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Announcements, Assignments, and Reminders

@ Homework r assighment dr

ts), due

(electronically) Friday at 11:55pm.

o Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google
hangout (set up meeting via our our discussion board (https:
//canvas.uw.edu/courses/1039754/discussion_topics)).
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Class Road Map - IT-

@ L1(3/28): Motivation, Applications, & @ L11(5/2):
Basic Definitions o L12(5/4):

@ L2(3/30): Machine Learning Apps @ L13(5/9):
(diversity, complexity, parameter, learning o L14(5/11):
target, surrogate). o L15(5/16):

° L3(.4./4.1): Info theory exs, more apps, o L16(5/18):
definitions, graph/combinatorial examples,
matrix rank example, visualization @ L17(5/23):

© L4(4/6): Graph and Combinatori © L18(5/25):

@ L19(6/1):
€ '@ L20(6/6): Final Presentations
properties maximization.

o L5(4/11):

@ L6(4/13):

® L7(4/18):

@ L8(4/20):

@ L9(4/25):

@ L10(4/27):

Finals Week: June 6th-10th, 2016.
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Monge Matrices

e m x n matrices C' = [¢;;];; are called Monge matrices if they satisfy
the Monge property, namely:

Cij + Crs < Cis + Crj (4.15)

foralll<i<r<mand1<j<s<n.
o Equivalently, forall 1 <i,r <m, 1 <j,s<n,
Cmin(i,r),min(4,s) + Cmax(i,r),max(j,s) < ¢is + Crj (416)

@ Consider four elements of the m x n matrix:

N

m T

P '
Cij:A+B, C’rj:By ¢rs=B+D,cis=A+B+C+D.
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Submodular on Hypercube Vertices

@ Test submodularity via values on verticies of hypercube.
Example: with |V| =n =2, thisis  With |V| =n = 3, a bit harder.

DY
easy:

10 n

XX
A4

How many ineq ualltles?
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Subadditive Definitions

Definition 4.2.1 (subadditive)
A function f: 2V — R is subadditive if for any A, B C V, we have that:

f(A)+ f(B) =z f(AU B) (4.21)

This means that the “whole” is less than the sum of the parts.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 4 - Apr 6th, 2016 F7/77 (pg.7/221)



Review
(NRT RN

Superadditive Definitions

Definition 4.2.1 (superadditive)

A function f : 2V 5 Ris superadditive if for any A, B C V, we have that:

f(A)+f(B) < f(AUB) (4.21)

@ This means that the “whole” is greater than the sum of the parts.

@ In general, submodular and subadditive (and supermodular and
superadditive) are different properties.

e Ex: Let 0 < k < |V, and consider f: 2V — R, where:

f(A):{1 if A <k (4.22)

0 else

@ This function is subadditive but not submodular.
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Modular Definitions

Definition 4.2.1 (modular)

A function that is both submodular and supermodular is called modular

If fis a modular function, than for any A, B C V, we have
f(A)+ f(B)=f(ANnB)+ f(AU B) (4.21)

In modular functions, elements do not interact (or cooperate, or compete,
or influence each other), and have value based only on singleton values.

Proposition 4.2.2

If f is modular, it may be written as

F(A) = F@) + > (F{ad) = F®) = e+ > F(a) (4.22)

a€A acA

which has only |V'| + 1 parameters.
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Complement function

Given a function f : 2V & R, we can find a complement function
f:2V = Ras f(A) = f(V\ A) for any A.

Proposition 4.2.1
f is submodular iff f is submodular.

f(A)+ f(B)> f(AUB) + f(AN B) (4.26)

follows from
FVNA)+f(VAB) = f(VAN(AUB))+ f(V\(ANB))  (427)

which is true because V'\ (AU B) = (V\ A)N(V \ B) and
VN(ANB)=(V\A) U(V\B) (De Morgan's laws for sets). O
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Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

o Let V(X) be the vertices adjacent to some edge in X C E(G), then
|[V(X)| (the vertex function) is submodular.

o Let E(S) be the edges with both vertices in S C V(G). Then |E(S)]
(the interior edge function) is supermodular.

o Let I(S) be the edges with at least one vertex in S C V(G). Then
|1(.S)| (the incidence function) is submodular.

@ Recall [6(5)], is the set size of edges with exactly one vertex in
S C V(G) is submodular (cut size function). Thus, we have
I(S) = E(S)Ud(S) and E(S)Nd(S) =0, and thus that
II(S)| = |E(S)| + [6(S)|. So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?

e Consider f(A) = [6T(A)] —[6T(V \ A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one and

prove it.
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Number of connected components in a graph via edges

@ Recall, f: 2V 5 R is submodular, then so is f: 2V s R defined as
f(S)=f(V\S).
@ Hence, if f:2Y — R is supermodular, then so is f : 2 — R defined
as f(5) = f(V\ 5).
e Given a graph G = (V, E), for each A C E(G), let ¢(A) denote the
number of connected components of the (spanning) subgraph
(V(G), A), with c: 2F — R,
@ ¢(A) is monotone non-increasing, ¢c(A+a) —c(A) <0 .
@ Then ¢(A) is supermodular, i.e.,
c(A+a)—c(A) <c¢(B+a)—c(B) (4.40)
with A C B C E\ {a}.
@ Intuition: an edge is “more” (no less) able to bridge separate
OATPOTTE and reduce the number of conected components) when
édge is added in axgmaller context than when added in a larger context.
¢ ¢(A) =c(E\ A) is the number of connected components in G when
we remove A, so isAdlso supermodular, but monotone non-decreasing.
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Graph Strength

@ So ¢(A) =c¢(E \ A) is the number of connected components in G
when we remove A, is supermodular.
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Graph Strength

@ So ¢(A) = ¢(E\ A) is the number of connected components in G
when we remove A, is supermodular.

@ Maximizing ¢(A) might seem as a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).
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Graph Strength

@ So ¢(A) = ¢(E\ A) is the number of connected components in G
when we remove A, is supermodular.

e Maximizing ¢(A) might seem as a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

@ If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.

‘/\/@ﬂ/‘ = % 4@4‘\ [/H -C”m//
— o(A) brs
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Graph Strength

@ So ¢(A) = ¢(E\ A) is the number of connected components in G
when we remove A, is supermodular.

e Maximizing ¢(A) might seem as a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

@ If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.

@ An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.
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Graph Strength

@ So ¢(A) = ¢(E\ A) is the number of connected components in G
when we remove A, is supermodular.

e Maximizing ¢(A) might seem as a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

@ If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.

@ An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.

o Let G = (V,E,w) with w: E — R+ be a weighted graph with
non-negative weights.
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Graph Strength

@ So ¢(A) = ¢(E\ A) is the number of connected components in G
when we remove A, is supermodular.

e Maximizing ¢(A) might seem as a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

@ If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.

