

Class	Road	Map -	IT-I
Class	1 Caa	map	

- L1(3/28): Motivation, Applications, & **Basic Definitions**
- L2(3/30): Machine Learning Apps (diversity, complexity, parameter, learning target, surrogate).
- L3(4/4): Info theory exs, more apps, definitions, graph/combinatorial examples, matrix rank example, visualization
- L4(4/6): Graph and Combinatorial Examples, matrix rank, Venn diagrams, examples of proofs of submodularity, some • L20(6/6): Final Presentations useful properties
- L5(4/11):
- L6(4/13):
- L7(4/18):
- L8(4/20):
- L9(4/25):
- L10(4/27):

- L11(5/2):
- L12(5/4):
- L13(5/9):
- L14(5/11):
- L15(5/16):
- L16(5/18):
- L17(5/23):
- L18(5/25):
- L19(6/1):
- maximization.

Finals Week: June 6th-10th, 2016.

Monge Matrices

• $m \times n$ matrices $C = [c_{ij}]_{ij}$ are called Monge matrices if they satisfy the Monge property, namely:

$$c_{ij} + c_{rs} \le c_{is} + c_{rj} \tag{4.15}$$

for all $1 \le i < r \le m$ and $1 \le j < s \le n$.

• Equivalently, for all $1 \le i, r \le m$, $1 \le j, s \le n$,

$$c_{\min(i,r),\min(j,s)} + c_{\max(i,r),\max(j,s)} \le c_{is} + c_{rj}$$
 (4.16)

• Consider four elements of the $m \times n$ matrix:

Review

 $c_{ij} = A + B$, $c_{rj} = B$, $c_{rs} = B + D$, $c_{is} = A + B + C + D$. Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016 F5/77 (pg.5/

Logistics

Review IIII∎IIIII

Superadditive Definitions

Definition 4.2.1 (superadditive)

A function $f: 2^V \to \mathbb{R}$ is superadditive if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \le f(A \cup B) \tag{4.21}$$

- This means that the "whole" is greater than the sum of the parts.
- In general, submodular and subadditive (and supermodular and superadditive) are different properties.
- Ex: Let 0 < k < |V|, and consider $f : 2^V \to \mathbb{R}_+$ where:

$$f(A) = \begin{cases} 1 & \text{if } |A| \le k \\ 0 & \text{else} \end{cases}$$
(4.22)

• This function is subadditive but not submodular.

Modular Definitions

Definition 4.2.1 (modular)

A function that is both submodular and supermodular is called modular

If f is a modular function, than for any $A,B\subseteq V,$ we have

$$f(A) + f(B) = f(A \cap B) + f(A \cup B)$$
 (4.21)

In modular functions, elements do not interact (or cooperate, or compete, or influence each other), and have value based only on singleton values.

Proposition 4.2.2

If f is modular, it may be written as

$$f(A) = f(\emptyset) + \sum_{a \in A} \left(f(\{a\}) - f(\emptyset) \right) = c + \sum_{a \in A} f'(a)$$
(4.22)

which has only |V| + 1 parameters.

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016

⁵9/77 (pg.9/78)

Review

Review

Logistics

Complement function

Given a function $f: 2^V \to \mathbb{R}$, we can find a complement function $\overline{f}: 2^V \to \mathbb{R}$ as $\overline{f}(A) = f(V \setminus A)$ for any A.

Proposition 4.2.1

 \overline{f} is submodular <u>iff</u> f is submodular.

Proof.

$$\bar{f}(A) + \bar{f}(B) \ge \bar{f}(A \cup B) + \bar{f}(A \cap B)$$
(4.26)

follows from

$$f(V \setminus A) + f(V \setminus B) \ge f(V \setminus (A \cup B)) + f(V \setminus (A \cap B))$$
(4.27)

which is true because $V \setminus (A \cup B) = (V \setminus A) \cap (V \setminus B)$ and $V \setminus (A \cap B) = (V \setminus A) \cup (V \setminus B)$ (De Morgan's laws for sets).

Logistics

F11/77 (pg.11/78)

Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

- Let V(X) be the vertices adjacent to some edge in $X \subseteq E(G)$, then |V(X)| (the vertex function) is submodular.
- Let E(S) be the edges with both vertices in S ⊆ V(G). Then |E(S)|
 (the interior edge function) is supermodular.
- Let I(S) be the edges with at least one vertex in $S \subseteq V(G)$. Then |I(S)| (the <u>incidence function</u>) is submodular.
- Recall $|\delta(S)|$, is the set size of edges with exactly one vertex in $S \subseteq V(G)$ is submodular (cut size function). Thus, we have $I(S) = E(S) \cup \delta(S)$ and $E(S) \cap \delta(S) = \emptyset$, and thus that $|I(S)| = |E(S)| + |\delta(S)|$. So we can get a submodular function by summing a submodular and a supermodular function. If you had to guess, is this always the case?
- Consider f(A) = |δ⁺(A)| − |δ⁺(V \ A)|. Guess, submodular, supermodular, modular, or neither? Exercise: determine which one and prove it.

EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016

Prof. Jeff Bilmes

Number of connected components in a graph via edges

- Recall, $f: 2^V \to \mathbb{R}$ is submodular, then so is $\overline{f}: 2^V \to \mathbb{R}$ defined as $\overline{f}(S) = f(V \setminus S)$.
- Hence, if $f: 2^V \to \mathbb{R}$ is supermodular, then so is $\overline{f}: 2^V \to \mathbb{R}$ defined as $\overline{f}(S) = f(V \setminus S)$.
- Given a graph G = (V, E), for each A ⊆ E(G), let c(A) denote the number of connected components of the (spanning) subgraph (V(G), A), with c : 2^E → ℝ₊.
- c(A) is monotone non-increasing, $c(A + a) c(A) \le 0$.
- Then c(A) is supermodular, i.e.,

$$c(A+a) - c(A) \le c(B+a) - c(B)$$
 (4.40)

with $A \subseteq B \subseteq E \setminus \{a\}$.

