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Cumulative Outstanding Reading

@ Read chapters 2 and 3 from Fujishige’s book.
@ Read chapter 1 from Fujishige's book.
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Announcements, Assignments, and Reminders

@ Homework 1 is now available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Friday at 11:55pm.

o Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google
hangout (set up meeting via our our discussion board (https:
//canvas.uw.edu/courses/1039754/discussion_topics)).
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Class Road Map - IT-

@ L1(3/28): Motivation, Applications, & @ L11(5/2):
Basic Definitions ° 2(5/4)
@ L2(3/30): Machine Learning Apps o L13(5/9):
(diversity, complexity, parameter, learning o L14(5/11):
target, surrogate). o L15(5/16):
° L3(.4./4.1): Info theory exs, more apps, o L16(5/18):
definitions, graph/combinatorial examples, '
matrix rank example, visualization o L17(5/23):
@ L4(4/6): Graph and Combinatorial © L18(5/25)
Examples, matrix rank, Venn diagrams, @ L19(6/1):
examples of proofs of submodularity, some @ L20(6/6): Final Presentations

useful properties maximization.
@ L5(4/11): Examples & Properties, Other
Defs., Independence, Matroids

L6(4/13):
L7(4/18):
L8(4/20):
L9(4/25):
L10(4/27):

Finals Week: June 6th-10th, 2016.
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The Venn and Art of Submodularity

r(A)—I—r(B) 2 r(AUB) —|— r(AﬂB)

+2r AﬂB
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Summary submodular properties

@ Adding modular functions to submodular functions preserves
submodularity.
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Review
]

Summary submodular properties

@ Adding modular functions to submodular functions preserves
submodularity.

e Summing: if ;> 0 and f; : 2V — R is submodular, then so is

Z, a; fi.
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Review
I

Summary submodular properties

@ Adding modular functions to submodular functions preserves
submodularity.

e Summing: if a; > 0 and f; : 2 — R is submodular, then so is
Zi a; fi.
@ Restrictions: f/(A) = f(ANS)
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Review
]

Summary submodular properties

@ Adding modular functions to submodular functions preserves
submodularity.

e Summing: if a; > 0 and f; : 2 — R is submodular, then so is
> ifi
@ Restrictions: f/(A) = f(ANS)

e max: f(A) = maxjeca c; and facility location.
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Review
]

Summary submodular properties

(]

Adding modular functions to submodular functions preserves
submodularity.

@ Summing: if @; > 0 and f; : 2V — R is submodular, then so is
Zi a;fi.

Restrictions: f'(A) = f(ANS)

max: f(A) = maxjea ¢; and facility location.

Log determinant f(A) = logdet(X4)
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Review
I

Summary submodular properties

@ Adding modular functions to submodular functions preserves
submodularity.

@ Summing: if @; > 0 and f; : 2V — R is submodular, then so is
Zi a;fi.

Restrictions: f'(A) = f(ANS)

max: f(A) = maxjea ¢; and facility location.

Log determinant f(A) = logdet(X 4)

f(A) = g(m(A)) submodular when g concave and m non-negative
modular.
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Review
I

Summary submodular properties

@ Adding modular functions to submodular functions preserves
submodularity.

@ Summing: if @; > 0 and f; : 2V — R is submodular, then so is
Zi a; fi.

Restrictions: f'(A) = f(ANS)

max: f(A) # maxje4 ¢; and facility location.

Log determinant f(A) = logdet(X 4)

f(A) = g(m(A)) submodular when g concave and m non-negative
modular.

@ Definition of monotone non-decreasing.
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Examples and Properties
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Composition of non-decreasting submodular and
non-decreasing concave

Theorem 5.3.1

Given two functions, one defined on sets

f:2V =R (5.1)
and another continuous valued one:

g:R—=R (5.2)

the composition formed as h = go f : 2V — R (defined as
h(S) = g(f(S))) is nondecreasing submodular, if g is non-decreasing
concave and f is nondecreasing submodular.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 5 - Apr 11th, 2016 F7/64 (pg.13/183)



Examples and Properties
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Monotone difference of two functions

Let f and g both be submodular functions on subsets of V' and let

(f — g)(-) be either monotone increasing or monotone decreasing. Then
h 2% 5 R defined by

h(A) = min(f(A),g(A4)) (5:3)

is submodular.

If h(A) agrees with f on both X and ¥ (or g on both X and Y’), and since
409+ ()=f(X) + (YY) = f(XUY) + f(XNY) (5.4)
A+ Al)=g(X) +9(Y) 2 g(X UY) +g(X NY), (5.5)

the result (Equation 5.3 being submodular) follows since

f(X)+ _ :
9(X) +g(Y) = min(f(XUY),g(XUY)) +min(f(XNY),g(XNY))

= h(xvr) + hlxax) 55)
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Examples and Properties
(NLRNRRRERN

Monotone difference of two functions

Otherwise, w.l.o.g., h(X) = f(X) and h(Y) = ¢g(Y), giving

h(X) + h(Y) Ff(X) + g(Y) (X UY)+ F(XNY) +g(Y) — f((Y) ;
5.7
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Examples and Properties
(NLRNRRRERN

Monotone difference of two functions

Otherwise, w.l.o.g., h(X) = f(X) and h(Y) = ¢g(Y), giving

WX) +h(Y) = f(X) +g(Y) 2 FXUY) HAXOY)& g(Y) — f(Y)

) o

Assume the case where f g is monotone increasing. Hence,
f(XUY)+g gXUY glvm

e e
Y?>g Y) ny) >thY)+h(XmY) (5.8)
L_//—/’A O

What is an easy way to prove the case wheré f — g is monotone decreasing?
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Examples and Properties
(NNL ARRRERN

Saturation via the min(-) function

Let f:2" — R be an monotone increasing or decreasing submodular
function and let k be a constant. Then the function  : 2V — R defined by

h(A) = min(k, f(A)) (5.9)

is submodular.
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Examples and Properties
(NNL ARRRERN

Saturation via the min(-) function

Let f:2" — R be an monotone increasing or decreasing submodular
function and let k be a constant. Then the function  : 2V — R defined by

h(A) = min(k, f(A)) (5.9)

is submodular.

For constant k, we have that (f — k) is increasing (or decreasing) so this
follows from the previous result. O

}(aﬂ: MM NL/”S)L -

e
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Examples and Properties
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Saturation via the min(-) function

Let f:2" — R be an monotone increasing or decreasing submodular
function and let k be a constant. Then the function  : 2V — R defined by

h(A) = min(k, f(A)) (5.9)

is submodular.

For constant k, we have that (f — k) is increasing (or decreasing) so this
follows from the previous result. O

Note also, g(a) = min(k, a) for constant k is a non-decreasing concave
function, so when f is monotone nondecreasing submodular, we can use the
earlier result about composing a monotone concave function with a
monotone submodular function to get a version of this.
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Examples and Properties
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More on Min - the saturate trick

@ In general, the minimum of two submodular functions is not
submodular (unlike concave functions, closed under min).
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Examples and Properties
(NEAR NRRERN

More on Min - the saturate trick

@ In general, the minimum of two submodular functions is not
submodular (unlike concave functions, closed under min).

@ However, when wishing to maximize two monotone non-decreasing
submodular functions f, g, we can define function hq : 2V — R as

ho(A) = %(min(a, F(A4)) + min(a, g(4)) ) (5.10)

then h, is submodular, and hq(A) > @ if and only if both f(A) > «
and g(A) > a, for constant a € R.
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Examples and Properties
(NEAR NRRERN

More on Min - the saturate trick

@ In general, the minimum of two submodular functions is not
submodular (unlike concave functions, closed under min).

@ However, when wishing to maximize two monotone non-decreasing
submodular functions f, g, we can define function h, : 2V — R as

ho(A) = %(min(a, F(A)) + min(a, g(A)) ) (5.10)

then h, is submodular, and h,(A) > « if and only if both f(A) > «
and g(A) > a, for constant o € R.

@ This can be useful in many applications. An instance of a submodular
surrogate (where we take a non-submodular problem and find a
submodular one that can tell us something about it).
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Examples and Properties
(NEANR ARERN

Arbitrary functions as difference between submodular

funcs.

Given an arbitrary set function h, it can be expressed as a difference
between two submodular functions (i.e., 3f, g s.t. VA, h(A) = f(A) — g(A)
where both f and g are submodular).

Proof.

Let h be given and arbitrary, and define:
@2 gl(li}l/l(h(X) FR(Y) - h(XUY) — h(XmY)) (5.11)

JX4Y, 8K :
If « > 0 then h is submodular, so by assumption a < 0. X

o C ovnlar bl Sep )

Xéﬂ’/ V45 %
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Examples and Properties
(NEANR ARERN

Arbitrary functions as difference between submodular

funcs.

Given an arbitrary set function h, it can be expressed as a difference
between two submodular functions (i.e., 3f, g s.t. VA, h(A) = f(A) — g(A)
where both f and g are submodular).

Let h be given and arbitrary, and define:
@2 r)l(n‘?(h(X) FR(Y) - h(XUY) — h(XmY)) (5.11)

If « > 0 then h is submodular, so by assumption a < 0. Now let f be an
arbitrary strict submodular function and define

ga . (FCO) +£(V) - (X UY) - f(X 1Y), (5.12)

Strict means that 5 > 0.
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Examples and Properties
(NNANRE RERN

Arbitrary functions as difference between submodular

funcs.

ﬁ ) 401 < 4//7’1/7)%%/%4/]
(.cnt. |

Define i’ : 2V — R as

w(4) = h(4)+ 2 gy (5.13)

Then k' is submodular (why?), and h = h/(A) — %f(A), a difference
between two submodular functions as desired.
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Examples and Properties
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Gain

@ We often wish to express the gain of an item j € V in context A,

namely f(AU{j}) — f(A).
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Examples and Properties
(NNANRRY RN

Gain

@ We often wish to express the gain of an item j € V in context A,
namely /(AU {j}) - /(A).

