Submodular Functions, Optimization, and Applications to Machine Learning — Spring Quarter, Lecture 5 —

http://www.ee.washington.edu/people/faculty/bilmes/classes/ee596b_spring_2016/

Prof. Jeff Bilmes

University of Washington, Seattle Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

Apr 11th, 2016

EE596b/Spring 2016/Submodularity - Lecture 5 - Apr 11th, 2016

F1/64 (pg.1/183)

- Read chapters 2 and 3 from Fujishige's book.
- Read chapter 1 from Fujishige's book.

Logistics

Review

- Homework 1 is now available at our assignment dropbox (https://canvas.uw.edu/courses/1039754/assignments), due (electronically) Friday at 11:55pm.
- Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google hangout (set up meeting via our our discussion board (https://canvas.uw.edu/courses/1039754/discussion_topics)).

Logistics

Review

Class Road Map - IT-I

- L1(3/28): Motivation, Applications, & Basic Definitions
- L2(3/30): Machine Learning Apps (diversity, complexity, parameter, learning target, surrogate).
- L3(4/4): Info theory exs, more apps, definitions, graph/combinatorial examples, matrix rank example, visualization
- L4(4/6): Graph and Combinatorial Examples, matrix rank, Venn diagrams, examples of proofs of submodularity, some useful properties
- L5(4/11): Examples & Properties, Other Defs., Independence, Matroids
- L6(4/13):
- L7(4/18):
- L8(4/20):
- L9(4/25):
- L10(4/27):

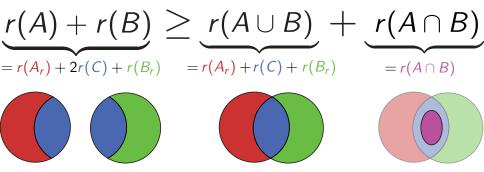
- L11(5/2):
- L12(5/4):
- L13(5/9):
- L14(5/11):
- L15(5/16):
- L16(5/18):
- L17(5/23):
- L18(5/25):
- L19(6/1):
- L20(6/6): Final Presentations maximization.

Finals Week: June 6th-10th, 2016.

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 5 - Apr 11th, 2016

The Venn and Art of Submodularity



EE596b/Spring 2016/Submodularity - Lecture 5 - Apr 11th, 2016

F5/64 (pg.5/183)

Review

• Adding modular functions to submodular functions preserves submodularity.

- Adding modular functions to submodular functions preserves submodularity.
- Summing: if $\alpha_i \ge 0$ and $f_i: 2^V \to \mathbb{R}$ is submodular, then so is $\sum_i \alpha_i f_i$.

Review

- Adding modular functions to submodular functions preserves submodularity.
- Summing: if $\alpha_i \ge 0$ and $f_i: 2^V \to \mathbb{R}$ is submodular, then so is $\sum_i \alpha_i f_i$.
- Restrictions: $f'(A) = f(A \cap S)$

- Adding modular functions to submodular functions preserves submodularity.
- Summing: if $\alpha_i \ge 0$ and $f_i: 2^V \to \mathbb{R}$ is submodular, then so is $\sum_i \alpha_i f_i$.
- Restrictions: $f'(A) = f(A \cap S)$
- max: $f(A) = \max_{j \in A} c_j$ and facility location.

Logistics

- Adding modular functions to submodular functions preserves submodularity.
- Summing: if $\alpha_i \ge 0$ and $f_i: 2^V \to \mathbb{R}$ is submodular, then so is $\sum_i \alpha_i f_i$.
- Restrictions: $f'(A) = f(A \cap S)$
- max: $f(A) = \max_{j \in A} c_j$ and facility location.
- Log determinant $f(A) = \log \det(\Sigma_A)$

Logistics

Review

- Adding modular functions to submodular functions preserves submodularity.
- Summing: if $\alpha_i \ge 0$ and $f_i: 2^V \to \mathbb{R}$ is submodular, then so is $\sum_i \alpha_i f_i$.
- Restrictions: $f'(A) = f(A \cap S)$
- max: $f(A) = \max_{j \in A} c_j$ and facility location.
- Log determinant $f(A) = \log \det(\Sigma_A)$
- f(A) = g(m(A)) submodular when g concave and m non-negative modular.

Logistics

Review

- Adding modular functions to submodular functions preserves submodularity.
- Summing: if $\alpha_i \ge 0$ and $f_i: 2^V \to \mathbb{R}$ is submodular, then so is $\sum_i \alpha_i f_i$.
- Restrictions: $f'(A) = f(A \cap S)$
- max: $f(A) = \max_{j \in A} c_j$ and facility location.
- Log determinant $f(A) = \log \det(\Sigma_A)$
- f(A) = g(m(A)) submodular when g concave and m non-negative modular.
- Definition of monotone non-decreasing.

Logistics

Examples and Properties

Other Submodular Defs.

Independence

Matroids

Composition of non-decreasting submodular and non-decreasing concave

Theorem 5.3.1

Given two functions, one defined on sets

$$f: 2^V \to \mathbb{R} \tag{5.1}$$

and another continuous valued one:

$$g: \mathbb{R} \to \mathbb{R} \tag{5.2}$$

the composition formed as $h = g \circ f : 2^V \to \mathbb{R}$ (defined as h(S) = g(f(S))) is nondecreasing submodular, if g is non-decreasing concave and f is nondecreasing submodular.

Examples and Properties

Other Submodular Defs.

Independence

Matroids

Monotone difference of two functions

Let f and g both be submodular functions on subsets of V and let $(f-g)(\cdot)$ be either monotone increasing or monotone decreasing. Then $h:2^V\to R$ defined by

$$h(A) = \min(f(A), g(A)) \tag{5.3}$$

is submodular.

Proof.If h(A) agrees with f on both X and Y (or g on both X and Y), and since $f(X) + f(Y) \ge f(X \cup Y) + f(X \cap Y)$ $g(X) + g(Y) \ge g(X \cup Y) + g(X \cap Y)$,(5.5)

the result (Equation 5.3 being submodular) follows since

$$\frac{f(X) + f(Y)}{g(X) + g(Y)} \ge \min(f(X \cup Y), g(X \cup Y)) + \min(f(X \cap Y), g(X \cap Y))$$
(5.6)

Examples and Properties

Other Submodular Defs.

Independence

Matroids

Monotone difference of two functions

...cont.

Otherwise, w.l.o.g.,
$$h(X) = f(X)$$
 and $h(Y) = g(Y)$, giving

$$h(X) + h(Y) = f(X) + g(Y) \ge f(X \cup Y) + f(X \cap Y) + g(Y) - f(Y)$$
(5.7)

Examples and Properties	Other Submodular Defs.	Independence	Matroids
Monotone dif	ference of two fund	ctions	

...cont.

Otherwise, w.l.o.g.,
$$h(X) = f(X)$$
 and $h(Y) = g(Y)$, giving

$$h(X) + h(Y) = f(X) + g(Y) \ge f(X \cup Y) + f(X \cap Y) + g(Y) - f(Y)$$
(5.7)

Assume the case where f-g is monotone increasing. Hence, $f(X\cup Y)+g(Y)-f(Y)\geq g(X\cup Y)$ giving

$$h(X) + h(Y) \ge g(X \cup Y) + f(X \cap Y) \ge h(X \cup Y) + h(X \cap Y)$$
 (5.8)

What is an easy way to prove the case where f - g is monotone decreasing?

Prof. Jeff Bilmes

Let $f: 2^V \to \mathbb{R}$ be an monotone increasing or decreasing submodular function and let k be a constant. Then the function $h: 2^V \to \mathbb{R}$ defined by

$$h(A) = \min(k, f(A)) \tag{5.9}$$

is submodular.

Let $f: 2^V \to \mathbb{R}$ be an monotone increasing or decreasing submodular function and let k be a constant. Then the function $h: 2^V \to \mathbb{R}$ defined by

$$h(A) = \min(k, f(A))$$
(5.9)

is submodular.

Proof.

For constant k, we have that (f - k) is increasing (or decreasing) so this follows from the previous result.

Let $f: 2^V \to \mathbb{R}$ be an monotone increasing or decreasing submodular function and let k be a constant. Then the function $h: 2^V \to \mathbb{R}$ defined by

$$h(A) = \min(k, f(A))$$
(5.9)

is submodular.

Proof.

For constant k, we have that (f - k) is increasing (or decreasing) so this follows from the previous result.

Note also, $g(a) = \min(k, a)$ for constant k is a non-decreasing concave function, so when f is monotone nondecreasing submodular, we can use the earlier result about composing a monotone concave function with a monotone submodular function to get a version of this.

Examples and Properties	Other Submodular Defs.	Independence	
More on Min - t	he saturate trick		

• In general, the minimum of two submodular functions is not submodular (unlike concave functions, closed under min).

Examples and Properties	Other Submodular Defs.	Independence	
More on Min	- the saturate trick		

- In general, the minimum of two submodular functions is not submodular (unlike concave functions, closed under min).
- However, when wishing to maximize two monotone non-decreasing submodular functions f, g, we can define function $h_{\alpha} : 2^V \to \mathbb{R}$ as

$$h_{\alpha}(A) = \frac{1}{2} \left(\min(\alpha, f(A)) + \min(\alpha, g(A)) \right)$$
(5.10)

then h_{α} is submodular, and $h_{\alpha}(A) \geq \alpha$ if and only if both $f(A) \geq \alpha$ and $g(A) \geq \alpha$, for constant $\alpha \in \mathbb{R}$.

Examples and Properties	Other Submodular Defs.	Independence	
More on Min	- the saturate trick		

- In general, the minimum of two submodular functions is not submodular (unlike concave functions, closed under min).
- However, when wishing to maximize two monotone non-decreasing submodular functions f, g, we can define function $h_{\alpha} : 2^V \to \mathbb{R}$ as

$$h_{\alpha}(A) = \frac{1}{2} \left(\min(\alpha, f(A)) + \min(\alpha, g(A)) \right)$$
(5.10)

then h_{α} is submodular, and $h_{\alpha}(A) \geq \alpha$ if and only if both $f(A) \geq \alpha$ and $g(A) \geq \alpha$, for constant $\alpha \in \mathbb{R}$.

• This can be useful in many applications. An instance of a <u>submodular</u> <u>surrogate</u> (where we take a non-submodular problem and find a submodular one that can tell us something about it).

Examples and Properties		r Submodular Defs.		e Matroids
Arbitrary funcs.	functions	as difference	between	submodular

Given an arbitrary set function h, it can be expressed as a difference between two submodular functions (i.e., $\exists f, g \text{ s.t. } \forall A, h(A) = f(A) - g(A)$ where both f and g are submodular).

Proof.

Let h be given and arbitrary, and define:

$$\alpha \stackrel{\Delta}{=} \min_{X,Y} \left(h(X) + h(Y) - h(X \cup Y) - h(X \cap Y) \right)$$
(5.11)

If $\alpha \geq 0$ then h is submodular, so by assumption $\alpha < 0$.

Examples and Properties	Other Submodular Defs.		Matroids
Arbitrary funcs.	functions as difference	between	submodular

Given an arbitrary set function h, it can be expressed as a difference between two submodular functions (i.e., $\exists f, g \text{ s.t. } \forall A, h(A) = f(A) - g(A)$ where both f and g are submodular).

Proof.

Let h be given and arbitrary, and define:

$$\alpha \stackrel{\Delta}{=} \min_{X,Y} \left(h(X) + h(Y) - h(X \cup Y) - h(X \cap Y) \right)$$
(5.11)

If $\alpha\geq 0$ then h is submodular, so by assumption $\alpha<0.$ Now let f be an arbitrary strict submodular function and define

$$\beta \stackrel{\Delta}{=} \min_{X,Y:X \not\subseteq Y,Y \not\subseteq X} \Big(f(X) + f(Y) - f(X \cup Y) - f(X \cap Y) \Big).$$
(5.12)

Strict means that $\beta > 0$.

 Examples and Properties
 Other Submodular Defs.
 Independence
 Matroids

 Arbitrary functions as difference between submodular funcs.
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6
 6</t

...cont.

Define $h': 2^V \to \mathbb{R}$ as

$$h'(A) = h(A) + \frac{|\alpha|}{\beta}f(A)$$
(5.13)

Then h' is submodular (why?), and $h = h'(A) - \frac{|\alpha|}{\beta}f(A)$, a difference between two submodular functions as desired.

Examples and Properties	Other Submodular Defs.	Independence	
Gain			

• We often wish to express the gain of an item $j \in V$ in context A, namely $f(A \cup \{j\}) - f(A)$.

