vectors that span the underlying space) in the matrix
example we saw earlier.
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Independence
L1

Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E— R is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.

o Given a tree T', the cost of the tree is cost(T") = ) . w(e), the sum
of the weights of the edges.

@ There are several algorithms for MST:

@ These three algorithms are all guaranteed to find the optimal minimum
spanning tree in (low order) polynomial time.

@ These algorithms are all related to the “greedy” algorithm. l.e., “add
next whatever looks best”.

@ These algorithms will also always find a basis (a set of linearly
independent vectors that span the underlying space) in the matrix
example we saw earlier.

@ The above are all examples of a matroid, which is the fundamental

reason why the greedy algorithms work.
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Matroids
[NRNRRRRERRRNANE]

From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.
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Matroids
[NRNRRRRERRRNANE]

From Matrix Rank — Matroid

@ So V_is set of column vector indices of a matrix.
@ Let Z be a set of all subsets of V' such that for any I € Z, the vectors
indexed by I are linearly independent.
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Matroids
[NRNRRRRERRRNANE]

From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

@ Let 7 be a set of all subsets of V' such that for any I € Z, the vectors
indexed by I are linearly independent.

@ Given a set/ B € Z of linearly independent vectors, then any subset
A C B is also linearly independent.
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Matroids
[NRNRRRRERRRNANE]

From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

@ Let 7 be a set of all subsets of V' such that for any I € Z, the vectors
indexed by I are linearly independent.

o Given a set B € 7T of linearly independent vectors, then any subset
A C B is also linearly independent. Hence, 7 is down-closed or
“subclusive”, under subsets.
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Matroids
[NRNRRRRERRRNANE]

From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

@ Let 7 be a set of all subsets of V' such that for any I € Z, the vectors
indexed by I are linearly independent.

o Given a set B € T of linearly independent vectors, then any subset
A C B is also linearly independent. Hence, Z is down-closed or
“subclusive”, under subsets. In other words,

ACBand Bel=AcT (6.2)
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Matroids
[NRNRRRRERRRNANE]

From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

@ Let 7 be a set of all subsets of V' such that for any I € Z, the vectors
indexed by I are linearly independent.

o Given a set B € T of linearly independent vectors, then any subset
A C B is also linearly independent. Hence, Z is down-closed or
“subclusive”, under subsets. In other words,

ACBand Bel=AcTl (6.2)

@ maxiInd: Inclusionwise maximal independent subsets (or bases) of any set
BCV.

maxind(B) 2 {AC B:@€DandVve B\ A, AU{v} ¢Z} (6.3)
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Matroids
[NRNRRRRERRRNANE]

From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

@ Let 7 be a set of all subsets of V' such that for any I € Z, the vectors
indexed by I are linearly independent.

o Given a set B € T of linearly independent vectors, then any subset
A C B is also linearly independent. Hence, Z is down-closed or
“subclusive”, under subsets. In other words,

ACBand Bel=AcTl (6.2)

@ maxInd: Inclusionwise maximal independent subsets (or bases) of any set
BCV.

maxind(B) 2 {ACB:AcZTandVv e B\ A, Au{v} ¢Z} (6.3)

@ Given any set B C V of vectors, all maximal (by set inclusion) subsets of
linearly independent vectors are the same size. That is, for all B C V,

VA, A2 € maxind(B), [|A1| = |As2| (6.4)
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Matroids
(LERNRARNARNNRRN]

From Matrix Rank — Matroid

I:CIIII?.) o )

@ Thus, for all I € Z, the matrix rank function has the property

r(I) = || (6.5)

and for any. B & Z, Z

r(B) =max{|A|: ACBand A€ Z} < |B| (6.6)

Since all maximally independent subsets of a set are the same size, the
rank function is well defined.
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Matroids
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Matroid

@ Matroids abstract the notion of linear independence of a set of vectors
to general algebraic properties.
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Matroids
(N RNRARNARNNRNN]

Matroid

@ Matroids abstract the notion of linear independence of a set of vectors
to general algebraic properties.

@ In a matroid, there is an underlying ground set, say'E (or V), and a
collection of subsets of E that correspond to independent elements.

T=CyT - )

F16/53 (pg.40/199)
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Matroids
(N RNRARNARNNRNN]

Matroid

@ Matroids abstract the notion of linear independence of a set of vectors
to general algebraic properties.

@ In a matroid, there is an underlying ground set, say E (or V'), and a
collection of subsets of E that correspond to independent elements.

@ There are many definitions of matroids that are mathematically
equivalent, we'll see some of them here.
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Matroids
(NRR ARARNARNNRNN]

Independence System

Definition 6.4.1 (set system)

A (finite) ground set B and a set of subsets of £, (J £ Z C 2F is called a
set system, notated (E,Z).

@ Set systems can be arbitrarily complex since, as stated, there is no
systematic method (besides exponential-cost exhaustive search) to
determine if a given set S C F has S € 7.
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Independence System

Definition 6.4.1 (set system)

A (finite) ground set E and a set of subsets of E, (} AZ C 2F is called a
set system, notated (£, 7).

@ Set systems can be arbitrarily complex since, as stated, there is no
systematic method (besides exponential-cost exhaustive search) to
determine if a given set S C F has S € 7.

@ One useful property is “heredity.” Namely, a set system is a hereditary
set system if for any/A C/B € Z, we have that A € Z.
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Independence System

Definition 6.4.2 (independence (or hereditary) system)

A set system (V,Z) is an independence system if
) €Z (emptyset containing) (11)
and
VIeZ,JCI=JeZ (subclusive) (12)

@ Property 12 is called “down monotone,” “down closed,” or “subclusive”
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Independence System

Definition 6.4.2 (independence (or hereditary) system)

A set system (V,Z) is an independence system if
) € Z (emptyset containing) (1)
and
VIeZ,JCI=JeZ (subclusive) (12)

@ Property 12 is called “down monotone,” “down closed,” or “subclusive”
e Example:(E ={1,2,3,4}. Withi Z = {0, {1}, {1,2},{1,2,4}}.
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Independence System

Definition 6.4.2 (independence (or hereditary) system)

A set system (V,Z) is an independence system if
) € Z (emptyset containing) (1)
and

VIiIeZ,JCI= JeZI (subclusive) (12)

@ Property 12 is called “down monotone,” “down closed,” or “subclusive”

e Example: E ={1,2,3,4}. With Z = {0, {1}, {1,2},{1,2,4}}.

@ Then (E,Z) is a set system, but not an independence system since it
is not down closed (i.e., we have {1,2} € Z but not {2} € 7).
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Independence System

Definition 6.4.2 (independence (or hereditary) system)

A set system (V,Z) is an independence system if
) € Z (emptyset containing) (1)
and

VIeZ,JCI= JeZI (subclusive) (12)

@ Property 12 is called “down monotone,” “down closed,” or “subclusive’

e Example: E ={1,2,3,4}. With Z = {0, {1}, {1,2},{1,2,4}}.

@ Then (E,Z) is a set system, but not an independence system since it
is not down closed (i.e., we have {1,2} € Z but not {2} € 7).

o With Z ={0,{1},{2},{1,2}}, then (E,Z) is now an independence
(hereditary) system.
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Independence System

1
0
0
1

1 2 3 4 5 6 7 8
e

1 ®y a3 w4 w5 w6 w7 wg | (6.7)

[ i )
_ = =W
S O =
S NN O
w o = O
N W
UL =~ = o
I

@ Given any set of linearly independent vectors A, any subset B C A will
also be linearly independent.
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Independence System

1
0
0
1

1 2 3 4 5 6 7 8
e

1 ®y a3 w4 w5 w6 w7 wg | (6.7)

[ i )
_ = =W
S O =
S NN O
w o = O
N W
UL =~ = o
I

@ Given any set of linearly independent vectors A, any subset B C A will
also be linearly independent.

@ Given any forest Gy that is an edge-induced sub-graph of a graph G,
any sub-graph of Gy is also a forest.
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Independence System

1
0
0
1

1 2 3 4 5 6 7 8
e

1 ®y a3 w4 w5 w6 w7 wg | (6.7)

[ i )
_ = =W
S O =
S NN O
w o = O
N W
UL =~ = o
I

@ Given any set of linearly independent vectors A, any subset B C A will
also be linearly independent.

@ Given any forest Gy that is an edge-induced sub-graph of a graph G,
any sub-graph of G/ is also a forest.

@ So these both constitute independence systems.
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Matroid

Independent set definition of a matroid is perhaps most natural. Note, if
J € Z, then J is said to be an independent set.