- Intuition: an edge is "more" (no less) able to bridge separate components (and reduce the number of conected components) when edge is added in a smaller context than when added in a larger context.
- c
 (A) = c(E \ A) is the number of connected components in G when we remove A, so is also supermodular, but monotone non-decreasing.

```
& Combinatorial Examples
```

Graph Strength

- So c

 c(A) = c(E \ A) is the number of connected components in G
 when we remove A, is supermodular.
- Maximizing $\bar{c}(A)$ might seem as a goal for a network attacker many connected components means that many points in the network have lost connectivity to many other points (unprotected network).
- If we can remove a small set A and shatter the graph into many connected components, then the graph is weak.
- An attacker wishes to choose a small number of edges (since it is cheap) to shatter the graph into as many components as possible.
- Let G = (V, E, w) with $w : E \to \mathbb{R}+$ be a weighted graph with non-negative weights.
- For (u, v) = e ∈ E, let w(e) be a measure of the strength of the connection between vertices u and v (strength meaning the difficulty of cutting the edge e).

```
Prof. Jeff Bilmes
```

EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 201

F13/77 (pg.13/78)

Graph & Combinatorial Examples	Matrix Rank	Examples and Properties	Other Submodular Defs.
Graph Strength			

• Then w(A) for $A \subseteq E$ is a modular function

$$w(A) = \sum_{e \in A} w_e \tag{4.1}$$

so that w(E(G[S])) is the "internal strength" of the vertex set S.

- Suppose removing A shatters G into a graph with $\bar{c}(A) > 1$ components — then $w(A)/(\bar{c}(A)-1)$ is like the "effort per achieved/additional component" for a network attacker.
- A form of graph strength can then be defined as the following:

$$strength(G,w) = \min_{A \subseteq E(G):\bar{c}(A) > 1} \frac{w(A)}{\bar{c}(A) - 1}$$
(4.2)

- Graph strength is like the minimum effort per component. An attacker would use the argument of the min to choose which edges to attack. A network designer would maximize, over G and/or w, the graph strength, strength(G, w).
- Since submodularity, problems have strongly-poly-time solutions.

Examples and Properties

F15/77 (pg.15/78)

Submodularity, Quadratic Structures, and Cuts

Lemma 4.3.1

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$ be a symmetric matrix and $m \in \mathbb{R}^n$ be a vector. Then $f: 2^V \to \mathbb{R}$ defined as

$$f(X) = m^{\mathsf{T}} \mathbf{1}_X + \frac{1}{2} \mathbf{1}_X^{\mathsf{T}} \mathbf{M} \mathbf{1}_X$$
(4.3)

is submodular \inf the off-diagonal elements of M are non-positive.

Proof.

- Given a complete graph G = (V, E), recall that E(X) is the edge set with both vertices in $X \subseteq V(G)$, and that |E(X)| is supermodular.
- Non-negative modular weights $w^+: E \to \mathbb{R}_+$, w(E(X)) is also supermodular, so -w(E(X)) (non-positive modular) is submodular.

EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016

• f is a modular function $m^{\intercal} \mathbf{1}_A = m(A)$ added to a weighted submodular function, hence f is submodular.

Prof. Jeff Bilmes

 Graph & Combinatorial Examples
 Matrix Rank
 Examples and Properties
 Other Submodular Defs.

 Submodularity, Quadratic Structures, and Cuts

Proof of Lemma 4.3.1 cont.

• Conversely, suppose f is submodular.

• Then
$$\forall u, v \in V$$
, $f(\{u\}) + f(\{v\}) \ge f(\{u, v\}) + f(\emptyset)$ while $f(\emptyset) = 0$.

• This requires:

$$0 \le f(\{u\}) + f(\{v\}) - f(\{u,v\})$$
(4.4)

$$= m(u) + \frac{1}{2}M_{u,u} + m(v) + \frac{1}{2}M_{v,v}$$
(4.5)

$$-\left(m(u) + m(v) + \frac{1}{2}M_{u,u} + M_{u,v} + \frac{1}{2}M_{v,v}\right)$$
(4.6)

$$= -M_{u,v} \tag{4.7}$$

So that $\forall u, v \in V$, $M_{u,v} \leq 0$.

• Let |V|(F) be the number of vertices incident to edge set F. Then we wish to find the smallest set $F \subseteq E$ subject to |V|(F) = |V|.

Graph & Combinatorial Examples	Matrix Rank	Examples and Properties	Other Submodular Defs.
Matrix Rank fu	unctions		

- Let V, with |V| = m be an index set of a set of vectors in \mathbb{R}^n for some n (unrelated to m).
- For a given set {v, v₁, v₂,..., v_k}, it might or might not be possible to find (α_i)_i such that:

$$x_v = \sum_{i=1}^k \alpha_i x_{v_i} \tag{4.8}$$

If not, then x_v is linearly independent of x_{v_1}, \ldots, x_{v_k} .

Let r(S) for S ⊆ V be the rank of the set of vectors S. Then r(·) is a submodular function, and in fact is called a matric matroid rank function.

Graph & Combinatorial Ex	amples Matrix Rank	Examples and Properties	Other Submodular Defs.
Example:	Rank function of	a matrix	
Consider the	following 4×8 matrix,	so $V = \{1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 3, 4, 5, 6, 7, 1, 2, 3, 3, 5, 5, 1, 2, 3, 3, 5, 5, 1, 2, 3, 3, 5, 5, 1, 2, 3, 3, 5, 5, 5, 1, 2, 3, 3, 5, 5, 5, 1, 2, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$	7,8}.
1 2 3	4 5 6 7 8	1 2 3 4 5	6 7 8
1(0 2 2)	3 0 1 3 1		
2 0 3 0	4 0 0 2 4		
3 0 0 0	0 3 0 0 5	<i>x</i> ₁ <i>x</i> ₂ <i>x</i> ₃ <i>x</i> ₄ <i>x</i> ₅	<i>x</i> ₆ <i>x</i> ₇ <i>x</i> ₈
4 2 0 0	0 0 0 0 5)	$\mathbf{X} = \mathbf{A} = \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A}$	/
,	,		
• Let $A =$	$\{1, 2, 3\}, B = \{3, 4, 5\}$	$C = \{6, 7\}, A_r = \{1\}, A_r = \{1$	$B_r = \{5\}.$
• Then $r($	A) = 3, r(B) = 3, r(C)	f() = 2.	
• $r(A \cup C)$	$C) = 3, r(B \cup C) = 3.$	· •	
• $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.			
• $r(A \cup B)$	$B) = 4, r(A \cap B) = 1$	< r(C) = 2.	
• $6 = r(A) + r(B) > r(A \cup B) + r(A \cap B) = 5$			
Duef Leff Diluses			

Graph & Combinatorial Examples Matrix Rank Examples and Properties Other Submodular Defs. Rank functions of a matrix

- Vectors A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.
- Let C index vectors spanning dimensions common to A and B.
- Let A_r index vectors spanning dimensions spanned by A but not B.
- Let B_r index vectors spanning dimensions spanned by B but not A.
- Then, $r(A) = r(C) + r(A_r)$
- Similarly, $r(B) = r(C) + r(B_r)$.
- Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

$$r(A) + r(B) = r(A_r) + 2r(C) + r(B_r).$$
 (4.9)

• But $r(A \cup B)$ counts the dimensions spanned by C only once.

$$r(A \cup B) = r(A_r) + r(C) + r(B_r)$$
(4.10)

Graph & Combinatorial Examples Matrix Rank Examples and Properties Other Submodular Defs. Rank function of a matrix Image: Combinatorial Examples and Properties Image: Combinatorial Examples and Properties

Note, r(A ∩ B) ≤ r(C). Why? Vectors indexed by A ∩ B (i.e., the common index set) span no more than the dimensions commonly spanned by A and B (namely, those spanned by the professed C).