Examples and Properties	Other Submodular Defs.	Independence	
Gain			

- We often wish to express the gain of an item $j \in V$ in context A, namely $f(A \cup \{j\}) f(A)$.
- This is called the gain and is used so often, there are equally as many ways to notate this. I.e., you might see:

$$f(A \cup \{j\}) - f(A) \stackrel{\Delta}{=} \rho_j(A) \tag{5.14}$$

$$\stackrel{\Delta}{=} \rho_A(j) \tag{5.15}$$

$$\stackrel{\Delta}{=} \nabla_j f(A) \tag{5.16}$$

$$\stackrel{\Delta}{=} f(\{j\}|A)$$
 (5.17)
$$\stackrel{\Delta}{=} f(j|A)$$
 (5.18)

Examples and Properties	Other Submodular Defs.	Independence	
<u> </u>			

- Gain
 - We often wish to express the gain of an item $j \in V$ in context A, namely $f(A \cup \{j\}) f(A)$.
 - This is called the gain and is used so often, there are equally as many ways to notate this. I.e., you might see:

$$f(A \cup \{j\}) - f(A) \stackrel{\Delta}{=} \rho_j(A)$$
(5.14)

$$\stackrel{\Delta}{=} \rho_A(j) \tag{5.15}$$

$$\stackrel{\Delta}{=} \nabla_j f(A) \tag{5.16}$$

$$\stackrel{\Delta}{=} f(\{j\}|A) \tag{5.17}$$

$$\stackrel{\Delta}{=} f(j|A) \tag{5.18}$$

• We'll use f(j|A).

Examples and Properties	Other Submodular Defs.	Independence	
Gain			

- We often wish to express the gain of an item $j \in V$ in context A, namely $f(A \cup \{j\}) f(A)$.
- This is called the gain and is used so often, there are equally as many ways to notate this. I.e., you might see:

$$f(A \cup \{j\}) - f(A) \stackrel{\Delta}{=} \rho_j(A) \tag{5.14}$$

$$\stackrel{\Delta}{=} \rho_A(j) \tag{5.15}$$

$$\stackrel{\Delta}{=} \nabla_j f(A) \tag{5.16}$$

$$\stackrel{\Delta}{=} f(\{j\}|A) \tag{5.17}$$

$$\stackrel{\Delta}{=} f(j|A) \tag{5.18}$$

- We'll use f(j|A).
- Submodularity's diminishing returns definition can be stated as saying that f(j|A) is a monotone non-increasing function of A, since $f(j|A) \ge f(j|B)$ whenever $A \subseteq B$ (conditioning reduces valuation).

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 5 - Apr 11th, 2016 F14/64 (pg.29/183)

Examples and Properties	Other Submodular Defs.	Independence	
Gain Notation			

It will also be useful to extend this to sets. Let A, B be any two sets. Then

$$f(A|B) \triangleq f(A \cup B) - f(B)$$
(5.19)

So when j is any singleton

$$f(j|B) = f(\{j\}|B) = f(\{j\} \cup B) - f(B)$$
(5.20)

Examples and Properties	Other Submodular Defs.	Independence	
Gain Notation			

It will also be useful to extend this to sets. Let A, B be any two sets. Then

$$f(A|B) \triangleq f(A \cup B) - f(B)$$
(5.19)

So when j is any singleton

$$f(j|B) = f(\{j\}|B) = f(\{j\} \cup B) - f(B)$$
(5.20)

Inspired from information theory notation and the notation used for conditional entropy $H(X_A|X_B) = H(X_A, X_B) - H(X_B)$.

Examples and Properties	Other Submodular Defs.	Independence	
1111111111			
TT			

Totally normalized functions

• Any normalized submodular function g (even non-monotone) can be represented as a sum of a polymatroid (normalized monotone non-decreasing submodular) function \bar{g} and a modular function m_q .

Totally normalized functions

- Any normalized submodular function g (even non-monotone) can be represented as a sum of a polymatroid (normalized monotone non-decreasing submodular) function \bar{g} and a modular function m_g .
- Given arbitrary normalized submodular $g: 2^V \to \mathbb{R}$, construct a function $\bar{g}: 2^V \to \mathbb{R}$ as follows:

$$\bar{g}(A) = g(A) - \sum_{a \in A} g(a|V \setminus \{a\}) = g(A) - m_g(A)$$
 (5.21)

where $m_g(A) \triangleq \sum_{a \in A} g(a | V \setminus \{a\})$ is a modular function.

Totally normalized functions

- Any normalized submodular function g (even non-monotone) can be represented as a sum of a polymatroid (normalized monotone non-decreasing submodular) function \bar{g} and a modular function m_g .
- Given arbitrary normalized submodular $g: 2^V \to \mathbb{R}$, construct a function $\bar{g}: 2^V \to \mathbb{R}$ as follows:

$$\bar{g}(A) = g(A) - \sum_{a \in A} g(a|V \setminus \{a\}) = g(A) - m_g(A)$$
 (5.21)

where $m_g(A) \triangleq \sum_{a \in A} g(a|V \setminus \{a\})$ is a modular function. • \overline{g} is normalized since $\overline{g}(\emptyset) = 0$.

Totally normalized functions

- Any normalized submodular function g (even non-monotone) can be represented as a sum of a polymatroid (normalized monotone non-decreasing submodular) function \bar{g} and a modular function m_g .
- Given arbitrary normalized submodular $g: 2^V \to \mathbb{R}$, construct a function $\bar{g}: 2^V \to \mathbb{R}$ as follows:

$$\bar{g}(A) = g(A) - \sum_{a \in A} g(a|V \setminus \{a\}) = g(A) - m_g(A)$$
 (5.21)

where $m_g(A) \triangleq \sum_{a \in A} g(a | V \setminus \{a\})$ is a modular function.

- \bar{g} is normalized since $\bar{g}(\emptyset) = 0$.
- \bar{g} is monotone non-decreasing since for $v \notin A \subseteq V$:

$$\bar{g}(v|A) = g(v|A) - g(v|V \setminus \{a\}) \ge 0$$
(5.22)

Totally normalized functions

- Any normalized submodular function g (even non-monotone) can be represented as a sum of a polymatroid (normalized monotone non-decreasing submodular) function \bar{g} and a modular function m_g .
- Given arbitrary normalized submodular $g: 2^V \to \mathbb{R}$, construct a function $\bar{g}: 2^V \to \mathbb{R}$ as follows:

$$\bar{g}(A) = g(A) - \sum_{a \in A} g(a|V \setminus \{a\}) = g(A) - m_g(A)$$
 (5.21)

where $m_g(A) \triangleq \sum_{a \in A} g(a | V \setminus \{a\})$ is a modular function.

- \bar{g} is normalized since $\bar{g}(\emptyset) = 0$.
- \bar{g} is monotone non-decreasing since for $v \notin A \subseteq V$:

$$\bar{g}(v|A) = g(v|A) - g(v|V \setminus \{a\}) \ge 0$$
(5.22)

• \bar{g} is called the totally normalized version of g.

Totally normalized functions

- Any normalized submodular function g (even non-monotone) can be represented as a sum of a polymatroid (normalized monotone non-decreasing submodular) function \bar{g} and a modular function m_g .
- Given arbitrary normalized submodular $g: 2^V \to \mathbb{R}$, construct a function $\bar{g}: 2^V \to \mathbb{R}$ as follows:

$$\bar{g}(A) = g(A) - \sum_{a \in A} g(a|V \setminus \{a\}) = g(A) - m_g(A)$$
 (5.21)

where $m_g(A) \triangleq \sum_{a \in A} g(a | V \setminus \{a\})$ is a modular function.

- \bar{g} is normalized since $\bar{g}(\emptyset) = 0$.
- \bar{g} is monotone non-decreasing since for $v \notin A \subseteq V$:

$$\bar{g}(v|A) = g(v|A) - g(v|V \setminus \{a\}) \ge 0$$
(5.22)

- \bar{g} is called the totally normalized version of g.
- Then $g(A) = \overline{g}(A) + m_g(A)$.

• Any normalized function h (i.e., $h(\emptyset) = 0$) can be represented as a difference not only between submodular, but between polymatroid (normalized monotone non-decreasing submodular) functions.

- Any normalized function h (i.e., $h(\emptyset) = 0$) can be represented as a difference not only between submodular, but between polymatroid (normalized monotone non-decreasing submodular) functions.
- Given submodular f and g, let \overline{f} and \overline{g} be them totally normalized.

- Any normalized function h (i.e., $h(\emptyset) = 0$) can be represented as a difference not only between submodular, but between polymatroid (normalized monotone non-decreasing submodular) functions.
- Given submodular f and g, let \overline{f} and \overline{g} be them totally normalized.
- Given arbitrary h = f g where f and g are normalized submodular,

$$h = f - g = \bar{f} + m_f - (\bar{g} + m_g)$$
(5.23)

$$=\bar{f}-\bar{g}+(m_f-m_g)$$
(5.24)

$$= \bar{f} - \bar{g} + m_{f-h}$$
 (5.25)

$$=\bar{f} + m_{f-g}^{+} - (\bar{h} + (-m_{f-g})^{+})$$
(5.26)

where m^+ is the positive part of modular function m. That is, $m^+(A) = \sum_{a \in A} m(a) \mathbf{1}(m(a) > 0).$

- Any normalized function h (i.e., $h(\emptyset) = 0$) can be represented as a difference not only between submodular, but between polymatroid (normalized monotone non-decreasing submodular) functions.
- Given submodular f and g, let \overline{f} and \overline{g} be them totally normalized.
- Given arbitrary h = f g where f and g are normalized submodular,

$$h = f - g = \bar{f} + m_f - (\bar{g} + m_g)$$
(5.23)

$$=\bar{f}-\bar{g}+(m_f-m_g)$$
(5.24)

$$= \bar{f} - \bar{g} + m_{f-h}$$
 (5.25)

$$=\bar{f}+m_{f-g}^{+}-(\bar{h}+(-m_{f-g})^{+})$$
(5.26)

where m^+ is the positive part of modular function m. That is, $m^+(A) = \sum_{a \in A} m(a) \mathbf{1}(m(a) > 0).$ • Both $f + m_{f-g}^+$ and $\bar{g} + (-m_{f-g})^+$ are polymatroid functions!

- Any normalized function h (i.e., $h(\emptyset) = 0$) can be represented as a difference not only between submodular, but between polymatroid (normalized monotone non-decreasing submodular) functions.
- Given submodular f and g, let \overline{f} and \overline{g} be them totally normalized.
- Given arbitrary h = f g where f and g are normalized submodular,

$$h = f - g = \bar{f} + m_f - (\bar{g} + m_g)$$
(5.23)

$$=\bar{f}-\bar{g}+(m_f-m_g)$$
(5.24)

$$=ar{f} - ar{g} + m_{f-h}$$
 (5.25)

$$=\bar{f}+m_{f-g}^{+}-(\bar{h}+(-m_{f-g})^{+})$$
(5.26)

where m^+ is the positive part of modular function m. That is, $m^+(A) = \sum_{a \in A} m(a) \mathbf{1}(m(a) > 0).$

- Both $f + m_{f-g}^+$ and $\bar{g} + (-m_{f-g})^+$ are polymatroid functions!
- Thus, any function can be expressed as a difference between two, not only submodular (DS), but polymatroid functions.

Prof. Jeff Bilmes

Independence

Matroids

Two Equivalent Submodular Definitions

Definition 5.4.1 (submodular concave)

A function $f: 2^V \to \mathbb{R}$ is submodular if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$$
(5.8)

An alternate and (as we will soon see) equivalent definition is:

Definition 5.4.2 (diminishing returns)

A function $f: 2^V \to \mathbb{R}$ is submodular if for any $A \subseteq B \subset V$, and $v \in V \setminus B$, we have that:

$$f(A \cup \{v\}) - f(A) \ge f(B \cup \{v\}) - f(B)$$
(5.9)

The incremental "value", "gain", or "cost" of v decreases (diminishes) as the context in which v is considered grows from A to B.

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 5 - Apr 11th, 2016

F18/64 (pg.43/183)

Examples and Properties	Other Submodul	ar Defs.	Independence	
Submodular	Definition:	Group	Diminishing	Returns

An alternate and equivalent definition is:

Definition 5.4.1 (group diminishing returns)

A function $f: 2^V \to \mathbb{R}$ is submodular if for any $A \subseteq B \subset V$, and $C \subseteq V \setminus B$, we have that:

$$f(A \cup C) - f(A) \ge f(B \cup C) - f(B)$$
 (5.27)

This means that the incremental "value" or "gain" of set C decreases as the context in which C is considered grows from A to B (diminishing returns)

Other Submodular Defs.

Independence

Matroids

Submodular Definition Basic Equivalencies

We want to show that Submodular Concave (Definition 5.4.1), Diminishing Returns (Definition 5.4.2), and Group Diminishing Returns (Definition 5.4.1) are identical.

Other Submodular Defs.