@ An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.

o Let G = (V,E,w) with w: E — R+ be a weighted graph with
non-negative weights.

@ For (u,v) =e € E, let w(e) be a measure of the strength of the

connection between vertices u and v (strength meaning the difficulty
of cutting the edge e).
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Graph Strength

@ Then w(A) for A C E is a modular function

> we (4.1)

ecA
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Graph Strength

@ Then w(A) for A C E is a modular function
w(A) = Zwe (4.1)
ecA

so that w(E(G[S])) is the “internal strength” of the vertex set S.
@ Suppose removing{ A shatters G into a graph with(e(4) > 1
components —
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Graph Strength

@ Then w(A) for A C E is a modular function
w(A) = Zwe (4.1)
ecA

so that w(E(G[S])) is the “internal strength” of the vertex set S.
@ Suppose removing A shatters G into a graph with ¢(A) > 1

components — then‘w(A)/(@(A) — 1)is like the ‘‘effort per

achieved/additional component” for a network attacker.
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Graph Strength

@ Then w(A) for A C E is a modular function

w(A) = Zwe (4.1)
ecA

so that w(E(G[S])) is the “internal strength” of the vertex set S.
@ Suppose removing A shatters G into a graph with ¢(A) > 1

components — then w(A)/(¢(A) — 1) is like the “effort per

achieved/additional component” for a network attacker.
@ A form of graph strength can then be defined as the following:
w(A)

Strength(G, 'UJ) = AgE(:g‘l)l:]g(A)>1 6(14)7—1

(4.2)
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Graph Strength

@ Then w(A) for A C E is a modular function

w(A) = Zwe (4.1)
ecA
so that w(E(G[S])) is the “internal strength” of the vertex set S.

@ Suppose removing A shatters G into a graph with ¢(A) > 1
components — then w(A)/(¢(A) — 1) is like the “effort per
achieved/additional component” for a network attacker.

@ A form of graph strength can then be defined as the following:

ac w(A)
strength(G,w) = in S — 4.2
gth( ) ACE(G):e(A)>1 ¢(A) — 1 (4.2)
@ Graph strength is like the minimum effort per component. An attacker
would use the argument of the min to choose which edges to attack. A
network designer would maximize, ovef G' and/or w, the graph

strength, strength(G,w).
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Graph Strength

@ Then w(A) for A C E is a modular function /}:—F
w(A) = Zwe (4.1)

ecA
so that w(E(G[S])) is the “internal strength” of the vertex set S.

@ Suppose removing A shatters G into a graph with ¢(A) > 1
components — then w(A)/(¢(A) — 1) is like the “effort per
achieved/additional component” for a network attacker.

@ A form of graph strength can then be defined as the following:

. w(A)
strength(G,w) = AQE(ICIT})I:?(A)>1 ZA) -1 (4.2)

@ Graph strength is like the minimum effort per component. An attacker
would use the argument of the min to choose which edges to attack. A
network designer would maximize, over G' and/or w, the graph
strength, strength(G,w).

@ Since submodularity, problems have strongly-poly-time solutions.
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Submodularity, Quadratic Structures, and Cuts

Lemma 4.3.1

Let M € R™*™ be a symmetric matrix and@m € R™ be a vector. Then
f:2YV — R defined as

1
f(X) =mTly + 51;(1\/11)( (43)
— 4
is submodular iff the off-diagonal elements of M are non-positive.

Proof.
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Submodularity, Quadratic Structures, and Cuts

Lemma 4.3.1

Let M € R™™™ be a symmetric matrix and m € R™ be a vector. Then
f:2YV — R defined as

1
f(X) =mTly + 51;(M1X (43)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.

@ Given a complete graph G = (V, E), recall that E(X) is the edge set
with both vertices in X C V(G), and that |E(X)] is supermodular.

ekl = |
KigeX
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Submodularity, Quadratic Structures, and Cuts

Lemma 4.3.1

Let M € R™*"™ be a symmetric matrix and m € R™ be a vector. Then
f:2YV — R defined as

1
f(X) =mTly + iljl;(MlX (43)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.

@ Given a complete graph G = (V, E), recall that E(X) is the edge set
with both vertices in X C V(G), and that |E(X)] is supermodular.

@ Non-negative modular weights w* : E — Ry, w(E(X)) is also
supermodular, sof=w(E(X)) (non-positive modular) is submodular.

w(€(x)) = Z
ZigeX
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Submodularity, Quadratic Structures, and Cuts

Lemma 4.3.1

Let M € R™*"™ be a symmetric matrix and m € R™ be a vector. Then
f:2YV — R defined as

1
F(X) = @R + 51, M1 (4.3)

is submodulat iff the off-diagonal elements of M are non-positive.

Proof.
@ Given a complete graph G = (V, E), recall that E(X) is the edge set
with both vertices in X C V(G), and that |E(X)] is supermodular.

o Non-negative modular weights w* : E — R, w(E(X)) is also
supermodular, so —w(E(X)) (non-positive modular) is submodular.

e f is a modular function(mTly =Vm(A)added to a weighted
submodular function, hence f is submodular.
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Submodularity, Quadratic Structures, and Cuts

Proof of Lemma 4.3.1 cont.

@ Conversely, suppose f is submodular.

Ol
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Submodularity, Quadratic Structures, and Cuts

Proof of Lemma 4.3.1 cont.

@ Conversely, suppose f is submodular.

o Then ¥uzma. @@+ ¢{}) > F{uw}) €F0)while(f(@)F=0:

Ol

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 4 - Apr 6th, 2016 F16/77 (pg.30/221)



Graph & Combinatorial Examples
(NN}

Submodularity, Quadratic Structures, and Cuts

Proof of Lemma 4.3.1 cont.

@ Conversely, suppose f is submodular.
o Then Vu,v €V, f({u}) + f({v}) = f({u,v}) + f(0) while f(0) =0.
@ This requires:
0= i) +f (fo}) — f({u,0}) (4.4)
m(u) + 5 Muu -+ m(v) + %Mv,v (4.5)

1
— <m(u) +m(v) + iMu,u + My, + §Mv,v) (4.6)

~—

= My, L (4.7)

~Mup
So that Vu, v € v,
0
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SET CoVER and MAXIMUM COVERAGE

just Special cases of Submodular Optimization

@ We are given a finite set V' of m elements and a set of subsets
V ={A,Va,...,Vinpof m subsets of V, so that@; € Vand
UiVi =V.
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SET CoVER and MAXIMUM COVERAGE

just Special cases of Submodular Optimization

o We are given a finite set V' of n elements and a set of subsets
V ={V1,Va,...,Vy,} of m subsets of V, so that V; C V' and
UiVi =V.