@ This is called the gain and is used so often, there are equally as many
ways to notate this. l.e., you might see:

FAU{GY) — F(A) 2 pi(4) (5.14)
2 pa(j (5.15)
2V, f(A) (5.16)
2 f({5}14) (5.17)
2 £(j14) (5.18)
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Examples and Properties
(NNANRRY RN

Gain

@ We often wish to express the gain of an item j € V in context A,
namely /(AU {j}) - /(A).

@ This is called the gain and is used so often, there are equally as many
ways to notate this. l.e., you might see:

FIAULGY) — F(A) 2 pi(A) (5.14)
2 palj (5.15)
2V, f(A) (5.16)
2 ({5114 (5.17)
2 1(j14) (5.18)

e We'll use f(j|A).
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Examples and Properties
(NNANRRY RN

Gain

@ We often wish to express the gain of an item j € V in context A,
namely /(AU {j}) - /(A).

@ This is called the gain and is used so often, there are equally as many
ways to notate this. l.e., you might see:

FIAULGY) — F(A) 2 pi(A) (5.14)
2 palj (5.15)
2V, f(A) (5.16)
2 ({5114 (5.17)
2 1(j14) (5.18)

o We'll use f(j|A).

@ Submodularity’s diminishing returns definition can be stated as saying
that f(j|A) is a monotone non-increasing function of A, since
f(jlA) > f(j|B) whenever A C B (conditioning reduces valuation).
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Examples and Properties
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Gain Notation

It will also be useful to extend this to sets.
Let A, B be any two sets. Then

f(AIB) = f(AUB) — f(B) (5.19)

So when j is any singleton

fGIB) = f({5}B) = f{i} U B) - f(B) (5.20)
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Examples and Properties
(NEANRRRE RN

Gain Notation

It will also be useful to extend this to sets.
Let A, B be any two sets. Then

f(AIB) £ f(AUB) - f(B) (5.19)
So when j is any singleton
fGIB) = f({5}B) = f{i} U B) — f(B) (5.20)

Inspired from information theory notation and the notation used for
conditional entropy H(X4|Xp) = H(Xa,Xp) — H(Xp).
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Examples and Properties
(NNANNARNA N

Totally normalized functions

@ Any normalized submodular function g (even non-monotone) can be
represented as a sum of a polymatroid (normalized monotone
non-decreasing submodular) function g and a modular function m,.

M. (4)

G0 = gt + a?>d\/

= AL by ones

=7 5 5 M.DV,OJ—OM W%»ﬂcfcéj/'ﬁg'

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 5 - Apr 11th, 2016 F16/64 (pg.32/183)



Examples and Properties
(NEANRRRNA N

Totally normalized functions

@ Any normalized submodular function g (even non-monotone) can be
represented as a sum of a polymatroid (normalized monotone
non-decreasing submodular) function g and a modular function my.

@ Given arbitrary normalized submodular g : 2" — R, construct a
function g : 2V — R as follows:

g(4) = 9(4) = > g(alV \ {a}) = g(A) — my(4) (5.21)
—J

acA

where mg(A) £ 3" .4 9(a|V \ {a}) is a modular function.
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Examples and Properties
(NNANNARNA N

Totally normalized functions

@ Any normalized submodular function g (even non-monotone) can be
represented as a sum of a polymatroid (normalized monotone
non-decreasing submodular) function g and a modular function my.

@ Given arbitrary normalized submodular g : 2" — R, construct a
function g : 2V — R as follows:

g(4) = g(4) = > g(alV \ {a}) = g(A) — my(A) (5.21)

acA

A

where my(A) = > 4 9(a|V \ {a}) is a modular function.
@ g is normalized since g(0) = 0.

XA veh SGrIA) 2O
= 5[,44"") —‘5[/]‘) 70 =/ 5 @%wddrﬂl“'b.
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Examples and Properties
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Totally normalized functions

@ Any normalized submodular function g (even non-monotone) can be
represented as a sum of a polymatroid (normalized monotone
non-decreasing submodular) function g and a modular function my.

@ Given arbitrary normalized submodular g : 2" — R, construct a
function g : 2V — R as follows:

g(4) = 9(4) = > g(alV \ {a}) = g(A) — my(4) (5.21)

acA

where mg(A) £ 3" 4 g(alV \ {a}) is a modular function.
@ g is normalized since g(0) = 0.
@ g is monotone non-decreasing since forv ¢ A C V:

g(v]A) = g(v|A) = g(v[V \ {n}) = 0 (5.22)

“—
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Examples and Properties
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Totally normalized functions

@ Any normalized submodular function g (even non-monotone) can be
represented as a sum of a polymatroid (normalized monotone
non-decreasing submodular) function g and a modular function my.

@ Given arbitrary normalized submodular g : 2" — R, construct a
function g : 2V — R as follows:

g(A) = g(A) = > g(alV \ {a}) = g(A) —my(A) (5.21)
acA

A

where my(A) = > 4 9(a|V \ {a}) is a modular function.
@ g is normalized since g(0) = 0.
@ g is monotone non-decreasing since for v ¢ A C V:

g(vlA) = g(v|A) — g(v[V'\{a}) = 0 (5.22)

@ g is called the totally normalized version of g.
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Examples and Properties
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Totally normalized functions

Any normalized submodular function g (even non-monotone) can be
represented as a sum of a polymatroid (normalized monotone
non-decreasing submodular) function g and a modular function my.
Given arbitrary normalized submodular g : 2 — R, construct a
function g : 2V — R as follows:

g(A) = g(A) = > g(alV \ {a}) = g(A) —my(A) (5.21)
acA

A

where my(A) = > 4 9(a|V \ {a}) is a modular function.

@ g is normalized since g(0) = 0.

@ g is monotone non-decreasing since for v ¢ A C V:

g(v]A) = g(v|A) —g(v[V'\{a}) = 0 (5.22)

@ g is called the totally normalized version of g.
@ Then g(A) = g(A) + mgy(A).
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Examples and Properties
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Arbitrary function as difference between two polymatroids

@ Any normalized function h (i.e., h() = 0) can be represented as a
difference not only between submodular, but between polymatroid
(normalized monotone non-decreasing submodular) functions.
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Examples and Properties
[NNANNARNA] |

Arbitrary function as difference between two polymatroids

@ Any normalized function h (i.e., h() = 0) can be represented as a
difference not only between submodular, but between polymatroid
(normalized monotone non-decreasing submodular) functions.

@ Given submodular f and g, let f and g be them totally normalized.
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Examples and Properties
[NNANNARNAY |

Arbitrary function as difference between two polymatroids

@ Any normalized function h (i.e., h() = 0) can be represented as a
difference not only between submodular, but between polymatroid
(normalized monotone non-decreasing submodular) functions.

o Given submodular f and g, let f and g be them totally normalized.

@ Given arbitrary h = f — g where f and g are normalized submodular,

h=f—g=ftmp—(g+myg (5.23)
= f =g+ (my —my) (5.24)
= f—g£mpp (5.25)
=f+mi_, — (h+ (-ms_g)") (5.26)

where m™ is the positive part of modular function m. That is,
mt(A) =3 ,cam(a)l(m(a) > 0).
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Examples and Properties
[NNANNARNAY |

Arbitrary function as difference between two polymatroids

@ Any normalized function h (i.e., h() = 0) can be represented as a
difference not only between submodular, but between polymatroid
(normalized monotone non-decreasing submodular) functions.

o Given submodular f and g, let f and g be them totally normalized.

@ Given arbitrary h = f — g where f and g are normalized submodular,

h=f—g=Ff+ms—(g+my) (5.23)
= [ =g+ (my—my) (5.24)
=f—g+my (5.25)
=f+mj_, = (h+ (=ms_y)") (5.26)

where m™T is the positive part of modular function m. That is,

(A = aeAm a)l(m(a) > 0).
° Both f+ mf g and g+ (=mys_g)" are polymatroid functions!
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Examples and Properties
[NNANNARNAY |

Arbitrary function as difference between two polymatroids

@ Any normalized function h (i.e., h() = 0) can be represented as a
difference not only between submodular, but between polymatroid
(normalized monotone non-decreasing submodular) functions.

o Given submodular f and g, let f and g be them totally normalized.

@ Given arbitrary h = f — g where f and g are normalized submodular,

h=f—g=Ff+ms—(g+my) (5.23)
= [ =g+ (my —my) (5.24)
=f—g+mpn (5.25)
=f+mj_,— (h+ (=ms_g)") (5.26)

where m™ is the positive part of modular function m. That is,
mt(A) =3 ,cam(a)l(m(a) > 0).

e Both f + m}lg and g+ (—mjs_,)" are polymatroid functions!