Independence

Matroids

Submodular Definition Basic Equivalencies

We want to show that Submodular Concave (Definition 5.4.1), Diminishing Returns (Definition 5.4.2), and Group Diminishing Returns (Definition 5.4.1) are identical. We will show that:

- Submodular Concave \Rightarrow Diminishing Returns
- Diminishing Returns \Rightarrow Group Diminishing Returns
- Group Diminishing Returns \Rightarrow Submodular Concave

Other Submodular Defs.

Independence

Matroids

Submodular Concave ⇒ Diminishing Returns

$f(S) + f(T) \ge f(S \cup T) + f(S \cap T) \Rightarrow f(v|A) \ge f(v|B), A \subseteq B \subseteq V \setminus v.$

• Assume Submodular concave, so $\forall S, T$ we have $f(S) + f(T) \ge f(S \cup T) + f(S \cap T).$

Other Submodular Defs.

Independence

Matroids

Submodular Concave ⇒ Diminishing Returns

$f(S) + f(T) \ge f(S \cup T) + f(S \cap T) \Rightarrow f(v|A) \ge f(v|B), A \subseteq B \subseteq V \setminus v.$

- Assume Submodular concave, so $\forall S, T$ we have $f(S) + f(T) \ge f(S \cup T) + f(S \cap T).$
- Given A, B and $v \in V$ such that: $A \subseteq B \subseteq V \setminus \{v\}$, we have from submodular concave that:

$$f(A+v) + f(B) \ge f(B+v) + f(A)$$
 (5.28)

Submodular Concave ⇒ Diminishing Returns

$f(S) + f(T) \ge f(S \cup T) + f(S \cap T) \Rightarrow f(v|A) \ge f(v|B), A \subseteq B \subseteq V \setminus v.$

- Assume Submodular concave, so $\forall S, T$ we have $f(S) + f(T) \ge f(S \cup T) + f(S \cap T).$
- Given A, B and $v \in V$ such that: $A \subseteq B \subseteq V \setminus \{v\}$, we have from submodular concave that:

$$f(A+v) + f(B) \ge f(B+v) + f(A)$$
 (5.28)

• Rearranging, we have

$$f(A+v) - f(A) \ge f(B+v) - f(B)$$
 (5.29)

Diminishing Returns \Rightarrow Group Diminishing Returns

$f(v|S) \ge f(v|T), S \subseteq T \subseteq V \setminus v \Rightarrow f(C|A) \ge f(C|B), A \subseteq B \subseteq V \setminus C.$

Let $C = \{c_1, c_2, \dots, c_k\}$. Then diminishing returns implies

$$f(A \cup C) - f(A) \tag{5.30}$$

$$= f(A \cup C) - \sum_{i=1}^{k-1} \left(f(A \cup \{c_1, \dots, c_i\}) - f(A \cup \{c_1, \dots, c_i\}) \right) - f(A)$$
(5.31)

$$=\sum_{i=1}^{k} \left(f(A \cup \{c_1 \dots c_i\}) - f(A \cup \{c_1 \dots c_{i-1}\}) \right)$$
(5.32)

$$\geq \sum_{i=1}^{\kappa} \left(f(B \cup \{c_1 \dots c_i\}) - f(B \cup \{c_1 \dots c_{i-1}\}) \right)$$
(5.33)

$$= f(B \cup C) - \sum_{i=1}^{k-1} \left(f(B \cup \{c_1, \dots, c_i\}) - f(B \cup \{c_1, \dots, c_i\}) \right) - f(B)$$
(5.34)

$$= f(B \cup C) - f(B)$$
 (5.35)

Group Diminishing Returns \Rightarrow Submodular Concave

$f(U|S) \geq f(U|T), S \subseteq T \subseteq V \setminus U \Rightarrow f(A) + f(B) \geq f(A \cup B) + f(A \cap B).$

Assume group diminishing returns. Assume $A \neq B$ otherwise trivial. Define $A' = A \cap B$, $C = A \setminus B$, and B' = B. Then since $A' \subseteq B'$,

$$f(A'+C) - f(A') \ge f(B'+C) - f(B')$$
(5.36)

giving

$$f(A'+C) + f(B') \ge f(B'+C) + f(A')$$
(5.37)

or

$$f(A \cap B + A \setminus B) + f(B) \ge f(B + A \setminus B) + f(A \cap B)$$
(5.38)

which is the same as the submodular concave condition

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$$
 (5.39)

EE596b/Spring 2016/Submodularity - Lecture 5 - Apr 11th, 2016

nples	Properties
1111	

Other Submodular Defs.

Independence

Matroids

Submodular Definition: Four Points

Definition 5.4.2 ("singleton", or "four points")

A function $f: 2^V \to \mathbb{R}$ is submodular iff for any $A \subset V$, and any $a, b \in V \setminus A$, we have that:

$$f(A \cup \{a\}) + f(A \cup \{b\}) \ge f(A \cup \{a, b\}) + f(A)$$
(5.40)

Examp		Properties
11111	111	

Other Submodular Defs.

Independence

Matroids

Submodular Definition: Four Points

Definition 5.4.2 ("singleton", or "four points")

A function $f: 2^V \to \mathbb{R}$ is submodular iff for any $A \subset V$, and any $a, b \in V \setminus A$, we have that:

$$f(A \cup \{a\}) + f(A \cup \{b\}) \ge f(A \cup \{a, b\}) + f(A)$$
(5.40)

This follows immediately from diminishing returns.

		Properties
11111		

Other Submodular Defs.

Independence

Matroids

Submodular Definition: Four Points

Definition 5.4.2 ("singleton", or "four points")

A function $f: 2^V \to \mathbb{R}$ is submodular iff for any $A \subset V$, and any $a, b \in V \setminus A$, we have that:

$$f(A \cup \{a\}) + f(A \cup \{b\}) \ge f(A \cup \{a, b\}) + f(A)$$
(5.40)

This follows immediately from diminishing returns. To achieve diminishing returns, assume $A \subset B$ with $B \setminus A = \{b_1, b_2, \dots, b_k\}$. Then

$$f(A+a) - f(A) \ge f(A+b_1+a) - f(A+b_1)$$
(5.41)

$$\geq f(A+b_1+b_2+a) - f(A+b_1+b_2)$$
(5.42)

$$\geq f(A + b_1 + \dots + b_k + a) - f(A + b_1 + \dots + b_k)$$
(5.44)

$$= f(B+a) - f(B)$$
 (5.45)

• Test submodularity via values on verticies of hypercube.

Example: with |V| = n = 2, this is With |V| = n = 3, a bit harder. easy: 110 011 00 010 How many inequalities?

Given submodular f, and given you have C, D ⊆ V with either D ⊇ C or D ⊆ C (comparable sets), and have an expression of the form:

f(C) - f(D) (5.46)

Submodular bounds of a difference of comparable sets

Given submodular f, and given you have C, D ⊆ V with either D ⊇ C or D ⊆ C (comparable sets), and have an expression of the form:

$$f(C) - f(D)$$
 (5.46)

• If $D \supseteq C$, then for any X with $D = C \cup X$ then

 $f(C) - f(D) = f(C) - f(C \cup X) \ge f(C \cap X) - f(X)$

(5.48)

Submodular bounds of a difference of comparable sets

Given submodular f, and given you have C, D ⊆ V with either D ⊇ C or D ⊆ C (comparable sets), and have an expression of the form:

$$f(C) - f(D)$$
 (5.46)

• If $D \supseteq C$, then for any X with $D = C \cup X$ then

$$f(C) - f(D) = f(C) - f(C \cup X) \ge f(C \cap X) - f(X)$$
 (5.47)

or

$$f(C \cup X|C) \le f(X|C \cap X)$$
(5.48)

Submodular bounds of a difference of comparable sets

 Given submodular f, and given you have C, D ⊆ V with either D ⊇ C or D ⊆ C (comparable sets), and have an expression of the form:

$$f(C) - f(D)$$
 (5.46)

• If $D \supseteq C$, then for any X with $D = C \cup X$ then

$$f(C) - f(D) = f(C) - f(C \cup X) \ge f(C \cap X) - f(X)$$
(5.47)

or

$$f(C \cup X|C) \le f(X|C \cap X) \tag{5.48}$$

• Alternatively, if $D \subseteq C$, given any Y such that $D = C \cap Y$ then $f(C) - f(D) = f(C) - f(C \cap Y) \ge f(C \cup Y) - f(Y)$

(5.50)

Submodular bounds of a difference of comparable sets

 Given submodular f, and given you have C, D ⊆ V with either D ⊇ C or D ⊆ C (comparable sets), and have an expression of the form:

$$f(C) - f(D)$$
 (5.46)

• If $D \supseteq C$, then for any X with $D = C \cup X$ then

$$f(C) - f(D) = f(C) - f(C \cup X) \ge f(C \cap X) - f(X)$$
(5.47)

or

$$f(C \cup X|C) \le f(X|C \cap X) \tag{5.48}$$

• Alternatively, if $D \subseteq C$, given any Y such that $D = C \cap Y$ then

$$f(C) - f(D) = f(C) - f(C \cap Y) \ge f(C \cup Y) - f(Y)$$
(5.49)

or

$$f(C|C \cap Y) \ge f(C \cup Y|Y) \tag{5.50}$$

Submodular bounds of a difference of comparable sets

 Given submodular f, and given you have C, D ⊆ V with either D ⊇ C or D ⊆ C (comparable sets), and have an expression of the form:

$$f(C) - f(D) \tag{5.46}$$

• If $D \supseteq C$, then for any X with $D = C \cup X$ then

$$f(C) - f(D) = f(C) - f(C \cup X) \ge f(C \cap X) - f(X)$$
(5.47)

or

$$f(C \cup X|C) \le f(X|C \cap X) \tag{5.48}$$

• Alternatively, if $D \subseteq C$, given any Y such that $D = C \cap Y$ then

$$f(C) - f(D) = f(C) - f(C \cap Y) \ge f(C \cup Y) - f(Y)$$
(5.49)

or

$$f(C|C \cap Y) \ge f(C \cup Y|Y) \tag{5.50}$$

• Equations (5.48) and (5.50) have same form.

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 5 - Apr 11th, 2016

 Examples and Properties
 Other Submodular Defs.
 Independence

 Many (Equivalent) Definitions of Submodularity

Matroids

(5.51)

 $f(A) + f(B) \ge f(A \cup B) + f(A \cap B), \ \forall A, B \subseteq V$

Conter Submodular Defs. Independence Many (Equivalent) Definitions of Submodularity

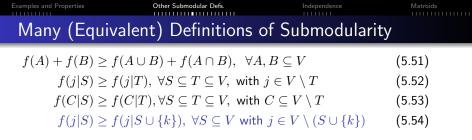
 $f(A) + f(B) \ge f(A \cup B) + f(A \cap B), \quad \forall A, B \subseteq V$ $f(j|S) \ge f(j|T), \quad \forall S \subseteq T \subseteq V, \text{ with } j \in V \setminus T$ (5.52)

Matroids

Examples and Properties	Other Submodular Defs.	Independence	Matroids
Many (Equiva	alent) Definitions of	Submodulari	ty
$f(A) + f(B) \ge f$	$(A \cup B) + f(A \cap B), \ \forall A, B$	$B \subseteq V$	(5.51)
$f(j S) \ge f$	$(j T), \ \forall S \subseteq T \subseteq V, \ \text{with} \ j$	$\in V \setminus T$	(5.52)

$$f(C|S) \ge f(C|T), \forall S \subseteq T \subseteq V, \text{ with } C \subseteq V \setminus T$$
(5.53)

-



Examples and Properties	Other Submodular Defs.	Independence	Matroids
Many (Equiv	alent) Definitions c	of Submodular	ity
$f(A) + f(B) \ge f$	$f(A \cup B) + f(A \cap B), \forall A,$	$B \subseteq V$	(5.51)
$f(j S) \ge f$	$\forall (j T), \ \forall S \subseteq T \subseteq V, \ \text{with}$	$j \in V \setminus T$	(5.52)
$f(C S) \ge f$	$C(C T), \forall S \subseteq T \subseteq V, \text{ with } V$	$C \subseteq V \setminus T$	(5.53)
$f(j S) \ge f$	$\forall (j S \cup \{k\}), \ \forall S \subseteq V \text{ with }$	$j \in V \setminus (S \cup \{k\})$	(5.54)
$f(A \cup B A \cap B) \le f$	$f(A A \cap B) + f(B A \cap B),$	$\forall A,B\subseteq V$	(5.55)