In short:

- Common span (blue) is "more" (no less) than span of common index (magenta).
- More generally, common information (blue) is "more" (no less) than information within common index (magenta).

Graph & Combinatorial Examples Matrix Rank Examples and Properties Other Submodular Defs. Polymatroid rank function

- Let S be a set of subspaces of a linear space (i.e., each s ∈ S is a subspace of dimension ≥ 1).
- For each $X \subseteq S$, let f(X) denote the dimensionality of the linear subspace spanned by the subspaces in X.
- We can think of S as a set of sets of vectors from the matrix rank example, and for each $s \in S$, let X_s being a set of vector indices.
- Then, defining $f: 2^S \to \mathbb{R}_+$ as follows,

$$f(X) = r(\cup_{s \in S} X_s) \tag{4.11}$$

we have that f is submodular, and is known to be a polymatroid rank function.

 In general (as we will see) polymatroid rank functions are submodular, normalized f(Ø) = 0, and monotone non-decreasing (f(A) ≤ f(B) whenever A ⊆ B).

Graph & Combinatorial Examples	Matrix Rank	Examples and Properties	Other Submodular Defs.
Submodular P	olyhedra		

 Submodular functions have associated polyhedra with nice properties: when a set of constraints in a linear program is a submodular polyhedron, a simple greedy algorithm can find the optimal solution even though the polyhedron is formed via an exponential number of constraints.

$$P_f = \left\{ x \in \mathbb{R}^E : x(S) \le f(S), \forall S \subseteq E \right\}$$
(4.12)

$$P_f^+ = P_f \cap \left\{ x \in \mathbb{R}^E : x \ge 0 \right\}$$
(4.13)

$$B_f = P_f \cap \left\{ x \in \mathbb{R}^E : x(E) = f(E) \right\}$$
(4.14)

• The linear programming problem is to, given $c \in \mathbb{R}^{E}$, compute:

$$\tilde{f}(c) \triangleq \max\left\{c^T x : x \in P_f\right\}$$
(4.15)

• This can be solved using the greedy algorithm! Moreover, $\tilde{f}(c)$ computed using greedy is convex if and only of f is submodular (we will go into this in some detail this quarter).

Examples and Properties

Summing Submodular Functions

Given E, let $f_1, f_2: 2^E \to \mathbb{R}$ be two submodular functions. Then

$$f: 2^E \to \mathbb{R} \text{ with } f(A) = f_1(A) + f_2(A)$$
 (4.16)

is submodular. This follows easily since

$$f(A) + f(B) = f_1(A) + f_2(A) + f_1(B) + f_2(B)$$
(4.17)

$$\geq f_1(A \cup B) + f_2(A \cup B) + f_1(A \cap B) + f_2(A \cap B)$$
 (4.18)

$$= f(A \cup B) + f(A \cap B). \tag{4.19}$$

I.e., it holds for each component of f in each term in the inequality. In fact, any conic combination (i.e., non-negative linear combination) of submodular functions is submodular, as in $f(A) = \alpha_1 f_1(A) + \alpha_2 f_2(A)$ for $\alpha_1, \alpha_2 \ge 0$.

D	1 - 56	Dilesse
Prot	lerr	Dilmes
		0.111100

EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016

F31/77 (pg.31/78)

Graph & Combinatorial Examples Matrix Rank Examples and Properties Other Submodular Defs. Summing Submodular and Modular Functions

Given E, let $f_1,m:2^E\to \mathbb{R}$ be a submodular and a modular function. Then

$$f: 2^E \to \mathbb{R}$$
 with $f(A) = f_1(A) - m(A)$ (4.20)

is submodular (as is $f(A) = f_1(A) + m(A)$). This follows easily since

$$f(A) + f(B) = f_1(A) - m(A) + f_1(B) - m(B)$$
(4.21)

$$\geq f_1(A \cup B) - m(A \cup B) + f_1(A \cap B) - m(A \cap B)$$
 (4.22)

$$= f(A \cup B) + f(A \cap B). \tag{4.23}$$

That is, the modular component with $m(A) + m(B) = m(A \cup B) + m(A \cap B)$ never destroys the inequality. Note of course that if m is modular than so is -m.

Restricting Submodular Functions

Given E, let $f: 2^E \to \mathbb{R}$ be a submodular functions. And let $S \subseteq E$ be an arbitrary fixed set. Then

$$f': 2^E \to \mathbb{R} \text{ with } f'(A) = f(A \cap S)$$
 (4.24)

is submodular.

Proof.

Given $A \subseteq B \subseteq E \setminus v$, consider

$$f((A+v) \cap S) - f(A \cap S) \ge f((B+v) \cap S) - f(B \cap S)$$
 (4.25)

If $v \notin S$, then both differences on each size are zero. If $v \in S$, then we can consider this

$$f(A'+v) - f(A') \ge f(B'+v) - f(B')$$
(4.26)

with $A' = A \cap S$ and $B' = B \cap S$. Since $A' \subseteq B'$, this holds due to submodularity of f. Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016 F33/77 (p

Graph & Combinatorial Examples Matrix Rank Examples and Properties Other Submodular Definitions

Given V, let $f_1, f_2 : 2^V \to \mathbb{R}$ be two submodular functions and let S_1, S_2 be two arbitrary fixed sets. Then

$$f: 2^V \to \mathbb{R} \text{ with } f(A) = f_1(A \cap S_1) + f_2(A \cap S_2)$$
 (4.27)

is submodular. This follows easily from the preceding two results. Given V, let $C = \{C_1, C_2, \ldots, C_k\}$ be a set of subsets of V, and for each $C \in C$, let $f_C : 2^V \to \mathbb{R}$ be a submodular function. Then

$$f: 2^V \to \mathbb{R} \text{ with } f(A) = \sum_{C \in \mathcal{C}} f_C(A \cap C)$$
 (4.28)

is submodular. This property is critical for image processing and graphical models. For example, let C be all pairs of the form $\{\{u, v\} : u, v \in V\}$, or let it be all pairs corresponding to the edges of some undirected graphical model. We plan to revisit this topic later in the term.

