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Cumulative Outstanding Reading

@ Read chapters 2 and 3 from Fujishige's book.
@ Read chapter 1 from Fujishige's book.
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Announcements, Assignments, and Reminders

@ Homework 1 is now available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Friday at 11:55pm.

@ Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google
hangout (set up meeting via our our discussion board (https:
//canvas.uw.edu/courses/1039754/discussion_topics)).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 5 - Apr 11th, 2016 F3/64 (pg.3/73)

Logistics
(MN ]

Class Road Map - IT-I

@ L1(3/28): Motivation, Applications, & @ L11(5/2):
Basic Definitions @ L12(5/4):
@ L2(3/30): Machine Learning Apps @ L13(5/9):
(diversity, complexity, parameter, learning o L14(5/11):
t t te).
arget, surrogate) o L15(5/16):
@ L3(4/4): Info theory exs, more apps,
. . . @ L16(5/18):
definitions, graph/combinatorial examples,
matrix rank example, visualization @ L17(5/23):
@ L4(4/6): Graph and Combinatorial © L18(5/25):
Examples, matrix rank, Venn diagrams, @ L19(6/1):
examples of proofs of submodularity, some @ L20(6/6): Final Presentations

useful properties maximization.
@ L5(4/11): Examples & Properties, Other
Defs., Independence, Matroids

o L6(4/13):
o L7(4/18):
o L8(4/20):
o L9(4/25):
o L10(4/27):

Finals Week: June 6th-10th, 2016.
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The Venn and Art of Submodularity

f(A) + r(B) > \r(A U B)J —|— \r(A nB)

+2r r(AN B)
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Summary submodular properties

@ Adding modular functions to submodular functions preserves
submodularity.

e Summing: if a; > 0 and f; : 2 — R is submodular, then so is
Zi o fs.

@ Restrictions: f/(A4) = f(ANS)

max: f(A) = max;ca c¢; and facility location.

Log determinant f(A) = logdet(X4)

f(A) = g(m(A)) submodular when g concave and m non-negative
modular.

@ Definition of monotone non-decreasing.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 5 - Apr 11th, 2016 F6/64 (pg.6/73)



Examples and Properties
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Composition of non-decreasting submodular and
non-decreasing concave

Theorem 5.3.1

Given two functions, one defined on sets

f:2¥ 5 R (5.1)
and another continuous valued one:

g:R—=R (5.2)

the composition formed as h = go f : 2V — R (defined as
h(S) = g(f(S))) is nondecreasing submodular, if g is non-decreasing
concave and f is nondecreasing submodular.
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Monotone difference of two functions

Let f and g both be submodular functions on subsets of V' and let
(f — g)(-) be either monotone increasing or monotone decreasing. Then
h: 2" — R defined by

h(A) = min(f(A4),g(A)) (5-3)

is submodular.

If h(A) agrees with f on both X and Y (or g on both X and Y'), and since
FX)+fY) = f(XUY)+f(XNY) (5.4)
9(X) +9(Y) =2 g(XUY) +g(XNY), (5.5)

the result (Equation 5.3 being submodular) follows since

>min(f(XUY),g(XUY))+min(f(XNY),g(XNY))
(5.6)
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Examples and Properties
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Monotone difference of two functions

...cont.

Otherwise, w.l.o.g., h(X) = f(X) and h(Y) = g(Y), giving

hMX)+h(Y) = f(X)+9(Y) = F(XUY)+ f(XNY)+g(Y) - f((Y) :
5.7

Assume the case where f — g is monotone increasing. Hence,
F(XUY)+g(Y) - f(Y) = g(X UY) giving

MX)+h(Y)> g(XUY)+ f(XNY)>h(XUY)+h(XNY) (5.8)

[

v

What is an easy way to prove the case where f — g is monotone decreasing?
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Saturation via the min(-) function

Let f: 2" — R be an monotone increasing or decreasing submodular
function and let k be a constant. Then the function h : 2V — R defined by

h(A) = min(k, f(A)) (5.9)

is submodular.

For constant k, we have that (f — k) is increasing (or decreasing) so this
follows from the previous result. ]

Note also, g(a) = min(k, a) for constant k is a non-decreasing concave
function, so when f is monotone nondecreasing submodular, we can use the
earlier result about composing a monotone concave function with a
monotone submodular function to get a version of this.
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Examples and Properties
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More on Min - the saturate trick

@ In general, the minimum of two submodular functions is not
submodular (unlike concave functions, closed under min).

@ However, when wishing to maximize two monotone non-decreasing
submodular functions f, g, we can define function h, : 2V — R as

1

ha(4) = 5 (min(a, £(A)) + min(a, g(A))) (5.10)

then h,, is submodular, and h,(A) > « if and only if both f(A) > «
and g(A) > «, for constant a € R.