Other Submodular Defs Independence Many (Equivalent) Definitions of Submodularity $f(A) + f(B) > f(A \cup B) + f(A \cap B), \ \forall A, B \subseteq V$ (5.51) $f(j|S) > f(j|T), \forall S \subset T \subset V, \text{ with } j \in V \setminus T$ (5.52) $f(C|S) \ge f(C|T), \forall S \subseteq T \subseteq V, \text{ with } C \subseteq V \setminus T$ (5.53) $f(j|S) \ge f(j|S \cup \{k\}), \forall S \subseteq V \text{ with } j \in V \setminus (S \cup \{k\})$ (5.54) $f(A \cup B | A \cap B) \le f(A | A \cap B) + f(B | A \cap B), \ \forall A, B \subseteq V$ (5.55) $f(T) \le f(S) + \sum f(j|S) - \sum f(j|S \cup T - \{j\}), \forall S, T \subseteq V$ $i \in T \setminus S$ $i \in S \setminus T$

(5.56)

Examples and PropertiesOther Submodular Defs.IndependenceMatroidsMany (Equivalent) Definitions of Submodularity $f(A) + f(B) \ge f(A \cup B) + f(A \cap B), \forall A, B \subseteq V$ (5.51) $f(j|S) \ge f(j|T), \forall S \subseteq T \subseteq V, with <math>j \in V \setminus T$ (5.52) $f(C|S) \ge f(C|T), \forall S \subseteq T \subseteq V, with <math>C \subseteq V \setminus T$ (5.53)

$$f(j|S) \ge f(j|S \cup \{k\}), \ \forall S \subseteq V \text{ with } j \in V \setminus (S \cup \{k\})$$
(5.54)

$$f(A \cup B|A \cap B) \le f(A|A \cap B) + f(B|A \cap B), \ \forall A, B \subseteq V$$
(5.55)

$$f(T) \le f(S) + \sum_{j \in T \setminus S} f(j|S) - \sum_{j \in S \setminus T} f(j|S \cup T - \{j\}), \ \forall S, T \subseteq V$$

$$f(T) \le f(S) + \sum_{j \in T \setminus S} f(j|S), \ \forall S \subseteq T \subseteq V$$
(5.57)

Many (Equivalent) Definitions of Submodularity

Other Submodular Defs

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B), \ \forall A, B \subseteq V$$
(5.51)

$$f(j|S) \ge f(j|T), \ \forall S \subseteq T \subseteq V, \ \text{with} \ j \in V \setminus T$$
 (5.52)

$$f(C|S) \ge f(C|T), \forall S \subseteq T \subseteq V, \text{ with } C \subseteq V \setminus T$$
 (5.53)

$$f(j|S) \ge f(j|S \cup \{k\}), \ \forall S \subseteq V \text{ with } j \in V \setminus (S \cup \{k\})$$
(5.54)

$$f(A \cup B|A \cap B) \le f(A|A \cap B) + f(B|A \cap B), \ \forall A, B \subseteq V$$
(5.55)

$$f(T) \le f(S) + \sum_{j \in T \setminus S} f(j|S) - \sum_{j \in S \setminus T} f(j|S \cup T - \{j\}), \ \forall S, T \subseteq V$$

(5.56)

Matroids

$$f(T) \le f(S) + \sum_{j \in T \setminus S} f(j|S), \ \forall S \subseteq T \subseteq V$$

$$f(T) \le f(S) - \sum_{j \in S \setminus T} f(j|S \setminus \{j\}) + \sum_{j \in T \setminus S} f(j|S \cap T) \ \forall S, T \subseteq V$$

$$(5.58)$$

.

Many (Equivalent) Definitions of Submodularity

Other Submodular Defs

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B), \ \forall A, B \subseteq V$$
(5.51)

$$f(j|S) \ge f(j|T), \ \forall S \subseteq T \subseteq V, \ \text{with} \ j \in V \setminus T$$
 (5.52)

$$f(C|S) \ge f(C|T), \forall S \subseteq T \subseteq V, \text{ with } C \subseteq V \setminus T$$
 (5.53)

$$f(j|S) \ge f(j|S \cup \{k\}), \ \forall S \subseteq V \text{ with } j \in V \setminus (S \cup \{k\})$$
(5.54)

$$f(A \cup B|A \cap B) \le f(A|A \cap B) + f(B|A \cap B), \ \forall A, B \subseteq V$$
(5.55)

$$f(T) \le f(S) + \sum_{j \in T \setminus S} f(j|S) - \sum_{j \in S \setminus T} f(j|S \cup T - \{j\}), \ \forall S, T \subseteq V$$

(5.56)

Matroids

$$f(T) \le f(S) + \sum_{j \in T \setminus S} f(j|S), \ \forall S \subseteq T \subseteq V$$

$$f(T) \le f(S) - \sum_{j \in S \setminus T} f(j|S \setminus \{j\}) + \sum_{j \in T \setminus S} f(j|S \cap T) \ \forall S, T \subseteq V$$

$$(5.58)$$

$$f(T) \le f(S) - \sum_{j \in S \setminus T} f(j|S \setminus \{j\}), \ \forall T \subseteq S \subseteq V$$
(5.59)

.

Examples and Properties	Other Submodular Defs.	Independence	
Equivalent D	efinitions of Submo	dularity	

We've already seen that Eq. 5.51 \equiv Eq. 5.52 \equiv Eq. 5.53 \equiv Eq. 5.54 \equiv Eq. 5.55.

Examples and Properties	Other Submodular Defs.	Independence	
Equivalent D	efinitions of Submo	dularity	

We've already seen that Eq. $5.51 \equiv$ Eq. $5.52 \equiv$ Eq. $5.53 \equiv$ Eq. $5.54 \equiv$ Eq. 5.55. We next show that Eq. $5.54 \Rightarrow$ Eq. $5.56 \Rightarrow$ Eq. $5.57 \Rightarrow$ Eq. 5.54.

Examples and Properties	Other Submodular Defs.	Independence	
Approach			

To show these next results, we essentially first use:

$$f(S \cup T) = f(S) + f(T|S) \le f(S) + \text{upper-bound}$$
(5.60)

and

 $f(T) + \text{lower-bound} \le f(T) + f(S|T) = f(S \cup T)$ (5.61)

Examples and Properties	Other Submodular Defs.	Independence	
Approach			

To show these next results, we essentially first use:

$$f(S \cup T) = f(S) + f(T|S) \le f(S) + \text{upper-bound}$$
(5.60)

and

$$f(T) + \text{lower-bound} \le f(T) + f(S|T) = f(S \cup T)$$
(5.61)

leading to

$$f(T) +$$
lower-bound $\leq f(S) +$ upper-bound (5.62)

or

 $f(T) \le f(S) + \text{upper-bound} - \text{lower-bound}$ (5.63)

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 5 - Apr 11th, 2016 F30/64 (pg.75/183)

Examples and Properties Other Submodular Defs. Independence Matroids

Eq. 5.54 \Rightarrow Eq. 5.56

Let $T \setminus S = \{j_1, \dots, j_r\}$ and $S \setminus T = \{k_1, \dots, k_q\}$. First, we upper bound the gain of T in the context of S:

$$f(S \cup T) - f(S) = \sum_{t=1}^{r} \left(f(S \cup \{j_1, \dots, j_t\}) - f(S \cup \{j_1, \dots, j_{t-1}\}) \right)$$
(5.64)

$$= \sum_{t=1}^{r} f(j_t | S \cup \{j_1, \dots, j_{t-1}\}) \le \sum_{t=1}^{r} f(j_t | S)$$
(5.65)
$$= \sum_{j \in T \setminus S} f(j | S)$$
(5.66)

or

$$f(T|S) \le \sum_{j \in T \setminus S} f(j|S)$$
(5.67)

Examples and Properties	Other Submodular Defs.	Independence	
Ea. 5.54 ⇒	Eq. 5.56		

Let $T \setminus S = \{j_1, \dots, j_r\}$ and $S \setminus T = \{k_1, \dots, k_q\}$. Next, lower bound S in the context of T:

$$f(S \cup T) - f(T) = \sum_{t=1}^{q} \left[f(T \cup \{k_1, \dots, k_t\}) - f(T \cup \{k_1, \dots, k_{t-1}\}) \right]$$
(5.68)
$$= \sum_{t=1}^{q} f(k_t | T \cup \{k_1, \dots, k_t\} \setminus \{k_t\}) \ge \sum_{t=1}^{q} f(k_t | T \cup S \setminus \{k_t\})$$
(5.69)
$$= \sum_{j \in S \setminus T} f(j | S \cup T \setminus \{j\})$$
(5.70)

Examples and PropertiesOther Submodular Defs.IndependenceMatroidsEq. $5.54 \Rightarrow$ Eq. 5.56

Let $T \setminus S = \{j_1, \dots, j_r\}$ and $S \setminus T = \{k_1, \dots, k_q\}$. So we have the upper bound

$$f(T|S) = f(S \cup T) - f(S) \le \sum_{j \in T \setminus S} f(j|S)$$
(5.71)

and the lower bound

$$f(S|T) = f(S \cup T) - f(T) \ge \sum_{j \in S \setminus T} f(j|S \cup T \setminus \{j\})$$
(5.72)

This gives upper and lower bounds of the form

$$f(T) + \text{lower bound} \le f(S \cup T) \le f(S) + \text{upper bound},$$
 (5.73)

and combining directly the left and right hand side gives the desired inequality.

Prof. Jeff Bilmes

Examples and Properties	Other Submodular Defs.	Independence	
Eq. 5.56 \Rightarrow Eq	. 5.57		

This follows immediately since if $S\subseteq T$, then $S\setminus T=\emptyset$, and the last term of Eq. 5.56 vanishes.

Examples and Properties	Other Submodular Defs.	Independence	
Ea. 5.57 =	⇒ Ea. 5.54		

Here, we set $T=S\cup\{j,k\},\, j\notin S\cup\{k\}$ into Eq. 5.57 to obtain

$$f(S \cup \{j,k\}) \le f(S) + f(j|S) + f(k|S)$$

$$= f(S) + f(S + \{j\}) - f(S) + f(S + \{k\}) - f(S)$$

$$= f(S + \{j\}) + f(S + \{k\}) - f(S)$$

$$= f(j|S) + f(S + \{k\})$$
(5.77)

giving

$$f(j|S \cup \{k\}) = f(S \cup \{j,k\}) - f(S \cup \{k\})$$

$$\leq f(j|S)$$
(5.78)
(5.79)

Examples and Properties	Other Submodular Defs.	Independence	
C harriel law	~		

 Why do we call the f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) definition of submodularity, submodular concave?

Examples and Properties	Other Submodular Defs.	Independence	
	11111111111111111 1 111		

- Why do we call the f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) definition of submodularity, submodular concave?
- A continuous twice differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ is concave iff $\nabla^2 f \preceq 0$ (the Hessian matrix is nonpositive definite).

Examples and Properties	Other Submodular Defs.	Independence	

- Why do we call the f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) definition of submodularity, submodular concave?
- A continuous twice differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ is concave iff $\nabla^2 f \preceq 0$ (the Hessian matrix is nonpositive definite).
- Define a "discrete derivative" or difference operator defined on discrete functions $f: 2^V \to \mathbb{R}$ as follows:

$$(\nabla_B f)(A) \triangleq f(A \cup B) - f(A \setminus B) = f(B|(A \setminus B))$$
(5.80)

read as: the derivative of f at A in the direction B.

Examples and Properties	Other Submodular Defs.	Independence	

- Why do we call the f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) definition of submodularity, submodular concave?
- A continuous twice differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ is concave iff $\nabla^2 f \preceq 0$ (the Hessian matrix is nonpositive definite).
- Define a "discrete derivative" or difference operator defined on discrete functions $f: 2^V \to \mathbb{R}$ as follows:

$$(\nabla_B f)(A) \triangleq f(A \cup B) - f(A \setminus B) = f(B|(A \setminus B))$$
(5.80)

read as: the derivative of f at A in the direction B.

• Hence, if $A \cap B = \emptyset$, then $(\nabla_B f)(A) = f(B|A)$.

Examples and Properties	Other Submodular Defs.	Independence	

- Why do we call the f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) definition of submodularity, submodular concave?
- A continuous twice differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ is concave iff $\nabla^2 f \preceq 0$ (the Hessian matrix is nonpositive definite).
- Define a "discrete derivative" or difference operator defined on discrete functions $f: 2^V \to \mathbb{R}$ as follows:

$$(\nabla_B f)(A) \triangleq f(A \cup B) - f(A \setminus B) = f(B|(A \setminus B))$$
(5.80)

read as: the derivative of f at A in the direction B.