Max - normalized

Given V, let $c \in \mathbb{R}^V_+$ be a given fixed vector. Then $f: 2^V \to \mathbb{R}_+$, where $f(A) = \max c$: (4.29)

$$f(A) = \max_{j \in A} c_j \tag{4.29}$$

is submodular and normalized (we take $f(\emptyset) = 0$).

Proof.

Consider

$$\max_{j \in A} c_j + \max_{j \in B} c_j \ge \max_{j \in A \cup B} c_j + \max_{j \in A \cap B} c_j$$
(4.30)

which follows since we have that

$$\max(\max_{j \in A} c_j, \max_{j \in B} c_j) = \max_{j \in A \cup B} c_j$$
(4.31)

and

$$\min(\max_{j \in A} c_j, \max_{j \in B} c_j) \ge \max_{j \in A \cap B} c_j$$
(4.32)

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016

F35/77 (pg.35/78)

 Graph & Combinatorial Examples
 Matrix Rank
 Examples and Properties
 Other Submodular Defs.

 Max
 Max
 Matrix Rank
 Matrix Rank</

Given V, let $c \in \mathbb{R}^V$ be a given fixed vector (not necessarily non-negative). Then $f: 2^V \to \mathbb{R}$, where

$$f(A) = \max_{j \in A} c_j \tag{4.33}$$

is submodular, where we take $f(\emptyset) \leq \min_j c_j$ (so the function is not normalized).

Proof.

The proof is identical to the normalized case.

Graph & Combinatorial Examples

Facility/Plant Location (uncapacitated) w. plant benefits

- Let $F=\{1,\ldots,f\}$ be a set of possible factory/plant locations for facilities to be built.
- $S = \{1, \ldots, s\}$ is a set of sites (e.g., cities, clients) needing service.
- Let c_{ij} be the "benefit" (e.g., $1/c_{ij}$ is the cost) of servicing site i with facility location j.
- Let m_j be the benefit (e.g., either $1/m_j$ is the cost or $-m_j$ is the cost) to build a plant at location j.
- Each site should be serviced by only one plant but no less than one.
- Define f(A) as the "delivery benefit" plus "construction benefit" when the locations $A \subseteq F$ are to be constructed.
- We can define the (uncapacitated) facility location function

$$f(A) = \sum_{j \in A} m_j + \sum_{i \in F} \max_{j \in A} c_{ij}.$$
 (4.34)

Goal is to find a set A that maximizes f(A) (the benefit) placing a bound on the number of plants A (e.g., |A| ≤ k).

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016 F37/77 (pg.37)

- Core problem in operations research, early motivation for submodularity.
- Goal: as efficiently as possible, place "facilities" (factories) at certain locations to satisfy sites (at all locations) having various demands.

Examples and Properties

Facility Location

Given $V\!\!,E\!\!,$ let $c\in \mathbb{R}^{V\times E}$ be a given $|V|\times |E|$ matrix. Then

$$f: 2^E \to \mathbb{R}, \text{ where } f(A) = \sum_{i \in V} \max_{j \in A} c_{ij}$$
 (4.35)

is submodular.

Proof.

We can write f(A) as $f(A) = \sum_{i \in V} f_i(A)$ where $f_i(A) = \max_{j \in A} c_{ij}$ is submodular (max of a i^{th} row vector), so f can be written as a sum of submodular functions.

Thus, the facility location function (which only adds a modular function to the above) is submodular.

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016

F39/77 (pg.39/78)

Graph & Combinatorial Examples	Matrix Rank	Examples and Properties	Other Submodular Defs.
Log Determinant			

- Let Σ be an n×n positive definite matrix. Let V = {1,2,...,n} ≡ [n] be an index set, and for A ⊆ V, let Σ_A be the (square) submatrix of Σ obtained by including only entries in the rows/columns given by A.
- We have that:

$$f(A) = \log \det(\mathbf{\Sigma}_A)$$
 is submodular. (4.36)

• The submodularity of the log determinant is crucial for determinantal point processes (DPPs) (defined later in the class).

Proof of submodularity of the logdet function.Suppose $X \in \mathbf{R}^n$ is multivariate Gaussian random variable, that is $x \in p(x) = \frac{1}{\sqrt{|2\pi\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$ (4.37)...Prof. Jeff BilmesEE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016

F41/77 (pg.41/78)

Log Determinant

...cont.

Then the (differential) entropy of the r.v. X is given by

$$h(X) = \log \sqrt{|2\pi e \mathbf{\Sigma}|} = \log \sqrt{(2\pi e)^n |\mathbf{\Sigma}|}$$
(4.38)

and in particular, for a variable subset A,

$$f(A) = h(X_A) = \log \sqrt{(2\pi e)^{|A|} |\mathbf{\Sigma}_A|}$$
 (4.39)

Entropy is submodular (further conditioning reduces entropy), and moreover

$$f(A) = h(X_A) = m(A) + \frac{1}{2}\log|\Sigma_A|$$
 (4.40)

where m(A) is a modular function.

Note: still submodular in the semi-definite case as well.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016

```
      Graph & Combinatorial Example
      Matrix Rank
      Examples and Properties
      Other Submodular Defe

      Summary so far

      • Summing: if \alpha_i \ge 0 and f_i : 2^V \to \mathbb{R} is submodular, then so is \sum_i \alpha_i f_i.

      • Restrictions: f'(A) = f(A \cap S)

      • max: f(A) = \max_{j \in A} c_j and facility location.

      • Log determinant f(A) = \log \det(\Sigma_A)
```

Matrix Rank

Examples and Properties

Concave over non-negative modular

Let $m \in \mathbb{R}^E_+$ be a non-negative modular function, and g a concave function over \mathbb{R} . Define $f: 2^E \to \mathbb{R}$ as

$$f(A) = g(m(A)) \tag{4.41}$$

then f is submodular.

Proof.