Definition 6.4.3 (Matroid)

A set system (E,Z) is a Matroid if
(1y0eZ
(2yvieZ,JcI=JeTl

(13)(V1, J € Z, with |I| = |J| + 1, then there existsi@ € I \ J such that
Ju{z} e

Why is (11) is not redundant given (12)?
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Matroid

Independent set definition of a matroid is perhaps most natural. Note, if
J € 7, then J is said to be an independent set.

Definition 6.4.3 (Matroid)

A set system (E,Z) is a Matroid if
(1) 0eZ
2y vVieZ,JcI=Jel

(I13) VI,J € Z, with |I| = |J| + 1, then there exists € I \ J such that
JU{z} el

Why is (11) is not redundant given (12)? Because without (I1) could have a
non-matroid where Z = {}.
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On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935), but
already then found instances of objects with those properties not based
on a matrix.
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On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935), but
already then found instances of objects with those properties not based
on a matrix.

@ Takeo Nakasawa, 1935, also early work.
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On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935), but
already then found instances of objects with those properties not based
on a matrix.

@ Takeo Nakasawa, 1935, also early work.

@ Forgotten for 20 years until mid 1950s.
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On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935), but
already then found instances of objects with those properties not based
on a matrix.

@ Takeo Nakasawa, 1935, also early work.
e Forgotten for 20 years until mid 1950s.
@ Matroids are powerful and flexible combinatorial objects.
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On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935), but

already then found instances of objects with those properties not based
on a matrix.

Takeo Nakasawa, 1935, also early work.

Forgotten for 20 years until mid 1950s.

Matroids are powerful and flexible combinatorial objects.

The rank function of a matroid is already a very powerful submodular

function (perhaps all we need for many problems).
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On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935), but

already then found instances of objects with those properties not based
on a matrix.

Takeo Nakasawa, 1935, also early work.

Forgotten for 20 years until mid 1950s.

Matroids are powerful and flexible combinatorial objects.

The rank function of a matroid is already a very powerful submodular

function (perhaps all we need for many problems).

@ Understanding matroids crucial for understanding submodularity.
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On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935), but

already then found instances of objects with those properties not based

on a matrix.

Takeo Nakasawa, 1935, also early work.

Forgotten for 20 years until mid 1950s.

Matroids are powerful and flexible combinatorial objects.

The rank function of a matroid is already a very powerful submodular

function (perhaps all we need for many problems).

Understanding matroids crucial for understanding submodularity.

e Matroid independent sets (i.e., A s.t{#(A) = |A|)hare useful constraint
set, and fast algorithms for submodular optimization subject to one (or
more) matroid independence constraints exist.
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On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935), but
already then found instances of objects with those properties not based
on a matrix.

Takeo Nakasawa, 1935, also early work.

Forgotten for 20 years until mid 1950s.

Matroids are powerful and flexible combinatorial objects.

The rank function of a matroid is already a very powerful submodular

function (perhaps all we need for many problems).

Understanding matroids crucial for understanding submodularity.

e Matroid independent sets (i.e., A s.t. r(A) = |A|) are useful constraint
set, and fast algorithms for submodular optimization subject to one (or
more) matroid independence constraints exist.

o Crapo & Rota preferred the term “combinatorial geometry”, or more
specifically a “prwnetﬂ: and said that pregeometries are “often
described by the ‘ineffably cacaphonicisic] term 'matroid’, which we
prefer to avoid in favor of the term 'pregeometry’.”
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Matroid

Slight modification (non unit increment) that is equivalent.

Definition 6.4.4 (Matroid-II)

A set system (E,Z) is a Matroid if
(11 ez
(I2'yVIeZ,JCcI= JeZ (or “down-closed")

(13") VI, J € Z, with(|I| > |J|, then there exists = € I \ J such that
JUu{z}eZ

Note (11)=(I1"), (12)=(12"), and we get (13)=(I3") using induction.

Prof. Jeff Bilmes
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Matroids, independent sets, and bases

@ Independent sets: Given a matroid M = (E,7), a subset A C E is
called independent if A € Z and otherwise A is called dependent.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 6 - Apr 18th, 2016 F23/53 (pg.62/199)



Matroids
(NERNRARNE RRRRRN]

Matroids, independent sets, and bases

@ Independent sets: Given a matroid M = (E,Z), a subset A C E'is
called independent if A € Z and otherwise A is called dependent.

o A base of U C E: For U C E, a subset{B'C Uis called a base of U if
B is inclusionwise maximally independent subset of U. That i is, BeZl
and there is nd Z € Z with B € Z C U.
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Matroids, independent sets, and bases

@ Independent sets: Given a matroid M = (E,Z), a subset A C E'is
called independent if A € Z and otherwise A is called dependent.

@ A base of U C E: For U C FE, a subset B C U is called a base of U if
B is inclusionwise maximally independent subset of U. Thatis, B €T
and thereisno Z € Z with BC Z CU.

@ A base of a matroid: IfU = E, then a “base of E" is just called a
base of the matroid M (this corresponds to a basis in a linear space, or
a spanning forest in a graph, or a spanning tree in a connected graph).
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Matroids - important property

Proposition 6.4.5
In a matroid M = (E,Z), for any U C E(M), any two bases of U have the

same size.
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Matroids - important property

Proposition 6.4.5
In a matroid M = (E,Z), for any U C E(M), any two bases of U have the

same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.
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Matroids - important property

Proposition 6.4.5
In a matroid M = (E,Z), for any U C E(M), any two bases of U have the

same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

e In fact, under (I1),(12), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

F24/53 (pg.67/199)
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Matroids - important property

Proposition 6.4.5
In a matroid M = (E,Z), for any U C E(M), any two bases of U have the

same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

o In fact, under (I1),(12), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 6.4.6 (Matroid)
A set system (V,Z) is a Matroid if
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Matroids - important property

Proposition 6.4.5
In a matroid M = (E,Z), for any U C E(M), any two bases of U have the

same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

o In fact, under (I1),(12), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 6.4.6 (Matroid)

A set system (V,Z) is a Matroid if
(I1") @ € Z (emptyset containing)
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Matroids - important property

Proposition 6.4.5
In a matroid M = (E,Z), for any U C E(M), any two bases of U have the
same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

o In fact, under (I1),(12), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 6.4.6 (Matroid)

A set system (V,Z) is a Matroid if
(I11") @ € Z (emptyset containing)
(I12") VI €Z,J C I = J € Z (down-closed or subclusive)
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Matroids - important property

Proposition 6.4.5
In a matroid M = (E,Z), for any U C E(M), any two bases of U have the
same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

o In fact, under (I1),(12), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 6.4.6 (Matroid)

A set system (V,Z) is a Matroid if
(I11") @ € Z (emptyset containing)
(I2") VI €Z,J C I = J € Z (down-closed or subclusive)

(13") VX CV, and Iy, I € maxInd(X), we have |I;| = |I2| (all maximally
independent subsets of X have the same size).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 6 - Apr 18th, 2016 F24/53 (pg.71/199)



Matroids
(NERNRARNARE NRRN]

Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of U
have the same size.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 6 - Apr 18th, 2016 F25/53 (pg.72/199)



Matroids
(NERNRARNARE NRNN]

Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of U
have the same size.

@_The common size of all the bases of U is called the rank of U, denoted
rar(U) or just(r(U) when the matroid in equation is unambiguous.
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of U
have the same size.

@ The common size of all the bases of U is called the rank of U, denoted
rar(U) or just r(U) when the matroid in equation is unambiguous.

o(7(E) = r(pz) is the rank of the matroid, and is the common size of all
the bases of the matroid.
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of U
have the same size.

@ The common size of all the bases of U is called the rank of U, denoted
rar(U) or just r(U) when the matroid in equation is unambiguous.

o 7(E) = r(p ) is the rank of the matroid, and is the common size of all
the bases of the matroid.

@ We can a bit more formally define the rank function this way.
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of U
have the same size.

@ The common size of all the bases of U is called the rank of U, denoted
rar(U) or just r(U) when the matroid in equation is unambiguous.

o 7(E) = r(p ) is the rank of the matroid, and is the common size of all
the bases of the matroid.

@ We can a bit more formally define the rank function this way.

Definition 6.4.7 (matroid rank function)

The rank function of a matroid is a function r : 2¥ — 7Z_ defined by

= : X C = .
r(A) =max{|X|: X CA X €7} r}(lg%c‘AﬁX| (6.8)
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of U
have the same size.

@ The common size of all the bases of U is called the rank of U, denoted
rar(U) or just r(U) when the matroid in equation is unambiguous.

o 7(E) = r(p ) is the rank of the matroid, and is the common size of all
the bases of the matroid.