- Hence, if $A \cap B = \emptyset$, then $(\nabla_B f)(A) = f(B|A)$.
- Consider a form of second derivative or 2nd difference: $(\nabla_B f)(A)$

$$(\nabla_C \nabla_B f)(A) = \nabla_C [\overbrace{f(A \cup B)}^{\bullet} - \overbrace{f(A \setminus B)}^{\bullet}]$$
(5.81)

$$= (\nabla_B f)(A \cup C) - (\nabla_B f)(A \setminus C)$$

$$= f(A \cup B \cup C) - f((A \cup C) \setminus B)$$
(5.82)

$$-f((A \setminus C) \cup B) + f((A \setminus C) \setminus B)$$
(5.83)

EE596b/Spring 2016/Submodularity - Lecture 5 - Apr 11th, 2016 F36/64 (pg.85/183)

Examples and Properties	Other Submodular Defs.	Independence	
Submodular	Concave		

$$f(A \cup B \cup C) - f((A \cup C) \setminus B) - f((A \setminus C) \cup B) + f(A \setminus C \setminus B) \le 0$$
(5.84)

Examples and Properties	Other Submodular Defs.	Independence	
Submodular	Concave		

$$f(A \cup B \cup C) - f((A \cup C) \setminus B) - f((A \setminus C) \cup B) + f(A \setminus C \setminus B) \le 0$$
(5.84)

then we have the equation:

 $f((A \cup C) \setminus B) + f((A \setminus C) \cup B) \ge f(A \cup B \cup C) + f(A \setminus C \setminus B)$ (5.85)

Examples and Properties	Other Submodular Defs.	Independence	
Submodular	Concave		

$$f(A \cup B \cup C) - f((A \cup C) \setminus B) - f((A \setminus C) \cup B) + f(A \setminus C \setminus B) \le 0$$
(5.84)

then we have the equation:

$$f((A \cup C) \setminus B) + f((A \setminus C) \cup B) \ge f(A \cup B \cup C) + f(A \setminus C \setminus B)$$
(5.85)

• Define $A' = (A \cup C) \setminus B$ and $B' = (A \setminus C) \cup B$. Then the above implies:

$$f(A') + f(B') \ge f(A' \cup B') + f(A' \cap B')$$
(5.86)

and note that A' and B' so defined can be arbitrary.

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 5 - Apr 11th, 2016 F37/64 (pg.88/183)

Examples and Properties	Other Submodular Defs.	Independence	
Submodular	Concave		

$$f(A \cup B \cup C) - f((A \cup C) \setminus B) - f((A \setminus C) \cup B) + f(A \setminus C \setminus B) \le 0$$
(5.84)

then we have the equation:

$$f((A \cup C) \setminus B) + f((A \setminus C) \cup B) \ge f(A \cup B \cup C) + f(A \setminus C \setminus B)$$
(5.85)

• Define $A' = (A \cup C) \setminus B$ and $B' = (A \setminus C) \cup B$. Then the above implies:

$$f(A') + f(B') \ge f(A' \cup B') + f(A' \cap B')$$
(5.86)

and note that A' and B' so defined can be arbitrary.

• One sense in which submodular functions are like concave functions.

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 5 - Apr 11th, 2016 F37/64 (pg.89/183)

Examples and Properties	Other Submodular Defs.	Independence	
Submodular	Concave		

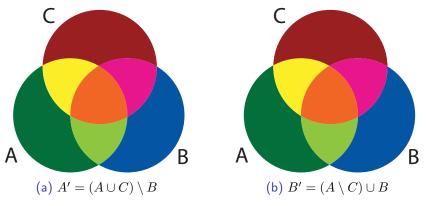


Figure: A figure showing $A' \cup B' = A \cup B \cup C$ and $A' \cap B' = A \setminus C \setminus B$.

Examples and Properties	Other Submodular Defs.	Independence	
Submodular	Concave		

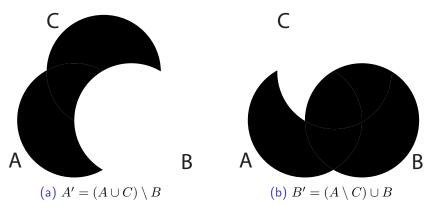


Figure: A figure showing $A' \cup B' = A \cup B \cup C$ and $A' \cap B' = A \setminus C \setminus B$.

Examples and Properties	Other Submodular Defs.	Independence	
Submodularit	y and Concave		

• This submodular/concave relationship is more simply done with singletons.

Examples and Properties	Other Submodular Defs.	Independence	
Submodularity	/ and Concave		

- This submodular/concave relationship is more simply done with singletons.
- Recall four points definition: A function is submodular if for all $X\subseteq V$ and $j,k\in V\setminus X$

$$f(X+j) + f(X+k) \ge f(X+j+k) + f(X)$$
(5.87)

Examples and Properties	Other Submodular Defs.	Independence	
Submodularity	y and Concave		

- This submodular/concave relationship is more simply done with singletons.
- Recall four points definition: A function is submodular if for all $X\subseteq V$ and $j,k\in V\setminus X$

$$f(X+j) + f(X+k) \ge f(X+j+k) + f(X)$$
(5.87)

• This gives us a simpler notion corresponding to concavity.

Examples and Properties	Other Submodular Defs.	Independence	
Submodularit	y and Concave		

- This submodular/concave relationship is more simply done with singletons.
- Recall four points definition: A function is submodular if for all $X\subseteq V$ and $j,k\in V\setminus X$

$$f(X+j) + f(X+k) \ge f(X+j+k) + f(X)$$
(5.87)

- This gives us a simpler notion corresponding to concavity.
- Define gain as $\nabla_j(X) = f(X+j) f(X)$, a form of discrete gradient.

Examples and Properties	Other Submodular Defs.	Independence	
Submodularity	y and Concave		

- This submodular/concave relationship is more simply done with singletons.
- Recall four points definition: A function is submodular if for all $X\subseteq V$ and $j,k\in V\setminus X$

$$f(X+j) + f(X+k) \ge f(X+j+k) + f(X)$$
(5.87)

- This gives us a simpler notion corresponding to concavity.
- Define gain as $\nabla_j(X) = f(X+j) f(X)$, a form of discrete gradient.
- Trivially becomes a second-order condition, akin to concave functions: A function is submodular if for all $X \subseteq V$ and $j, k \in V$, we have:

$$\nabla_j \nabla_k f(X) \le 0 \tag{5.88}$$

Example: Rank function of a matrix

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

• Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$. • Then r(A) = 3, r(B) = 3, r(C) = 2.

• $r(A \cup C) = 3$, $r(B \cup C) = 3$.

- $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.
- $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

• $6 = r(A) + r(B) > r(A \cup B) + r(A \cap B) = 5$

Examples and Properties	Other Submodular Defs.	Independence	
On Rank			

• Let rank $:2^V \to \mathbb{Z}_+$ be the rank function.

Examples and Properties	Other Submodular Defs.	Independence	Matroids
On Rank			

- Let rank $: 2^V \to \mathbb{Z}_+$ be the rank function.
- In general, $\operatorname{rank}(A) \leq |A|$, and vectors in A are linearly independent if and only if $\operatorname{rank}(A) = |A|$.

Examples and Properties	Other Submodular Defs.	Independence	Matroids
On Rank			

- Let rank $: 2^V \to \mathbb{Z}_+$ be the rank function.
- In general, $\operatorname{rank}(A) \leq |A|$, and vectors in A are linearly independent if and only if $\operatorname{rank}(A) = |A|$.
- If A, B are such that rank(A) = |A| and rank(B) = |B|, with |A| < |B|, then the space spanned by B is greater, and we can find a vector in B that is linearly independent of the space spanned by vectors in A.

Examples and Properties	Other Submodular Defs.	Independence	Matroids
On Rank			

- Let rank $: 2^V \to \mathbb{Z}_+$ be the rank function.
- In general, $\operatorname{rank}(A) \leq |A|$, and vectors in A are linearly independent if and only if $\operatorname{rank}(A) = |A|$.
- If A, B are such that rank(A) = |A| and rank(B) = |B|, with |A| < |B|, then the space spanned by B is greater, and we can find a vector in B that is linearly independent of the space spanned by vectors in A.
- To stress this point, note that the above condition is |A| < |B|, not $A \subseteq B$ which is sufficient (to be able to find an independent vector) but not required.

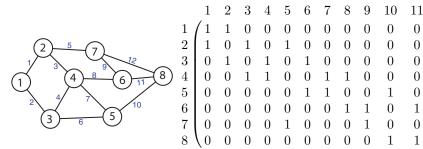
Examples and Properties	Other Submodular Defs.	Independence	Matroids
On Rank			

- Let rank $: 2^V \to \mathbb{Z}_+$ be the rank function.
- In general, $\operatorname{rank}(A) \leq |A|$, and vectors in A are linearly independent if and only if $\operatorname{rank}(A) = |A|$.
- If A, B are such that rank(A) = |A| and rank(B) = |B|, with |A| < |B|, then the space spanned by B is greater, and we can find a vector in B that is linearly independent of the space spanned by vectors in A.
- To stress this point, note that the above condition is |A| < |B|, not
 A ⊆ B which is sufficient (to be able to find an independent vector)
 but not required.
- In other words, given A, B with $\operatorname{rank}(A) = |A| \& \operatorname{rank}(B) = |B|$, then $|A| < |B| \Leftrightarrow \exists$ an $b \in B$ such that $\operatorname{rank}(A \cup \{b\}) = |A| + 1$.

Examples and Properties	Other Submodular Defs.	Independence	
		1181111	
Spanning tre	es/forests		

- We are given a graph G = (V, E), and consider the edges E = E(G) as an index set.
- Consider the $|V| \times |E|$ incidence matrix of undirected graph G, which is the matrix $\mathbf{X}_G = (x_{v,e})_{v \in V(G), e \in E(G)}$ where

$$x_{v,e} = \begin{cases} 1 & \text{if } v \in e \\ 0 & \text{if } v \notin e \end{cases}$$
(5.89)



12

0

0

0

0

0

0

1

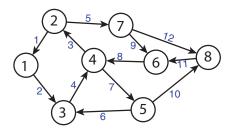
- We are given a graph G = (V, E), we can arbitrarily orient the graph (make it directed) consider again the edges E = E(G) as an index set.
- Consider instead the $|V| \times |E|$ incidence matrix of undirected graph G, which is the matrix $\mathbf{X}_G = (x_{v,e})_{v \in V(G), e \in E(G)}$ where

$$x_{v,e} = \begin{cases} 1 & \text{if } v \in e^+ \\ -1 & \text{if } v \in e^- \\ 0 & \text{if } v \notin e \end{cases}$$
(5.91)

and where e^+ is the tail and e^- is the head of (now) directed edge e.

Examples and Properties Other Submodular Defs. Independence Matroids

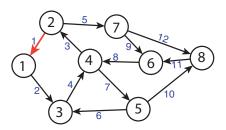
- A directed version of the graph (right) and its adjacency matrix (below).
- Orientation can be arbitrary.
- Note, rank of this matrix is 7.

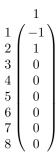




Examples and Properties	Other Submodular Defs.	Independence	
		11111	
Spanning trees			

• We can consider edge-induced subgraphs and the corresponding matrix columns.



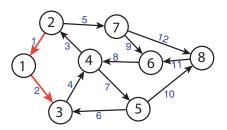


(5.92)

Here, $rank(\{x_1\}) = 1$.

Examples and Properties	Other Submodular Defs.	Independence	
		11111	
Spanning trees			

• We can consider edge-induced subgraphs and the corresponding matrix columns.



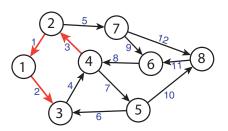
(5.92)

Here, $rank(\{x_1, x_2\}) = 2$.

Б

Examples and Properties	Other Submodular Defs.	Independence	
		11111	
Spanning trees			

• We can consider edge-induced subgraphs and the corresponding matrix columns.



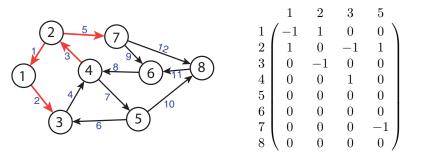
Б

(5.92)

Here, $rank(\{x_1, x_2, x_3\}) = 3$.

Examples and Properties	Other Submodular Defs.	Independence	
Spanning trees			

• We can consider edge-induced subgraphs and the corresponding matrix columns.

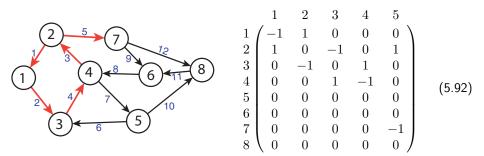


Here, $rank(\{x_1, x_2, x_3, x_5\}) = 4.$

(5.92)

Examples and Properties	Other Submodular Defs.	Independence	
Spanning trees			

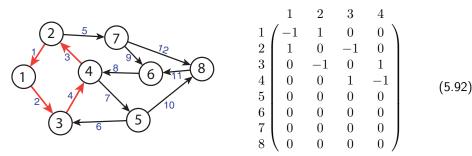
• We can consider edge-induced subgraphs and the corresponding matrix columns.