Given $A \subseteq B \subseteq E \setminus v$, we have $0 \le a = m(A) \le b = m(B)$, and $0 \le c = m(v)$. For g concave, we have $g(a + c) - g(a) \ge g(b + c) - g(b)$, and thus

$$g(m(A) + m(v)) - g(m(A)) \ge g(m(B) + m(v)) - g(m(B))$$
(4.42)

A form of converse is true as well.

Prof. Jeff Bilm

EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 201

F43/77 (pg.43/7

```
      Graph & Combinatorial Examples
      Matrix Rank
      Examples and Properties
      Other Submodular

      Concave composed with non-negative modular

      Theorem 4.5.1

      Given a ground set V. The following two are equivalent:
      \mathbb{C}
      \mathbb{C}
      \mathbb{C}

      \mathbb{C} For all modular functions m: 2^V \to \mathbb{R}_+, then f: 2^V \to \mathbb{R} defined as f(A) = g(m(A)) is submodular
      \mathbb{C}
      \mathbb{C}</th
```

 K_4 (we'll define this after we define matroids) are not members.

Prof. Jeff Bilmes

Graph & Combinatorial Examples	Matrix Rank	Examples and Properties	Other Submodular Defs.
Monotonicity			
Definition 4.5.2			
	—		

A function $f : 2^V \to \mathbb{R}$ is monotone nondecreasing (resp. monotone increasing) if for all $A \subset B$, we have $f(A) \leq f(B)$ (resp. f(A) < f(B)).

Definition 4.5.3

Prof. Jeff Bilmes

A function $f: 2^V \to \mathbb{R}$ is monotone nonincreasing (resp. monotone decreasing) if for all $A \subset B$, we have $f(A) \ge f(B)$ (resp. f(A) > f(B)).

EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016

Graph & Combinatorial Examples Matrix Rank Examples and Properties Other Submodular Defs. Composition of non-decreasting submodular and non-decreasing concave

Theorem 4.5.4

Given two functions, one defined on sets

$$f: 2^V \to \mathbb{R} \tag{4.44}$$

and another continuous valued one:

$$g: \mathbb{R} \to \mathbb{R} \tag{4.45}$$

the composition formed as $h = g \circ f : 2^V \to \mathbb{R}$ (defined as h(S) = g(f(S))) is nondecreasing submodular, if g is non-decreasing concave and f is nondecreasing submodular.

F45/77 (pg.45/78)

atrix Rank

Examples and Properties

F47/77 (pg.47/78)

Monotone difference of two functions

Let f and g both be submodular functions on subsets of V and let $(f-g)(\cdot)$ be either monotone increasing or monotone decreasing. Then $h: 2^V \to R$ defined by

$$h(A) = \min(f(A), g(A))$$
 (4.46)

is submodular.

Proof.

$$\begin{array}{l} \mbox{If } h(A) \mbox{ agrees with } f \mbox{ on both } X \mbox{ and } Y \mbox{ (or } g \mbox{ on both } X \mbox{ and } Y), \mbox{ and since } \\ f(X) + f(Y) \geq f(X \cup Y) + f(X \cap Y) \mbox{ (4.47)} \\ g(X) + g(Y) \geq g(X \cup Y) + g(X \cap Y), \mbox{ (4.48)} \end{array}$$

the result (Equation 4.46 being submodular) follows since

$$\frac{f(X) + f(Y)}{g(X) + g(Y)} \ge \min(f(X \cup Y), g(X \cup Y)) + \min(f(X \cap Y), g(X \cap Y))$$
(4.49)

EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016

Graph & Combinatorial ExamplesMatrix RankExamples and PropertiesOther Submodular Defs.Monotone difference of two functions...cont.Otherwise, w.l.o.g., h(X) = f(X) and h(Y) = g(Y), giving $h(X) + h(Y) = f(X) + g(Y) \ge f(X \cup Y) + f(X \cap Y) + g(Y) - f(Y)$

$$h(X) + h(Y) = f(X) + g(Y) \ge f(X \cup Y) + f(X \cap Y) + g(Y) - f(Y)$$
(4.50)

Assume the case where f-g is monotone increasing. Hence, $f(X\cup Y)+g(Y)-f(Y)\geq g(X\cup Y)$ giving

$$h(X) + h(Y) \ge g(X \cup Y) + f(X \cap Y) \ge h(X \cup Y) + h(X \cap Y)$$
 (4.51)

What is an easy way to prove the case where f - g is monotone decreasing?

Saturation via the $\min(\cdot)$ function

Let $f: 2^V \to \mathbb{R}$ be an monotone increasing or decreasing submodular function and let k be a constant. Then the function $h: 2^V \to \mathbb{R}$ defined by

$$h(A) = \min(k, f(A)) \tag{4.52}$$

is submodular.

Proof.

For constant k, we have that (f - k) is increasing (or decreasing) so this follows from the previous result.

Note also, $g(a) = \min(k, a)$ for constant k is a non-decreasing concave function, so when f is monotone nondecreasing submodular, we can use the earlier result about composing a monotone concave function with a monotone submodular function to get a version of this.

```
Prof. Jeff Bilmes
```

EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016

F49/77 (pg.49/78)

 Graph & Combinatorial Examples
 Matrix Rank
 Examples and Properties
 Other Submodular Defs.

 More on Min - the saturate trick
 View of the saturate trick

- In general, the minimum of two submodular functions is not submodular (unlike concave functions, closed under min).
- However, when wishing to maximize two monotone non-decreasing submodular functions f, g, we can define function $h: 2^V \to \mathbb{R}$ as

$$h_{\alpha}(A) = \min(\alpha, f(A)) + \min(\alpha, g(A))$$
(4.53)

then h is submodular, and $h(A) \ge k$ if and only if both $f(A) \ge \alpha$ and $g(A) \ge \alpha$, for constant $\alpha \in \mathbb{R}$.

• This can be useful in many applications. An instance of a submodular surrogate (where we take a non-submodular problem and find a submodular one that can tell us something).

Arbitrary functions as difference between submodular funcs.

Given an arbitrary set function f, it can be expressed as a difference between two submodular functions: f = g - h where both g and h are submodular.

Proof.