@ We can a bit more formally define the rank function this way.

Definition 6.4.7 (matroid rank function)

The rank function of a matroid is a function r : 2¥ — 7Z_ defined by

T(A):rnax{]X\:XQA,XEI}ZI;}&%(\AQX| (6.8)
€

@ From the above, we immediately see that r(A4) < |AJ:
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of U
have the same size.

@ The common size of all the bases of U is called the rank of U, denoted
rar(U) or just r(U) when the matroid in equation is unambiguous.

o 7(E) = r(p ) is the rank of the matroid, and is the common size of all
the bases of the matroid.

@ We can a bit more formally define the rank function this way.

Definition 6.4.7 (matroid rank function)

The rank function of a matroid is a function r : 2¥ — 7Z_ defined by

T(A):rnax{]X\:XQA,XEI}ZI;}&%(\AQX| (6.8)
€

@ From the above, we immediately see that r(A) < |A].
o Moreover, if@r(A)=fdi then A € Z, meaning A is independent (in
this case, A is a'self base).
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Matroids, other definitions using matroid rank r : 2V — Z_

Definition 6.4.8 (closed/flat/subspace)

A subset A C E is closed (equivalently, a flat or a subspace) of matroid M
ifforallz e E\ A, r(AU{z}) =7r(A) + 1.

Definition: A hyperplane is a flat of rank (M) — 1.
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Matroids, other definitions using matroid rank r : 2V — Z_

Definition 6.4.8 (closed/flat/subspace)

A subset A C E is closed (equivalently, a flat or a subspace) of matroid M
if forallz € E\ A, r(AU{x}) =r(A) + 1.

Definition: A hyperplane is a flat of rank (M) — 1.

Definition 6.4.9 (closure)

Given A C E, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(A4)}.
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Matroids, other definitions using matroid rank r : 2V — Z,

Definition 6.4.8 (closed/flat/subspace)

A subset A C E is closed (equivalently, a flat or a subspace) of matroid M
if forallz € E\ A, r(AU{x}) =r(A) + 1.

Definition: A hyperplane is a flat of rank (M) — 1.

Definition 6.4.9 (closure)

Given A C E, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(A4)}.

Therefore, a closed set A has span(A) = A.
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Matroids, other definitions using matroid rank r : 2V — Z_

Definition 6.4.8 (closed/flat/subspace)

A subset A C E is closed (equivalently, a flat or a subspace) of matroid M
if forallz € E\ A, r(AU{x}) =r(A) + 1.

Definition: A hyperplane is a flat of rank (M) — 1.

Definition 6.4.9 (closure)

Given A C E, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(A4)}.

Therefore, a closed set A has span(A) = A.

Definition 6.4.10 (circuit)

A subset A C E is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if r(A) < |A| and for anya € A, r(A\ {a}) =|4]| — 1).
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Matroids

Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 6.4.11 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then the
following are equivalent.

@ B is the collection of bases of a matroid;
@ ifB,B' € B,andx € B'\ B, then B'—x+y € B for somey € B\ B'.
© IfB,B'€B,andx € B'\ B, then B—y+x € B forsomey € B\ B'.

Properties 2 and 3 are called “exchange properties.”
G | "
7
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Matroids

Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 6.4.11 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then the
following are equivalent.

@ B is the collection of bases of a matroid;
@ ifB,B' €B,andx € B'\ B, then B'—x+y € B forsomey € B\ B'.
@ IfB,B'€B,andx € B'\ B, then B—y+x € B forsomey € B\ B'.

Properties 2 and 3 are called “exchange properties.”
Proof here is omitted but think about this for a moment in terms of linear
spaces and matrices, and (alternatively) spanning trees.
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Matroids
(NERNRARNARNNRN V]

Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is not
surprising that circuits can also characterize a matroid.
Theorem 6.4.12 (Matroid by circuits)

Let E be a set and C be a collection of subsets of I that satisfy the
following three properties:

Q (Cl): B édcC
Q (CQ) if01,02 € C and Cy C Oy, then C1 = Cy.

Q (C3):if C1,C5 € C with Cy # Cy, and e € C; N Oy, then there exists
a C3 € C such that C3 C (Cl U 02) \ {6}
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Matroids

Matroids by circuits

Several circuit definitions for matroids.

Theorem 6.4.13 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E/, such that
no two sets in C are contained in each other. Then the following are
equivalent.

@ C is the collection of circuits of a matroid;
Q ifC,C"eC,and x € CNC', then (CUC")\ {x} contains a set inC;

Q ifC,C"eC,andzeCNC’, andy € C\ ', then (CUC")\ {z}
contains a set in C containing y;
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Matroids
(NERNNARNARRNNNY ]

Matroids by circuits

Several circuit definitions for matroids.

Theorem 6.4.13 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E/, such that
no two sets in C are contained in each other. Then the following are
equivalent.

@ C is the collection of circuits of a matroid;
Q@ ifC,C"eC,andxz € CNC’, then (CUC")\ {x} contains a set in C;

Q@ ifC,C"eC,andz e CNC’', andy € C\ ', then (CUC")\ {z}
contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and
matrices, and spanning trees.
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Matroid Examples
[NRNRR

Uniform Matroid

@ Given FE, consider 7 to be all subsets of £/ that are at most size k.
ThatisZ={ACE:|A|l <k}
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Matroid Examples
[NRNRR

Uniform Matroid

@ Given FE, consider Z to be all subsets of E that are at most size k.
ThatisZ={AC E:|A| <k}.
@ Then (E,Z) is a matroid called a k-uniform matroid.
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Matroid Examples
[NRNRR

Uniform Matroid

o Given FE, consider Z to be all subsets of E that are at most size k.
ThatisZ={AC E:|A| <k}.

@ Then (E,Z) is a matroid called a k-uniform matroid.

@ Note, if I,J €Z, and |I| < |J| <k, and j € J such that j & I, then j
is such that |[I 4+ j| < kandso I+ j €T
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Matroid Examples
[NRNRR

Uniform Matroid

@ Given £, consider 7 to be all subsets of E that are at most size k.
ThatisZ={AC E:|A| <k}.

@ Then (E,Z) is a matroid called a k-uniform matroid.

o Note, if I,J €Z, and |I| < |J| <k, and j € J such that j & I, then j
is such that |[I +j| < kandsoI+j€Z.

@ Rank function
Al 1Al <k
ra) = { ATl (6.9)
koAl >k
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Matroid Examples
[NRNRR

Uniform Matroid

Given F, consider Z to be all subsets of £ that are at most size &.
ThatisZ={AC E:|A| <k}.

Then (E,Z) is a matroid called a k-uniform matroid.

Note, if I,J € Z, and |I| < |J| < k, and j € J such that j & I, then j
is such that |[I +j| < kandsoI+j€Z.

Rank function
Al if|A| <k
r(ay = AL 1AL (69)
k if |[A] >k
Note, this function is submodular. Not surprising since

r(A) = min(|A|, k) which is a non-decreasing concave function applied
to a modular function.
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Matroid Examples
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Uniform Matroid

Given F, consider Z to be all subsets of £ that are at most size &.
ThatisZ={AC E:|A| <k}.

Then (E,Z) is a matroid called a k-uniform matroid.

Note, if I,J € Z, and |I| < |J| < k, and j € J such that j & I, then j
is such that |[I +j| < kandsoI+j€Z.

Rank function
Al if|A] <k
()= A TIAT (6.9)
k if |[A] >k

Note, this function is submodular. Not surprising since

r(A) = min(|A|, k) which is a non-decreasing concave function applied
to a modular function.

Closure function

A if|A| <k,

. (6.10)
E if|AlZ>k,

span(A) = {

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 6 - Apr 18th, 2016 F30/53 (pg.93/199)



Matroid Examples
[NRNRR

Uniform Matroid

Given F, consider Z to be all subsets of £ that are at most size &.
ThatisZ={AC E:|A| <k}.

Then (E,Z) is a matroid called a k-uniform matroid.

Note, if I,J € Z, and |I| < |J| < k, and j € J such that j & I, then j
is such that |[I +j| < kandsoI+j€Z.

Rank function
Al if|A <k
r(a) = AL AL (69)
k if |[A] >k
Note, this function is submodular. Not surprising since
r(A) = min(|A|, k) which is a non-decreasing concave function applied
to a modular function.
Closure function
A if|Al <k,

. (6.10)
E if|Al >k,

span(A) = {

A “free" matroid sets k = |E|, so everything is independent.
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Matroid Examples
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Linear (or Matric) Matroid

o Let X be an n x m matrix and E = {1,...,m}

@ Let 7 consists of subsets of E such that if A € Z, and
A ={ai,ag,...,ax} then the vectors x4, Zq,, . .., Zq, are linearly
independent.