@ Thus, any function can be expressed as a difference between two, not
only submodular (DS), but polymatroid functions.
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Other Submodular Defs.
[ERRRERRRRARRRRRENRNRR

Two Equivalent Submodular Definitions

Definition 5.4.1 (submodular concave)

A function f: 2V — R is submodular if for any A, B C V, we have that:

f(A)+ f(B) =z f(AUB) + f(AN B) (5.8)

An alternate and (as we will soon see) equivalent definition is:

Definition 5.4.2 (diminishing returns)

A function f: 2V — R is submodular if for any A C B C V, and
v € V'\ B, we have that:

f(AU{v}) = f(4) = f(BU{v}) — f(B) (5.9)

The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as
the context in which v is considered grows from A to B.
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Submodular Definition: Group Diminishing Returns

An alternate and equivalent definition is:

Definition 5.4.1 (group diminishing returns)

A function f : 2V — R is submodular if for any A C B C V, and

C C V \ B, we have that: ,F(C{,f—) Z./F[CI b)

f(AUC) = f(A) = f(BUC) — f(B) (5.27)

This means that the incremental “value” or “gain” of set C' decreases as the
context in which C' is considered grows from A to B (diminishing returns)
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Submodular Definition Basic Equivalencies

We want to show that Submodular Concave (Definition 5.4.1), Diminishing
Returns (Definition 5.4.2), and Group Diminishing Returns
(Definition 5.4.1) are identical.
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Submodular Definition Basic Equivalencies

We want to show that Submodular Concave (Definition 5.4.1), Diminishing
Returns (Definition 5.4.2), and Group Diminishing Returns
(Definition 5.4.1) are identical. We will show that:

@ Submodular Concave = Diminishing Returns
@ Diminishing Returns = Group Diminishing Returns

@ Group Diminishing Returns = Submodular Concave
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Submodular Concave = Diminishing Returns

fS)+f(T) = f(SUT)+ f(SNT) = f(v|A) > f(v|B),AC BCV\w.
@ Assume Submodular concave, so V.S, T we have

fS)+ (1) =2 f(SUT) + f(SNT).
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Submodular Concave = Diminishing Returns

fS)+f(T) = f(SUT)+ f(SNT) = f(v|A) > f(v|B),AC BCV\w.
@ Assume Submodular concave, so VS, T we have
F)+F(T) = f(SUT)+ f(SNT).
@ Given A, B and v € V such that: A C B C V' \ {v}, we have from
submodular concave that:

f(A+v) + f(B) = f(B+v)+ f(A) (5.28)
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Submodular Concave = Diminishing Returns

fS)+f(T) = f(SUT)+ f(SNT) = f(v|A) > f(v|B),AC BCV\w.
@ Assume Submodular concave, so VS, T we have
fS)+ (1) =2 f(SUT)+ f(SNT).
@ Given A, B and v € V such that: A C B C V' \ {v}, we have from
submodular concave that:

f(A+v) + f(B) 2 f(B +v) + f(4) (5.28)
@ Rearranging, we have

f(A+v) = f(A) 2 f(B+v) - f(B) (5.29)
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Diminishing Returns = Group Diminishing Returns

f(]8) > f(u|T),S CT C V\v= f(C|A) > f(C|B),AC BC V\C.
——

Let C = {c1,¢2,...,¢k}. Then diminishing returns implies

(5.30)

1

f(AU ) (f(AU{cl,...,ci})—f(AU{cl,...,ci})) — f(A) (5.31)

. [ i=1 ‘/_3
flAu{a...a}) + f(AUu{ea...ci-1})
;( cL...c ci...c ) —
k (e 1/ yfvéé//.vc‘,-.,t,‘} - [£CAve) -F(,luc.))
_ (f(BU{cl...ci}) —f(BU{cl...ci,l}))
= f(BUC)— Z( (BU{ci,...,ci}) — f(BU
f(BuC) - f(B)
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Group Diminishing Returns = Submodular Concave

fU1S) = f(UIT),S CT CV\U = f(A)+ f(B) > f(AUB)+ f(ANB).
Assume group diminishing returns. Assume A ;é/r > of erwise trivial. Define
A'=ANB,C=A\B, and B' = B. Then since' 4' C B/,

A P=p'
g J(A'+C) — f(A) = f(B'+C) - [(B) (5.36)
giving
f(AA+C)+ f(B) > f(B'+C) + f(A) (5.37)

or

fANB+A\B)+ f(B) > fBFA\B) + f(ANB) (5.38)
Auvo

which is the same as the submodular concave condition

f(A)+f(B) = f(AUB) + f(ANB) (5-39)
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Submodular Definition: Four Points

Definition 5.4.2 (“singleton”, or “four points”)

A function f : 2V — R is submodular iff for any A C V, and any
a,b eV \ A, we have that:

f(AU{a}) + F(AU{b}) = F(AU{a,b}) + f(A) (5.40)
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Submodular Definition: Four Points

Definition 5.4.2 (“singleton”, or “four points”)

A function f : 2V — R is submodular iff for any A C V, and any
a,b eV \ A, we have that:

f(AU{a}) + f(AU{b}) = f(AU{a,b}) + f(A) (5.40)

This follows immediately from diminishing returns.

B Jots) —E(4) Z (@) +2) —44)
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Submodular Definition: Four Points

Definition 5.4.2 (“singleton”, or “four points”)

A function f : 2V — R is submodular iff for any A C V, and any
a,b eV \ A, we have that:

f(AU{a}) + fF(AU{b}) = f(AU{a,b}) + f(A) (5.40)

This follows immediately from diminishing returns. To achieve diminishing
returns, assumed € B with@B'\ A = {b1,ba,...,b;}. Then

fl(A+a)— f(A) = f(A+b1+a) - f(A+ 1) (5.41)

> f(A+bi+by+a)— f(A+b1 +bo) (5.42)

> (5.43)
>f(A+bi+--+bp+a)— f(A+ b1+ +b)

(5.44)

= f(B+a) — f(B) (5.45)
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Submodular on Hypercube Vertices

@ Test submodularity via values on verticies of hypercube.

Example: with |V| =n =2, thisis  With |V| =n = 3, a bit harder.
easy: S Af‘““b

10 n
l E 110 T o1

’6(/{'+L> *F/ff‘) ¢ a
Z,@[ Aat—L-m)
+A()

How many inequalities?

3

2
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Submodular Concave = Diminishing Returns, in one slide.

Theorem 5.4.3
Given function f : 2V 5 R, then
f(A+ f(B) > f(AUB)+ f(ANDB) forall A,BCV (SQO)
if and only if
f|X)> f(]Y) forall X CY CVandv ¢ Y (DR)

Proof.

(SC)=(DR): Set A+~ X U{v}, B« Y. Then AUB = BU {v} and

ANB=X and f(A) — f(ANB) > f(AU B) — f(B) implies (DR).

(DR)=-(SC): Order A\ B = {v1,v2,...,v,} arbitrarily. Fori € 1:r,
fwi|(ANB)U {v1,va,...,vi—1}) > f(vi|BU{v1,v2,...,05-1}).

Applying telescoping summation to both sides, we get:

z:f(viKAm B) U{vi,v2,...,v-1}) > Zf(vi|B U {v1,va,...,v-1})
=1 =1

= f(A)-f(ANB) = f(AUB) - f(B)
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Submodular bounds of a difference of comparable sets

@ Given submodular f, and given you have C, D C V with either D D C
or D C C (comparable sets), and have an expression of the form:

f(C) - f(D) (5.46)
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Submodular bounds of a difference of comparable sets

@ Given submodular f, and given you have C, D C V with either D O C
or D C C (comparable sets), and have an expression of the form:

f(C) - f(D) (5.46)
o If D D C, then for any X with D = C U X then
f(C)=fD) = f(C) - f(CUX) > f(CNX)— f(X)

(5.48)
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Submodular bounds of a difference of comparable sets

@ Given submodular f, and given you have C, D C V with either D O C
or D C C (comparable sets), and have an expression of the form:

f(C) - f(D) (5.46)
o If D D C, then for any X with D = C U X then
F(C) = f(D) =f(C) = f(CUX) > f(CNnX)=f(X) (547)

F(CUX|C) < f(X|CNX) (5.48)
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Submodular bounds of a difference of comparable sets

@ Given submodular f, and given you have C, D C V with either D O C
or D C C (comparable sets), and have an expression of the form:

f(C) - f(D) (5.46)
o If D D C, then for any X with D = C U X then
F(C)=f(D)=F(C) = fF(CUX) = f(CNX) = f(X) (547)
or
f(CuX|C) < f(XICNX) (5.48)
@ Alternatively, if D C C', given any Y such that(tD =C N Y then
f(C) = (D)= f(C) = f(CNY) = f(CUY) = f(Y)

(5.50)
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Submodular bounds of a difference of comparable sets

@ Given submodular f, and given you have C, D C V with either D O C
or D C C (comparable sets), and have an expression of the form:

f(C) - f(D) (5.46)
o If D D C, then for any X with D = C U X then
FC)=f(D)=f(C) - f(CUX) > f(CNX)—f(X) (547)

Geoxo < xicnx) D (4

o Alternatively, if D C C, given any Y such that D = CNY then
F(C) = f(D) =f(C) = F(CNY) =(f(CUY) = f(¥) (549)

or

or

f(cleny) > fleuyly) (5.50)
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Submodular bounds of a difference of comparable sets

@ Given submodular f, and given you have C, D C V with either D O C
or D C C (comparable sets), and have an expression of the form:

f(C) - f(D) (5.46)
o IfiD D C, then for any X with D = C U X then
FC)=F(D)= f(C) - f(CUX) = f([CAX)=FX)" (547)
or
f(CuX|C) < f(XICNX) (5.48)
@ Alternatively,dif D C C', given any Y such that D = CNY then
f(C) = (D) = f(C) = F(CNY) 2(f(CUY) = f(¥)  (549)
or
fleleny) > f(Cuyly) (5.50)
e Equations (5.48) and (5.50) have same form.
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Many (Equivalent) Definitions of Submodularity

f(A)+ f(B) > f(AUB) + f(ANB), VA,BCV (5.51)
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Many (Equivalent) Definitions of Submodularity

f(A) + f(B)

f(AUB)+ f(ANB), YA,BCV (5.51)
f(G18) = f

>
> f(4|T), VS CT CV, withj e V\T (5.52)
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Many (Equivalent) Definitions of Submodularity