@ This can be useful in many applications. An instance of a submodular
surrogate (where we take a non-submodular problem and find a
submodular one that can tell us something about it).
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Arbitrary functions as difference between submodular
funcs.

Given an arbitrary set function h, it can be expressed as a difference
between two submodular functions (i.e., 3f, g s.t. VA, h(A) = f(A) — g(4)
where both f and g are submodular).

Let h be given and arbitrary, and define:
o g{qi}g(h(){) FRY) = h(XUY) - h(X N Y)) (5.11)

)

If &« > 0 then A is submodular, so by assumption a < 0. Now let f be an
arbitrary strict submodular function and define

g2 L (JOO+f¥) - fXUY) - fXNY)).  (5.12)

Strict means that 3 > 0.
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Examples and Properties
[NERNNN RRRN

Arbitrary functions as difference between submodular

funcs.

Define B/ : 2V — R as
]

gf (A) (5.13)

Then A" is submodular (why?), and h = h/(A) — %f(A), a difference
between two submodular functions as desired.

h'(A) = h(A) +
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Gain

@ We often wish to express the gain of an item j € V in context A,

namely /(AU {j}) — f(A).
@ This is called the gain and is used so often, there are equally as many
ways to notate this. l.e., you might see:

FAU{GY) — F(A) £ p;(A) (5.14)
2 pa(j) (5.15)
2 v, f(A) (5.16)
2 f({5}14) (5.17)
2 £(jl4) (5.18)

o We'll use f(jlA).

@ Submodularity’s diminishing returns definition can be stated as saying
that f(j|A) is a monotone non-increasing function of A, since
f(3]A) > f(j|B) whenever A C B (conditioning reduces valuation).
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Examples and Properties
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Gain Notation

It will also be useful to extend this to sets.
Let A, B be any two sets. Then

F(AIB) 2 f(AUB) - £(B) (5.19)
So when j is any singleton
f1B) = f({7}IB) = f{i} U B) — f(B) (5.20)

Inspired from information theory notation and the notation used for
conditional entropy H (X 4|Xp) = H(X4,Xp) — H(XB).
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Totally normalized functions

@ Any normalized submodular function g (even non-monotone) can be
represented as a sum of a polymatroid (normalized monotone
non-decreasing submodular) function g and a modular function m.

e Given arbitrary normalized submodular ¢ : 2" — R, construct a
function g : 2 — R as follows:

g(A) = g(A) = ) g(alV \ {a}) = g(A) — my(A) (5.21)

acA

where m,(A4) £

> aca 9(alV \ {a}) is a modular function.
@ g is normalized since g({)) = 0.

g is monotone non-decreasing since for v ¢ A C V:

9(v[A) = g(v|4) — g(v[V \ {a}) = 0 (5.22)

@ g is called the totally normalized version of g.
@ Then g(A) = g(A) + my(A).
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Arbitrary function as difference between two polymatroids

@ Any normalized function h (i.e., h(()) = 0) can be represented as a
difference not only between submodular, but between polymatroid
(normalized monotone non-decreasing submodular) functions.

e Given submodular f and g, let f and g be them totally normalized.

@ Given arbitrary h = f — g where f and g are normalized submodular,

h=f—g=f+ms;—(3+my) (5.23)
=f =g+ (my—my) (5.24)
=f—g+msn (5.25)
=f+mi_ , — (h+(-ms_g)") (5.26)

where m™ is the positive part of modular function m. That is,
m*(A) =3 ,cam(a)L(m(a) > 0).

@ Both f + m}L_g and g+ (—my_4)" are polymatroid functions!

@ Thus, any function can be expressed as a difference between two, not
only submodular (DS), but polymatroid functions.
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Two Equivalent Submodular Definitions

Definition 5.4.1 (submodular concave)

A function f : 2V 5 R is submodular if for any A, B C V, we have that:

f(A)+f(B) 2 f(AUB) + f(AN B) (5-8)

An alternate and (as we will soon see) equivalent definition is:

Definition 5.4.2 (diminishing returns)

A function f : 2V 5 R is submodular if for any AC BCV, and
v € V' \ B, we have that:

f(AU{v}) = F(A) = f(BU{v}) — f(B) (5.9)

v

The incremental ‘“value”, “gain”, or “cost” of v decreases (diminishes) as
the context in which v is considered grows from A to B.
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Other Submodular Defs.
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Submodular Definition: Group Diminishing Returns

An alternate and equivalent definition is:

Definition 5.4.1 (group diminishing returns)

A function f : 2"V — R is submodular if for any A C B C V, and
C C V' \ B, we have that:

fLAUC) = f(A) =z f(BUC) - f(B) (5.27)

v

This means that the incremental “value” or “gain” of set C decreases as the
context in which C' is considered grows from A to B (diminishing returns)
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Submodular Definition Basic Equivalencies