Let f be given and arbitrary, and define:

$$\alpha \stackrel{\Delta}{=} \min_{X,Y} \Big(f(X) + f(Y) - f(X \cup Y) - f(X \cap Y) \Big)$$
(4.54)

If $\alpha \ge 0$ then f is submodular, so by assumption $\alpha < 0$. Now let h be an arbitrary strict submodular function and define

$$\beta \stackrel{\Delta}{=} \min_{X,Y:X \not\subseteq Y,Y \not\subseteq X} \Big(h(X) + h(Y) - h(X \cup Y) - h(X \cap Y) \Big).$$
(4.55)

Strict means that $\beta > 0$.

```
Prof. Jeff Bilmes
```

EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016

F51/77 (pg.51/78)

. . .

Graph & Combinatorial Examples Matrix Rank Examples and Properties Other Submodular Defs. Arbitrary functions as difference between submodular funcs.

...cont.

Define $f': 2^V \to \mathbb{R}$ as

$$f'(A) = f(A) + \frac{|\alpha|}{\beta}h(A)$$
(4.56)

Then f' is submodular (why?), and $f = f'(A) - \frac{|\alpha|}{\beta}h(A)$, a difference between two submodular functions as desired.

	pies Matrix Rank	Examples and Properties	Other Submodular Defs.
Gain			
 We often namely <i>f</i> This is ca ways to n 	wish to express the g $(A \cup \{j\}) - f(A)$. lled the gain and is us otate this. I.e., you m	ain of an item $j \in V$ in sed so often, there are e night see:	context A , equally as many
	$f(A \cup \{j\})$	$-f(A) \stackrel{\Delta}{=} \rho_j(A)$	(4.57)
		$\stackrel{\Delta}{=} \rho_A(j)$	(4.58)
		$\stackrel{\Delta}{=} \nabla_j f(A)$	(4.59)
		$\stackrel{\Delta}{=} f(\{j\} A)$	(4.60)
		$\stackrel{\Delta}{=} f(j A)$	(4.61)
• We'll use • Submodu that $f(j A) \ge f(j A) \ge f(j A)$	f(j A). larity's diminishing rep A) is a monotone non f(j B) whenever A	turns definition can be s -increasing function of $a \subseteq B$ (conditioning reduc	stated as saying A , since $es valuation$).
Prof. Jeff Bilmes	EE596b/Spring 2016/Submo	odularity - Lecture 4 - Apr 6th, 2016	F53/77 (pg.53/78)

 Graph & Combinatorial Examples
 Matrix Rank
 Examples and Properties
 Other Submodular Defs.

 Gain Notation
 Image: Submodular Defs.
 Image: Submodular Defs.
 Image: Submodular Defs.

It will also be useful to extend this to sets. Let ${\cal A}, {\cal B}$ be any two sets. Then

$$f(A|B) \triangleq f(A \cup B) - f(B)$$
(4.62)

So when j is any singleton

$$f(j|B) = f(\{j\}|B) = f(\{j\} \cup B) - f(B)$$
(4.63)

Note that this is inspired from information theory and the notation used for conditional entropy $H(X_A|X_B) = H(X_A, X_B) - H(X_B)$.

Arbitrary function as difference between two polymatroids

- Any normalized submodular function q can be represented as a sum of a polymatroid (normalized monotone non-decreasing submodular) function \bar{g} and a modular function m_a .
- Given submodular $g: 2^V \to \mathbb{R}$, construct $\bar{g}: 2^V \to \mathbb{R}$ as $\bar{g}(A) = g(A) - \sum_{a \in A} g(a|V \setminus \{a\})$. Let $m_g(A) \triangleq \sum_{a \in A} g(a|V \setminus \{a\})$
- Then, given arbitrary f = g h where g and h are normalized submodular,

$$f = g - h = \bar{g} + m_g - (\bar{h} + m_h)$$
(4.64)

$$= \bar{g} - \bar{h} + (m_g - m_h)$$
(4.65)

$$= \bar{g} - \bar{h} + m_{g-h}$$
 (4.66)

$$= \bar{g} + m_{g-h}^{+} - (\bar{h} + (-m_{g-h})^{+})$$
(4.67)

where m^+ is the positive part of modular function m. That is,

- $$\begin{split} m^+(A) &= \sum_{a \in A} m(a) \mathbf{1}(m(a) > 0). \\ \bullet \mbox{ But both } g + m^+_{g-h} \mbox{ and } \bar{h} + (-m_{g-h})^+ \mbox{ are polymatroid functions.} \end{split}$$
- Thus, any function can be expressed as a difference between two, not of. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6t ONLY SUDMOQUIAT (DS), DUL POLYMALFOID TUNCTIONS.

Two Equivalent Submodular Definitions

Definition 4.6.1 (submodular concave)

A function $f: 2^V \to \mathbb{R}$ is submodular if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$$
(4.8)

An alternate and (as we will soon see) equivalent definition is:

Definition 4.6.2 (diminishing returns)

A function $f: 2^V \to \mathbb{R}$ is submodular if for any $A \subseteq B \subset V$, and $v \in V \setminus B$, we have that:

$$f(A \cup \{v\}) - f(A) \ge f(B \cup \{v\}) - f(B)$$
(4.9)

The incremental "value", "gain", or "cost" of v decreases (diminishes) as the context in which v is considered grows from A to B.

F57/77 (pg.57/78)

Submodular Definition: Group Diminishing Returns

An alternate and equivalent definition is:

Definition 4.6.1 (group diminishing returns)

A function $f: 2^V \to \mathbb{R}$ is submodular if for any $A \subseteq B \subset V$, and $C \subseteq V \setminus B$, we have that:

$$f(A \cup C) - f(A) \ge f(B \cup C) - f(B)$$
 (4.68)

This means that the incremental "value" or "gain" of set C decreases as the context in which C is considered grows from A to B (diminishing returns)

EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016

We want to show that Submodular Concave (Definition 4.6.1), Diminishing Returns (Definition 4.6.2), and Group Diminishing Returns (Definition 4.6.1) are identical. We will show that:

- Submodular Concave ⇒ Diminishing Returns
- Diminishing Returns \Rightarrow Group Diminishing Returns
- Group Diminishing Returns ⇒ Submodular Concave

Prof. Jeff Bilmes

F61/77 (pg.61/78)

Group Diminishing Returns \Rightarrow Submodular Concave

$f(U|S) \ge f(U|T), S \subseteq T \subseteq V \setminus U \Rightarrow f(A) + f(B) \ge f(A \cup B) + f(A \cap B).$