@ the rank function is just the rank of the space spanned by the
corresponding set of vectors.

@ rank is submodular, it is intuitive that it satisfies the diminishing
returns property (a given vector can only become linearly dependent in
a greater context, thereby no longer contributing to rank).

@ Called both linear matroids and matric matroids.
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Matroid Examples
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Cycle Matroid of a graph: Graphic Matroids

@ Let G = (V, E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and' A € Z if the edge-induced graph
G(V, A) by A does not contain any cycle.
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Matroid Examples
(NLRNN]

Cycle Matroid of a graph: Graphic Matroids

o Let G = (V, E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € T if the edge-induced graph
G(V, A) by A does not contain any cycle.

@ Then M = (E,Z) is a matroid.
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Matroid Examples
(NLRNN]

Cycle Matroid of a graph: Graphic Matroids

o Let G = (V, E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € T if the edge-induced graph
G(V, A) by A does not contain any cycle.

@ Then M = (E,Z) is a matroid.

@ 7 contains all forests.
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Matroid Examples
(NLRNN]

Cycle Matroid of a graph: Graphic Matroids

o Let G = (V, E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € T if the edge-induced graph
G(V, A) by A does not contain any cycle.

@ Then M = (E,Z) is a matroid.

@ 7 contains all forests.

@ Bases are spanning forests (spanning trees if G is connected).
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Matroid Examples
(NLRNN]

Cycle Matroid of a graph: Graphic Matroids

o Let G = (V, E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € T if the edge-induced graph
G(V, A) by A does not contain any cycle.

@ Then M = (E,Z) is a matroid.
@ 7 contains all forests.
@ Bases are spanning forests (spanning trees if G is connected).

@ Rank function 7(A) is the size of the largest spanning forest contained

in G(V, A).
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(NLRNN]

Cycle Matroid of a graph: Graphic Matroids

Let G = (V, E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € T if the edge-induced graph
G(V, A) by A does not contain any cycle.

Then M = (E,Z) is a matroid.

7 contains all forests.

Bases are spanning forests (spanning trees if G is connected).

Rank function r(A) is the size of the largest spanning forest contained
in G(V, A).

Recall from earlier/ r(A) = |V(G)| — kg(A), where for A C E(G), we
define kg (A) as the number of connected components of the
edge-induced spanning subgraph (V(G), A), and that kg(A) is
supermodular, so |V(G)| — kg (A) is submodular.
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Matroid Examples
(NLRNN]

Cycle Matroid of a graph: Graphic Matroids

Let G = (V, E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € T if the edge-induced graph
G(V, A) by A does not contain any cycle.

Then M = (E,Z) is a matroid. .

7 contains all forests.

Bases are spanning forests (spanning trees if G is connected).

Rank function r(A) is the size of the largest spanning forest contained
in G(V, A).

Recall from earlier, 7(A) = |V(G)| — kg(A), where for A C E(G), we
define kg (A) as the number of connected components of the
edge-induced spanning subgraph (V(G), A), and that kg(A) is
supermodular, so |V(G)| — kg (A) is submodular.

Closure function adds all edges between the vertices adjacent to any
edge in A. Closure of a spanning forest is G.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Matroid Examples
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Partition Matroid

@ Let V be our ground set.
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Partition Matroid

@ Let V be our ground set.
o Let V=13 UVoU---UV, be a partition of V' into ¢ blocks (i.e.,
disjoint sets). Define a set of subsets of V' as

- {XCV: XAV maforalli=1,... 0} (6.11)

where k) iiiykprare fixed parameters, k; > 0. Then M = (V,Z) is a
matroid.
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Matroid Examples
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Partition Matroid

@ Let V be our ground set.

o Let V=V UVoU---UV, be a partition of V into ¢ blocks (i.e.,
disjoint sets). Define a set of subsets of V' as

I={XCV:|XNV|<kforalli=1,... 0} (6.11)

where ki, ..., k¢ are fixed parameters, k; > 0. Then M = (V,Z) is a
matroid.

@ Note that a k-uniform matroid is a trivial example of a partition
matroid with / =1, V1 =V, and k1 = k.
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Partition Matroid

@ Let V be our ground set.

o Let V=V UVoU---UV, be a partition of V into ¢ blocks (i.e.,
disjoint sets). Define a set of subsets of V' as

I={XCV:|XNV|<kforalli=1,... 0} (6.11)

where ki, ..., k¢ are fixed parameters, k; > 0. Then M = (V,Z) is a
matroid.

@ Note that a k-uniform matroid is a trivial example of a partition
matroid with £ =1, Vi =V, and k1 = k.

@ Parameters associated with a partition matroidi £ and ki, ka, .. ., k¢
although often the k;'s are all the same.
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Matroid Examples
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Partition Matroid

@ Let V be our ground set.
o Let V=V UVoU---UV, be a partition of V into ¢ blocks (i.e.,
disjoint sets). Define a set of subsets of V' as

I={XCV:|XNV|<kforalli=1,... 0} (6.11)

where ki, ..., k¢ are fixed parameters, k; > 0. Then M = (V,Z) is a
matroid.

@ Note that a k-uniform matroid is a trivial example of a partition
matroid with £ =1, Vi =V, and k1 = k.

@ Parameters associated with a partition matroid:, ¢ and k1, ka,..., kg
although often the &;'s are all the same. |Y| = Z Yoy

e We'll show that property (13") in Def 6.4.6 holds. If X,Y € Z with
Y| > | X|, then there must be at least one i with |[Y NV;| > | X NVj].
Therefore, adding one element e € V; N (Y \ X) to X won't break
independence.
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Partition Matroid

Ground set of objects, V = {
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Matroid Examples

Partition Matroid

Partition of V into six blocks, V1, Vo, ..., Vg
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Partition Matroid
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Partition Matroid

Independent subset but not maximally independent.
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Partition Matroid

Maximally independent subset, what is called a base.
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Partition Matroid

Not independent since over limit in set six.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 6 - Apr 18th, 2016



Matroid Rank
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Matroids - rank

Lemma 6.6.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUuB)+r(ANB)
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Matroid Rank
[NRRRENAN]

Matroids - rank

Lemma 6.6.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUuB)+r(ANB)

Proof.
@ Let X €7 be an inclusionwise maximal set with®X € AN B

X< Anb Xe T
JVL g € [406}\?(
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Matroid Rank

Matroids - rank
Lemma 6.6.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUuB)+r(ANB)

Proof.
@ Let X € 7 be an inclusionwise maximal set with X C AN B
@ Let Y € 7 be inclusionwise maximal set with X CY C AUB. We
can find such a Y D X because the following. Let Y' € T be any inclusionwise
maximal set with Y’ C AU B, which might not have X C Y. Starting from

Y «+ X C AU B, sincé
X +y €Z but sincey € AUB, also X +y € AUB — we then add y to Y. We
canfleep doing this while |Y| > | X| since this is a matroid. We end up with an
inclisionwise maximal set Y with ¥ € Z and X C Y. Y¢ A’L/b

vy YEAUG Yex RN
/ 1t ¢x
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Matroid Rank
[NRRRENAN]

Matroids - rank

Lemma 6.6.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUuB)+r(ANB)

@ Let X € 7 be an inclusionwise maximal set with X C AN B
@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

© Since M is a matroid, we know that #(A N B) = r(X) = | X|, and
r(AUB) =r(Y)=1Y]|. Also, forany U € Z, r(A) > |[ANU|.
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Matroid Rank
[NRRRENAN]

Matroids - rank

Lemma 6.6.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUuB)+r(ANB)

Proof.

@ Let X € 7 be an inclusionwise maximal set with X C AN B
@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

© Since M is a matroid, we know that 7(A N B) = r(X) = |X|, and
r(AUB) =r(Y)=1Y]|. Also, forany U € Z, r(A) > |[ANU|.
© Then we have (sinc€ X C ANB, X CY, and ¥ C AUB),

r(A) + r(B) (6.12)
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Matroid Rank
[NRRRENAN]

Matroids - rank

Lemma 6.6.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUuB)+r(ANB)

Proof.

@ Let X € 7 be an inclusionwise maximal set with X C AN B
@ Let Y € Z be inclusionwise maximal set with X CY C AU B.