Here, $rank(\{x_1, x_2, x_3, x_4, x_5\}) = 4$.

Examples and Properties	Other Submodular Defs.	Independence	
		11111	
Spanning trees			

• We can consider edge-induced subgraphs and the corresponding matrix columns.



Here, $rank(\{x_1, x_2, x_3, x_4\}) = 3$ since $x_4 = -x_1 - x_2 - x_3$.

Examples and Properties	Other Submodular Defs.	Independence	
Spanning trees,	rank, and connected	components	

• In general, whenever the edges specify a cycle, there will be a linear dependence between the corresponding set of vectors in the matrix.

Examples and Properties	Other Submodular Defs.	Independence	
		111111	
Spanning trees,	rank, and connected	components	

- In general, whenever the edges specify a cycle, there will be a linear dependence between the corresponding set of vectors in the matrix.
- This means that all forests in the graph correspond to a set of linearly independent column vectors in the matrix.

Examples and Properties	Other Submodular Defs.	Independence	
		11111	
Spanning trees,	rank, and connected	components	

- In general, whenever the edges specify a cycle, there will be a linear dependence between the corresponding set of vectors in the matrix.
- This means that all forests in the graph correspond to a set of linearly independent column vectors in the matrix.
- Consider a "rank" function defined as follows: given a set of edges $A \subseteq E(G)$, the rank(A) is the size of the largest forest in the A-edge induced subgraph of G.

Examples and Properties	Other Submodular Defs.	Independence	
		11111	
Spanning trees,	rank, and connected	components	

- In general, whenever the edges specify a cycle, there will be a linear dependence between the corresponding set of vectors in the matrix.
- This means that all forests in the graph correspond to a set of linearly independent column vectors in the matrix.
- Consider a "rank" function defined as follows: given a set of edges $A \subseteq E(G)$, the rank(A) is the size of the largest forest in the A-edge induced subgraph of G.
- The rank of the entire graph then is then a spanning forest of the graph (spanning tree if the graph is connected).

Examples and Properties		modular Defs.	Independence	
Spanning ⁻	trees, rank,	and connected	components	

- In general, whenever the edges specify a cycle, there will be a linear dependence between the corresponding set of vectors in the matrix.
- This means that all forests in the graph correspond to a set of linearly independent column vectors in the matrix.
- Consider a "rank" function defined as follows: given a set of edges $A \subseteq E(G)$, the rank(A) is the size of the largest forest in the A-edge induced subgraph of G.
- The rank of the entire graph then is then a spanning forest of the graph (spanning tree if the graph is connected).
- The rank of the graph is rank(E(G)) = |V| k where k is the number of connected components of G.

- In general, whenever the edges specify a cycle, there will be a linear dependence between the corresponding set of vectors in the matrix.
- This means that all forests in the graph correspond to a set of linearly independent column vectors in the matrix.
- Consider a "rank" function defined as follows: given a set of edges $A \subseteq E(G)$, the rank(A) is the size of the largest forest in the A-edge induced subgraph of G.
- The rank of the entire graph then is then a spanning forest of the graph (spanning tree if the graph is connected).
- The rank of the graph is rank(E(G)) = |V| k where k is the number of connected components of G.
- For $A \subseteq E(G)$, define $k_G(A)$ as the number of connected components of the edge-induced spanning subgraph (V(G), A). Recall, $k_G(A)$ is supermodular, so $|V(G)| - k_G(A)$ is submodular.

- In general, whenever the edges specify a cycle, there will be a linear dependence between the corresponding set of vectors in the matrix.
- This means that all forests in the graph correspond to a set of linearly independent column vectors in the matrix.
- Consider a "rank" function defined as follows: given a set of edges $A \subseteq E(G)$, the rank(A) is the size of the largest forest in the A-edge induced subgraph of G.
- The rank of the entire graph then is then a spanning forest of the graph (spanning tree if the graph is connected).
- The rank of the graph is $\operatorname{rank}(E(G)) = |V| k$ where k is the number of connected components of G.
- For A ⊆ E(G), define k_G(A) as the number of connected components of the edge-induced spanning subgraph (V(G), A). Recall, k_G(A) is supermodular, so |V(G)| − k_G(A) is submodular.
- We have $\operatorname{rank}(A) = |V(G)| k_G(A)$.

Examples and Properties	Other Submodular Defs.	Independence	Matroids
Spanning Tree	Algorithms		

- We are now given a positive edge-weighted connected graph G = (V, E, w) where w : E → ℝ₊ is a modular function the edges of the graph. The goal is to find the minimum spanning tree (MST) of the graph.
- Given a tree T, the cost of the tree is ${\rm cost}(T)=\sum_{e\in T}w(e),$ the sum of the weights of the edges.
- There are several algorithms for MST:

Algorithm 1: Borůvka's Algorithm

- 1 $F \leftarrow \emptyset$ /* We build up the edges of a forest in F
- 2 while G(V,F) is disconnected do
- 3 forall the components C_i of F do
- 4 $\[F \leftarrow F \cup \{e_i\}\]$ for $e_i =$ the min-weight edge out of C_i ;

*

Examples and Properties	Other Submodular Defs.	Independence	
		111111	
Spanning Tre	e Algorithms		

- We are now given a positive edge-weighted connected graph G = (V, E, w) where $w : E \to \mathbb{R}_+$ is a modular function the edges of the graph. The goal is to find the minimum spanning tree (MST) of the graph.
- Given a tree T, the cost of the tree is ${\rm cost}(T)=\sum_{e\in T}w(e),$ the sum of the weights of the edges.
- There are several algorithms for MST:

Algorithm 2: Jarník/Prim/Dijkstra Algorithm

- 1 $T \leftarrow \emptyset$;
- 2 while T is not a spanning tree do
- 3 $T \leftarrow T \cup \{e\}$ for e = the minimum weight edge extending the tree T to a new vertex ;

Examples and Properties	Other Submodular Defs.	Independence	
1111111111		111111	
Spanning Tre	e Algorithms		

- We are now given a positive edge-weighted connected graph G = (V, E, w) where w : E → ℝ₊ is a modular function the edges of the graph. The goal is to find the minimum spanning tree (MST) of the graph.
- Given a tree T, the cost of the tree is ${\rm cost}(T)=\sum_{e\in T}w(e),$ the sum of the weights of the edges.
- There are several algorithms for MST:

Algorithm 3: Kruskal's Algorithm

1 Sort the edges so that $w(e_1) \le w(e_2) \le \cdots \le w(e_m)$; 2 $T \leftarrow (V(G), \emptyset) = (V, \emptyset)$; 3 for i = 1 to m do 4 $\begin{bmatrix} \text{if } E(T) \cup \{e_i\} \text{ does not create a cycle in } T \text{ then} \\ E(T) \leftarrow E(T) \cup \{e_i\} \end{bmatrix}$;

Examples and Properties	Other Submodular Defs.	Independence	Matroids
Spanning Tre	e Algorithms		

- We are now given a positive edge-weighted connected graph G = (V, E, w) where w : E → ℝ₊ is a modular function the edges of the graph. The goal is to find the minimum spanning tree (MST) of the graph.
- Given a tree T, the cost of the tree is ${\rm cost}(T)=\sum_{e\in T}w(e),$ the sum of the weights of the edges.
- There are several algorithms for MST:
- These three algorithms are all guaranteed to find the optimal minimum spanning tree in (low order) polynomial time.

Examples and Properties	Other Submodular Defs.	Independence	Matroids
Spanning	Tree Algorithms		

- We are now given a positive edge-weighted connected graph G = (V, E, w) where $w : E \to \mathbb{R}_+$ is a modular function the edges of the graph. The goal is to find the minimum spanning tree (MST) of the graph.
- Given a tree T, the cost of the tree is ${\rm cost}(T)=\sum_{e\in T}w(e),$ the sum of the weights of the edges.
- There are several algorithms for MST:
- These three algorithms are all guaranteed to find the optimal minimum spanning tree in (low order) polynomial time.
- These algorithms are all related to the "greedy" algorithm. I.e., "add next whatever looks best".

Examples and Properties	Other Submodular Defs.	Independence	Matroids
Spanning	Tree Algorithms		

- We are now given a positive edge-weighted connected graph G = (V, E, w) where $w : E \to \mathbb{R}_+$ is a modular function the edges of the graph. The goal is to find the minimum spanning tree (MST) of the graph.
- Given a tree T, the cost of the tree is ${\rm cost}(T)=\sum_{e\in T}w(e),$ the sum of the weights of the edges.
- There are several algorithms for MST:
- These three algorithms are all guaranteed to find the optimal minimum spanning tree in (low order) polynomial time.
- These algorithms are all related to the "greedy" algorithm. I.e., "add next whatever looks best".
- These algorithms will also always find a basis (a set of linearly independent vectors that span the underlying space) in the matrix example we saw earlier.

Examples and Properties	Other Submodular Defs.	Independence	Matroids
Spanning Tre	e Algorithms		

- We are now given a positive edge-weighted connected graph G = (V, E, w) where w : E → ℝ₊ is a modular function the edges of the graph. The goal is to find the minimum spanning tree (MST) of the graph.
- Given a tree T, the cost of the tree is ${\rm cost}(T)=\sum_{e\in T}w(e),$ the sum of the weights of the edges.
- There are several algorithms for MST:
- These three algorithms are all guaranteed to find the optimal minimum spanning tree in (low order) polynomial time.
- These algorithms are all related to the "greedy" algorithm. I.e., "add next whatever looks best".
- These algorithms will also always find a basis (a set of linearly independent vectors that span the underlying space) in the matrix example we saw earlier.
- The above are all examples of a matroid, which is the fundamental reason why the greedy algorithms work.

Prof. Jeff Bilmes

Examples and Properties	Other Submodular Defs.	Independence	Matroids
From Matrix	$Rank \rightarrow Matroid$		

• So V is set of column vector indices of a matrix.

Examples and Properties	Other Submodular Defs.	Independence	Matroids
			••••••••••••

- So V is set of column vector indices of a matrix.
- Let \mathcal{I} be a set of all subsets of V such that for any $I \in \mathcal{I}$, the vectors indexed by I are linearly independent.

Examples and Properties	Other Submodular Defs.	Independence	Matroids
	Deal Matail		

- So V is set of column vector indices of a matrix.
- Let \mathcal{I} be a set of all subsets of V such that for any $I \in \mathcal{I}$, the vectors indexed by I are linearly independent.
- Given a set $B \in \mathcal{I}$ of linearly independent vectors, then any subset $A \subseteq B$ is also linearly independent.

Examples and Properties	Other Submodular Defs.	Independence	Matroids
			••••••••••••

- So V is set of column vector indices of a matrix.
- Let \mathcal{I} be a set of all subsets of V such that for any $I \in \mathcal{I}$, the vectors indexed by I are linearly independent.
- Given a set $B \in \mathcal{I}$ of linearly independent vectors, then any subset $A \subseteq B$ is also linearly independent. Hence, \mathcal{I} is down-closed or "subclusive", under subsets.

Examples and Properties	Other Submodular Defs.	Independence	Matroids
			••••••••••••
	Dould Maturald		

- So V is set of column vector indices of a matrix.
- Let \mathcal{I} be a set of all subsets of V such that for any $I \in \mathcal{I}$, the vectors indexed by I are linearly independent.
- Given a set $B \in \mathcal{I}$ of linearly independent vectors, then any subset $A \subseteq B$ is also linearly independent. Hence, \mathcal{I} is down-closed or "subclusive", under subsets. In other words,

$$A \subseteq B \text{ and } B \in \mathcal{I} \Rightarrow A \in \mathcal{I}$$
(5.93)

Examples and Properties	Other Submodular Defs.	Independence	Matroids
	Dould > Maturaid		

- So V is set of column vector indices of a matrix.
- Let \mathcal{I} be a set of all subsets of V such that for any $I \in \mathcal{I}$, the vectors indexed by I are linearly independent.
- Given a set $B \in \mathcal{I}$ of linearly independent vectors, then any subset $A \subseteq B$ is also linearly independent. Hence, \mathcal{I} is down-closed or "subclusive", under subsets. In other words,

$$A \subseteq B \text{ and } B \in \mathcal{I} \Rightarrow A \in \mathcal{I} \tag{5.93}$$

• maxInd: Inclusionwise maximal independent subsets (or bases) of any set $B \subseteq V$.