We want to show that Submodular Concave (Definition 5.4.1), Diminishing
Returns (Definition 5.4.2), and Group Diminishing Returns
(Definition 5.4.1) are identical. We will show that:

@ Submodular Concave = Diminishing Returns
@ Diminishing Returns = Group Diminishing Returns

@ Group Diminishing Returns = Submodular Concave
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Submodular Concave = Diminishing Returns

f(S)+ f(T) > f(SUT)+ f(SNT) = f(v|A) > f(v|B),AC BC V\v.
@ Assume Submodular concave, so VS, T we have
f)+f(T) = f(SUT)+ fF(SNT).
@ Given A, B and v € V such that: A C B C V \ {v}, we have from
submodular concave that:

f(A+v)+ f(B) = f(B+v) + f(A) (5.28)
@ Rearranging, we have

f(A+v) = f(A) = f(B+v) — f(B) (5.29)
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Diminishing Returns = Group Diminishing Returns

f|S) = f|T),SCT CV\v= f(C|A) > f(C|B),ACBCV\C.

Let C' = {ci1,co,...,ct}. Then diminishing returns implies

FAUC) - £(A) (5.30)
— f(AUC) — Z(f(A Ufer,...,el) — f(AU e, ..., ci})) ~ f(A) (5.31)
- Z(f(AU fe1...e}) — F(AU {er ...CH})) (5.32)
> Z(f(BU{cl...ci}) — f(BU {cl...cifl})) (5.33)
— f(BUC) — Z_:(f(B U{ct,...,c}) — fF(BU{ec,. .. ,ci})) —f(B)  (5.34)
= f(BUC) — f(B) (5.35)

N
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Group Diminishing Returns = Submodular Concave

fWUIS) =2 fUIT),S €T CV\U = f(A)+ f(B) > f(AUB)+ f(ANB).
Assume group diminishing returns. Assume A # B otherwise trivial. Define
A =ANB,C=A\B, and B'= B. Then since A’ C B/,

f(A+C)—f(A) = f(B'+C) - f(B) (5.36)
giving
fLA+C)+ f(B) > f(B'+O) + f(A) (5.37)
or
f(ANB+ A\ B)+ f(B) > f(B+ A\ B) + f(AN B) (5.38)
which is the same as the submodular concave condition

F(A) + £(B) = f(AUB) + f(AN B) (5.39)
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Submodular Definition: Four Points

Definition 5.4.2 (“singleton”, or “four points”)

A function f : 2V — R is submodular iff for any A C V, and any
a,b €V \ A, we have that:

f(AU{a}) + F(AUL{b}) > fF(AU{a,b}) + f(A) (5.40)

v

This follows immediately from diminishing returns. To achieve diminishing
returns, assume A C B with B\ A = {b1,ba,...,b;}. Then

f(A+a) = f(A) =2 fF(A+bi+a) — f(A+b) (5.41)
> f(A+b1+b2+a)— f(A+ b + b2) (5.42)
> (5.43)
> f(A+b1+---+bg+a)— f(A+b1+ -+ bg)
(5.44)
= f(B+a)— f(B) (5.45)
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Submodular on Hypercube Vertices

@ Test submodularity via values on verticies of hypercube.
Example: with |[V| =n =2, thisis  With |V| =n = 3, a bit harder.

111
easy:

10 11

XX
N

How many |nequaI|t|es?
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Submodular Concave = Diminishing Returns, in one slide.

Theorem 5.4.3
Given function f : 2V — R, then
fl(A)+ f(B)> f(AUB)+ f(ANDB) forall A,BCV (SQO)

if and only if
f|X)> f(|Y) forall X CY CV andv &Y (DR)

(SC)=(DR): Set A+~ X U{v}, B« Y. Then AUB = BU {v} and
ANB=X and f(A) — f(ANB) > f(AU B) — f(B) implies (DR).
(DR)=-(SC): Order A\ B = {v1,v2,...,v,} arbitrarily. Fori e 1:r,

flu (AN B) U {vy,v9,...,vi—1}) > f(v;|BU {v1,ve,...,0i—1}).
Applying telescoping summation to both sides, we get:

> fwil(AnB)U{vy, v, . 0im1}) 2 Y f(uil BU {v1,v,...,0i-1})

i=1 i=1
= f(A)-f(ANnB) = f(AUB) - f(B)
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Submodular bounds of a difference of comparable sets