© Since M is a matroid, we know that 7(A N B) = r(X) = | X|, and
r(AUB)=r(Y)=|Y|. Also, forany U € Z, r(A) > |ANU|.
© Then we have (since X CANB, XCY,andY C AUB),

r(A) + (B SIEAAR B (6.12)
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Matroid Rank
[NRRRENAN]

Matroids - rank

Lemma 6.6.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUuB)+r(ANB)

@ Let X € 7 be an inclusionwise maximal set with X C AN B

@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

© Since M is a matroid, we know that 7(A N B) = r(X) = |X|, and
r(AUB) =r(Y)=1Y]|. Also, forany U € Z, r(A) > |[ANU|.
© Then we have (since X CANB, XCY,andY C AUB),

r(A)+r(B) > |YNA|l+|YNB| :
=|YN(ANB)|+|Y N(AUB)| (6.13)
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Matroid Rank
[NRRRENAN]

Matroids - rank

Lemma 6.6.1

The rank function r : 2¥ — 7., of a matroid is submodular, that is
r(A)+r(B)>r(AUuB)+r(ANB)

@ Let X € 7 be an inclusionwise maximal set with X C AN B

@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

© Since M is a matroid, we know that (AN B) = r(X) = |X|, and
r(AUB) =r(Y)=1|Y]|. Also, forany U € Z, r(A) > |[ANU|.

© Then we have (sincee X CANB, X CY,and Y C AUB),

r(A) +r(B) > |Y N A+ |Y N B| (6.12)
=Y N(ANB)|+|Y N(AUB) (6.13)
>(X|4 Y] = (AN B) + (AU B) (6.14)
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Matroids

In fact, we can use the rank of a matroid for its definition.

Theorem 6.6.2 (Matroid from rank)

Let E be a set and let r : 2F e a function. Then r(-) defines a

matroid with r being its rank function if and only if for all A, B C E:
(R1) VAC E 0 <r(A) < |A| (non-negative cardinality bounded)
(R2) r(A) < r(B) whenever A C B C E (monotone non-decreasing)
(R3) r(AUB)+r(ANB) <r(A)+r(B) for all A, B C E (submodular)

@ So submodularity and non-negative monotone non-decreasing, and unit
increase is necessary and sufficient to define the matroid.

@ Given above/ unit increment (if 7(A) = k, then either r(AU {v}) =k
or r(AU{v}) = k+ 1) holds.

@ A matroid is sometimes given as (E,r) where E is ground set and r is
rank function.
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Matroid Rank

Matroids

In fact, we can use the rank of a matroid for its definition.

Theorem 6.6.2 (Matroid from rank)

Let E be a set and let r : 2F —$ 7. be a function. Then r(-) defines a
matroid with r being its rank function if and only if for all A, B C E:

(R1) VAC E 0<r(A) <|A| (non-negative cardinality bounded)
(R2) r(A) < r(B) whenever A C B C E (monotone non-decreasing)
(R3) r(AUB)+7r(ANB) <r(A)+r(B) forall A,B C E (submodular)

o From above, #(f)) = 0. Let'v & A, then by monotonicity and
submodularity, #(4) < r(AU{v}) < r(A) + r({v}) which gives only
two possible values to (A U {v}).
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Matroids from rank

Proof of Theorem 6.6.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 6.8 satisfies (R1), (R2), and, as we saw in Lemma 6.6.1, (R3) too.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 6 - Apr 18th, 2016



Matroid Rank
[RLRRRRRN]

Matroids from rank

Proof of Theorem 6.6.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 6.8 satisfies (R1), (R2), and, as we saw in Lemma 6.6.1, (R3) too.
@ Next, assume we have (R1), (R2), and (R3). Define
I={X CFE:r(X)=|X|}. We will show that (E,7) is a matroid.
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Matroid Rank
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Matroids from rank

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 6.8 satisfies (R1), (R2), and, as we saw in Lemma 6.6.1, (R3) too.
@ Next, assume we have (R1), (R2), and (R3). Define
I={X CFE:r(X)=|X|}. We will show that (E,Z) is a matroid.
o First, 0 € Z.
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Matroid Rank
[RLRRRRRN]

Matroids from rank

Proof of Theorem 6.6.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 6.8 satisfies (R1), (R2), and, as we saw in Lemma 6.6.1, (R3) too.
@ Next, assume we have (R1), (R2), and (R3). Define
I={X CFE:r(X)=|X|}. We will show that (E,Z) is a matroid.
o First, 0 € Z.

@ Also, if Y € Z and X C Y then by submodularity,
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[RLRRRRRN]

Matroids from rank

Proof of Theorem 6.6.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 6.8 satisfies (R1), (R2), and, as we saw in Lemma 6.6.1, (R3) too.
@ Next, assume we have (R1), (R2), and (R3). Define
I={X CFE:r(X)=|X|}. We will show that (E,Z) is a matroid.
o First, 0 € Z.

@ Also, if Y € Z and X C Y then by submodularity,

r(X)>rY)—rY \X) (6.15)
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Matroid Rank
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Matroids from rank

Proof of Theorem 6.6.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 6.8 satisfies (R1), (R2), and, as we saw in Lemma 6.6.1, (R3) too.
@ Next, assume we have (R1), (R2), and (R3). Define
I={X CFE:r(X)=|X|}. We will show that (E,Z) is a matroid.
o First, 0 € Z.

@ Also, if Y € Z and X C Y then by submodularity,

r(X)>rY)—r(Y\X)+r(0) (6.15)
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Matroids from rank

Proof of Theorem 6.6.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 6.8 satisfies (R1), (R2), and, as we saw in Lemma 6.6.1, (R3) too.
@ Next, assume we have (R1), (R2), and (R3). Define
I={X CFE:r(X)=|X|}. We will show that (E,Z) is a matroid.
o First, 0 € Z.

@ Also, if Y € Z and X C Y then by submodularity,

r(X)>rY)—r(Y\X)+r(0) (6.15
> Y] =Y\ X]|
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Matroids from rank

Proof of Theorem 6.6.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 6.8 satisfies (R1), (R2), and, as we saw in Lemma 6.6.1, (R3) too.
@ Next, assume we have (R1), (R2), and (R3). Define
I={X CFE:r(X)=|X|}. We will show that (E,Z) is a matroid.
o First, 0 € Z.

@ Also, if Y € Z and X C Y then by submodularity,

r(X)>rY)—r(Y \ X)+r() (6.15)
> v| = [\ X] (6.16)
= |X| (6.17)
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Matroids from rank

Proof of Theorem 6.6.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 6.8 satisfies (R1), (R2), and, as we saw in Lemma 6.6.1, (R3) too.
@ Next, assume we have (R1), (R2), and (R3). Define
I={X CFE:r(X)=|X|}. We will show that (E,Z) is a matroid.
o First, 0 € Z.

@ Also, if Y € Z and X C Y then by submodularity,

r(X)>rY)—r(Y \ X)+r() (6.15)
> v| = [\ X] (6.16)
_ x| (6.17)

implying r(X) = | X]|, and thus X € T.
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Matroid Rank

Matroids from rank

Proof of Theorem 6.6.2 (matroid from rank) cont.

o Let A, B €Z, with |A] < |B|, so r(A) = |A] <r(B) = |B|. Let
B\ A={by,bs,...,br} (note k < |BJ).
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Matroids from rank

Proof of Theorem 6.6.2 (matroid from rank) cont.
o Let A,B € Z, with |A| < |BJ, so r(A) = |A| < r(B) = |B|. Let
B\ A={by,bs,...,br} (note k < |BJ).
@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means for
all such b, r(A+b) =r(A) = |A| < |A+b|. Then
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Matroids from rank

Proof of Theorem 6.6.2 (matroid from rank) cont.

o Let A,B € Z, with |A| < |BJ, so r(A) = |A| < r(B) = |B|. Let
B\ A={by,bs,...,br} (note k < |BJ).
@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means for
all such b, (A +b) =r(A) = |A| < |A+b|. Then
r(B) <r(AUB) (6.18)
L]
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Matroids from rank

Proof of Theorem 6.6.2 (matroid from rank) cont.

o Let A,B € Z, with |A| < |BJ, so r(A) = |A| < r(B) = |B|. Let
B\ A={by,bs,...,br} (note k < |BJ).
@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means for
all such b, (A +b) =r(A) = |A| < |A+b|. Then
r(B) <r(AUB) (6.18
<r(AU(B\{b1})) +r(Au{bi}) —r(A) (6.19
L]
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Matroids from rank

Proof of Theorem 6.6.2 (matroid from rank) cont.

o Let A,B € Z, with |A| < |BJ, so r(A) = |A| < r(B) = |B|. Let
B\ A={by,bs,...,br} (note k < |BJ).
@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means for
all such b, (A +b) =r(A) = |A| < |A+b|. Then
r(B) <r(AUB) (6.18)
<r(AU(B\{b1})) +r(Au{bi}) —r(A) (6.19)
=r(AU(B\{b}) (6.20)
L]
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Matroids from rank

Proof of Theorem 6.6.2 (matroid from rank) cont.
o Let A,B € Z, with |A| < |BJ, so r(A) = |A| < r(B) = |B|. Let
B \ A= {bl,bg, R ,bk} (note k< ‘BD
@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means for
all such b, (A +b) =r(A) = |A| < |A+b|. Then

r(B) <r(AUB) ( )
<r(AU(B\{b1})) +r(Au{bi}) —r(A) (6.19)
=r(AU(B\{b}) (6.20)
Sr(AU(B\ {b1,b2})) +r(AU {b2}) — 1(A) (6.21)
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Matroids from rank

Proof of Theorem 6.6.2 (matroid from rank) cont.

o Let A, B € Z, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B\ A= {by,ba,...,b;} (note k < |B|).