F(A)+ f(B) > f(AUB) + f(ANB), VA, BCV (5.51)
FGIS) = JGIT), VS ST CV, with j € V\ T (5.52)
F(C|S) > F(CIT),YSCT CV, with CCV\T (5.53)
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Many (Equivalent) Definitions of Submodularity

f(A)+ f(B)> f(AUB)+ f(ANB), VA,BCV (5.51)
fG1S) > fUIT), VS CT CV, with j e V\T (5.52)
f(C)S) > fICIT),VSCTCV, withCCV\T (5.53)

fGIS) > fUISU{k}), VS CV with j € V\ (SU{k}) (5.54)
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Many (Equivalent) Definitions of Submodularity

f(A)+ f(B)> f(AUB)+ f(ANB), VA, BCV (5.51)
FG1S) = F(IT), ¥SCT CV, with j e V\ T (5.52)

f(CI1S) > f(CIT),VSCT CV, withCCV\T (5.53)

fG18) = f(ISU{k}), VS CV with j e VA (SU{k})  (5.54)
f(AUBIANB) < f(AJANB)+ f(BJANB), VA,BCV (5.55)
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Many (Equivalent) Definitions of Submodularity

fLA+fB)>f(AUB)+ f(ANB), YA, BCV (5.51)

fG1S) > f(IT), VS CT CV, withj e V\T (5.52)

f(C1S) > f(C|T),¥S CT CV, with C CV\T (5.53)

FG1S) > FGISULRY), VS CV with je V\ (SU{k})  (5.54)

f(AUBIANB) < f(AJANB)+ f(B|IANB), VA, BCV (5.55)
F@ <)+ Y FGIS) - D FGISUT - {5}), ¥vS,TCV

JET\S JES\T
(5.56)
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Many (Equwalent) Deflnltlons of Submodularity

fLA+fB)>f(AUB)+ f(ANB), YA, BCV (5.51)

fG1S) > f(IT), VS CT CV, withj e V\T (5.52)

f(C1S) > f(C|T),¥S CT CV, with C CV\T (5.53)

FG1S) > fGISULRY), VS CV with je V\ (SU{k})  (5.54)

f(AUBIANB) < f(A|JANB)+ f(B|IANB), VA, BCV (5.55)
FO) < FS)+ Y FGIS) = Y. fGISUT = {5}), VS, T CV

JET\S JES\T
5.56)
F@)<FS)+ Y £GlS), vScTCV (5.57)

JET\S T
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\ERLY (Equwalent) Deflnltlons of Submodularity

fLA+fB)>f(AUB)+ f(ANB), YA, BCV (5.51)
fG1S) > f(IT), VS CT CV, withj e V\T (5.52)
f(C1S) > f(C|T),¥S CT CV, with C CV\T (5.53)
FGIS) = f(jISU{k}), ¥S CV with j € V\ (SU{k})  (5.54)

f(AUBIANB) < f(AJANB)+ f(BJANB), VA, BCV (5.55)

FI) < FS)+ Y0 FGIS) = > fGISUT = {j}), VS, TCV

JET\S JES\T
(5.56)
D)< FS)+ > fGlS), vScTCV (5.57)
JET\S
FT) < FS) = > fUISNGH+ Y fUISNT)VS,TCV
jES\T JET\S
(5.58)
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Many (Equwalent) Deflnltlons of Submodularity

fLA+fB)>f(AUB)+ f(ANB), YA, BCV (5.51)

FG1S) = fGIT), VSCT CV, with j € V\T (5.52)

f(C|S) > f(C|T),¥SCT CV, withCCV\T (5.53)

FGIS) > f(ISU{k}), VS CV with je V\ (SU{k}) _,(554)

f(AUBIANB) < f(AJANB)+ f(B|ANB), VA, BCV (5.55)
F@) <SS+ Y FGIS) = D FGISUT - {5}), VS, TfC V

JGT\S M
Y 714(715) 2 8(sTT) (5.56) 2

QL

=5V rmy <)+ Y rGls), vscTCv (5.57)

£(1) LELs) +F018) +H40) 4eS
(. FI)=f(9) - TGS\ + D fUISNT) VS, T CV

2€05) +9i545) FES\T JET\S

tft4) (5.58)
FI) < F(S) = Y fUIS\{j}), VI cScV (5.59)

JeES\T
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Equivalent Definitions of Submodularity

We've already seen that Eq. 5.51 = Eq. 5.52 = Eq. 5.53 = Eq. 5.54 =
Eq. 5.55.
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Equivalent Definitions of Submodularity

We've already seen that Eq. 5.51 = Eq. 5.52 = Eq. 5.53 = Eq. 5.54 =
Eq. 5.55.
We next show that Eq. 5.54 = Eq. 5.56 = Eq. 5.57 = Eq. 5.54.
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Approach

To show these next results, we essentially first use:
fSUT) = f(S)+ f(T|S) < f(S) + upper-bound (5.60)
and

f(T) Hlowerbound < f(T') + f(S|T) = f(SUT) (5.61)
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Approach

To show these next results, we essentially first use:

f(SUT) = f(S)+ f(T]S) < f(S) + upper-bound (5.60)

and
F(T) + lower-bound < f(T) + f(S|T) = f(SUT) (5.61)
leading to
f(T) + lower-bound < f() + upper-bound (5.62)
or
f(T) < f(S) + upper-bound — lower-bound (5.63)
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Eq. 5.54 = Eq. 5.56

Let T\ S ={j1,....4r} and S\T = {k1,...,kq}.
First, we upper bound the gain of 7" in the context of S:

r

FSUT) = £(8) =S (FS UL, 0deh) = FSU L, dia))

t=1
(5.64)

= Zf GelS U g, o dea}) < Y FGlS)  (5.65)
t=1
— Z 1319) (5.66)

JET\S
or

FTIS) < Y £3IS) (5.67)

JET\S
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Eq. 5.54 = Eq. 5.56

Let T\ S = {j1,...,jr} and S\ T ={k1,..., kq}.
Next, lower bound S in the context of T":

g4k )

ZFSUT) = f(T) =D [f(T ULk, ki) = F(T ULk, ... k1))

t=1
(5.68)

= ST IR > 3 (/T UBN (k)
7 . (5.60)
(5.70)

2% fGISUT\ {5}

FES\T
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Eq. 5.54 = Eq. 5.56

LetT\S:{jl,...,jT} and S\T:{kl,...,kq}.
So we have the upper bound

F(T|S) = f(SUT) — < > f3IS) (5.71)
JET\S

and the lower bound

FSIT) = f(SUT) = f(T) = Y fUISUT\{j}) (5.72)

JES\T
This gives upper and lower bounds of the form

f(T) + lower bound < f(SUT) < f(S) + upper bound, (5.73)

and combining directly the left and right hand side gives the desired
inequality.
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Eq. 5.56 = Eq. 5.57

This follows immediately since if S C T', then S\ T = (), and the last term
of Eq. 5.56 vanishes.
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Here, we set T'= S U {j,k}, j ¢ SU{k} into Eq. 5.57 to obtain

F(SU{y,k}) < F(S) + F(5IS) + f(KLS) (5.74)
= f(9) + F(S+{i}) = F(S) + f(S+{k}) — f(S) (5.75)
= f(S+{ih) + f(S+{k}) - f(5) (5.76)
= f(jlS) + f(S + {k}) (5.77)
giving
FGUISULR}Y) = F(SU{s k}) — F(SU{R}) (5.78)
< f(jl5) (5.79)
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Other Submodular Defs.
[RERRARRRRNRNRRRRRY RRY]

Submodular Concave

e Why do we call the f(A) + f(B) > f(AUB) + f(AnN B) definition of
submodularity, submodular concave?
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Other Submodular Defs.
[RERRARRRRNRNRRRRRY RRY]

Submodular Concave

e Why do we call the f(A) + f(B) > f(AUB) + f(AN B) definition of
submodularity, submodular concave?

@ A continuous twice differentiable function f : R™ — R is concave iff
V2f < 0 (the Hessian matrix is nonpositive definite).
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Other Submodular Defs.
(NERRNARNRRNNRRRERY RNN

Submodular Concave

e Why do we call the f(A) + f(B) > f(AUB) + f(AN B) definition of
submodaularity, submodular concave?

@ A continuous twice differentiable function f : R” — R is concave iff
V2f =0 (the Hessian matrix is nonpositive definite).

@ Define a “discrete derivative’' or difference operator defined on discrete
functions f : 2" — R as follows:

(VBf)(A) £ f(AUB) — f(A\ B) = f(B|(A\ B)) (5.80)
read as: the derivative of f at A in the direction B.
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Other Submodular Defs.
(NERRNARNRRNNRRRERY RNN

Submodular Concave

e Why do we call the f(A) + f(B) > f(AUB) + f(AN B) definition of
submodaularity, submodular concave?

@ A continuous twice differentiable function f : R” — R is concave iff
V2f =0 (the Hessian matrix is nonpositive definite).

@ Define a “discrete derivative” or difference operator defined on discrete
functions f : 2V — R as follows:

(Vsf)(A) = f(AUB) - f(A\ B) = f(BI(A\ B)) (5.80)

read as: the derivative of f at A in the direction B.
@ Hence, if AN B =0, then (Vaf)(4) = f(B|A).
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Other Submodular Defs.
(NERRNARNRRNNRRRERY RNN

Submodular Concave

Why do we call the f(A) + f(B) > f(AU B) + f(AN B) definition of
submodaularity, submodular concave?

A continuous twice differentiable function f : R™ — R is concave iff
V2f =0 (the Hessian matrix is nonpositive definite).

Define a “discrete derivative” or difference operator defined on discrete
functions f : 2V — R as follows:

(VBf)(A) = f(AUB) - f(A\ B) = f(B|(A\ B)) (5.80)
read as: the derivative of f at A in the direction B.