 $\mathsf{maxInd}(B) \triangleq \{A \subseteq B : A \in \mathcal{I} \text{ and } \forall v \in B \setminus A, A \cup \{v\} \notin \mathcal{I}\}$ (5.94)

Examples and Properties	Other Submodular Defs.	Independence	Matroids
	A NATIONAL		

- From Matrix Rank ightarrow Matroid
- So V is set of column vector indices of a matrix.
- Let \mathcal{I} be a set of all subsets of V such that for any $I \in \mathcal{I}$, the vectors indexed by I are linearly independent.
- Given a set $B \in \mathcal{I}$ of linearly independent vectors, then any subset $A \subseteq B$ is also linearly independent. Hence, \mathcal{I} is down-closed or "subclusive", under subsets. In other words,

$$A \subseteq B \text{ and } B \in \mathcal{I} \Rightarrow A \in \mathcal{I}$$
(5.93)

• maxInd: Inclusionwise maximal independent subsets (or bases) of any set $B \subseteq V$.

 $\mathsf{maxInd}(B) \triangleq \{A \subseteq B : A \in \mathcal{I} \text{ and } \forall v \in B \setminus A, A \cup \{v\} \notin \mathcal{I}\}$ (5.94)

 Given any set B ⊂ V of vectors, all maximal (by set inclusion) subsets of linearly independent vectors are the same size. That is, for all B ⊆ V,

$$\forall A_1, A_2 \in \mathsf{maxInd}(B), \quad |A_1| = |A_2| \tag{5.95}$$

Examples and Properties	Other Submodular Defs.	Independence	Matroids
From Matrix	$Rank \rightarrow Matroid$		

• Thus, for all $I \in \mathcal{I}$, the matrix rank function has the property

$$r(I) = |I| \tag{5.96}$$

and for any $B \notin \mathcal{I}$,

 $r(B) = \max\left\{|A| : A \subseteq B \text{ and } A \in \mathcal{I}\right\} \le |B|$ (5.97)

Examples and Properties	Other Submodular Defs.	Independence	Matroids
Matroid			
Matroid			

• Matroids abstract the notion of linear independence of a set of vectors to general algebraic properties.

Examples and Properties	Other Submodular Defs.	Independence	Matroids
Matroid			

- Matroids abstract the notion of linear independence of a set of vectors to general algebraic properties.
- In a matroid, there is an underlying ground set, say E (or V), and a collection of subsets of E that correspond to independent elements.

Examples and Properties	Other Submodular Defs.	Independence	Matroids
Matroid			

- Matroids abstract the notion of linear independence of a set of vectors to general algebraic properties.
- In a matroid, there is an underlying ground set, say E (or V), and a collection of subsets of E that correspond to independent elements.
- There are many definitions of matroids that are mathematically equivalent, we'll see some of them here.

Examples and Properties	Other Submodular Defs.	Independence	Matroids
Independence Sy	rstem		

Definition 5.6.1 (set system)

A (finite) ground set E and a set of subsets of E, $\emptyset \neq \mathcal{I} \subseteq 2^E$ is called a set system, notated (E, \mathcal{I}) .

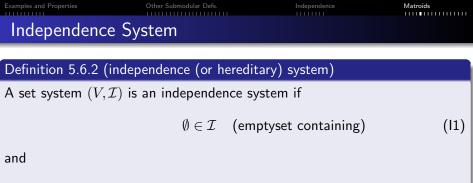
 Set systems can be arbitrarily complex since, as stated, there is no systematic method (besides exponential-cost exhaustive search) to determine if a given set S ⊆ E has S ∈ I.

Examples and Properties	Other Submodular Defs.	Independence	Matroids
Independence Sy	rstem		

Definition 5.6.1 (set system)

A (finite) ground set E and a set of subsets of E, $\emptyset \neq \mathcal{I} \subseteq 2^E$ is called a set system, notated (E, \mathcal{I}) .

- Set systems can be arbitrarily complex since, as stated, there is no systematic method (besides exponential-cost exhaustive search) to determine if a given set S ⊆ E has S ∈ I.
- One useful property is "heredity." Namely, a set system is a hereditary set system if for any $A \subset B \in \mathcal{I}$, we have that $A \in \mathcal{I}$.



$$\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I} \quad \text{(subclusive)} \tag{12}$$

• Property I2 is called "down monotone," "down closed," or "subclusive"

Examples and Properties	Other Submodular Defs.	Independence	Matroids
Independence	e System		

Definition 5.6.2 (independence (or hereditary) system)

A set system (V, \mathcal{I}) is an independence system if

 $\emptyset \in \mathcal{I}$ (emptyset containing)

and

$$\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I} \quad \text{(subclusive)} \tag{12}$$

Property I2 is called "down monotone," "down closed," or "subclusive"

• Example: $E = \{1, 2, 3, 4\}$. With $\mathcal{I} = \{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 4\}\}$.

Prof. Jeff Bilmes

F52/64 (pg.140/183)

(|1)

Examples and Properties	Other Submodular Defs.	Independence	Matroids
Independence	e System		

Definition 5.6.2 (independence (or hereditary) system)

A set system (V, \mathcal{I}) is an independence system if

 $\emptyset \in \mathcal{I}$ (emptyset containing)

and

$$\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$$
 (subclusive)

- Property I2 is called "down monotone," "down closed," or "subclusive"
- Example: $E = \{1, 2, 3, 4\}$. With $\mathcal{I} = \{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 4\}\}$.
- Then (E, I) is a set system, but not an independence system since it is not down closed (i.e., we have {1,2} ∈ I but not {2} ∈ I).

(|1)

(12)

Examples and Properties	Other Submodular Defs.	Independence	Matroids
Independence	e Svstem		

Definition 5.6.2 (independence (or hereditary) system)

A set system (V, \mathcal{I}) is an independence system if

 $\emptyset \in \mathcal{I}$ (emptyset containing)

and

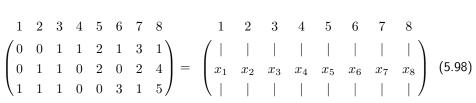
$$\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$$
 (subclusive)

(12)

(|1)

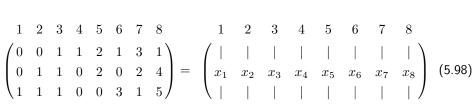
- Property I2 is called "down monotone," "down closed," or "subclusive"
- Example: $E = \{1, 2, 3, 4\}$. With $\mathcal{I} = \{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 4\}\}$.
- Then (E, I) is a set system, but not an independence system since it is not down closed (i.e., we have {1,2} ∈ I but not {2} ∈ I).
- With $\mathcal{I} = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$, then (E, \mathcal{I}) is now an independence (hereditary) system.

Examples and Properties	Other Submodular Defs.	Independence	Matroids
Independence	System		



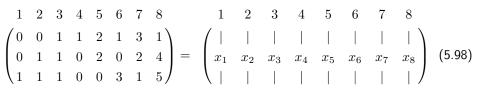
 Given any set of linearly independent vectors A, any subset B ⊂ A will also be linearly independent.

Examples and Properties	Other Submodular Defs.	Independence	Matroids
Independence	System		



- Given any set of linearly independent vectors A, any subset B ⊂ A will also be linearly independent.
- Given any forest G_f that is an edge-induced sub-graph of a graph G, any sub-graph of G_f is also a forest.

Examples and Properties	Other Submodular Defs.	Independence	Matroids



- Given any set of linearly independent vectors A, any subset $B \subset A$ will also be linearly independent.
- Given any forest G_f that is an edge-induced sub-graph of a graph G, any sub-graph of G_f is also a forest.
- So these both constitute independence systems.

Examples and Properties	Other Submodular Defs.	Independence	Matroids
11111111111			
Matroid			

Independent set definition of a matroid is perhaps most natural. Note, if $J \in \mathcal{I}$, then J is said to be an independent set.

Definition 5.6.3 (Matroid)

A set system (E, \mathcal{I}) is a Matroid if

(11) $\emptyset \in \mathcal{I}$ (12) $\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$

```
(13) \forall I, J \in \mathcal{I}, with |I| = |J| + 1, then there exists x \in I \setminus J such that J \cup \{x\} \in \mathcal{I}.
```

Why is (I1) is not redundant given (I2)?

Examples and Properties	Other Submodular Defs.	Independence	Matroids
11111111111			
Matroid			

Independent set definition of a matroid is perhaps most natural. Note, if $J \in \mathcal{I}$, then J is said to be an independent set.

Definition 5.6.3 (Matroid)

A set system (E, \mathcal{I}) is a Matroid if

(1) $\emptyset \in \mathcal{I}$ (12) $\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$ (13) $\forall I, J \in \mathcal{I}$, with |I| = |J| + 1, then there exists $x \in I \setminus J$ such that $J \cup \{x\} \in \mathcal{I}$.

Why is (I1) is not redundant given (I2)? Because without (I1) could have a non-matroid where $\mathcal{I} = \{\}$.

Examples and Properties	Other Submodular Defs.	Independence	Matroids
			111111111111111111111
On Matroids			

• Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.

Examples and Properties	Other Submodular Defs.	Independence	Matroids

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
- Takeo Nakasawa, 1935, also early work.

Examples and Properties	Other Submodular Defs.	Independence	Matroids

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
- Takeo Nakasawa, 1935, also early work.
- Forgotten for 20 years until mid 1950s.

Examples and Properties	Other Submodular Defs.	Independence	Matroids
			1111111

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
- Takeo Nakasawa, 1935, also early work.
- Forgotten for 20 years until mid 1950s.
- Matroids are powerful and flexible combinatorial objects.

Examples and Properties	Other Submodular Defs.	Independence	Matroids
A B B B B B B B B B B			

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
- Takeo Nakasawa, 1935, also early work.
- Forgotten for 20 years until mid 1950s.
- Matroids are powerful and flexible combinatorial objects.
- The rank function of a matroid is already a very powerful submodular function (perhaps all we need for many problems).

Examples and Properties	Other Submodular Defs.	Independence	Matroids

- On Matroids
 - Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
 - Takeo Nakasawa, 1935, also early work.
 - Forgotten for 20 years until mid 1950s.
 - Matroids are powerful and flexible combinatorial objects.
 - The rank function of a matroid is already a very powerful submodular function (perhaps all we need for many problems).
 - Understanding matroids crucial for understanding submodularity.

Examples and Properties	Other Submodular Defs.	Independence	Matroids

- On Matroids
 - Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
 - Takeo Nakasawa, 1935, also early work.
 - Forgotten for 20 years until mid 1950s.
 - Matroids are powerful and flexible combinatorial objects.
 - The rank function of a matroid is already a very powerful submodular function (perhaps all we need for many problems).
 - Understanding matroids crucial for understanding submodularity.
 - Matroid independent sets (i.e., A s.t. r(A) = |A|) are useful constraint set, and fast algorithms for submodular optimization subject to one (or more) matroid independence constraints exist.

Examples and Properties	Other Submodular Defs.	Independence	Matroids

- On Matroids
 - Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
 - Takeo Nakasawa, 1935, also early work.
 - Forgotten for 20 years until mid 1950s.
 - Matroids are powerful and flexible combinatorial objects.
 - The rank function of a matroid is already a very powerful submodular function (perhaps all we need for many problems).
 - Understanding matroids crucial for understanding submodularity.
 - Matroid independent sets (i.e., A s.t. r(A) = |A|) are useful constraint set, and fast algorithms for submodular optimization subject to one (or more) matroid independence constraints exist.
 - Crapo & Rota preferred the term "combinatorial geometry", or more specifically a "pregeometry" and said that pregeometries are "often described by the ineffably cacaphonic [sic] term 'matroid', which we prefer to avoid in favor of the term 'pregeometry'."

Examples and Properties	Other Submodular Defs.	Independence	Matroids
Matroid			

Slight modification (non unit increment) that is equivalent.

Definition 5.6.4 (Matroid-II)

```
A set system (E, \mathcal{I}) is a Matroid if

(11') \emptyset \in \mathcal{I}

(12') \forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I} (or "down-closed")

(13') \forall I, J \in \mathcal{I}, with |I| > |J|, then there exists x \in I \setminus J such that J \cup \{x\} \in \mathcal{I}
```

Note (I1)=(I1'), (I2)=(I2'), and we get (I3)=(I3') using induction.

Matroids, independent sets, and bases

• Independent sets: Given a matroid $M = (E, \mathcal{I})$, a subset $A \subseteq E$ is called independent if $A \in \mathcal{I}$ and otherwise A is called dependent.

Matroids, independent sets, and bases

- Independent sets: Given a matroid $M = (E, \mathcal{I})$, a subset $A \subseteq E$ is called independent if $A \in \mathcal{I}$ and otherwise A is called dependent.
- A base of $U \subseteq E$: For $U \subseteq E$, a subset $B \subseteq U$ is called a base of U if B is inclusionwise maximally independent subset of U. That is, $B \in \mathcal{I}$ and there is no $Z \in \mathcal{I}$ with $B \subset Z \subseteq U$.