@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means for
all such b, (A +b) =r(A) = |A| < |A+b|. Then

r(B) <r(AUB) (6.18)

<r(AU(B\{01})) +7(AU{br}) —r(4) (6.19)

=r(AU(B\{b}) (6.20)

< 7(AU(B\{b1,b2})) + (AU {b2}) —7(A) (6.21)

=r(AU(B\{b1,b2})) (6.22)
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Matroids from rank

Proof of Theorem 6.6.2 (matroid from rank) cont.

o Let A, B € Z, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B\ A= {by,ba,...,b;} (note k < |B|).

@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means for
all such b, (A +b) =r(A) = |A| < |A+b|. Then

r(B) <r(AUB) (6.18)

<r(AU(B\{01})) +7(AU{br}) —r(4) (6.19)

=r(AU(B\{b}) (6.20)

< 7(AU(B\{b1,b2})) + (AU {b2}) —7(A) (6.21)

=r(AU(B\{b1,b2})) (6.22)

- <r(A) = |A] < |B] (6.23)

IA
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Matroids from rank

Proof of Theorem 6.6.2 (matroid from rank) cont.

o Let A, B € Z, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B\ A= {by,ba,...,b;} (note k < |B|).

@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means for
all such b, (A +b) =r(A) = |A| < |A+b|. Then

r(B) <r(AUB) (6.18)

<r(AU(B\{01})) +7(AU{br}) —r(4) (6.19)

=r(AU(B\{b}) (6.20)

< 7(AU(B\{b1,b2})) + (AU {b2}) —7(A) (6.21)

=r(AU(B\{b1,b2})) (6.22)

- <r(A) = |A] < |B] (6.23)

IA

giving a contradiction since B € 7.
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Matroids from rank Il

Another way of using function r to define a matroid.

Theorem 6.6.3 (Matroid from rank II)

Let E be a finite set and let r : 2¥ — 7., be a function. Then r(-) defines
a matroid with r being its rank function if and only if for all A C E, and
z,y € E:

(R1') r(0) =

(R2) r(X) < (XU{y}) <r(X)+1,

(R3) Ifr(X U{z}) =r(X U{y}) =r(X), then r(X U{z,y}) = r(X).
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Matroids by submodular functions

Theorem 6.6.4 (Matroid by submodular functions)

Let f:2F — 7 be a integer valued monotone non-decreasing submodular
function. Define a set of sets as follows:

C(f)= {C’ C E: C is non-empty,
is inclusionwise-minimal,

and has f(C) < |C| } (6.24)

Then C(f) is the collection of circuits of a matroid on E.

Inclusionwise-minimal in this case means that if C' € C(f), then there exists
no C' C C with C’" € C(f) (i.e., C" C C would either be empty or have
f(C") > |C"]). Also, recall inclusionwise-minimal in Definition 6.4.10, the
definition of a circuit.
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Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to uniquely
define a matroid based on any of:

@ Independence (define the independent sets).
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Matroid Rank
[NRRNNI NI

Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to uniquely
define a matroid based on any of:

@ Independence (define the independent sets).

@ Base axioms (exchangeability)
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Matroid Rank
[NRRNNI NI

Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to uniquely
define a matroid based on any of:

@ Independence (define the independent sets).

@ Base axioms (exchangeability)

@ Circuit axioms
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Matroid Rank
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Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to uniquely
define a matroid based on any of:

@ Independence (define the independent sets).

@ Base axioms (exchangeability)

o Circuit axioms

@ Closure axioms (we didn't see this, but it is possible)
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Matroid Rank
[NRRNNI NI

Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to uniquely
define a matroid based on any of:

@ Independence (define the independent sets).

Base axioms (exchangeability)

°
o Circuit axioms

@ Closure axioms (we didn't see this, but it is possible)
°

Rank axioms (normalized, monotone, cardinality bounded, submodular)
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Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to uniquely
define a matroid based on any of:

@ Independence (define the independent sets).
Base axioms (exchangeability)

Circuit axioms

°
°

@ Closure axioms (we didn't see this, but it is possible)

@ Rank axioms (normalized, monotone, cardinality bounded, submodular)
°

Matroids by submodular functions.
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Maximization problems for matroids

@ Given a matroid M = (E,Z) and a modular cost function ¢: F — R,
the task is to find an X € 7 such that ¢(X) ="y c(z) is
maximum.

@ This seems remarkably similar to the max spanning tree problem.
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Matroid Rank
[ARRNRRNR

Minimization problems for matroids

@ Given a matroid M = (E,Z) and a modular cost function ¢: F — R,
the task is to find a basis B € B such that ¢(B) is minimized.

@ This sounds like a set cover problem (find the minimum cost covering
set of sets).
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Partition Matroid

@ What is the partition matroid's rank function?
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Partition Matroid

@ What is the partition matroid's rank function?

@ A partition matroids rank function:

J4
r(A) = min(|AN V|, k) (6.25)

i=1

which we also immediately see is submodular using properties we spoke
about last week. That is:
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Partition Matroid
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Partition Matroid

@ What is the partition matroid's rank function?
@ A partition matroids rank function:
‘
r(A)=> min(|ANVi|, k) (6.25)

=1

which we also immediately see is submodular using properties we spoke
about last week. That is:

@ |ANV;|is submodular (in fact modular) in A
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Partition Matroid
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Partition Matroid

@ What is the partition matroid's rank function?

@ A partition matroids rank function:

0
r(A)=> min(|ANVi|, k) (6.25)

i=1
which we also immediately see is submodular using properties we spoke
about last week. That is:

@ |ANV;| is submodular (in fact modular) in A
@ min(submodular(A4), k;) is submodular in A since |A N V;| is monotone.
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Partition Matroid

@ What is the partition matroid's rank function?

@ A partition matroids rank function:

0
r(A)=> min(|ANVi|, k) (6.25)

=1

which we also immediately see is submodular using properties we spoke
about last week. That is:
@ |ANV;| is submodular (in fact modular) in A

@ min(submodular(A4), k;) is submodular in A since |A N V;| is monotone.
© sums of submodular functions are submodular.
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Partition Matroid
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Partition Matroid

@ What is the partition matroid's rank function?

@ A partition matroids rank function:

0
r(A)=> min(|ANVi|, k) (6.25)

=1

which we also immediately see is submodular using properties we spoke
about last week. That is:
@ |ANV;| is submodular (in fact modular) in A

@ min(submodular(A4), k;) is submodular in A since |A N V;| is monotone.
© sums of submodular functions are submodular.

@ r(A) is also non-negative integral monotone non-decreasing, so it
defines a matroid (the partition matroid).
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Matroid and Rank

@ Thus, we can define a matroid as M = (V,r) where r satisfies matroid
rank axioms.