@ The goal of minimum SET COVER is to choose the smallest subset
A C(m] = {1,...,m} such that J,eq Vo = V.
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SET CoVER and MAXIMUM COVERAGE

just Special cases of Submodular Optimization

o We are given a finite set V' of n elements and a set of subsets
V ={V1,Va,...,Vy,} of m subsets of V, so that V; C V' and
UiVi=V.

@ The goal of minimum SET COVER is to choose the smallest subset
AC[m]={1,...,m} such that J,cy Vo = V.

@ Maximum k cover: The goal in' MAXIMUM COVERAGE is, given an
integer k < m, select k subsets, saydai,as,-..,ax} with a; € [m]
such that| UL, Vi, |is maximized.
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SET CoVER and MAXIMUM COVERAGE

just Special cases of Submodular Optimization

o We are given a finite set V' of n elements and a set of subsets
V ={V1,Va,...,Vy,} of m subsets of V, so that V; C V' and
UiVi=V.

@ The goal of minimum SET COVER is to choose the smallest subset
A Cm] = {1, Jm} such that (J,c 4 Vo = V.

@ Maximum k cover: The goal in MAXIMUM COVERAGE is, given an
integer k < m, select k subsets, say {aj,as,...,a} with a; € [m]
such that | U, Vi, is maximized.

o 2ml — Ziwhere for A C [m], f(A) = |U,ea Val is the set cover
function and is submodular.

e
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SET CoVER and MAXIMUM COVERAGE

just

Special cases of Submodular Optimization

We are given a finite set V' of n elements and a set of subsets

V ={V1,Va,...,Vy,} of m subsets of V, so that V; C V' and
UiVi=V.

The goal of minimum SET COVER is to choose the smallest subset
AC[m]={1,...,m} such that J,cy Vo = V.

Maximum k cover: The goal in MAXIMUM COVERACE is, given an
integer k < m, select k subsets, say {aj,as,...,a} with a; € [m]
such that | U, Vi, is maximized. {——//(’

f:20m — Z, where for A C [m], f(A) = |U,c Val is the set cover
function and is submodular.

Both SET COVER and MAXIMUM COVERACE are well known to be
NP-hard, but have a fast greedy approximation algorithm, and hence
are instances of submodular optimization.
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Vertex and Edge Covers

Also instances of submodular optimization

Definition 4.3.2 (vertex cover)

A vertex cover (a “vertex-based cover of edges”) in graph G = (V,E) is a
set S C V(G) of vertices such that every edge in G is incident to at least
one vertex in S.

@ Let I(S) be the number of edges incident to vertex set S. Then we
wish to find the smallest set S C V subject to I(S) = |E]|.

Definition 4.3.3 (edge cover)

A ledge cover (an “edge-based cover of vertices") in graph G = (V, E) is a
set F' C E(G) of edges such that every vertex in G is incident to at least
one edge in F.

o Let |V|(F') be the number of vertices incident to edge set F'. Then we
wish to find the smallest set F' C FE subject to |V|(F) = |V|.
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Graph Cut Problems

Also submodular optimization

e MINIMUM cUT: Given a graph G = (V, E), find a set of vertices
S C V that minimize the cut (set of edges) between S and V'\ S.
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Graph Cut Problems

Also submodular optimization

e MINIMUM cuUT: Given a graph G = (V, E), find a set of vertices
S C V that minimize the cut (set of edges) between S and V'\ S.

e MaXiMUM cuUT: Given a graph G = (V, E), find a set of vertices
S C V that minimize the cut (set of edges) between S and V'\ S.
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Graph Cut Problems

Also submodular optimization

o MiNIMUM eUT: Given a graph G = (V, E), find a set of vertices
S C V that minimize the cut (set of edges) between S and V'\'S.

o MAXIMUM CUT: Given a graph G = (V, E), find a set of vertices
S C V that minimize the cut (set of edges) between (S and V' \'S.

o Letf§2Y35 R Dbe the cut function, namely for any given set of
nodes X C V,]6(X)[measures the number of edges between nodes X
and V\ X, ord(z) = E(X,V \ X).
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Graph & Combinatorial Examples
(R}

Graph Cut Problems

Also submodular optimization

e MINIMUM cuUT: Given a graph G = (V, E), find a set of vertices
S C V that minimize the cut (set of edges) between S and V'\ S.

e MAXIMUM cUT: Given a graph G = (V, E), find a set of vertices
S C V that minimize the cut (set of edges) between S and V'\ S.

o Let 6 :2Y — R, be the cut function, namely for any given set of
nodes X C V, §(X) measures the number of edges between nodes X
and V\ X, or d(x) = E(X,V \ X).

@ Weighted versions, where rather than count, we sum the
(non-negative) weights of the edges of a cut, f(X) =@(o(X)).
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Graph & Combinatorial Examples
(WR}

Graph Cut Problems

Also submodular optimization

MiINIMUM cUT: Given a graph G = (V, E), find a set of vertices

S C V that minimize the cut (set of edges) between S and V'\ S.

MAXIMUM CUT: Given a graph G = (V, E), find a set of vertices

S C V that minimize the cut (set of edges) between S and V'\ S.

o Let 6 :2Y — R, be the cut function, namely for any given set of
nodes X C V, §(X) measures the number of edges between nodes X
and V\ X, or d(x) = E(X,V \ X).

@ Weighted versions, where rather than count, we sum the

(non-negative) weights of the edges of a cut, f(X) = w(d(X)).

Hence, MINIMUM CUT and MAXIMUM CUT are also special cases of

submodular optimization.
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Matrix Rank
[NRNRARNRN

Matrix Rank functions

o Let WV, with(|V/]
n (unrelated to my-

éan index set of a set of vectors il R™ for some
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Matrix Rank
[NRNRARNRN

Matrix Rank functions

o Let V, with |V| = m be an index set of a set of vectors in R™ for some
n (unrelated to m).

e For a given setl{w, vy, VW VW@E it might or might not be possible to
find (;); such that:

(4.8)

If not, then z, is linearly independent of z,,, ..., zy,.
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Matrix Rank
[NRNRARNRN

Matrix Rank functions

o Let V, with |V| = m be an index set of a set of vectors in R™ for some
n (unrelated to m).

e For a given set {v,v1,v2,...,v;}, it might or might not be possible to
find (a;); such that:

k
Ty = Z QG Ty, (4.8)
i=1

If not, then z, is linearly independent of x,,, ..., %y,.

o Let of S C V. be the rank of the set(of vectors S. Then r() is a
submodular flinction, 'and in fact is called a'matric matroid rank

functlon.
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Matrix Rank
[N ERRRARER

Example: Rank function of a matrix

o GiveplmXim matrix X =&, @2, .., Tm) With@; € R” for all 7.
There areginlength=icolumn vectors {@;},
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Matrix Rank
[N ERRRARER

Example: Rank function of a matrix

e Given n x m matrix X = (z1,z2,...,Ty) with z; € R for all i.
There are m length-n column vectors {x;},

o Let V=1{1,2,...,m} be the set of column vector indices.
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Matrix Rank
[N ERRRARER

Example: Rank function of a matrix

e Given n x m matrix X = (z1,z2,...,Ty) with z; € R for all i.
There are m length-n column vectors {x;},

o Let V=1{1,2,...,m} be the set of column vector indices.
e For any A CV, let@(A) be the rank of the column vectors indexed by
A.
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Matrix Rank
[N ERRRARER

Example: Rank function of a matrix

Given n x m matrix X = (x1,x2,...,Z;y) with x; € R™ for all 7.
There are m length-n column vectors {x;},

Let V = {1,2,...,m} be the set of column vector indices.