@ Given submodular f, and given you have C, D C V with either D O C
or D C C (comparable sets), and have an expression of the form:

f(C) = F(D) (5.40)
o If D D (C, then for any X with D = C'U X then
f(C)=f(D)=f(C) - F(CUX) = f(CNX) - f(X) (547)
or
f(CUX|CO) < f(X|CNX) (5.48)
@ Alternatively, if D C C, given any Y such that D = C' NY then
F(C) = f(D) = f(C) - f(CNY) > f(CUY) - f(Y)  (5.49)
or
f(clcny) > f(CuYlYy) (5.50)
e Equations (5.48) and (5.50) have same form.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 5 - Apr 11th, 2016 F27/64 (pg.27/73)

Other Submodular Defs.
(HERNEREEEY ARRRRERER AN

Many (Equivalent) Definitions of Submodularity

F(A) + f(B)> f(AUB) + f(ANB), VA, BCV (5.51)
fG1S) > f(4IT), VS CT CV, withj e V\T (5.52)
F(C|S) > f(CIT),¥S CT CV, with CCV\T (5.53)
FG1S) > FGISULEY), VS CV with j e V\ (SU{EY)  (5.54)

f(AUB|AmB) < f(A|[ANnB)+ f(B|[AnB), VA,BCV (5.55)

F@)<FS)+ D FGIS) = > fUISUT = {4}), VS, T CV

JET\S JES\T
(5.56)
FT)<f(S)+ D fGlS), vSCTCV (5.57)
JET\S
FT)<fS) = D FGIS\NGH + D FGISNT) VS, TCV
JES\T JET\S
(5.58)
F(T)<f(S) = Y FUIS\{j}), VT SSCV (5.59)
JjeES\T
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Equivalent Definitions of Submodularity

We've already seen that Eq. 5.51 = Eq. 5.52 = Eq. 5.53 = Eq. 5.54 =
Eq. 5.55.
We next show that Eq. 5.54 = Eq. 5.56 = Eq. 5.57 = Eq. 5.54.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 5 - Apr 11th, 2016 F29/64 (pg.29/73)

Other Submodular Defs.
(RN RRRE RN AN

Approach

To show these next results, we essentially first use:

fSuT) = f(S)+ f(T|S) < f(S) + upper-bound (5.60)

and
f(T') + lower-bound < f(T) + f(S|T) = f(SUT) (5.61)
leading to
f(T) + lower-bound < f(S) + upper-bound (5.62)
or
F(T) < f(S) + upper-bound — lower-bound (5.63)
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Eq. 5.54 = Eq. 5.56

Let T\ S = {j1,...,4r} and S\ T = {k1,..., kq}.
First, we upper bound the gain of 7" in the context of .S:

T

FSUT) = £(8) = > (FS UL, 3e}) = FS ULty s G })
- (5.64)
= Zf GelS UL, - die1}) < f}f(ﬁlS) (5.65)
- Z £(519) - (5.60)
jems
F(TIS) < > f(il8) (5.67)

JET\S
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Eq. 5.54 = Eq. 5.56

Let T\ S ={j1,...,jr} and S\ T = {k1,...,kq}.

Next, lower bound S in the context of T

f(SuUT)— Zq: fT ULk, ... k) — fF(TU{k1, ..., ki—1})]
- (5.68)
= Eq:f(kt\TU {k1, . ket \ ke }) > Eq:f(ktlT US\ {ki})
- - (5.60)
= > fUISUT\{5}) (5.70)
JES\T
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Eq. 5.54 = Eq. 5.56

Let T\ S = {j1,...,jr} and S\ T = {k1, ..., kq}.

So we have the upper bound

F(T|8) = fF(SUT) - f(S) < > fGlS) (5.71)

JET\S

and the lower bound

FSIT) = f(SUT) = F(T) > Y fUISUT\{j}) (5.72)

JES\T
This gives upper and lower bounds of the form

f(T) + lower bound < f(SUT) < f(S) + upper bound, (5.73)

and combining directly the left and right hand side gives the desired
inequality.
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Eq. 5.56 = Eq. 5.57

This follows immediately since if S C T, then S\ T = (), and the last term
of Eq. 5.56 vanishes.
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Eq. 5.57 = Eq. 5.54

Here, we set T'= S U {j,k}, j ¢ SU{k} into Eq. 5.57 to obtain

F(S UG, k}) < F(S) + F(I1S) + f(k[S) (5.74)
= f(S)+ (S +{s}) = F(S) + f(S+{k}) — f(5) (5.75)
= f(S+{3}) + F(S+{k}) — f(5) (5.76)
= f(j1S) + f(S + {k}) (5.77)

giving
fUISULRY) = fF(SU{), k}) — fF(SU{k}) (5.78)
< f(1S) (5.79)
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Submodular Concave

e Why do we call the f(A) + f(B) > f(AU B) + f(AN B) definition of
submodularity, submodular concave?

@ A continuous twice differentiable function f : R” — R is concave iff
V2f < 0 (the Hessian matrix is nonpositive definite).