Assume group diminishing returns. Assume $A \neq B$ otherwise trivial. Define $A' = A \cap B$, $C = A \setminus B$, and B' = B. Then since $A' \subseteq B'$,

$$f(A'+C) - f(A') \ge f(B'+C) - f(B')$$
(4.77)

giving

$$f(A'+C) + f(B') \ge f(B'+C) + f(A')$$
(4.78)

or

$$f(A \cap B + A \setminus B) + f(B) \ge f(B + A \setminus B) + f(A \cap B)$$
(4.79)

which is the same as the submodular concave condition

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$$
 (4.80)

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016

Graph & Combinatorial Examples	Matrix Rank	Examples and Properties	Other Submodular Defs.
Submodular De	finition: Fo	ur Points	

Definition 4.6.2 ("singleton", or "four points")

 \geq

A function $f: 2^V \to \mathbb{R}$ is submodular iff for any $A \subset V$, and any $a, b \in V \setminus A$, we have that:

$$f(A \cup \{a\}) + f(A \cup \{b\}) \ge f(A \cup \{a, b\}) + f(A)$$
(4.81)

This follows immediately from diminishing returns. To achieve diminishing returns, assume $A \subset B$ with $B \setminus A = \{b_1, b_2, \dots, b_k\}$. Then

$$f(A+a) - f(A) \ge f(A+b_1+a) - f(A+b_1)$$
(4.82)

$$\geq f(A+b_1+b_2+a) - f(A+b_1+b_2)$$
(4.83)

$$\geq f(A + b_1 + \dots + b_k + a) - f(A + b_1 + \dots + b_k)$$
(4.85)

$$= f(B+a) - f(B)$$
 (4.86)

Graph & Combinatorial Exam	ples Matrix Rank	Examples and Properties	Other Submodular Defs.
Submodula	ar Definitions		
Theorem 4.6.3			
Given function	$f:2^V ightarrow\mathbb{R}$, then		
f(A)	$() + f(B) \ge f(A \cup B)$	$+f(A\cap B)$ for all A, I	$B \subseteq V$ (SC)
if and only if			
Ĵ	$f(v X) \ge f(v Y)$ for a	all $X \subseteq Y \subseteq V$ and $v \notin$	t Y (DR)
Proof.			
$(SC) \Rightarrow (DR): S$ $A \cap B = X$ and	Set $A \leftarrow X \cup \{v\}$, $B \in$ nd $f(A) - f(A \cap B) \ge 1$	$\leftarrow Y. \text{ Then } A \cup B = B$ $\geq f(A \cup B) - f(B) \text{ im}$	$B\cup\{v\}$ and plies (DR).
(DR)⇒(SC): 0	Order $A \setminus B = \{v_1, v_2\}$	$,\ldots,v_r\}$ arbitrarily. Fo	r $i\in 1:r$,
$f(v_i (A \cap$	$(B) \cup \{v_1, v_2, \dots, v_{i-1}\}$	$_{1}\}) \ge f(v_{i} B \cup \{v_{1}, v_{2}, v_{3}\})$	$\ldots, v_{i-1}\}).$
Applying teles	coping summation to	both sides, we get:	
$\sum_{i=1}^r f(v_i (A \cap$	$(B) \cup \{v_1, v_2, \dots, v_{i-1}\}$	$\{1,1\} \ge \sum_{i=1}^{r} f(v_i B \cup \{v_1, \dots, v_n\})$	$(v_2, \ldots, v_{i-1}))$
:	$\Rightarrow \qquad f(A) - f(A \cap$	$B) \ge f(A \cup B) - f(B)$	3)
Prof. Jeff Bilmes	EE596b/Spring 2016/Submo	dularity - Lecture 4 - Apr 6th, 2016	F64/77 (pg.64/78)

Graph & Combinatorial Examples	Matrix Rank	Examples and Properties	Other Submodular Defs.
Many (Equivale	ent) Definit	ions of Submodula	arity
$f(A) + f(B) \ge f(A)$	$\cup B) + f(A \cap B)$	$B), \ \forall A, B \subseteq V$	(4.92)
$f(j S) \ge f(j S)$	$T), \ \forall S \subseteq T \subseteq V$	V, with $j \in V \setminus T$	(4.93)
$f(C S) \ge f(C $	$T), \forall S \subseteq T \subseteq V$	V, with $C \subseteq V \setminus T$	(4.94)
$f(j S) \ge f(j S)$	$S \cup \{k\}), \ \forall S \subseteq S \cup \{k\}$	V with $j \in V \setminus (S \cup \{k\}$) (4.95)
$f(A \cup B A \cap B) \le f(A $	$A \cap B) + f(B .$	$A \cap B), \ \forall A, B \subseteq V$	(4.96)
$f(T) \leq f(S) + \sum$	$f(j S) - \sum$	$f(j S \cup T - \{j\}), \ \forall S, T$	$\subseteq V$
$j{\in}Tackslash S$	$j \in S \setminus T$	7	(4.07)
			(4.97)
$f(T) \le f(S)$	$+\sum_{i\in\mathcal{T}\setminus S}f(j S)$	$,\;\forall S\subseteq T\subseteq V$	(4.98)
$f(T) \le f(S)$	$-\sum_{j\in S\setminus T}^{j\in I\setminus S} f(j S)$	$\langle \{j\} \rangle + \sum_{j \in T \setminus S} f(j S \cap T)$	$\forall S,T\subseteq V$
			(4.99)
$f(T) \le f(S)$	$-\sum_{j\in S\backslash T}f(j S)$	$(\{j\}), \forall T \subseteq S \subseteq V$	(4.100)

Examples and Properties

Equivalent Definitions of Submodularity

We've already seen that Eq. 4.92 \equiv Eq. 4.93 \equiv Eq. 4.94 \equiv Eq. 4.95 \equiv Eq. 4.96.

We next show that Eq. 4.95 \Rightarrow Eq. 4.97 \Rightarrow Eq. 4.98 \Rightarrow Eq. 4.95.

Graph & Combinatorial Examples Matrix Rank Examples and Properties Other Submodular Defs.