Hence, if AN B =0, then (Vpf)(A) = f(B|A).
Consider a form of second derivative or 2nd difference:

(V5))(4)
(VeVaf)(A) = Vel f(AUB) = f(A\ B) | (5.81)
= (VB)(AUC) = (Vp[)(A\C) (5.82)

= f(AUBUC) - f((AUC)\ B)
—f((ANC)UB) + F((A\NC)\ B)  (5.83)
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Other Submodular Defs.
(NERRNARNRRNNRRRERRY NN

Submodular Concave

o If the second difference operator everywhere nonpositive:

f(AUBUC) — f((AUC)\ B)
- f((A\NC)UB) + f(A\C\B) <0 (5.84)
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Other Submodular Defs.
[RERRARRRRNRNNRRRRRY AN

Submodular Concave

@ If the second difference operator everywhere nonpositive:

fLAUBUC) - f((AUC)\ B)
— f((A\C)UB)+ f(A\C\B)<0 (5.84)

then we have the equation:

f((AUC)\B)+f((A\C)UB)>f(AUBUC)+f(A\CEB))
5.85
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Other Submodular Defs.
(NERRNARNRRNNRRRERRY NN

Submodular Concave

@ If the second difference operator everywhere nonpositive:

fLAUBUC) - f((AUC)\ B)
~J((A\O)UB) + [(A\C\B)<0  (5.89)

then we have the equation:

FAUCINB)+ f(A\NC)UB) > f(AUBUC) + f(A\C\ B)

/7) @; 4/(/()’/ ﬂr/)éS/SS)
o Definé A" =(AUC) \ B and B"=(A\ C)U BHThen the above
implies:
fA)+f(B) = f(AUB) + f(A'NB) (5.86)

and note that A’ and B’ so defined can be arbitrary.
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Other Submodular Defs.
(NERRNARNRANNRRRERRY NN

Submodular Concave

@ If the second difference operator everywhere nonpositive:
f(AUBUC) - f((AUC)\ B)
—f((ANC)UB) + f(A\NC\B)<0  (5.84)
then we have the equation:

f((AUC)\B)+f((A\C)UB)Zf(AUBUC)Jrf(A\C}B))
5.85

@ Define A’ = (AUC)\ B and B'=(A\ C)U B. Then the above
implies:
fFAY+ f(B) = f(AUB) + f(A'n B (5.86)

and note that A’ and B’ so defined can be arbitrary.
@ One sense in which submodular functions are like concave functions.
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Other Submodular Defs.

Submodular Concave

A B A

(a) A =(AUuC)\ B (b)y BP=(A\C)UB
Figure: A figure showing A/UB' = AUBUC and A NB' =A\C\ B.
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Other Submodular Defs.

Submodular Concave
C

C o

(AUC)\ B =(A\C)UB
Figure: A figure showing A/UB' = AUBUC and A NB =A\C\B.
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Other Submodular Defs.
(RRRRERRARRRRRRRARRRNY ]

Submodularity and Concave

@ This submodular/concave relationship is more simply done with
singletons.
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Other Submodular Defs.
(RRRRERRARRRRRRRARRRNY ]

Submodularity and Concave

@ This submodular/concave relationship is more simply done with
singletons.

@ Recall four points definition: A function is submodular if for all X C V'
and j,ke V\X

JX+5)+ (X +k) > f(X+j+k)+ f(X) (5.87)

A {5 AU AG
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Other Submodular Defs.
(NERRNARRRARNNARNRRRN] ]

Submodularity and Concave

@ This submodular/concave relationship is more simply done with
singletons.

@ Recall four points definition: A function is submodular if for all X C V
and j,ke V\ X

X +0)+ (X +k) = f(X+j+k)+ f(X) (5.87)

@ This gives us a simpler notion corresponding to concavity.
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Other Submodular Defs.
(NERRNARRRARNNARNRRRN] ]

Submodularity and Concave

@ This submodular/concave relationship is more simply done with
singletons.

@ Recall four points definition: A function is submodular if for all X C V
and j,ke V\ X

X +0)+ (X +k) = f(X+j+k)+ f(X) (5.87)

@ This gives us a simpler notion corresponding to concavity.
@ Define gain as V;(X) = f(X +j) — f(X), a form of discrete gradient.
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Other Submodular Defs.
(NERRNARRRARNNARNRRRN] ]

Submodularity and Concave

@ This submodular/concave relationship is more simply done with
singletons.

@ Recall four points definition: A function is submodular if for all X C V
and j,k e V\ X

fX+7)+ (X +k) > f(X+j+k)+ f(X) (5.87)

@ This gives us a simpler notion corresponding to concavity.
o Define gain as V;(X) = f(X +j) — f(X), a form of discrete gradient.

@ Trivially becomes a second-order condition, akin to concave functions:
A function is submodular if for all X C V and j,k € V, we have:

V;Vif(X) <0 (5.88)
VO-V/L{:(X): ‘PO(‘*’ ) +4) —£0c+7) —AK+ i) +F0x) £ D
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Independence
[NERNARN

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2301 3 1 Ll
200 30400 2 4|

— | X1 Xo X3 Xa X5 X X7 X

300003005 |1 ‘2 ‘3 ‘4 ’5 ’6 |7 |8
4\2 000000 5

Let A={1,2,3}, B={3,4,5}, C = {6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

(AUA)—3 r(BUB,) =3, r(AUB,) =4, r(BUA,) =
r(AUB) =4, r(AnB)=1 <r(C)=2.

6= r(A)+r(B)>r(AUB)—|—r(AﬂB) =5
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Independence
[RERNRRN

On Rank

o Let rank : 2V — Z, be the rank function.
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Independence
[RERNRRN

On Rank

o Let rank : 2V — Z, be the rank function.

@ In general, rank(A) < |A|, and vectors in A are linearly independent if
and only if rank(A) = |A].
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Independence
[RERNRRN

On Rank

o Let rank : 2V — Z, be the rank function.

@ In general, rank(A) < |A|, and vectors in A are linearly independent if
and only if rank(A4) = |A|.

e If A, B are such that rank(A) = |A| and rank(B) = |B|, with
|A| < |B|, then the space spanned by B is greater, and we can find a
vector in B that is linearly independent of the space spanned by

vectors in A.
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Independence
[RERNRRN

On Rank

o Let rank : 2V — Z, be the rank function.

@ In general, rank(A) < |A|, and vectors in A are linearly independent if
and only if rank(A4) = |A|.

e If A, B are such that rank(A) = |A| and rank(B) = |B|, with
|A| < |B|, then the space spanned by B is greater, and we can find a
vector in B that is linearly independent of the space spanned by
vectors in A.

@ To stress this point, note that the above condition is |A| < |B|, not
A C B which is sufficient (to be able to find an independent vector)
but not required.
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Independence
[RERNRRN

On Rank

o Let rank : 2V — Z, be the rank function.

@ In general, rank(A) < |A|, and vectors in A are linearly independent if
and only if rank(A4) = |A|.

e If A, B are such that rank(A) = |A| and rank(B) = |B|, with
|A| < |B|, then the space spanned by B is greater, and we can find a
vector in B that is linearly independent of the space spanned by
vectors in A.

@ To stress this point, note that the above condition is |A| < |B|, not
A C B which is sufficient (to be able to find an independent vector)
but not required.

@ In other words, given A, B with rank(A) = |A| & rank(B) = |B|, then
|A| < |B| < 3 an b € B such that rank(AU {b}) = | 4| + 1.
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Independence
(NERRRRN

Spanning trees/forests

o We are given a graph G = (V, E), and consider the edges E = E(G)
as an index set. -Vl _m

o Consider the |V| x |E| incidence matrix of undirected graph G, which
is the matrix X¢ = (Zu.e)vev(q),ecE(G) Where

. — {1 !fUEe (5.89)

’ 0 ifude

1 2 3 4 5 6 7 8 9 10 11 12
1/1/10 0 0 0 0 O0O0 O O O
21 6f1- 01 0 0 OO 0O 0 O
310020 1 01 0 00O O 0 O
410 0¢1 1 0 01 1.0 0 0 O
5(0 0 0001 1 00 1 0 O
610 0 0000011 0 1 O
7{0 0001 0OOO0OT1 O 0 1
8\0 0 0O 0OO O OOO0OT1 1 1

(5.90)
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Independence
(NRT RN

Spanning trees/forests & incidence matrices

@ We are given a graph G = (V, E), we can arbitrarily orient the graph
(make it directed) consider again the edges £ = E(G) as an index set.

e Consider instead the |V| x |E| incidence matrix of undirected graph G,
which is the matrix X = (Zv.e)vev(G)ecE(a) Where

1 ifveet
rpe=4—-1 ifvee (5.91)
0 ifvéee

and where e™ is the tail and e~ is the head of (now) directed edge e.

—

T e
0\&7& 7
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Independence

Spanning trees/forests & incidence matrices

@ A directed version of the graph
(right) and its adjacency matrix
(below).

@ Orientation can be arbitrary.

@ Note, rank of this matrix is 7.

1 3 4 5 6 7 8 9 10 11 12
1 /-1 1 0 0 0 0 0 0 0 0 0 0
211 0 -1 0 1 0 0 0 0 0 0 0
310 -1 0 1 0 -1 0 0 0 0 0 0
41 0 0 1 -1 0 0 1 (=1 0 0 0 0
51 0 0 0 0 0 1 -1 0 0 1 0 0
61 0 0 0 0 0 0 0 1 -1 0 -1 0
7 O 0 0 0 -1 0 0 0 1 0 0 1
8\ 0 0 0 0 0 0 0 0 o -1 1 -1
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Independence
(NRRNR AN

Spanning trees

@ We can consider edge-induced subgraphs and the corresponding matrix
columns.

(5.92)

0O O Ui W N+
OO OO OO

Here, rank({z1}) = 1.
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Independence
(NRRNR AN

Spanning trees

@ We can consider edge-induced subgraphs and the corresponding matrix
columns.

1 2
1 /-1 1
21 1 0
31 0 -1
41 0 0
s oo 0 (5.92)
6] 0 0
7{ O 0
8\ 0 0

Here, rank({z1,x2}) = 2.
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Independence
(NRRNR AN

Spanning trees

@ We can consider edge-induced subgraphs and the corresponding matrix
columns.

1 2 3
1/-1 1 0
21 1 0 -1
310 -1 0
41 0 0 1

5.92

51 0 0 0 ( )
6] 0 0 0
71 O 0 0
8\ 0 0 0

Here, rank({z1, 2, z3}) = 3.
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Independence

Spanning trees

@ We can consider edge-induced subgraphs and the corresponding matrix
columns.