@ Define a “discrete derivative” or difference operator defined on discrete
functions f : 2V — R as follows:

(VBf)(A) = f(AUB) - f(A\ B) = f(B|(A\ B)) (5.80)
read as: the derivative of f at A in the direction B.

@ Hence, if AN B =10, then (Vpf)(A) = f(B|A).
@ Consider a form of second derivative or 2nd difference:

(VBJ{)(A)
(VoVaf)(A) = Vel fF(AUB) — f(A\ B) ] (5.81)
= (Vuf)(AUC) — (Vif)(A\C) (5.82)

= f(AUBUC)— f((Au(C)\ B)
— f((A\NC)UB)+ f((ANC)\ B)  (5.83)
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Other Submodular Defs.
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Submodular Concave

@ If the second difference operator everywhere nonpositive:
f(AUBUC) - f((AUC)\ B)
— f((A\C)UB)+ f(A\C\ B)<0 (5.84)
then we have the equation:

f((AUC)\B)+f((A\C)UB)Zf(AUBUC)-l—f(A\C}B))
5.85

@ Define A/ =(AUC)\ B and B’ = (A\ C) U B. Then the above
implies:

fAY+ f(B) =2 f(AUB') + f(A'N B (5.86)

and note that A’ and B’ so defined can be arbitrary.
@ One sense in which submodular functions are like concave functions.
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Other Submodular Defs.
(HERNEREERERERRRERENA B

Submodular Concave

A B A

(a) A =(AuC)\B (b)y BB=(A\C)UB
Figure: A figure showing A’UB' = AUBUC and A NB' =A\C\ B.
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Other Submodular Defs.
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Submodular Concave

=(AuC)\ B =(A\C)UB
Figure: A figure showing A UB'= AUBUC and ANB' =A\C\ B.
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Other Submodular Defs.
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Submodularity and Concave

@ This submodular/concave relationship is more simply done with
singletons.

@ Recall four points definition: A function is submodular if for all X C V
and j,k e V\ X

fX+)+FX+k) > f(X+j+Ek)+ f(X) (5.87)

@ This gives us a simpler notion corresponding to concavity.
@ Define gain as V;(X) = f(X +j) — f(X), a form of discrete gradient.

@ Trivially becomes a second-order condition, akin to concave functions:
A function is submodular if for all X C V and j,k € V, we have:

Vjka(X) <0 (5.88)
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7, 8}.

B W N =

1 2 3 45 6 7 8

1 2 3 4 5 6 7 8
0 2 2 3 01 31
0 30400 2 4| | | | | | | | |
00003005 7273 5% %
> 006600 5 e
Let A={1,2,3}, B=1{3,4,5}, C =1{6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BUC)=3.
r(AUA,)=3,r(BUB,)=3,r(AUB,) =4, 7r(BUA,) = 4.
r(AUB) =4, r(AnB)=1<r(C)=2.

):
6= r(A)+r(B)>r(AUB) +r(ANB) =5
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On Rank

Let rank : 2V — Z, be the rank function.

In general, rank(A) < |A|, and vectors in A are linearly independent if
and only if rank(A) = |A].

If A, B are such that rank(A) = |A| and rank(B) = | B|, with

|A| < |B|, then the space spanned by B is greater, and we can find a
vector in B that is linearly independent of the space spanned by
vectors in A.

To stress this point, note that the above condition is |A| < |B|, not
A C B which is sufficient (to be able to find an independent vector)
but not required.

In other words, given A, B with rank(A) = |A| & rank(B) = |B|, then
|A| < |B| & J an b € B such that rank(A U {b}) = |A| + 1.
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Spanning trees/forests

@ We are given a graph G = (V, E), and consider the edges £ = E(G)
as an index set.

e Consider the |V| x |E| incidence matrix of undirected graph G, which
is the matrix X¢g = (Ty,e)vev (@) ,ccE(G) Where

Ty = {1 toee (5.89)

’ 0 ifvde

1 2 3 45 6 7 8 9 10 11 12
1/1 1 0 0 0O OO OO O O O
211 0101 00O OO O 0 O
3101 01 01 O O O O O 0
410 01 1.0 01 1 0 0 O 0
500 0 0O OO 1 1 0O O 1 0 O
60 0 0O OOO O 1 1 0 1 O
710 0 0O O1 0O O O 1 O O 1
8\0 0 0O OO OO O O0 1 1 1

(5.90)
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Spanning trees/forests & incidence matrices

@ We are given a graph G = (V, E), we can arbitrarily orient the graph
(make it directed) consider again the edges £ = E(G) as an index set.

e Consider instead the |V| x |E| incidence matrix of undirected graph G,
which is the matrix Xg = (Zu.e)vev(@),ccr(q) Where

1 ifveer
Tpe=1< —1 ifvee (5.91)
0 ifvéee

and where et is the tail and e~ is the head of (now) directed edge e.
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Spanning trees/forests & incidence matrices

@ A directed version of the graph
(right) and its adjacency matrix
(below).