For any A C V, let r(A) be the rank of the column vectors indexed by
A.

(A) is the dimensionality of the vector space spanned by the set of
vectors {z,}

acA
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Matrix Rank

Example: Rank function of a matrix

(x1,22,...,Tm) with x; € R™ for all 7.
-n_column vectors {z;},

Givén n X m matri
here are m length
Let V = {1,2,...,m} be the set of column vector indices.

For any A C V, let r(A) be the rank of the column vectors indexed by
A.

r(A) is the dimensionality of the vector space spanned by the set of
vectors {Zq},ca-

Thusg®(V) is the rank of the matrix X.
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Matrix Rank
INLRNRARER

Example: Rank function of a matrix

nkm
Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

123456738
1 2 3 4 5 6 7 8
1/0 2230013 1 TYREYITW
2o 304002 4|
— X2 X3 X4 X5 Xg X7 X
310 0003005 X'l '2 |3 I4 |5 |6 |7 ’8
4\2 0000005

Let A={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3 r(BUB,) =3, r(AUB,) =4, r(BUA,) =4
r(AUB)=4,r(ANB)=1<r(C)=2.
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Matrix Rank
(NLRNRRRER!

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678
1 2 3 4 5 6 7 8
1/0 2 2301 3 1 e I
200 304002 4|
— | X1 X0 X3 X4 X5 X X7 X
300003005 |1 |2 |3 ‘4 ’5 ’6 |7 |8
4\2 00 000 0 5

Let A={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,)=3,r(AUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C)=2.
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Matrix Rank
(NLRNRRRER!

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2301 3 1 B S
200 30400 2 4|

— | X1 X0 X3 X4 X5 X X7 X

3o 0003005 |1 ‘2 |3 |4 |5 ’6 |7 |8
4\2 00 0000 5

Let A={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,)=3,r(AUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C)=2.
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Matrix Rank
INLRNRARER

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

B 0NN =

1

N O O O

2

S O W N

Prof. Jeff Bilmes

5 6 7 8

1 2 3 4
0 ! o
0 4_
300 5 X|1X‘2X‘3X4
0 0 0 b5

EE596b/Spring 2016 /Submodularity - Lecture 4 - Apr 6th, 2016

5
|

X5

6 7 8
]

Xo X7 Xg

Let A =1{1,2,3}, B=1{3,4,5}, C=1{6,7}, A, ={1}, B, = {5}.
Then r(A) = 3, r(B) = 3,r(C) = 2.
r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
r(AUB)=4r(ANB)=1<r(C) =2.
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Matrix Rank
(NLRNRRRER!

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2 301 3 1 T
200 30400 2 4|

— | X1 X0 X3 X4 X5 X X7 X

300003005 |1 ‘2 ‘3 ’4 ’5 ’6 |7 |8
4\2 00000 0 5

Let A={1,2,3}, B={3,4,5}, C ={6,7}, A, ={1}, B, ={5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,)=3,r(AUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C) =2.
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Matrix Rank
(NLRNRRRER!

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2301 3 1 B
200 30400 2 4|

— | X1 X0 X3 X4 X5 X X7 X

300003005 |1 ‘2 ‘3 ’4 |5 ’6 |7 |8
4\2 00 00 00 5

Let A={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, ={5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,)=3,r(AUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C) =2.
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Matrix Rank
(NLRNRRRER!

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2301 3 1 iR
200 304002 4|

— | X1 X0 X3 X4 X5 X X7 X

300003005 |1 |2 |3 ‘4 ’5 ’6 |7 |8
4\2 00 000 0 5

Let A =1{1,2,3}, B=1{3,4,5}, C ={6,7}, A, ={1}, B, = {5}.
Then r(4) =3, r(B) =3, r(C) =2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
r(AuUB)=4,r(ANB)=1<r(C)=2.
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Matrix Rank
(NLRNRRRER!

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2301 3 1 T
200 30400 2 4|

— | X1 X0 X3 X4 X5 X X7 X

3o 0003005 |1 ‘2 |3 |4 |5 ’6 |7 |8
a\2 o 00 5

Let A =1{1,2,3}, B=1{3,4,5}, C ={6,7}, A, ={1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C)=2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
r(AuUB)=4,r(ANB)=1<r(C)=2.
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Matrix Rank
(NLRNRRRER!

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2 3001 3 1 B B
200 30400 2 4|

— | X1 X0 X3 X4 X5 X X7 X

30 0 0 0 30 5 |1 ‘2 ‘3 ‘4 ’5 |6 |7 |8
a\2 000 0 5

Let A =1{1,2,3}, B=1{3,4,5}, C ={6,7}, A, ={1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) =2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C)=2.
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Matrix Rank
INLRNRARER

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.
1 2 3 45 6 7 8

1 2 3 4 5 6 7 8

1/0 3 0 1
2@404_\\|rrrrr
3000003005 (™28 Ms %%
4\2 000000 5 B

o Let A= {1,2,3}, B—{3 4,5}, C = {6,7}, A, = {1}, B, = {5}.

@ Thenr(A) =3, r(B) =3, r(C) =2.

e r(AUC) =3, r(B C) 3.

e r(AUA,)=3,r(BUB,)=3,1r(AUB,) =4, r(BUA,)

o (AUB) =4, r(ANB) =1 < r(C) = 2.
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Matrix Rank
INLRNRARER

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.
1 2 3 45 6 7 8

2 3 4 5 6 7 8
1{0 2/5 3
20(04). O
300003005 1X2X3X4X5X6X7X8
4\2 000000 5 A

Let A =1{1,2,3}, B=1{3,4,5}, C ={6,7}, A, ={1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,) =3 r(AUB,) =4, r(BUA,) =
r(AuUB)=4,r(ANB)=1<r(C)=2.
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Matrix Rank
INLRNRARER

Example: Rank function of a matrix

Considﬁr the follgising 4 x 8 matrix, so V' ={1,2,3,4,5,6,7,8}.
—

23 5|6 7 8
1 2 3 4 5 6 7 8
HOf2 b L
2{lof 3 02 4|
— |1 X1 X2 X3 Xa X5 X X7 X
| b 00 T,
20 00 5

Let A={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3, "(BUB,)=3,r(AUB,) =4, r(BUA,) =4.
r(AuUB)=4,r(ANB)=1<r(C)=2.
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Matrix Rank
INLRNRARER

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8

1/0 2 2 3 01 3 1 “||””
210304002 4|

- X1 X2 X3 X4 X5 Xe X7 Xg
3 0 0 0 5
(@ o K N
4\2 0 0 O 0 O 0 5

Let A={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,)=3, r(AUB,) =4, r(BUA,) =4.
r(AuUB)=4,r(ANB)=1<r(C)=2.
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Matrix Rank
(NLRNRRRER!