1 2 3 5
1/-1 1 0 0
21 1 0 -1 1
310 -1 0 0
410 0 1 0

92
500 0 0 0 (5.92)
6l 0o 0o o0 o0
710 0o o -1
8\0 0 0 0

Here, rank({z1, 22, z3,25}) = 4.
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Independence
(NRRNR AN

Spanning trees

@ We can consider edge-induced subgraphs and the corresponding matrix
columns.

1 2 3 4 5
1/-=1 1 0 0 0
211 0 -1 0 1
310 -1 0 1 0
40 0 1 -1 0

92
510 0 0 0 o0 (5:92)
6/l 0 0 0 0 0
710 o 0o 0o -1
8\0 0 0 0 0

Here, rank({z1, x2, 3, x4, x5}) = 4.
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Independence
(NRRNR AN

Spanning trees

@ We can consider edge-induced subgraphs and the corresponding matrix
columns.

1 2 3 4
1 /-1 1 0 0
2 1 0 -1 0
3 0O -1 0 1
4 0 0 1 -1
5.92
5 0 0 0 0 ( )
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
Here, rank({z1, z2,x3,24}) = 3 since x4 = —x1 — T3 — X3.
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Independence
(NRRRRE N

Spanning trees, rank, and connected components

@ In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.
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Independence
(NRRRRE N

Spanning trees, rank, and connected components

@ In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.

@ This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.
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Independence
(NRRRRE N

Spanning trees, rank, and connected components

@ In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.

@ This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.

@ Consider a “rank” function defined as follows: given a set of edges
A C E(G), the rank(A) is the size of the largest forest in the A-edge
induced subgraph of G.
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Independence
(NRRRRE N

Spanning trees, rank, and connected components

@ In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.

@ This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.

@ Consider a “rank” function defined as follows: given a set of edges
A C E(G), the rank(A) is the size of the largest forest in the A-edge
induced subgraph of G.

@ The rank of the entire graph then is then a spanning forest of the
graph (spanning tree if the graph is connected).
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Independence
(NRRRRE N

Spanning trees, rank, and connected components

@ In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.

@ This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.

@ Consider a “rank” function defined as follows: given a set of edges
A C E(G), the rank(A) is the size of the largest forest in the A-edge
induced subgraph of G.

@ The rank of the entire graph then is then a spanning forest of the
graph (spanning tree if the graph is connected).

@ The rank of the graph is rank(E(G)) = |V| — k where k is the number
of connected components of G.
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Independence
(NRRRRE N

Spanning trees, rank, and connected components

@ In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.

@ This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.

@ Consider a “rank” function defined as follows: given a set of edges
A C E(G), the rank(A) is the size of the largest forest in the A-edge
induced subgraph of G.

@ The rank of the entire graph then is then a spanning forest of the
graph (spanning tree if the graph is connected).

@ The rank of the graph is rank(E(G)) = |V| — k where k is the number
of connected components of G.

e For A C E(G), define kg (A) as the number of connected components
of the edge-induced spanning subgraph (V(G), A). Recall, kg(A) is
supermodular, so |V(G)| — kg (A) is submodular.
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Independence
(NRRRRE N

Spanning trees, rank, and connected components

@ In general, whenever the edges specify a cycle, there will be a linear
dependence between the corresponding set of vectors in the matrix.

@ This means that all forests in the graph correspond to a set of linearly
independent column vectors in the matrix.

@ Consider a “rank” function defined as follows: given a set of edges
A C E(G), the rank(A) is the size of the largest forest in the A-edge
induced subgraph of G.

@ The rank of the entire graph then is then a spanning forest of the
graph (spanning tree if the graph is connected).

@ The rank of the graph is rank(E(G)) = |V| — k where k is the number
of connected components of G.

e For A C E(G), define kg (A) as the number of connected components
of the edge-induced spanning subgraph (V(G), A). Recall, kg(A) is
supermodular, so |V(G)| — kg(A) is submodular.

e We have rank(A) = |V(G)| — ka(A).
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Independence
(NNRNNAY |

Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E — R is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.

o Given a tree T', the cost of the tree is cost(T") = ) . w(e), the sum
of the weights of the edges.

@ There are several algorithms for MST:

Algorithm 1: Boriivka's Algorithm

F + 0 /* We build up the edges of a forest in F’ */
while G(V, F') is disconnected do
forall the components C; of F' do
L F < FU/{e;} for e; = the min-weight edge out of Cj;

B W NN =
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Independence
(NNRNNAY |

Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E — R is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.

o Given a tree T', the cost of the tree is cost(T") = ) . w(e), the sum
of the weights of the edges.

@ There are several algorithms for MST:
Algorithm 2: Jarnik/Prim/Dijkstra Algorithm

17T +0;
2 while T is not a spanning tree do
L T < T U{e} for e = the minimum weight edge extending the

w

tree T' to a new vertex ;
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Independence
(NNRNNAY |

Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E— R is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.

@ Given a tree T', the cost of the tree is cost(T') = > . w(e), the sum
of the weights of the edges.

@ There are several algorithms for MST:
Algorithm 3: Kruskal's Algorithm
Sort the edges so that w(e;) < w(ez) < -+ <w(em) ;
T+ (V(G),0)=(V,0);
for i =1 tom do
if E(T)U{e;} does not create a cycle in T' then
| E(T) « E(T) U{e} ;

a B W =
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Independence
(NNRNNAY |

Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E— R is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.

o Given a tree T', the cost of the tree is cost(T") = ) . w(e), the sum
of the weights of the edges.

@ There are several algorithms for MST:

@ These three algorithms are all guaranteed to find the optimal minimum
spanning tree in (low order) polynomial time.
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Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E— R is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.

o Given a tree T', the cost of the tree is cost(T") = ) . w(e), the sum
of the weights of the edges.

@ There are several algorithms for MST:

@ These three algorithms are all guaranteed to find the optimal minimum
spanning tree in (low order) polynomial time.

@ These algorithms are all related to the “greedy” algorithm. l.e., “add
next whatever looks best”.
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Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E— R is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.

o Given a tree T', the cost of the tree is cost(T") = ) . w(e), the sum
of the weights of the edges.

@ There are several algorithms for MST:

@ These three algorithms are all guaranteed to find the optimal minimum
spanning tree in (low order) polynomial time.

@ These algorithms are all related to the “greedy” algorithm. l.e., “add
next whatever looks best”.

@ These algorithms will also always find a basis (a set of linearly
independent vectors that span the underlying space) in the matrix
example we saw earlier.
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Spanning Tree Algorithms

@ We are now given a positive edge-weighted connected graph
G = (V, E,w) where w : E— R is a modular function the edges of
the graph. The goal is to find the minimum spanning tree (MST) of
the graph.

o Given a tree T', the cost of the tree is cost(T") = ) . w(e), the sum
of the weights of the edges.

@ There are several algorithms for MST:

@ These three algorithms are all guaranteed to find the optimal minimum
spanning tree in (low order) polynomial time.

@ These algorithms are all related to the “greedy” algorithm. l.e., “add
next whatever looks best”.

@ These algorithms will also always find a basis (a set of linearly
independent vectors that span the underlying space) in the matrix
example we saw earlier.

@ The above are all examples of a matroid, which is the fundamental

reason why the greedy algorithms work.
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From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.
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Matroids
[NERRENRNRRRNNNT]

From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.
@ Let Z be a set of all subsets of V' such that for any I € Z, the vectors
indexed by I are linearly independent.
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Matroids
[NERRENRNRRRNNNT]

From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

@ Let 7 be a set of all subsets of V' such that for any I € Z, the vectors
indexed by I are linearly independent.

@ Given a set B € 7 of linearly independent vectors, then any subset
A C B is also linearly independent.
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Matroids
[NERRENRNRRRNNNT]

From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

@ Let 7 be a set of all subsets of V' such that for any I € Z, the vectors
indexed by I are linearly independent.

o Given a set B € T of linearly independent vectors, then any subset
A C B is also linearly independent. Hence, Z is down-closed or
“subclusive”, under subsets.
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Matroids
[NERRENRNRRRNNNT]

From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

@ Let 7 be a set of all subsets of V' such that for any I € Z, the vectors
indexed by I are linearly independent.

o Given a set B € T of linearly independent vectors, then any subset
A C B is also linearly independent. Hence, Z is down-closed or
“subclusive”, under subsets. In other words,

ACBand BeZI=AcTl (5.93)
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Matroids
[NERRENRNRRRNNNT]

From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

@ Let 7 be a set of all subsets of V' such that for any I € Z, the vectors
indexed by I are linearly independent.

o Given a set B € T of linearly independent vectors, then any subset
A C B is also linearly independent. Hence, Z is down-closed or
“subclusive”, under subsets. In other words,

ACBandBeI=A€eT (5.93)

@ maxInd: Inclusionwise maximal independent subsets (or bases) of any set
BCV.

maxind(B) £ {ACB:AcZandVve B\ A, AU{v} ¢} (5.94)
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Matroids
[NERRENRNRRRNNNT]

From Matrix Rank — Matroid

So V is set of column vector indices of a matrix.

@ Let 7 be a set of all subsets of V' such that for any I € Z, the vectors

indexed by I are linearly independent.

Given a set B € T of linearly independent vectors, then any subset
A C B is also linearly independent. Hence, Z is down-closed or
“subclusive”, under subsets. In other words,

ACBandBeI=A€eT (5.93)

maxInd: Inclusionwise maximal independent subsets (or bases) of any set
BCV.

maxind(B) 2 {ACB:AcZandVwv e B\ A, AU{v} ¢TI} (5.94)

Given any set B C V of vectors, all maximal (by set inclusion) subsets of
linearly independent vectors are the same size. That is, for all B C V,

VAl,AQ S maxlnd(B), ‘Al‘ = |Ag‘ (595)
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From Matrix Rank — Matroid

@ Thus, for all I € Z, the matrix rank function has the property
r(I) = |I| (5.96)
and for any B ¢ Z,

r(B) =max{|A|: AC B and A €7} <|B| (5.97)
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Matroid

@ Matroids abstract the notion of linear independence of a set of vectors
to general algebraic properties.
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Matroids
(NLRNRRNNARRNRRNT]

Matroid

@ Matroids abstract the notion of linear independence of a set of vectors
to general algebraic properties.