@ Orientation can be arbitrary.

@ Note, rank of this matrix is 7.

1 3 4 5 6
1 /-1 1 0O 0 0 O
21 1 0O -1 0 1 0
31 0 -1 0 1 0 -1
41 0 0 1 -1 0 0
51 0 0 0 0 O 1
61 0 0 O O 0 O
710 O O O -1 0
8 \ o o0 o0 0 0 0
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Independence
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Spanning trees

@ We can consider edge-induced subgraphs and the corresponding matrix
columns.

(5.92)

0 ~J O T = W N+
SO OO O o

Here, rank({z1}) = 1.
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Spanning trees

@ We can consider edge-induced subgraphs and the corresponding matrix
columns.

1
1/-1 1
21 1 0
31 0 -1
41 0 0
=l o 0 (5.92)
61 O 0
71 0 0
8\ 0 0

Here, rank({z1,z2}) = 2.
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Spanning trees

@ We can consider edge-induced subgraphs and the corresponding matrix
columns.

1 2 3
1/-1 1 0 \
2 1 0 -1
310 -1 0
41 0 o0 1
1o o o (5.92)
6l o0 0 0
71 0 0o o
s\0 0 0

Here, rank({xl,xg,:zz;;}) = 3.
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Spanning trees

@ We can consider edge-induced subgraphs and the corresponding matrix
columns.

1 2 3 5

1/-1 1 0 0 \

2 1 0 -1 1

310 -1 0 0

41 0 o 1 0

500 0 0 0 (5.92)
6]l 0 0 0 0

710 o o -1

s\0 0 0 0

Here, rank({xl, $2,ZC3,$5}) = 4.
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Spanning trees

@ We can consider edge-induced subgraphs and the corresponding matrix
columns.

1 2 3 4 5

1/-1 1 0 0 \

2 1 0o -1 o 1

310 -1 0 1 0

41 o0 0o 1 -1 o0

500 0 0 0 0 (5.92)
6l 0 0 0 0 0

71 0 o o o -1

s\0 0 0 0 0

Here, rank({z1, 2, x3, x4, 25}) = 4.
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Spanning trees

@ We can consider edge-induced subgraphs and the corresponding matrix
columns.

1 3 4
1/-1 1 0 0 \
2 1 0O -1 0
3 0O -1 0 1
4 0 0 1 -1
.02
51 0 0o o o (5.92)
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
Here, rank({z1, z2, x3,24}) = 3 since x4 = —x] — x9 — T3,
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INEEREE N

Spanning trees, rank, and connected components

@ In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.

@ This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.

@ Consider a “rank” function defined as follows: given a set of edges
A C E(G), the rank(A) is the size of the largest forest in the A-edge
induced subgraph of G.

@ The rank of the entire graph then is then a spanning forest of the
graph (spanning tree if the graph is connected).

@ The rank of the graph is rank(E(G)) = |V| — k where k is the number
of connected components of G.

e For A C E(G), define kg(A) as the number of connected components
of the edge-induced spanning subgraph (V(G), A). Recall, kg(A) is
supermodular, so |V (G)| — kg(A) is submodular.

e We have rank(4) = |[V(G)| — kg(A).
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Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V,E,w) where w : E— R, is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.

o Given a tree T', the cost of the tree is cost(T') = > . w(e), the sum
of the weights of the edges.

@ There are several algorithms for MST:

Algorithm 1: Boriivka's Algorithm

F « () /* We build up the edges of a forest in F’ */
while G(V, F') is disconnected do

forall the components C; of F' do
L L F « F U{e;} for e; = the min-weight edge out of Cj;

A W =
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Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V,E,w) where w : E— R, is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.

o Given a tree T', the cost of the tree is cost(T') = > . w(e), the sum
of the weights of the edges.

@ There are several algorithms for MST:
Algorithm 2: Jarnik /Prim/Dijkstra Algorithm

1T« 0;

2 while T is not a spanning tree do

T < T U {e} for e = the minimum weight edge extending the
tree T' to a new vertex ;

w
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Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E— R, is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.

@ Given a tree T', the cost of the tree is cost(T') = > . w(e), the sum
of the weights of the edges.

@ There are several algorithms for MST:
Algorithm 3: Kruskal's Algorithm

Sort the edges so that w(e;) < w(ez) < -+ < wlen) ;
T+ (V(G),0) = (V,0) ;

for i =1 to m do

L if E(T)U{e;} does not create a cycle in T then

B WO =

L E(T) <+ E(T)U {e;} ;
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Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E — R4 is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.

o Given a tree T', the cost of the tree is cost(T) = > ., w(e), the sum
of the weights of the edges.