@ Example: 2-partition matroid rank function: Given natural numbers
a,b € Z4 with a > b, and any set R C V with |R| = a, two-block
partition V = (R, R), where R =V \ R so |R| = |V| — a, define:

r(A) = min(|]A N R|,b) + min(|A N R|, |R|) (6.26)
=min(|ANR|,b) + |AN R (6.27)

@ Partition matroid figure showing this:

Prof. Jeff Bilmes
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Truncated Matroid Rank Function

@ Can use this to define a truncated matroid rank function. With
r(A) = min(|AN R|,b) + |[ANR|, b < a, define:

fr(A) = min{r(A),a} (6.28)
= min {min(|[ANR|+|ANR[,|[ANR|+b),a} (6.29)
=min {|A|,b+ |ANR|,a} (6.30)
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Partition Matroid
(REARN

Truncated Matroid Rank Function

@ Can use this to define a truncated matroid rank function. With
r(A) = min(JAN R|,b) + |ANR|, b < a, define:

fr(A) = min{r(A),a} (6.28)
= min {min(|[ANR|+|ANR[,|[ANR|+b),a} (6.29)
=min {|A|,b+ |ANR|,a} (6.30)

@ Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
T={ICV:|I|<aand |[[NR|<b} (6.31)
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Partition Matroid
(REARN

Truncated Matroid Rank Function

@ Can use this to define a truncated matroid rank function. With
r(A) = min(JAN R|,b) + |ANR|, b < a, define:

fr(A) = min{r(A),a} (6.28)
= min {min(|[ANR|+|ANR[,|[ANR|+b),a} (6.29)
=min {|A|,b+ |ANR|,a} (6.30)

o Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
I={ICV:|I|<aand |INR|<b} (6.31)

Useful for showing hardness of constrained submodular minimization.
Consider sets B C V with |B| = a.
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Partition Matroid
(REARN

Truncated Matroid Rank Function

@ Can use this to define a truncated matroid rank function. With
r(A) = min(JAN R|,b) + |ANR|, b < a, define:

fr(A) = min{r(A),a} (6.28)
= min {min(|[ANR|+|ANR[,|[ANR|+b),a} (6.29)
=min {|A|,b+ |ANR|,a} (6.30)

e Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
Z={ICV:|I|<aand|lNR|<b}, (6.31)
Useful for showing hardness of constrained submodular minimization.
Consider sets B C V with |B| = a.
e For R, we have fr(R) =b < a.
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Partition Matroid
(REARN

Truncated Matroid Rank Function

@ Can use this to define a truncated matroid rank function. With
r(A) = min(JAN R|,b) + |ANR|, b < a, define:

fr(A) = min{r(A),a} (6.28)
= min {min(|[ANR|+|ANR[,|[ANR|+b),a} (6.29)
=min {|A|,b+ |ANR|,a} (6.30)

e Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
Z={ICV:|I|<aand|lNR|<b}, (6.31)
Useful for showing hardness of constrained submodular minimization.
Consider sets B C V with |B| = a.
e For R, we have fr(R) =b < a.
e For any B with |[BN R| <b, fr(B) = a.
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Partition Matroid
(REARN

Truncated Matroid Rank Function

@ Can use this to define a truncated matroid rank function. With
r(A) = min(JAN R|,b) + |ANR|, b < a, define:

fr(A) = min{r(A),a} (6.28)
= min {min(|[ANR|+|ANR[,|[ANR|+b),a} (6.29)
=min {|A|,b+ |ANR|,a} (6.30)

e Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
Z={ICV:|I|<aand|lNR|<b}, (6.31)
Useful for showing hardness of constrained submodular minimization.
Consider sets B C V with |B| = a.
e For R, we have fr(R) =b < a.
e For any B with |[BN R| <b, fr(B) = a.
e For any B with |[BNR| =/, withb </ <a, fr(B)=b+a— /.
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Partition Matroid
(REARN

Truncated Matroid Rank Function

@ Can use this to define a truncated matroid rank function. With
r(A) = min(JAN R|,b) + |ANR|, b < a, define:

fr(A) = min{r(A),a} (6.28)
= min {min(|[ANR|+|ANR[,|[ANR|+b),a} (6.29)
=min {|A|,b+ |ANR|,a} (6.30)

e Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
Z={ICV:|I|<aand|lNR|<b}, (6.31)

Useful for showing hardness of constrained submodular minimization.
Consider sets B C V with |B| = a.

e For R, we have fr(R) =b < a.

e For any B with |[BN R| <b, fr(B) = a.

e For any B with |[BNR|=/¢, withb</¢<a, fr(B)=b+a—/.

@ R, the set with minimum valuation amongst size-a sets, is hidden

within an exponentially larger set of size-a sets with larger valuation.
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Partition Matroid
(RN

Partition Matroid, rank as matching

A partition matroid can be viewed using a bipartite graph.

Letting V' denote the ground set, and V7, V5, ... the partition, the
graph is G = (V, I, E) where V is the ground set, I is a set of
“indices”, and F is the set of edges.

I=(,I...,1;) is a set of k = Zle k; nodes, grouped into £
clusters, where there are k; nodes in the ith group I,.

(v,9) € E(G) iffv e Vjand i € I;.

(]
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Partition Matroid

Partition Matroid, rank as matching

o Example where ¢ =5,
(k17k21k37k47k5) =
(2,2,1,1,3).

Vv I

Vi h
Z I
Vs Iy
Vi I
Vs Is
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Partition Matroid
(RNRR N}

Partition Matroid, rank as matching

o Example where ¢ =5,
(k17k21k37k47k5) =

(2,2,1,1,3). @ Recall, T': 2V — R as the neighbor
V | function in a bipartite graph, the

neighbors of X is defined as I'(X) =

Vi h {veV(G)\ X : E(X,{v}) #0}, and
recall that |T'(X)| is submodular.

Vs 2

V3 I3

Vs lq

Vs Is
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Partition Matroid
(RNRR N}

Partition Matroid, rank as matching

o Example where £ =5,
(K1, ko, k3, ka, ks) =
(2,2,1,1,3). @ Recall, T': 2V — R as the neighbor
V | function in a bipartite graph, the
neighbors of X is defined as I'(X) =

Vi I {veV(G)\ X : E(X,{v}) #0}, and
recall that |T'(X)| is submodular.

Vo e Here, for X C V, we have I'(X) =
{iel:(v,i) € E(G)and v e X}.

V3 I3

Vi l4

Vs Is
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Partition Matroid
(RNRR N}

Partition Matroid, rank as matching

@ Example where £ =5,
(K1, ko, k3, ka, ks) =
(2,2,1,1,3). @ Recall, T': 2V — R as the neighbor
V | function in a bipartite graph, the
neighbors of X is defined as I'(X) =
I {veV(G)\ X : E(X,{v}) #0}, and
recall that |T'(X)| is submodular.
@ Here, for X C V, we have I'(X) =
{iel:(v,i) € E(G)and v e X}.
@ For such a constructed bipartite graph,
the rank function of a partition matroid
lq is 7(X) = 0 min(|X N V|, k;) = the
maximum matching involving X.

Vo

Vs

Vi

%
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Partition Matroid
(NNANR}

Laminar Family and Laminar Matroid

@ We can define a matroid with structures richer than just partitions.
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Partition Matroid
(NNANR}

Laminar Family and Laminar Matroid

@ We can define a matroid with structures richer than just partitions.

@ A set system (V, F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets AN B, A\ B, or B\ A is empty.
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Partition Matroid

Laminar Family and Laminar Matroid

@ We can define a matroid with structures richer than just partitions.
o A set system (V| F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets AN B, A\ B, or B\ A is empty.

@ Family is laminar 3 no two properly intersecting members: VA, B € F,
either A, B disjoint (AN B = ()) or comparable (A C B or B C A).
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Partition Matroid

Laminar Family and Laminar Matroid

@ We can define a matroid with structures richer than just partitions.
o A set system (V| F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets AN B, A\ B, or B\ A is empty.

@ Family is laminar 3 no two properly intersecting members: VA, B € F,
either A, B disjoint (AN B = () or comparable (A C B or B C A).

@ Suppose we have a laminar family F of subsets of V' and an integer k4 for
every set A € F.
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Partition Matroid
(NNANR}

Laminar Family and Laminar Matroid

@ We can define a matroid with structures richer than just partitions.
o A set system (V| F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets AN B, A\ B, or B\ A is empty.

@ Family is laminar 3 no two properly intersecting members: VA, B € F,
either A, B disjoint (AN B = () or comparable (A C B or B C A).

@ Suppose we have a laminar family F of subsets of V' and an integer k4 for
every set A € F. Then (V,Z) defines a matroid where

T={ICE:|[INA|<kyforal AcF} (6.32)
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Partition Matroid
(NNANR}

Laminar Family and Laminar Matroid

@ We can define a matroid with structures richer than just partitions.
o A set system (V| F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets AN B, A\ B, or B\ A is empty.

@ Family is laminar 3 no two properly intersecting members: VA, B € F,
either A, B disjoint (AN B = () or comparable (A C B or B C A).

@ Suppose we have a laminar family F of subsets of V' and an integer k4 for
every set A € F. Then (V,Z) defines a matroid where

IT={ICE:|[INA|<kyforal AcF} (6.32)

@ Exercise: what is the rank function here?