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2301 3 1 W
200 30400 2 4|

— | X1 X2 X3 X4 X5 X X7 X

300003005 |1 |2 |3 ‘4 |5 ’6 |7 |8
4\2 00 00 00 5

Let A={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA,)=3r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C)=2.
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Matrix Rank
(NLRNRRRER!

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2301 3 1 . D |
200 30400 2 4|

— | X1 X0 X3 X4 X5 X X7 X

300003005 |1 ‘2 |3 |4 |5 ’6 |7 |8
4\2 00 0000 5

Let A={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3 r(BUB,) =3, rAUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C)=2.
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Matrix Rank
(NLRNRRRER!

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2301 3 1 =
200 30400 24|

— | X1 X0 X3 X4 X5 X X7 X

300003005 |1 |2 |3 |4 |5 ’6 |7 |8
4\2 00 0000 5

Let A =1{1,2,3}, B=1{3,4,5}, C ={6,7}, A, ={1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA4,)=3r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
r(AUB) =4, r(ANB)=1<r(C)=2.
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Matrix Rank
(NLRNRRRER!

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2301 3 1 Y B
200 30400 2 4|

— | X1 X0 X3 X4 X5 X X7 X

3o 0003005 |1 ‘2 |3 ’4 ’5 ’6 |7 |8
4\2 00 0000 5

Let A =1{1,2,3}, B=1{3,4,5}, C ={6,7}, A, ={1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA,)=3r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
r(AuB) =4, r(AnB)=1 <r(C)=2.

L cpimmon %
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Matrix Rank
(NLRNRRRER!

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2 3001 3 1 B B
200 30400 2 4|

— | X1 X0 X3 X4 X5 X X7 X

3o 0003005 |1 ‘2 ‘3 ‘4 ’5 |6 |7 |8
4\2 00 0000 5

Let A =1{1,2,3}, B=1{3,4,5}, C ={6,7}, A, ={1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA4,)=3r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1 <r(C)=2.

L COmmn SPp.
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Matrix Rank
(NLRNRRRER!

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2301 3 1 Ll
200 30400 2 4|

— | X1 Xo X3 Xa X5 X X7 X

300003005 |1 ‘2 ‘3 ‘4 ’5 ’6 |7 |8
4\2 000000 5

Let A={1,2,3}, B={3,4,5}, C = {6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

(AUA)—3 r(BUB,) =3, r(AUB,) =4, r(BUA,) =
r(AUB) =4, r(AnB)=1 <r(C)=2.

6= r(A)+r(B)>r(AUB)—|—r(AﬂB) =5

—_— —
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Matrix Rank
(NN ARARER

Rank function of a matrix

o Let A, B CV be two subsets of column indices.
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Matrix Rank
(NN ARARER

Rank function of a matrix

o Let A, B CV be two subsets of column indices.
@ The rank of the two sets unioned together A U B is no more than the
sum of the two individual ranks.
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Matrix Rank
(NN ARARER

Rank function of a matrix

o Let A, B CV be two subsets of column indices.
@ The rank of the two sets unioned together A U B is no more than the

sum of the two individual ranks.
@ In a Venn diagram, let area correspond to dimensions spanned by

vectors indexed by a set. Hence, (A) can be viewed as an area.

F23/77 (pg.72/221)
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Matrix Rank

Rank function of a matrix

o Let A, B CV be two subsets of column indices.

@ The rank of the two sets unioned together A U B is no more than the
sum of the two individual ranks.

@ In a Venn diagram, let area correspond to dimensions spanned by
vectors indexed by a set. Hence, (A) can be viewed as an area.

r(A) + r(B) >  r(AUB)

F23/77 (pg.73/221)
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Matrix Rank

Rank function of a matrix

o Let A, B CV be two subsets of column indices.

@ The rank of the two sets unioned together A U B is no more than the
sum of the two individual ranks.

@ In a Venn diagram, let area correspond to dimensions spanned by
vectors indexed by a set. Hence, (A) can be viewed as an area.

fA) + r(B) > r(AUB)

@ If some of the dimensions spanned by A overlap some of the
dimensions spanned by B (i.e., if 3 common span), then that area is
counted twice in 7(A) 4+ r(B), so the inequality will be strict.

F23/77 (pg.74/221)
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Rank function of a matrix

o Let A, B CV be two subsets of column indices.

@ The rank of the two sets unioned together A U B is no more than the
sum of the two individual ranks.

@ In a Venn diagram, let area correspond to dimensions spanned by
vectors mdexed by a set. Hence r(A) can be viewed as an area

> r(AUB)

r

@ If some of the dimensions spanned by A overlap some of the
dimensions spanned by B (i.e., if 3 common span), then that area is
counted twice in 7(A) + r(B), so the inequality will be strict.

@ Any function where the above inequality is true for all A, B C V is
called subadditive.
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Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) (non=common residualispans:
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Matrix Rank
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Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

@ Let C' index vectors spanning dimensions common to A and B.
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Matrix Rank
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Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

@ Let C index vectors spanning dimensions common to A and B.

@ Let A, index vectors spanning dimensions spanned by A but not B.
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Matrix Rank
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Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

@ Let C index vectors spanning dimensions common to A and B.
@ Let A, index vectors spanning dimensions spanned by A but not B.

@ Let B, index vectors spanning dimensions spanned by B but not A.
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Rank functions of a matrix

Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

@ Let C index vectors spanning dimensions common to A and B.

@ Let A, index vectors spanning dimensions spanned by A but not B.
@ Let B, index vectors spanning dimensions spanned by B but not A.
@ Then, r(A) =7(C) +r(A4,)
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Matrix Rank
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Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C' index vectors spanning dimensions common to A and B.

Let A, index vectors spanning dimensions spanned by A but not B.

Then, r(A) =r(C) +r(A,)

°
°
@ Let B, index vectors spanning dimensions spanned by B but not A.
°
e Similarly, r(B) = r(C) + r(B,).
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Matrix Rank
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Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C' index vectors spanning dimensions common to A and B.

Let A, index vectors spanning dimensions spanned by A but not B.
Let B, index vectors spanning dimensions spanned by B but not A.
Then, r(A) =r(C) +r(A,)

Similarly, r(B) = r(C) + r(B,).