@ There are several algorithms for MST:

@ These three algorithms are all guaranteed to find the optimal minimum
spanning tree in (low order) polynomial time.

@ These algorithms are all related to the “greedy” algorithm. l.e., “add
next whatever looks best”.

@ These algorithms will also always find a basis (a set of linearly
independent vectors that span the underlying space) in the matrix
example we saw earlier.

@ The above are all examples of a matroid, which is the fundamental

reason why the greedy algorithms work.
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From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

@ Let 7 be a set of all subsets of V' such that for any I € Z, the vectors
indexed by I are linearly independent.

@ Given a set B € 7 of linearly independent vectors, then any subset
A C B is also linearly independent. Hence, Z is down-closed or
“subclusive”, under subsets. In other words,

ACBand BeI=AecZl (5.93)

@ maxind: Inclusionwise maximal independent subsets (or bases) of any set
BCV.

maxind(B) 2 {ACB:AcZandVYv e B\ A, AU{v} ¢TI} (5.94)

@ Given any set B C V of vectors, all maximal (by set inclusion) subsets of
linearly independent vectors are the same size. That is, for all B C V,

\V/Al,AQ € maxlnd(B), |A1| = ‘A2| (595)
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Matroids
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From Matrix Rank — Matroid

@ Thus, for all I € Z, the matrix rank function has the property
r(I) = |1 (5.96)
and for any B ¢ Z,

+(B) = max {|A|: AC B and A € T} < |B] (5.97)
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Matroid

@ Matroids abstract the notion of linear independence of a set of vectors
to general algebraic properties.

@ In a matroid, there is an underlying ground set, say £ (or V), and a
collection of subsets of E that correspond to independent elements.

@ There are many definitions of matroids that are mathematically
equivalent, we'll see some of them here.
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Matroids
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Independence System

Definition 5.6.1 (set system)

A (finite) ground set E and a set of subsets of F, () # Z C 2% is called a
set system, notated (F,Z).

@ Set systems can be arbitrarily complex since, as stated, there is no
systematic method (besides exponential-cost exhaustive search) to
determine if a given set S C F has S € 7.

@ One useful property is “heredity.” Namely, a set system is a hereditary
set system if for any A C B € Z, we have that A € 7.
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Independence System

Definition 5.6.2 (independence (or hereditary) system)

A set system (V,Z) is an independence system if
) € Z (emptyset containing) (11)
and

VieZ,JCI=JeTI (subclusive) (12)

@ Property 12 is called “"down monotone,” “down closed,” or “subclusive”

e Example: £ ={1,2,3,4}. With Z = {0,{1},{1,2},{1,2,4}}.

@ Then (E,Z) is a set system, but not an independence system since it
is not down closed (i.e., we have {1,2} € Z but not {2} € 7).

e With Z = {0,{1},{2},{1,2}}, then (E,Z) is now an independence
(hereditary) system.
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Independence System

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
00112131 [ S e R
01 1020 2 4= |z 29 x3 24 x5 26 7 x5 | (5.98)
1 1100 3 15 I T e O e

@ Given any set of linearly independent vectors A, any subset B C A will
also be linearly independent.

@ Given any forest Gy that is an edge-induced sub-graph of a graph G,
any sub-graph of G ¢ is also a forest.

@ So these both constitute independence systems.
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Matroid

Independent set definition of a matroid is perhaps most natural. Note, if
J € Z, then J is said to be an independent set.

Definition 5.6.3 (Matroid)

A set system (F,7) is a Matroid if

(1) PeZ

(I2) VieZ,JCcI=JeTl

(13) VI, J € Z, with |I| = |J| + 1, then there exists € I \ J such that
JU{z} eT.

v

Why is (11) is not redundant given (12)? Because without (11) could have a
non-matroid where Z = {}.
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On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935), but
already then found instances of objects with those properties not based
on a matrix.

Takeo Nakasawa, 1935, also early work.

Forgotten for 20 years until mid 1950s.

Matroids are powerful and flexible combinatorial objects.

The rank function of a matroid is already a very powerful submodular

function (perhaps all we need for many problems).

Understanding matroids crucial for understanding submodularity.

@ Matroid independent sets (i.e., A s.t. r(A) = |A|) are useful constraint
set, and fast algorithms for submodular optimization subject to one (or
more) matroid independence constraints exist.

@ Crapo & Rota preferred the term “combinatorial geometry”, or more
specifically a “pregeometry” and said that pregeometries are “often
described by the ineffably cacaphonic [sic] term "'matroid’, which we

prefer to avoid in favor of the term 'pregeometry’.
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Matroid

Slight modification (non unit increment) that is equivalent.
Definition 5.6.4 (Matroid-II)

A set system (F,Z) is a Matroid if
(11" 0eZ
(I2"y VIeZ,JCI= JeZ (or “down-closed")

(I3") VI,J € Z, with |I| > |J|, then there exists x € I \ J such that
Ju{z} el

Note (11)=(11"), (12)=(I2"), and we get (I3)=(13") using induction.
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Matroids, independent sets, and bases

@ Independent sets: Given a matroid M = (E,Z), a subset A C E'is
called independent if A € Z and otherwise A is called dependent.