@ In a matroid, there is an underlying ground set, say E (or V'), and a
collection of subsets of E that correspond to independent elements.

F50/64 (pg.135/183
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(NLRNRRNRRRRNY]

Matroid

@ Matroids abstract the notion of linear independence of a set of vectors
to general algebraic properties.

@ In a matroid, there is an underlying ground set, say E (or V'), and a
collection of subsets of E that correspond to independent elements.

@ There are many definitions of matroids that are mathematically
equivalent, we'll see some of them here.
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Independence System

Definition 5.6.1 (set system)

A (finite) ground set E and a set of subsets of E, (} # Z C 2 is called a
set system, notated (£, 7).

@ Set systems can be arbitrarily complex since, as stated, there is no
systematic method (besides exponential-cost exhaustive search) to
determine if a given set S C F has S € 7.
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Matroids
(NN ERRRNARRNRRNT]

Independence System

Definition 5.6.1 (set system)

A (finite) ground set E and a set of subsets of E, (} # Z C 2 is called a
set system, notated (£, 7).

@ Set systems can be arbitrarily complex since, as stated, there is no
systematic method (besides exponential-cost exhaustive search) to
determine if a given set S C F has S € 7.

@ One useful property is “heredity.” Namely, a set system is a hereditary
set system if for any A C B € Z, we have that A € 7.
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Independence System

Definition 5.6.2 (independence (or hereditary) system)

A set system (V,Z) is an independence system if
) € Z (emptyset containing) (1)
and
VIeZ,JCI=JeZ (subclusive) (12)

@ Property 12 is called “down monotone,” “down closed,” or “subclusive”
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Matroids
(NRRY NRRNARRNRRNT]

Independence System

Definition 5.6.2 (independence (or hereditary) system)

A set system (V,Z) is an independence system if
) € Z (emptyset containing) (1)
and
VIeZ,JCI=JeZ (subclusive) (12)

@ Property 12 is called “down monotone,” “down closed,” or “subclusive”
e Example: E = {1,2,3,4}. With Z = {0, {1}, {1,2},{1,2,4}}.
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Matroids
(NRRY NRRNARRNRRNT]

Independence System

Definition 5.6.2 (independence (or hereditary) system)

A set system (V,Z) is an independence system if
) € Z (emptyset containing) (1)
and
VIeZ,JCI=JeZ (subclusive) (12)

@ Property 12 is called “down monotone,” “down closed,” or “subclusive”

e Example: E ={1,2,3,4}. With Z = {0, {1}, {1,2},{1,2,4}}.

@ Then (E,Z) is a set system, but not an independence system since it
is not down closed (i.e., we have {1,2} € Z but not {2} € 7).
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Matroids
(NRRY NRRNARRNRRNT]

Independence System

Definition 5.6.2 (independence (or hereditary) system)

A set system (V,Z) is an independence system if
) € Z (emptyset containing) (1)
and
VIeZ,JCI=JeZ (subclusive) (12)

@ Property 12 is called “down monotone,” “down closed,” or “subclusive”

e Example: E ={1,2,3,4}. With Z = {0, {1}, {1,2},{1,2,4}}.

@ Then (E,Z) is a set system, but not an independence system since it
is not down closed (i.e., we have {1,2} € Z but not {2} € 7).

o With Z = {0, {1}, {2},{1,2}}, then (E,Z) is now an independence
(hereditary) system.
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Independence System

1 23 456 7 8 1 2 3 4 5 6 7 8
00112131 I Y U R
01 1 0 2 0 2 4]|= T4 X9 T3 Ty Ty Tg X7 Iy (5.98)
111003165 (R N A

@ Given any set of linearly independent vectors A, any subset B C A will
also be linearly independent.
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Independence System

1
0
0
1

1 2 3 4 5 6 7 8
A

Ty wy w3 14 w5 w6 w7 w8 | (5.98)

= = O N
o= =W
S O
S N N Ot
w o = o
[l NCRERGURE N |
Ut = = o
I

@ Given any set of linearly independent vectors A, any subset B C A will
also be linearly independent.

@ Given any forest Gy that is an edge-induced sub-graph of a graph G,
any sub-graph of Gy is also a forest.
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Independence System

1
0
0
1

1 2 3 4 5 6 7 8
A

Ty wy w3 14 w5 w6 w7 w8 | (5.98)

— = O N
— = =W
O O =
S NN Ot
w O = O
_ NN W
Ul =~ =
Il

@ Given any set of linearly independent vectors A, any subset B C A will
also be linearly independent.

@ Given any forest Gy that is an edge-induced sub-graph of a graph G,
any sub-graph of G/ is also a forest.

@ So these both constitute independence systems.
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Matroid

Independent set definition of a matroid is perhaps most natural. Note, if
J € 7, then J is said to be an independent set.

Definition 5.6.3 (Matroid)

A set system (E,Z) is a Matroid if
(1) 0eZ
2y vVieZ,JcI=Jel

(I13) VI,J € Z, with |I| = |J| + 1, then there exists € I \ J such that
JU{z} el

Why is (11) is not redundant given (12)?
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Matroids
(NRRNNT ANRRRNRRNT]

Matroid

Independent set definition of a matroid is perhaps most natural. Note, if
J € 7, then J is said to be an independent set.

Definition 5.6.3 (Matroid)

A set system (E,Z) is a Matroid if
(1) 0eZ
2y vVieZ,JcI=Jel

(I13) VI,J € Z, with |I| = |J| + 1, then there exists € I \ J such that
JU{z} el

Why is (11) is not redundant given (12)? Because without (I1) could have a
non-matroid where Z = {}.
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On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935), but
already then found instances of objects with those properties not based
on a matrix.
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On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935), but
already then found instances of objects with those properties not based
on a matrix.

@ Takeo Nakasawa, 1935, also early work.
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Matroids
(NRRNRRY NRRRNRRNT]

On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935), but
already then found instances of objects with those properties not based
on a matrix.

@ Takeo Nakasawa, 1935, also early work.

@ Forgotten for 20 years until mid 1950s.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 5 - Apr 11th, 2016 F55/64 (pg.150/183



Matroids
(NRRNRRY NRRRNRRNT]

On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935), but
already then found instances of objects with those properties not based
on a matrix.

@ Takeo Nakasawa, 1935, also early work.
e Forgotten for 20 years until mid 1950s.
@ Matroids are powerful and flexible combinatorial objects.
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On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935), but

already then found instances of objects with those properties not based
on a matrix.

Takeo Nakasawa, 1935, also early work.

Forgotten for 20 years until mid 1950s.

Matroids are powerful and flexible combinatorial objects.

The rank function of a matroid is already a very powerful submodular

function (perhaps all we need for many problems).
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Matroids
(NRRNRRY NRRRNRRNT]

On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935), but

already then found instances of objects with those properties not based
on a matrix.

Takeo Nakasawa, 1935, also early work.

Forgotten for 20 years until mid 1950s.

Matroids are powerful and flexible combinatorial objects.

The rank function of a matroid is already a very powerful submodular

function (perhaps all we need for many problems).

@ Understanding matroids crucial for understanding submodularity.
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On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935), but

already then found instances of objects with those properties not based

on a matrix.

Takeo Nakasawa, 1935, also early work.

Forgotten for 20 years until mid 1950s.

Matroids are powerful and flexible combinatorial objects.

The rank function of a matroid is already a very powerful submodular

function (perhaps all we need for many problems).

Understanding matroids crucial for understanding submodularity.

e Matroid independent sets (i.e., A s.t. r(A) = |A|) are useful constraint
set, and fast algorithms for submodular optimization subject to one (or
more) matroid independence constraints exist.
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On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935), but
already then found instances of objects with those properties not based
on a matrix.

Takeo Nakasawa, 1935, also early work.

Forgotten for 20 years until mid 1950s.

Matroids are powerful and flexible combinatorial objects.

The rank function of a matroid is already a very powerful submodular

function (perhaps all we need for many problems).

Understanding matroids crucial for understanding submodularity.

e Matroid independent sets (i.e., A s.t. r(A) = |A|) are useful constraint
set, and fast algorithms for submodular optimization subject to one (or
more) matroid independence constraints exist.

o Crapo & Rota preferred the term “combinatorial geometry”, or more
specifically a “pregeometry” and said that pregeometries are “often
described by the ineffably cacaphonic [sic] term 'matroid’, which we
prefer to avoid in favor of the term 'pregeometry’.”
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Matroid

Slight modification (non unit increment) that is equivalent.

Definition 5.6.4 (Matroid-II)

A set system (E,Z) is a Matroid if
(11" 0ez
(I2'yVIeZ,JCcI= JeZ (or “down-closed”")

(13") VI,J € Z, with |I| > |J|, then there exists = € I \ J such that
JUu{z}eZ

Note (11)=(I1"), (12)=(12"), and we get (13)=(I3") using induction.
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Matroids, independent sets, and bases

@ Independent sets: Given a matroid M = (E,Z), a subset A C E'is
called independent if A € Z and otherwise A is called dependent.
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Matroids
(NRRNRRRNE ARNRRNT]

Matroids, independent sets, and bases

@ Independent sets: Given a matroid M = (E,Z), a subset A C E'is
called independent if A € Z and otherwise A is called dependent.

@ A base of U C E: For U C FE, a subset B C U is called a base of U if
B is inclusionwise maximally independent subset of U. Thatis, B € Z
and thereisno Z € Z with BC Z CU.
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Matroids
(NRRNRRRNE ARNRRNT]

Matroids, independent sets, and bases

@ Independent sets: Given a matroid M = (E,Z), a subset A C E'is
called independent if A € Z and otherwise A is called dependent.