Then r(A) + r(B) counts the dimensions spanned by C' twice, i.e.,

r(A) +r(B) = t(4;) + 2r(C) + r(B;)- (4.9)
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Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C' index vectors spanning dimensions common to A and B.

Let A, index vectors spanning dimensions spanned by A but not B.
Let B, index vectors spanning dimensions spanned by B but not A.
Then, r(A) =r(C) +r(A,)

Similarly, r(B) = r(C) + r(B,).

Then r(A) + r(B) counts the dimensions spanned by C' twice, i.e.,

r(A) +r(B) =r(A;) +2r(C) 4+ r(B,). (4.9)

But 7(A U B) counts the dimensions spanned by C' only once.
r(AU B) Hr(4;) + r(C) + r(B;) (4.10)
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Matrix Rank

Rank functions of a matrix

@ Then r(A) + r(B) counts the dimensions spanned by C' twice, i.e.,

r(A)+r(B) = r(A,) +2r(C) +
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Rank functions of a matrix

@ Then r(A) + r(B) counts the dimensions spanned by C' twice, i.e.,

r(A)+r(B) =r(A;)+2r(C)+ r(B,)

e But r(A U B) counts the dimensions spanned by C only once.

r(AUB) =r(A,)+r(C)+ r(B,)
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Rank functions of a matrix

e Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A)+r(B) =r(A) £2r(C)+ r(B,)

e But r(A U B) counts the dimensions spanned by C only once.

r(AU B) =r(A;) +r(C)+ r(B,)

p[c) Z O

@ Thus, we have subadditivity: 7(A) 4+ r(B) > r(AU B). Can we add
more to the r.h.s. and still have an inequality? Yes.
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Matrix Rank

Rank function of a matrix

o Note, (&R B) < r(C):"Why? Vectors indexed by AN B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C').

r(C) > r(AN B)

In short:
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Matrix Rank

Rank function of a matrix

e Note, 7(AN B) < r(C). Why? Vectors indexed by AN B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C').

r(C) > r(AN B)

In short:
e Common span (blue) is “more” (no less) than span of common index
(magenta).
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Rank function of a matrix

e Note, 7(AN B) < r(C). Why? Vectors indexed by AN B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C').

r(C) > r(AN B)

In short:
e Common span (blue) is “more” (no less) than span of common index
(magenta).
@ More generally, common information (blue) is “more” (no less) than
information within common index (magenta).
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The Venn and Art of Submodularlty

o(fre) £ Alc)
r(A) +r(B) 2 r(AU B) —|— r(Aﬂ B)

+2

r(C) + r(B, AmB)

L \\
N //'
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Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).
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Matrix Rank
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Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).

@ For each X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.
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Matrix Rank
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Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).

@ For each X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.

@ We can think of S as a set of sets of vectors from the matrix rank
example, and for each s € S, let X being a set of vector indices.
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Matrix Rank
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Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).

@ For each X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.

@ We can think of S as a set of sets of vectors from the matrix rank
example, and for each s € S, let X being a set of vector indices.

@ Then, defining f : 25 — R as follows,
F(X) =r(Uses Xs) (4.11)

we have that f is submodular, and is known to be a polymatroid rank
function.
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Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).

@ For each X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.

@ We can think of S as a set of sets of vectors from the matrix rank
example, and for each s € S, let X being a set of vector indices.

@ Then, defining f : 25 — R, as follows,
F(X) =r(Uses Xs) (4.11)

we have that f is submodular, and is known to be a polymatroid rank
function.

@ In general (as we will see) polymatroid rank functions are{submodular,
normalized f(() =0, and monotone non-decreasing (f(A) < f(B)
whenever A C B).
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Spanning trees

@ Let E be a set of edges of some graph G =(V, E), and let r(S) for
S C E be the maximum size (in terms of number of edges) spanning

forest in the vertex-induced graph, induced by vertices incident to

edges S.
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Spanning trees

o Let E be a set of edges of some graph G = (V, E), and let r(S) for
S C E be the maximum size (in terms of number of edges) spanning
forest in the vertex-induced graph, induced by vertices incident to
edges S.

@ Example: Given G = (V, E), V. ={1,2,3,4,5,6,7,8},
E=1{1,2,...,12}. S={1,2,3,4,5,8,9} C E. Two spanning trees
have the same edge count (the rank of 5).
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Spanning trees

o Let E be a set of edges of some graph G = (V, E), and let r(S) for
S C E be the maximum size (in terms of number of edges) spanning
forest in the vertex-induced graph, induced by vertices incident to
edges S.

e Example: Given G = (V,E), V ={1,2,3,4,5,6,7,8},
E={1,2,...,12}. S ={1,2,3,4,5,8,9} C E. Two spanning trees
have the same edge count (the rank of .S).

@ Then r(S) is submodular, and is another matrix rank function
corresponding to the incidence matrix of the graph.
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Examples and Properties
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Summing Submodular Functions

Given E, let f1, fo : 2 — R be two submodular functions. Then
J 27 5 Rowith f(4) = fi(4) + fo(A) (4.16)

is submodular.
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Examples and Properties
[NRNRARRRRRRRRNNANRARNNAY

Summing Submodular Functions

Given FE, let f1, fo : 2E s R be two submodular functions. Then
f:2F S Rwith f(A) = fi(A) + fo2(A) (4.16)

is submodular.This follows easily since

f(A) + f(B) = fi(A) + f2(A) + f1(B) + f2(B) (4.17)
> [i(AUB) + fo(AUB) + fi(ANB) + fo2(AN B) (4.18)
= f(AUB) + f(AN B). (4.19)

l.e., it holds for each component of f in each term in the inequality.
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Examples and Properties
[NRNRAR RN RRRRNNANRARRNAY

Summing Submodular Functions

Given FE, let f1, fo : 2E s R be two submodular functions. Then
f:2F S Rwith f(A) = fi(A) + fo2(A) (4.16)

is submodular.This follows easily since

f(A) + f(B) = fi(A) + f2(A) + f1(B) + f2(B) (4.17)
> fi(AUB) + fo(AUB) + fi(ANB) + fo(AN B) (4.18)
= f(AUB)+ f(ANB). (4.19)

l.e., it holds for each component of f in each term in the inequality. In fact,
any conic combination (i.e., non-negative linear combination) of submodular
functions is submodular, as in f(A) = a1 f1(A4) + aafa(A) for ai,as > 0.
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Examples and Properties
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Summing Submodular and Modular Functions

Given E, let fi,m: 2E 3 R be a submodular and a modular function.
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Examples and Properties
(RN RN RN AN RN RN

Summing Submodular and Modular Functions

Given E, let fi,m: 2E 3 R be a submodular and a modular function.
Then

f:2F = Rwith f(A) = f1(A) — m(A) (4.20)

is submodular (as is f(A) = fi(A) + m(A4)).