@ Abaseof U C E: For U C FE, a subset B C U is called a base of U if
B is inclusionwise maximally independent subset of U. Thatis, B Z
and thereisno Z € Z with BC Z CU.

@ A base of a matroid: If U = FE, then a "base of E" is just called a
base of the matroid M (this corresponds to a basis in a linear space, or
a spanning forest in a graph, or a spanning tree in a connected graph).
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Matroids - important property

Proposition 5.6.5
In a matroid M = (E,I), for any U C E(M), any two bases of U have the
same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

@ In fact, under (11),(12), this condition is equivalent to (13). Exercise:
show the following is equivalent to the above.

Definition 5.6.6 (Matroid)

A set system (V,Z) is a Matroid if
(I1") @ € Z (emptyset containing)
(12" YI €Z,J C I = J € Z (down-closed or subclusive)

(I13") VX CV, and I, I € maxInd(X), we have |I;| = |I2] (all maximally
independent subsets of X have the same size).
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of U
have the same size.

@ The common size of all the bases of U is called the rank of U, denoted
rar(U) or just r(U) when the matroid in equation is unambiguous.

o 7(E) = r(gr) is the rank of the matroid, and is the common size of all
the bases of the matroid.

@ We can a bit more formally define the rank function this way.

Definition 5.6.7 (matroid rank function)

The rank function of a matroid is a function r : 2F — Z_ defined by

r(A)=max{|X|: X CA X €T} :r)r(la)IdAﬂX\ (5.99)
€

@ From the above, we immediately see that r(A) < |A].
@ Moreover, if r(A) = |A|, then A € Z, meaning A is independent (in
this case, A is a self base).
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Matroids, other definitions using matroid rank 7 : 2" — Z

Definition 5.6.8 (closed/flat/subspace)

A subset A C E is closed (equivalently, a flat or a subspace) of matroid M
if forallz € B\ A, r(AUu{z}) =r(4) + 1.

Definition: A hyperplane is a flat of rank (M) — 1.

Definition 5.6.9 (closure)

Given A C F, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(A4)}.

Therefore, a closed set A has span(A) = A.

Definition 5.6.10 (circuit)

A subset A C FE is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if 7(A) < |A| and forany a € A, r(A\ {a}) = |A]| - 1).
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Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 5.6.11 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then the
following are equivalent.

@ B is the collection of bases of a matroid;
@ ifB,B' € B, andx € B'\ B, then B'—x+y € B forsomey € B\ B'.
© IfB,B'€B,andx € B'\ B, then B—y+x € B forsomey € B\ B'.

Properties 2 and 3 are called “exchange properties.”
Proof here is omitted but think about this for a moment in terms of linear
spaces and matrices, and (alternatively) spanning trees.
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Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is not
surprising that circuits can also characterize a matroid.

Theorem 5.6.12 (Matroid by circuits)

Let E be a set and C be a collection of subsets of E that satisfy the
following three properties:

@ (Cl):-DécC
Q (CQ) if C1,Cy € C and C7 C Cy, then C1 = Cs.

@ (C3): if C1,Cy € C with C1 # Cs, and e € Cy N Cy, then there exists
a Cs € C such that C3 C (C1 UCy) \ {e}.
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Matroids by circuits

Several circuit definitions for matroids.

Theorem 5.6.13 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such that
no two sets in C are contained in each other. Then the following are
equivalent.

@ C is the collection of circuits of a matroid;
Q@ ifC,C"eC,andx e CNC’, then (CUC")\ {z} contains a set in C;
Q@ ifC,C"eC,andx e CNC’, andy € C\ C’, then (CUC")\ {z}

contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and
matrices, and spanning trees.
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Matroids
Lrrrrrrrrrrerrrrn

Matroids by submodular functions

Theorem 5.6.14 (Matroid by submodular functions)

Let f :2F — 7 be a integer valued monotone non-decreasing submodular
function. Define a set of sets as follows:

C(f)= {C C E : C is non-empty,
is inclusionwise-minimal,

and has £(C) < |C| } (5.100)

Then C(f) is the collection of circuits of a matroid on E.

v

Inclusionwise-minimal in this case means that if C' € C(f), then there exists
no C' C C with C" € C(f) (i.e., C' C C would either be empty or have
f(C") > |C"|). Also, recall inclusionwise-minimal in Definition 5.6.10, the
definition of a circuit.
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