@ A base of U C E: For U C FE, a subset B C U is called a base of U if
B is inclusionwise maximally independent subset of U. Thatis, B €T
and thereisno Z € Z with BC Z CU.

@ A base of a matroid: If U = F, then a “base of E" is just called a
base of the matroid M (this corresponds to a basis in a linear space, or
a spanning forest in a graph, or a spanning tree in a connected graph).
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Matroids - important property

Proposition 5.6.5
In a matroid M = (E,Z), for any U C E(M), any two bases of U have the

same size.
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Matroids
(NRRNRRRNRY FRRRNN]

Matroids - important property

Proposition 5.6.5
In a matroid M = (E,Z), for any U C E(M), any two bases of U have the

same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.
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Matroids
(NRRNRRRNRY FRRRNN]

Matroids - important property

Proposition 5.6.5
In a matroid M = (E,Z), for any U C E(M), any two bases of U have the

same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

e In fact, under (I1),(12), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.
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(NRRNRRRNRY FRRRNN]

Matroids - important property

Proposition 5.6.5
In a matroid M = (E,Z), for any U C E(M), any two bases of U have the

same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

o In fact, under (I1),(12), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 5.6.6 (Matroid)

A set system (V,Z) is a Matroid if
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Matroids
(NRRNRRRNRY FRRRNN]

Matroids - important property

Proposition 5.6.5
In a matroid M = (E,Z), for any U C E(M), any two bases of U have the

same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

o In fact, under (I1),(12), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 5.6.6 (Matroid)

A set system (V,Z) is a Matroid if
(I1") @ € Z (emptyset containing)
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Matroids
(NRRNRRRNRY FRRRNN]

Matroids - important property

Proposition 5.6.5
In a matroid M = (E,Z), for any U C E(M), any two bases of U have the
same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

o In fact, under (I1),(12), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 5.6.6 (Matroid)

A set system (V,Z) is a Matroid if
(I11") @ € Z (emptyset containing)
(I12") VI €Z,J C I = J € Z (down-closed or subclusive)
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Matroids
(NRRNRRRNRY FRRRNN]

Matroids - important property

Proposition 5.6.5
In a matroid M = (E,Z), for any U C E(M), any two bases of U have the
same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

o In fact, under (I1),(12), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 5.6.6 (Matroid)

A set system (V,Z) is a Matroid if
(I11") @ € Z (emptyset containing)
(I2") VI €Z,J C I = J € Z (down-closed or subclusive)

(13") VX CV, and Iy, I € maxInd(X), we have |I;| = |I2| (all maximally
independent subsets of X have the same size).

4
F58/64 (pg.166,/183
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of U
have the same size.
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(NRRNRRRNARY ARRNT]

Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of U
have the same size.

@ The common size of all the bases of U is called the rank of U, denoted
rar(U) or just r(U) when the matroid in equation is unambiguous.
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of U
have the same size.

@ The common size of all the bases of U is called the rank of U, denoted
rar(U) or just r(U) when the matroid in equation is unambiguous.

e 7(E) = r(g ) is the rank of the matroid, and is the common size of all
the bases of the matroid.
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of U
have the same size.

@ The common size of all the bases of U is called the rank of U, denoted
rar(U) or just r(U) when the matroid in equation is unambiguous.

o 7(E) = r(p ) is the rank of the matroid, and is the common size of all
the bases of the matroid.

@ We can a bit more formally define the rank function this way.
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of U
have the same size.

@ The common size of all the bases of U is called the rank of U, denoted
rar(U) or just r(U) when the matroid in equation is unambiguous.

o 7(E) = r(p ) is the rank of the matroid, and is the common size of all
the bases of the matroid.

@ We can a bit more formally define the rank function this way.

Definition 5.6.7 (matroid rank function)

The rank function of a matroid is a function r : 2¥ — 7Z_ defined by

T(A):max{]X\:XQA,XEI}:I)]?&%(\AOX| (5.99)
€
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of U
have the same size.

@ The common size of all the bases of U is called the rank of U, denoted
rar(U) or just r(U) when the matroid in equation is unambiguous.

o 7(E) = r(p ) is the rank of the matroid, and is the common size of all
the bases of the matroid.

@ We can a bit more formally define the rank function this way.

Definition 5.6.7 (matroid rank function)

The rank function of a matroid is a function r : 2¥ — 7Z_ defined by

T(A):max{]X\:XQA,XEI}:I)]?&%(\AOX| (5.99)
€

@ From the above, we immediately see that r(A) < |A].
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of U
have the same size.

@ The common size of all the bases of U is called the rank of U, denoted
rar(U) or just r(U) when the matroid in equation is unambiguous.

o 7(E) = r(p ) is the rank of the matroid, and is the common size of all
the bases of the matroid.

@ We can a bit more formally define the rank function this way.

Definition 5.6.7 (matroid rank function)

The rank function of a matroid is a function r : 2¥ — 7Z_ defined by

T(A):max{]X\:XQA,XEI}:I)]?&%(\AOX| (5.99)
€

@ From the above, we immediately see that r(A) < |A].
@ Moreover, if r(A) = |A|, then A € Z, meaning A is independent (in
this case, A is a self base).
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Matroids, other definitions using matroid rank r : 2V — Z,

Definition 5.6.8 (closed/flat/subspace)

A subset A C E is closed (equivalently, a flat or a subspace) of matroid M
if forallz € E\ A, r(AU{x}) =r(A) + 1.

Definition: A hyperplane is a flat of rank (M) — 1.
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Matroids, other definitions using matroid rank r : 2V — Z,

Definition 5.6.8 (closed/flat/subspace)

A subset A C E is closed (equivalently, a flat or a subspace) of matroid M
if forallz € E\ A, r(AU{x}) =r(A) + 1.

Definition: A hyperplane is a flat of rank (M) — 1.

Definition 5.6.9 (closure)

Given A C E, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(A4)}.
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Matroids, other definitions using matroid rank r : 2V — Z,

Definition 5.6.8 (closed/flat/subspace)

A subset A C E is closed (equivalently, a flat or a subspace) of matroid M
if forallz € E\ A, r(AU{x}) =r(A) + 1.

Definition: A hyperplane is a flat of rank (M) — 1.

Definition 5.6.9 (closure)

Given A C E, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(A4)}.

Therefore, a closed set A has span(A) = A.
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Matroids, other definitions using matroid rank r : 2V — Z,

Definition 5.6.8 (closed/flat/subspace)

A subset A C E is closed (equivalently, a flat or a subspace) of matroid M
if forallz € E\ A, r(AU{x}) =r(A) + 1.

Definition: A hyperplane is a flat of rank (M) — 1.

Definition 5.6.9 (closure)

Given A C E, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(A4)}.

Therefore, a closed set A has span(A) = A.

Definition 5.6.10 (circuit)

A subset A C E is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if r(A) < |A| and for any a € A, r(A\ {a}) = |A| —1).
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Matroids

Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 5.6.11 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then the
following are equivalent.

@ B is the collection of bases of a matroid;
@ ifB,B' €B,andx € B'\ B, then B'—x+y € B forsomey € B\ B'.
@ IfB,B'€B,andx € B'\ B, then B—y+x € B forsomey € B\ B'.

Properties 2 and 3 are called “exchange properties.”
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Matroids

Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 5.6.11 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then the
following are equivalent.

@ B is the collection of bases of a matroid;
@ ifB,B' €B,andx € B'\ B, then B'—x+y € B forsomey € B\ B'.
@ IfB,B'€B,andx € B'\ B, then B—y+x € B forsomey € B\ B'.

Properties 2 and 3 are called “exchange properties.”
Proof here is omitted but think about this for a moment in terms of linear
spaces and matrices, and (alternatively) spanning trees.
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Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is not
surprising that circuits can also characterize a matroid.
Theorem 5.6.12 (Matroid by circuits)

Let E be a set and C be a collection of subsets of I that satisfy the
following three properties:

Q (Cl): 0 écC
Q (C2) ifCl,Cz € C and Cy C Cy, then C1 = Cy.

Q (C3): if C1,Cy € C with Cy # Cy, and e € C; N Cy, then there exists
a C3 € C such that C3 C (01 U CQ) \ {e}
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Matroids by circuits

Several circuit definitions for matroids.

Theorem 5.6.13 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E/, such that
no two sets in C are contained in each other. Then the following are
equivalent.

@ C is the collection of circuits of a matroid;
Q@ ifC,C"eC,andxz € CNC’, then (CUC")\ {x} contains a set in C;

Q@ ifC,C"eC,andz e CNC’', andy € C\ ', then (CUC")\ {z}
contains a set in C containing y;
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Matroids by circuits

Several circuit definitions for matroids.

Theorem 5.6.13 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E/, such that
no two sets in C are contained in each other. Then the following are
equivalent.

@ C is the collection of circuits of a matroid;
Q@ ifC,C"eC,andxz € CNC’, then (CUC")\ {x} contains a set in C;

Q@ ifC,C"eC,andz e CNC’', andy € C\ ', then (CUC")\ {z}
contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and
matrices, and spanning trees.
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Matroids by submodular functions

Theorem 5.6.14 (Matroid by submodular functions)

Let f:2F — 7 be a integer valued monotone non-decreasing submodular
function. Define a set of sets as follows:

C(f)= {C’ C E: C is non-empty,
is inclusionwise-minimal,

and has £(C) < |C] } (5.100)

Then C(f) is the collection of circuits of a matroid on E.

Inclusionwise-minimal in this case means that if C' € C(f), then there exists
no C' C C with C’" € C(f) (i.e., C" C C would either be empty or have
f(C") > |C"]). Also, recall inclusionwise-minimal in Definition 5.6.10, the
definition of a circuit.
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