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016 F32/77 (pg.103/221



Examples and Properties
(RN RN RN AN RN RN

Summing Submodular and Modular Functions

Given E, let fi,m: 2E 3 R be a submodular and a modular function.
Then

f:2F 5 Rwith f(A) = fi1(A) —m(A) (4.20)

is submodular (as is f(A) = fi(A) + m(A)). This follows easily since

f(A) + f(B) = fi(A) —m(A) + f1(B) —m(B) (4.21)
> f1I(AUB) —m(AUB)+ fi(ANB) —m(ANB) (4.22)
= f(AUB)+ f(ANB). (4.23)
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Examples and Properties
(RN RN RN AN RN RN

Summing Submodular and Modular Functions

Given E, let fi,m: 2E 3 R be a submodular and a modular function.
Then

f:2F 5 Rwith f(A) = fi1(A) —m(A) (4.20)

is submodular (as is f(A) = f1(A) +m(A)). This follows easily since

f(A) + f(B) = f1(A) = m(A) + f1(B) — m(B) (4.21)
> f1(AUB) —m(AUB)+ fi(ANB) —m(ANB) (4.22)
= f(AUB)+ f(ANB). (4.23)

That is, the modular component with
m(A) +m(B) = m(AU B) +m(AN B) never destroys the inequality.
Note of course that if m is modular than so is —m.
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[NE RN RN RN NRR RN RN

Restricting Submodular Functions

Given E, let f:2¥ — R be a submodular functions. And let S C E be an
arbitrary fixed set. Then
A

f:2F 5 Rwith f/(A)=f(ANS) (4.24)

is submodular.
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Examples and Properties
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Restricting Submodular Functions

Given E, let f:2F — R be a submodular functions. And let S C E be an
arbitrary fixed set. Then

f:2F 5 Rwith f/(A) = f(ANS) (4.24)
is submodular.
Proof.

D |
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Examples and Properties
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Restricting Submodular Functions

Given E, let f:2F — R be a submodular functions. And let S C E be an
arbitrary fixed set. Then

f:2F 5 Rwith f/(A) = f(ANS) (4.24)
is submodular.
Proof.
Given A C B C E \ v, consider

f(A+v)N8) — f(ANS) > f(B+v)nS)— f(BNS)  (4.25)

Ol
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Examples and Properties
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Restricting Submodular Functions

Given E, let f:2F — R be a submodular functions. And let S C E be an
arbitrary fixed set. Then

f:2F 5 Rwith f/(A) = f(ANS) (4.24)
is submodular.
Proof.
Given A C B C E'\ v, consider

f(A+v)NnS)—f(ANS)> f((B+v)NnS)— f(BNS) (4.25)

If v ¢ S, then both differences on each size are zero.

Ol
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Examples and Properties
[NE RN RN RN NRR RN RN

Restricting Submodular Functions

Given E, let f:2F — R be a submodular functions. And let S C E be an
arbitrary fixed set. Then

f:2F 5 Rwith f/(A) = f(ANS) (4.24)
is submodular.
Proof.
Given A C B C E'\ v, consider

f((A+v)NnS)—f(ANS)> f((B+v)NnS)— f(BNS) (4.25)

If v ¢ S, then both differences on each size are zero. If v € S, then we can

consider this C/].-Jc«r)/)_g = @_/)_g').{.'\/"
fA +0) = f(A) > f(B'+v) - f(B') (4.26)

with A’ = AN S and B'’= BN S. Since A’ C B’, this holds due to
submodularity of f. [
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Summing Restricted Submodular Functions

Given V, let f1, fo : 2V — R be two submodular functions and let S;, Ss be
two arbitrary fixed sets. Then

f:2Y 5> Rwith f(A) = f1(ANS)) + f2(ANSy) (4.27)

is submodular. This follows easily from the preceding two results.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016 F34/77 (pg.111/221



Examples and Properties
(NN ARARRRR RN NN NN

Summing Restricted Submodular Functions

Given V, let f1, f : 2 — R be two submodular functions and let S, So be
two arbitrary fixed sets. Then

f:2V = Rwith f(A) = f1(ANSy) + f2(AN Sy) (4.27)

is submodular. This follows easily from the preceding two results.

Given V, let C = {C4,Cy,...,Ck} be a set of subsets of V, and for each
Celdl,let fo: 2V 5 R be a submodular function. Then

f:2" > Rwith f(A) =) fo(ANC) (4.28)
ceC
is submodular. ’G(A’> S Z 4:(4,,5,,),_5)
{";V?eE((_)
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Examples and Properties
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Summing Restricted Submodular Functions

Given V, let f1, f : 2 — R be two submodular functions and let S, So be
two arbitrary fixed sets. Then

f:2V 5 Rwith f(A) = f1(ANS1) + f2(ANSy) (4.27)

is submodular. This follows easily from the preceding two results.
Given V, let C = {C4,Cs,...,Ck} be a set of subsets of V, and for each
C €C, let fo : 2V — R be a submodular function. Then

f:2" 5 Rwith f(A) =) fo(ANC) (4.28)
ceC

is submodular. This property is critical for image processing and graphical
models. For example, let C be all pairs of the form {{u,v} : u,v € V'}, or

let it be all pairs corresponding to the edges of some undirected graphical

model. We plan to revisit this topic later in the term.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016 F34/77 (pg.113/221



Examples and Properties
(NEAR NRRRR RN RN NN RN RN

Max - normalized

Given V, let c € RK be a given fixed vector. Then f : 2V R, where

f(A) = maxc; (4.29)
7ed A’
is submodular and normalized (we take f(0) = 0). = wsxlai¥)

i ) [ﬁlLi
Consider /_\

maxc¢;j + maxc ax ¢j + max c; (4.30)
jeA jEB € AUB JEANB

which follows since we have that

: = : 431
max(%a(cya%aéicj) jIeI,lalaS(BCJ (4.31)
and
i ; N > ; 4.32
mm(ljl.lg P max ¢j) = S (4.32)
L]
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Examples and Properties

Given V, let ¢ € RV be a given fixed vector (not necessarily non-negative).
Then f: 2V 5 R, where

7(A) = maxe, (4.33)

is submodular, where we take f(f)) < min;¢; (so the function is not
normalized).

The proof is identical to the normalized case. O
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Facility/Plant Location (uncapacitated) w. plant benefits

o Let F={1,...,f} be a set of possible factory/plant locations for
facilities to be built.
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Examples and Properties
[NEARRE RN RN NN RN RN]

Facility/Plant Location (uncapacitated) w. plant benefits

o Let F={1,..., f} be a set of possible factory/plant locations for
facilities to be built.
e S={1,...,s} is a set of sites (e.g., cities, clients) needing service.
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Examples and Properties
[NEARRE RN RN NN RN RN]

Facility/Plant Location (uncapacitated) w. plant benefits

o Let F={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

e S={1,...,s} is a set of sites (e.g., cities, clients) needing service.