Matroids, independent sets, and bases

- Independent sets: Given a matroid $M = (E, \mathcal{I})$, a subset $A \subseteq E$ is called independent if $A \in \mathcal{I}$ and otherwise A is called dependent.
- A base of $U \subseteq E$: For $U \subseteq E$, a subset $B \subseteq U$ is called a base of U if B is inclusionwise maximally independent subset of U. That is, $B \in \mathcal{I}$ and there is no $Z \in \mathcal{I}$ with $B \subset Z \subseteq U$.
- A base of a matroid: If U = E, then a "base of E" is just called a base of the matroid M (this corresponds to a basis in a linear space, or a spanning forest in a graph, or a spanning tree in a connected graph).

Examp	Properties
11111	

Other Submodular Defs.

Independence

Matroids

Matroids - important property

Proposition 5.6.5

In a matroid $M = (E, \mathcal{I})$, for any $U \subseteq E(M)$, any two bases of U have the same size.

Matroids

Matroids - important property

Proposition 5.6.5

In a matroid $M = (E, \mathcal{I})$, for any $U \subseteq E(M)$, any two bases of U have the same size.

• In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.

Matroids

Matroids - important property

Proposition 5.6.5

In a matroid $M = (E, \mathcal{I})$, for any $U \subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show the following is equivalent to the above.

Matroids

Matroids - important property

Proposition 5.6.5

In a matroid $M = (E, \mathcal{I})$, for any $U \subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show the following is equivalent to the above.

Definition 5.6.6 (Matroid)

A set system (V, \mathcal{I}) is a Matroid if

Matroids

Matroids - important property

Proposition 5.6.5

In a matroid $M = (E, \mathcal{I})$, for any $U \subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show the following is equivalent to the above.

Definition 5.6.6 (Matroid)

A set system (V, \mathcal{I}) is a Matroid if

(I1') $\emptyset \in \mathcal{I}$ (emptyset containing)

Matroids

Matroids - important property

Proposition 5.6.5

In a matroid $M = (E, \mathcal{I})$, for any $U \subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show the following is equivalent to the above.

Definition 5.6.6 (Matroid)

A set system (V, \mathcal{I}) is a Matroid if

(11') $\emptyset \in \mathcal{I}$ (emptyset containing)

(I2') $\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$ (down-closed or subclusive)

Matroids

Matroids - important property

Proposition 5.6.5

In a matroid $M = (E, \mathcal{I})$, for any $U \subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show the following is equivalent to the above.

Definition 5.6.6 (Matroid)

A set system (V, \mathcal{I}) is a Matroid if

(11') $\emptyset \in \mathcal{I}$ (emptyset containing)

(12') $\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$ (down-closed or subclusive)

(I3') $\forall X \subseteq V$, and $I_1, I_2 \in \max(X)$, we have $|I_1| = |I_2|$ (all maximally independent subsets of X have the same size).

Prof. Jeff Bilmes

Examples and Properties	Other Submodular Defs.	Independence	Matroids
			111111111111111111111111111111111111111
N.4 I			

• Thus, in any matroid $M = (E, \mathcal{I})$, $\forall U \subseteq E(M)$, any two bases of U have the same size.

Examples and Properties	Other Submodular Defs.	Independence	Matroids

- Thus, in any matroid $M = (E, \mathcal{I})$, $\forall U \subseteq E(M)$, any two bases of U have the same size.
- The common size of all the bases of U is called the rank of U, denoted $r_M(U)$ or just r(U) when the matroid in equation is unambiguous.

Examples and Properties	Other Submodular Defs.	Independence	Matroids

- Thus, in any matroid $M = (E, \mathcal{I})$, $\forall U \subseteq E(M)$, any two bases of U have the same size.
- The common size of all the bases of U is called the rank of U, denoted $r_M(U)$ or just r(U) when the matroid in equation is unambiguous.
- $r(E) = r_{(E,\mathcal{I})}$ is the rank of the matroid, and is the common size of all the bases of the matroid.

Examples and Properties	Other Submodular Defs.	Independence	Matroids
N.A			

- Thus, in any matroid $M = (E, \mathcal{I})$, $\forall U \subseteq E(M)$, any two bases of U have the same size.
- The common size of all the bases of U is called the rank of U, denoted $r_M(U)$ or just r(U) when the matroid in equation is unambiguous.
- $r(E) = r_{(E,\mathcal{I})}$ is the rank of the matroid, and is the common size of all the bases of the matroid.
- We can a bit more formally define the rank function this way.

Examples and Properties	Other Submodular Defs.	Independence	Matroids
N.A			

- Thus, in any matroid $M = (E, \mathcal{I})$, $\forall U \subseteq E(M)$, any two bases of U have the same size.
- The common size of all the bases of U is called the rank of U, denoted $r_M(U)$ or just r(U) when the matroid in equation is unambiguous.
- $r(E) = r_{(E,\mathcal{I})}$ is the rank of the matroid, and is the common size of all the bases of the matroid.
- We can a bit more formally define the rank function this way.

Definition 5.6.7 (matroid rank function)

The rank function of a matroid is a function $r: 2^E \to \mathbb{Z}_+$ defined by

$$r(A) = \max\left\{|X| : X \subseteq A, X \in \mathcal{I}\right\} = \max_{X \in \mathcal{I}} |A \cap X|$$
(5.99)

Examples and Properties	Other Submodular Defs.	Independence	Matroids
N.A			

- Thus, in any matroid $M = (E, \mathcal{I})$, $\forall U \subseteq E(M)$, any two bases of U have the same size.
- The common size of all the bases of U is called the rank of U, denoted $r_M(U)$ or just r(U) when the matroid in equation is unambiguous.
- $r(E) = r_{(E,\mathcal{I})}$ is the rank of the matroid, and is the common size of all the bases of the matroid.
- We can a bit more formally define the rank function this way.

Definition 5.6.7 (matroid rank function)

The rank function of a matroid is a function $r: 2^E \to \mathbb{Z}_+$ defined by

$$r(A) = \max\left\{|X| : X \subseteq A, X \in \mathcal{I}\right\} = \max_{X \in \mathcal{T}} |A \cap X|$$
(5.99)

• From the above, we immediately see that $r(A) \leq |A|$.

Examples and Properties	Other Submodular Defs.	Independence	Matroids
N			

- Thus, in any matroid $M = (E, \mathcal{I})$, $\forall U \subseteq E(M)$, any two bases of U have the same size.
- The common size of all the bases of U is called the rank of U, denoted $r_M(U)$ or just r(U) when the matroid in equation is unambiguous.
- $r(E) = r_{(E,\mathcal{I})}$ is the rank of the matroid, and is the common size of all the bases of the matroid.
- We can a bit more formally define the rank function this way.

Definition 5.6.7 (matroid rank function)

The rank function of a matroid is a function $r: 2^E \to \mathbb{Z}_+$ defined by

$$r(A) = \max\left\{|X| : X \subseteq A, X \in \mathcal{I}\right\} = \max_{X \in \mathcal{I}} |A \cap X|$$
(5.99)

- From the above, we immediately see that $r(A) \leq |A|$.
- Moreover, if r(A) = |A|, then $A \in \mathcal{I}$, meaning A is independent (in this case, A is a self base).

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \setminus A$, $r(A \cup \{x\}) = r(A) + 1$.

Definition: A hyperplane is a flat of rank r(M) - 1.

Definition 5.6.8 (closed/flat/subspace)

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \setminus A$, $r(A \cup \{x\}) = r(A) + 1$.

Definition: A hyperplane is a flat of rank r(M) - 1.

Definition 5.6.9 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by $\operatorname{span}(A) = \{b \in E : r(A \cup \{b\}) = r(A)\}.$

Definition 5.6.8 (closed/flat/subspace)

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \setminus A$, $r(A \cup \{x\}) = r(A) + 1$.

Definition: A hyperplane is a flat of rank r(M) - 1.

Definition 5.6.9 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by $\operatorname{span}(A) = \{b \in E : r(A \cup \{b\}) = r(A)\}.$

Therefore, a closed set A has span(A) = A.

Definition 5.6.8 (closed/flat/subspace)

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \setminus A$, $r(A \cup \{x\}) = r(A) + 1$.

Definition: A hyperplane is a flat of rank r(M) - 1.

Definition 5.6.9 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by $\operatorname{span}(A) = \{b \in E : r(A \cup \{b\}) = r(A)\}.$

Therefore, a closed set A has span(A) = A.

Definition 5.6.10 (circuit)

A subset $A \subseteq E$ is circuit or a cycle if it is an inclusionwise-minimal dependent set (i.e., if r(A) < |A| and for any $a \in A$, $r(A \setminus \{a\}) = |A| - 1$).

Examples and Properties	Other Submodular Defs.	Independence	Matroids
			111111111111111
Matroids by	bases		

In general, besides independent sets and rank functions, there are other equivalent ways to characterize matroids.

Theorem 5.6.11 (Matroid (by bases))

Let E be a set and \mathcal{B} be a nonempty collection of subsets of E. Then the following are equivalent.

- **(**) \mathcal{B} is the collection of bases of a matroid;
- 2 if $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B' x + y \in \mathcal{B}$ for some $y \in B \setminus B'$.
- **③** If $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B y + x \in \mathcal{B}$ for some $y \in B \setminus B'$.

Properties 2 and 3 are called "exchange properties."

Examples and Properties	Other Submodular Defs.	Independence	Matroids
			111111111111111
Matroids by	bases		

In general, besides independent sets and rank functions, there are other equivalent ways to characterize matroids.

Theorem 5.6.11 (Matroid (by bases))

Let E be a set and \mathcal{B} be a nonempty collection of subsets of E. Then the following are equivalent.

() \mathcal{B} is the collection of bases of a matroid;

2 if $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B' - x + y \in \mathcal{B}$ for some $y \in B \setminus B'$.

③ If $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B - y + x \in \mathcal{B}$ for some $y \in B \setminus B'$.

Properties 2 and 3 are called "exchange properties." Proof here is omitted but think about this for a moment in terms of linear spaces and matrices, and (alternatively) spanning trees.

Examples and Properties	Other Submodular Defs.	Independence	Matroids
Matroids by c	circuits		

A set is independent if and only if it contains no circuit. Therefore, it is not surprising that circuits can also characterize a matroid.

Theorem 5.6.12 (Matroid by circuits)

Let E be a set and C be a collection of subsets of E that satisfy the following three properties:

- **1** (C1): $\emptyset \notin C$
- (C2): if $C_1, C_2 \in \mathcal{C}$ and $C_1 \subseteq C_2$, then $C_1 = C_2$.
- **3** (C3): if $C_1, C_2 \in \mathcal{C}$ with $C_1 \neq C_2$, and $e \in C_1 \cap C_2$, then there exists a $C_3 \in \mathcal{C}$ such that $C_3 \subseteq (C_1 \cup C_2) \setminus \{e\}$.

Examples and Properties	Other Submodular Defs.	Independence	Matroids
Matroids by	circuits		

Several circuit definitions for matroids.

Theorem 5.6.13 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such that no two sets in C are contained in each other. Then the following are equivalent.

- **(**) C is the collection of circuits of a matroid;
- 3 if $C, C' \in C$, and $x \in C \cap C'$, then $(C \cup C') \setminus \{x\}$ contains a set in C;
- **3** if $C, C' \in C$, and $x \in C \cap C'$, and $y \in C \setminus C'$, then $(C \cup C') \setminus \{x\}$ contains a set in C containing y;

Examples and Properties	Other Submodular Defs.	Independence	Matroids
Matroids by circuits			

Several circuit definitions for matroids.

Theorem 5.6.13 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such that no two sets in C are contained in each other. Then the following are equivalent.

• C is the collection of circuits of a matroid;

2) if $C, C' \in C$, and $x \in C \cap C'$, then $(C \cup C') \setminus \{x\}$ contains a set in C;

3 if $C, C' \in C$, and $x \in C \cap C'$, and $y \in C \setminus C'$, then $(C \cup C') \setminus \{x\}$ contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and matrices, and spanning trees.

Matroids

Matroids by submodular functions

Theorem 5.6.14 (Matroid by submodular functions)

Let $f : 2^E \to \mathbb{Z}$ be a integer valued monotone non-decreasing submodular function. Define a set of sets as follows:

$$C(f) = \left\{ C \subseteq E : C \text{ is non-empty,} \\ \text{ is inclusionwise-minimal,} \\ \text{ and has } f(C) < |C| \right\}$$
(5.100)

Then C(f) is the collection of circuits of a matroid on E.

Inclusionwise-minimal in this case means that if $C \in C(f)$, then there exists no $C' \subset C$ with $C' \in C(f)$ (i.e., $C' \subset C$ would either be empty or have $f(C') \geq |C'|$). Also, recall inclusionwise-minimal in Definition 5.6.10, the definition of a circuit.

Prof. Jeff Bilmes