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 6 - Apr 18th, 2016



System of Distinct Reps
LA

System of Representatives

@ Let (V,V) be a set system (i.e., V= (V;:i€I)where ) CV; CV for
all i), and I is an index set. Hence, |I| = |V].
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System of Distinct Reps
LA

System of Representatives

e Let (V,V) be a set system (i.e., V= (V;:i€I)where ) CV; CV for
all i), and I is an index set. Hence, |I| = |V|.

@ Here, the sets V; € V are like “groups” and any v € V with v € V} is a
member of group i. Groups need not be disjoint (e.g., interest groups
of individuals).
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System of Distinct Reps
LA

System of Representatives

e Let (V,V) be a set system (i.e., V= (V;:i€I)where ) CV; CV for
all i), and I is an index set. Hence, |I| = |V|.

@ Here, the sets V; € V are like “groups” and any v € V with v € V} is a
member of group i. Groups need not be disjoint (e.g., interest groups
of individuals).

o A family (v; : ¢ € I) with v; € V' is said to be a system of
representatives of V' if 3 a bijection 7 : I — I such that v; € V(.
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System of Distinct Reps
LA

System of Representatives

e Let (V,V) be a set system (i.e., V= (V;:i€I)where ) CV; CV for
all i), and I is an index set. Hence, |I| = |V|.

@ Here, the sets V; € V are like “groups” and any v € V with v € V} is a
member of group i. Groups need not be disjoint (e.g., interest groups
of individuals).

o A family (v; : ¢ € I) with v; € V is said to be a system of
representatives of V' if 3 a bijection 7 : I — I such that v; € V;).

@ v; is the representative of set (or group) Vi (i), meaning the gth
representative is meant to represent set Vi ;).
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System of Distinct Reps
LA

System of Representatives

e Let (V,V) be a set system (i.e., V= (V;:i€I)where ) CV; CV for
all i), and I is an index set. Hence, |I| = |V|.

@ Here, the sets V; € V are like “groups” and any v € V with v € V} is a
member of group i. Groups need not be disjoint (e.g., interest groups
of individuals).

o A family (v; : ¢ € I) with v; € V is said to be a system of
representatives of V' if 3 a bijection 7 : I — I such that v; € V;).

® v; is the representative of set (or group) V;(;), meaning the ith
representative is meant to represent set Vi ;).

@ Example: Consider the house of representatives, v; = “Jim
McDermott”, while ¢ = “King County, WA-7".
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System of Distinct Reps
LA

System of Representatives

e Let (V,V) be a set system (i.e., V= (V;:i€I)where ) CV; CV for
all i), and I is an index set. Hence, |I| = |V|.

@ Here, the sets V; € V are like “groups” and any v € V with v € V} is a
member of group i. Groups need not be disjoint (e.g., interest groups
of individuals).

o A family (v; : ¢ € I) with v; € V is said to be a system of
representatives of V' if 3 a bijection 7 : I — I such that v; € V;).

® v; is the representative of set (or group) V;(;), meaning the ith
representative is meant to represent set Vi ;).

@ Example: Consider the house of representatives, v; = “Jim
McDermott”, while i = "King County, WA-7".

@ In a system of representatives, there is no requirement for the
representatives to be distinct. l.e., we could have some v; € V; N V5,
where vy represents both V; and V5.
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System of Distinct Reps
LA

System of Representatives

e Let (V,V) be a set system (i.e., V= (V;:i€I)where ) CV; CV for
all i), and I is an index set. Hence, |I| = |V|.

@ Here, the sets V; € V are like “groups” and any v € V with v € V} is a
member of group i. Groups need not be disjoint (e.g., interest groups
of individuals).

o A family (v; : ¢ € I) with v; € V is said to be a system of
representatives of V' if 3 a bijection 7 : I — I such that v; € V;).

® v; is the representative of set (or group) V;(;), meaning the ith
representative is meant to represent set Vi ;).

@ Example: Consider the house of representatives, v; = “Jim
McDermott”, while i = "King County, WA-7".

@ In a system of representatives, there is no requirement for the
representatives to be distinct. l.e., we could have some v; € V1 N Vs,
where v represents both V7 and V5.

@ We can view this as a bipartite graph.
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System of Distinct Reps

System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked by
color tags on the left, and also via right neighbors in the graph.
@ Here, £ =6 groups, with V = (V,Va, ..., Vg)

— (fe.s.n) . [{diergy ERERERN. @by . ey, e
Y |
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System of Distinct Reps
i

System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked by
color tags on the left, and also via right neighbors in the graph.
@ Here, £ =6 groups, with V = (V,Va, ..., Vg)

— (fe.s.n) . [{diergy ERERERN. @by . ey, e

@ A system of representatives would make
V I sure that there is a representative for
each color group. For example,
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System of Distinct Reps
i

System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked by
color tags on the left, and also via right neighbors in the graph.
@ Here, £ =6 groups, with V = (V,Va, ..., Vg)

— (fe.s.n) . [{diergy ERERERN. @by . ey, e

@ A system of representatives would make
V I sure that there is a representative for
each color group. For example,
@ The representatives ({a,c,d, f,h}) are
shown as colors on the left.
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System of Distinct Reps
i

System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked by
color tags on the left, and also via right neighbors in the graph.
@ Here, £ =6 groups, with V = (V,Va, ..., Vg)

— (fe.s.n) . [{diergy ERERERN. @by . ey, e

@ A system of representatives would make
V I sure that there is a representative for
each color group. For example,
@ The representatives ({a,c,d, f,h}) are
shown as colors on the left.

@ Here, the set of representatives is not
distinct. Why?
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System of Distinct Reps
i

System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked by
color tags on the left, and also via right neighbors in the graph.
@ Here, £ =6 groups, with V = (V,Va, ..., Vg)

— (fe.s.n) . [{diergy ERERERN. @by . ey, e

@ A system of representatives would make
V I sure that there is a representative for
each color group. For example,

@ The representatives ({a,c,d, f,h}) are
shown as colors on the left.

@ Here, the set of representatives is not
distinct. Why? In fact, due to the red
and pink group, a distinct group of
representatives is impossible (since there
is only one common choice to represent

both color groups).
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System of Distinct Reps
(Nl

System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (V},: i € I) where V; C V for all
i), and I is an index set. Hence, |I| = |V|.
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System of Distinct Reps
(Nl

System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vj :i € I) where V; C V for all
i), and I is an index set. Hence, |I| = |V)|.

e A family (v; : i € I) with v; € V' is said to be a system of distinct
representatives of )V if 3 a bijection 7 : I <> I such that v; € V(;y and

V; 7& vy for all 4 7£ 7
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System of Distinct Reps
(Nl

System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vj :i € I) where V; C V for all
i), and I is an index set. Hence, |I| = |V)|.

o A family (v; : ¢ € I) with v; € V is said to be a system of distinct
representatives of 1V if 3 a bijection 7 : I > I such that v; € V(;) and
v; # v; for all i # j.

@ In a system of distinct representatives, there is a requirement for the
representatives to be distinct. Lets re-state (and rename) this as a:
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System of Distinct Reps
(Nl

System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vj :i € I) where V; C V for all
i), and I is an index set. Hence, |I| = |V)|.

o A family (v; : ¢ € I) with v; € V is said to be a system of distinct
representatives of 1V if 3 a bijection 7 : I > I such that v; € V(;) and
v; # v; for all i # j.

@ In a system of distinct representatives, there is a requirement for the
representatives to be distinct. Lets re-state (and rename) this as a:

Definition 6.8.1 (transversal)

Given a set system (V,V) as defined above, a set T C V is a transversal of
V if there is a bijection 7 : T <> I such that

T € Vi forallzeT (6.33)
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System of Distinct Reps
(Nl

System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vj :i € I) where V; C V for all
i), and I is an index set. Hence, |I| = |V)|.

o A family (v; : ¢ € I) with v; € V is said to be a system of distinct
representatives of 1V if 3 a bijection 7 : I > I such that v; € V(;) and
v; # v; for all i # j.

@ In a system of distinct representatives, there is a requirement for the
representatives to be distinct. Lets re-state (and rename) this as a:

Definition 6.8.1 (transversal)

Given a set system (V,V) as defined above, a set T C V is a transversal of
V if there is a bijection 7 : T <> I such that

T € Vi forallzeT (6.33)

@ Note that due to 7 : T" <> I being a bijection, all of I and T are
“covered” (so this makes things distinct automatically).
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