To show these next results, we essentially first use:

$$f(S \cup T) = f(S) + f(T|S) \le f(S) + \text{upper-bound}$$
(4.101)

EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016 F67/77 (pg.67/78)

 $\quad \text{and} \quad$

$$f(T) + \text{lower-bound} \le f(T) + f(S|T) = f(S \cup T)$$
(4.102)

leading to

Prof. Jeff Bilmes

$$f(T) + \text{lower-bound} \le f(S) + \text{upper-bound}$$
 (4.103)

or

$$f(T) \le f(S) + \text{upper-bound} - \text{lower-bound}$$
 (4.104)

Other Submodular Defs. Examples and Properties Eq. 4.95 \Rightarrow Eq. 4.97

Let $T \setminus S = \{j_1, \ldots, j_r\}$ and $S \setminus T = \{k_1, \ldots, k_q\}$. First, we upper bound the gain of T in the context of S:

$$f(S \cup T) - f(S) = \sum_{t=1}^{r} \left(f(S \cup \{j_1, \dots, j_t\}) - f(S \cup \{j_1, \dots, j_{t-1}\}) \right)$$
(4.105)

$$=\sum_{t=1}^{r} f(j_t|S \cup \{j_1, \dots, j_{t-1}\}) \le \sum_{t=1}^{r} f(j_t|S) \quad (4.106)$$

$$=\sum_{j\in T\setminus S}f(j|S) \tag{4.107}$$

or

$$f(T|S) \le \sum_{j \in T \setminus S} f(j|S)$$
(4.108)

Graph & Combinatorial Examples Other Submodular Defs. Examples and Properties Eq. 4.95 \Rightarrow Eq. 4.97

EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016

Let $T \setminus S = \{j_1, \ldots, j_r\}$ and $S \setminus T = \{k_1, \ldots, k_q\}$. Next, lower bound S in the context of T:

$$f(S \cup T) - f(T) = \sum_{t=1}^{q} \left[f(T \cup \{k_1, \dots, k_t\}) - f(T \cup \{k_1, \dots, k_{t-1}\}) \right]$$
(4.109)

$$=\sum_{t=1}^{q} f(k_t | T \cup \{k_1, \dots, k_t\} \setminus \{k_t\}) \ge \sum_{t=1}^{q} f(k_t | T \cup S \setminus \{k_t\})$$
(4.110)

$$= \sum_{j \in S \setminus T} f(j|S \cup T \setminus \{j\})$$
(4.111)

F69/77 (pg.69/78)

$\mathsf{Eq.}\ \mathsf{4.95} \Rightarrow \mathsf{Eq.}\ \mathsf{4.97}$

Let $T \setminus S = \{j_1, \dots, j_r\}$ and $S \setminus T = \{k_1, \dots, k_q\}$. So we have the upper bound

Matrix Rank

$$f(T|S) = f(S \cup T) - f(S) \le \sum_{j \in T \setminus S} f(j|S)$$
(4.112)

Examples and Properties

and the lower bound

$$f(S|T) = f(S \cup T) - f(T) \ge \sum_{j \in S \setminus T} f(j|S \cup T \setminus \{j\})$$
(4.113)

This gives upper and lower bounds of the form

$$f(T) + \text{lower bound} \le f(S \cup T) \le f(S) + \text{upper bound},$$
 (4.114)

and combining directly the left and right hand side gives the desired inequality.

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016

F71/77 (pg.71/78)

...................

Graph & Combinatorial Examples	Matrix Rank	Examples and Properties	Other Submodular Defs.
Eq. 4.97 \Rightarrow Eq	. 4.98		

This follows immediately since if $S \subseteq T$, then $S \setminus T = \emptyset$, and the last term of Eq. 4.97 vanishes.

Graph & Combinatorial ExamplesMatrix RankExamples and PropertiesOther Submodular Defs.Eq. 4.98 \Rightarrow Eq. 4.95

Here, we set $T=S\cup\{j,k\}$, $j\notin S\cup\{k\}$ into Eq. 4.98 to obtain

$$f(S \cup \{j,k\}) \le f(S) + f(j|S) + f(k|S)$$
(4.115)
$$f(S) + f(S) +$$

$$= f(S) + f(S + \{j\}) - f(S) + f(S + \{k\}) - f(S)$$
(4.116)

$$= f(S + \{j\}) + f(S + \{k\}) - f(S)$$
(4.117)

$$= f(j|S) + f(S + \{k\})$$
(4.118)

giving

Prof. Jeff Bilmes

$$f(j|S \cup \{k\}) = f(S \cup \{j,k\}) - f(S \cup \{k\})$$

$$\leq f(j|S)$$
(4.119)
(4.120)

EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016 F73/77 (pg.73/78)

Graph & Combinatorial Examples	Matrix Rank	Examples and Properties	Other Submodular Defs.		
 Why do we call the submodularity, submodu	the $f(A) + f(A)$ comodular control the differentian sian matrix derivative" $\rightarrow \mathbb{R}$ as follow	$f(B) \ge f(A \cup B) + f(A)$ ncave? ble function $f : \mathbb{R}^n \to$ is nonpositive definite) or difference operator ws:	$(A \cap B)$ definition of $\mathbb R$ is concave iff). defined on discrete		
$(\nabla_B f)(A) \triangleq$	$f(A \cup B)$	$-f(A \setminus B) = f(B (A$	(A.121)		
read as: the derivative of f at A in the direction B . • Hence, if $A \cap B = \emptyset$, then $(\nabla_B f)(A) = f(B A)$. • Consider a form of second derivative or 2nd difference: $(\nabla_B f)(A)$					
$(\nabla_C \nabla_B f)(A)$	$=\nabla_C [f(A)]$	$(\cup B) - f(A \setminus B)$]	(4.122)		
	$= (\nabla_B f)(A$	$(A \cup C) - (\nabla_B f)(A \setminus C)$	C) (4.123)		
	$= f(A \cup B$	$f \cup C) - f((A \cup C) \setminus B)$	3)		
	-f((2	$(A \setminus C) \cup B) + f((A \setminus C))$	$C) \setminus B) \qquad \textbf{(4.124)}$		
Prof. Jeff Bilmes EE596	b/Spring 2016/Subr	nodularity - Lecture 4 - Apr 6th, 2016	F74/77 (pg.74/78)		

Graph & Combinatorial Examples	Matrix Rank	Examples and Properties	Other Submodular Defs.
Submodularity and Concave			

- This submodular/concave relationship is more simply done with singletons.
- Recall four points definition: A function is submodular if for all $X\subseteq V$ and $j,k\in V\setminus X$

$$f(X+j) + f(X+k) \ge f(X+j+k) + f(X)$$
(4.128)

- This gives us a simpler notion corresponding to concavity.
- Define gain as $\nabla_j(X) = f(X+j) f(X)$, a form of discrete gradient.
- Trivially becomes a second-order condition, akin to concave functions: A function is submodular if for all $X \subseteq V$ and $j, k \in V$, we have:

$$\nabla_j \nabla_k f(X) \le 0 \tag{4.129}$$