@ Let ¢;; be the “benefit” (e.g., 1/c;; is the cost) of servicing site i with
facility location j.
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Examples and Properties
[NEARRE RN RN NN RN RN]

Facility/Plant Location (uncapacitated) w. plant benefits

o Let F={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

e S={1,...,s} is a set of sites (e.g., cities, clients) needing service.

o Let ¢;; be the “benefit” (e.g., 1/c;; is the cost) of servicing site i with
facility location j.

@ Let m; be the benefit (e.g., either 1/m; is the cost or —m; is the
cost) to build a plant at location j.
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Examples and Properties
[NEARRE RN RN NN RN RN]

Facility/Plant Location (uncapacitated) w. plant benefits

o Let F={1,..., f} be a set of possible factory/plant locations for

facilities to be built.

S =1{1,...,s} is a set of sites (e.g., cities, clients) needing service.

Let ¢;; be the "benefit” (e.g., 1/¢;; is the cost) of servicing site ¢ with

facility location j.

o Let m; be the benefit (e.g., either 1/m; is the cost or —m; is the
cost) to build a plant at location j.

@ Each site should be serviced by only one plant but no less than one.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016 F37/77 (pg.120/221



Examples and Properties
[NEARRE RN RN NN RN RN]

Facility/Plant Location (uncapacitated) w. plant benefits

o Let F={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

e S={1,...,s} is a set of sites (e.g., cities, clients) needing service.

o Let ¢;; be the “benefit” (e.g., 1/c;; is the cost) of servicing site i with
facility location j.

o Let m; be the benefit (e.g., either 1/m; is the cost or —m; is the
cost) to build a plant at location j.

@ Each site should be serviced by only one plant but no less than one.

@ Define f(A) as the “delivery benefit” plus “construction benefit” when
the locations A C F are to be constructed.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016 F37/77 (pg.121/221



Examples and Properties
[NEARRA FRR R RN NN RN RN]

Facility/Plant Location (uncapacitated) w. plant benefits

Let F'={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

S ={1,...,s} is a set of sites (e.g., cities, clients) needing service.
Let ¢;; be the "benefit” (e.g., 1/¢;; is the cost) of servicing site ¢ with
facility location j.

Let m; be the benefit (e.g., either 1/m; is the cost or —m; is the
cost) to build a plant at location j.

Each site should be serviced by only one plant but no less than one.
Define f(A) as the “delivery benefit” plus “construction benefit” when
the locations A C F' are to be constructed.

We can define the (uncapacitated) facility location function
f(A) = ij + Zr}agi{ Cij- (4.34)
JEA icg
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Examples and Properties
[NEARRA FRR R RN NN RN RN]

Facility/Plant Location (uncapacitated) w. plant benefits

o Let F={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

e S={1,...,s} is a set of sites (e.g., cities, clients) needing service.

o Let ¢;; be the “benefit” (e.g., 1/c;; is the cost) of servicing site i with
facility location j.

o Let m; be the benefit (e.g., either 1/m; is the cost or —m; is the
cost) to build a plant at location j.

@ Each site should be serviced by only one plant but no less than one.

o Define f(A) as the “delivery benefit” plus “construction benefit” when
the locations A C F' are to be constructed.

@ We can define the (uncapacitated) facility location function

f(A) = mj+ )y maxc. (434)
jeA ier 'S
@ Goal is to find a set A that maximizes f(A) (the benefit) placing a
bound on the number of plants A (e.g,; |A] < k).
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Examples and Properties
[NRARNRY RRRRRNRNRRRNRRRN]

Facility/Plant Location (uncapacitated)

@ Core problem in operations research, early motivation for submodularity.

@ Goal: as efficiently as possible, place “facilities” (factories) at certain
locations to satisfy sites (at all locations) having various demands.
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Examples and Properties
[NRARNRY RRRRRNRNRRRNRRRN]

Facility/Plant Location (uncapacitated)

@ Core problem in operations research, early motivation for submodularity.

@ Goal: as efficiently as possible, place “facilities” (factories) at certain
locations to satisfy sites (at all locations) having various demands.
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Examples and Properties
[NRARNRY RRRRRNRNRRRNRRRN]

Facility/Plant Location (uncapacitated)

@ Core problem in operations research, early motivation for submodularity.

@ Goal: as efficiently as possible, place “facilities” (factories) at certain

locations to satisfy sites (at all locations) having various demands.
facility locations sites

@ We can model this with a weighted
bipartite graph G = (F, S, E, ¢) |
where F' is set of possible
factory/plant locations, S is set of
sites needing service, E are edges
indicating (factory,site) service
possiblity pairs, and c: . — R is
the benefit of a given pair.

Benefit of having
site 2 serviced by

@ Facility location function has form: . :
f(4) = Zmax Cij- (4.35) @
ieF jed f
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Examples and Properties
[NEARRARY AR RRNR NN RN]

Facility Location

Given V, E, let ¢ € RV*E be a given |V| x |E| matrix. Then

f:28 5 R, where f(A Zmaxcm (4.36)
ZEV

is submodular.

We can write f(A) as f(A) = > ,cy fi(A) where fi(A) = max;cacij is
submodular (max of a i*" row vector), so f can be written as a sum of
submodular functions. O

Thus, the facility location function (which only adds a modular function to
the above) is submodular.
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Examples and Properties
[NEARRARRL AR RN NN RN]

Log Determinant

@ Let X be an n x n positive definite matrix. Let V ={1,2,...,n} = [n]
be an index set, and for A C V, let 34 bethe (square) submatrix of
3 obtained by including only entries in the rows/columns given by A.

> 2

2
Jetnay
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Examples and Properties
[NEARRARRL AR RN NN RN]

Log Determinant

@ Let 3 be an n x n positive definite matrix. Let V = {1,2,...,n} = [n]
be an index set, and for A C V, let ¥4 be the (square) submatrix of
3 obtained by including only entries in the rows/columns given by A.

@ We have that:

f(A) = logdet(X4) is submodular. (4.37)
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Examples and Properties
[NEARRARRL AR RN NN RN]

Log Determinant

@ Let 3 be an n x n positive definite matrix. Let V = {1,2,...,n} = [n]
be an index set, and for A C V, let ¥4 be the (square) submatrix of
3 obtained by including only entries in the rows/columns given by A.

@ We have that:

f(A) = logdet(X4) is submodular. (4.37)

@ The submodularity of the log determinant is crucial for determinantal
point processes (DPPs) (defined later in the class).
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Examples and Properties
[NEARRARRL AR RN NN RN]

Log Determinant

@ Let 3 be an n x n positive definite matrix. Let V = {1,2,...,n} = [n]
be an index set, and for A C V, let ¥4 be the (square) submatrix of
3 obtained by including only entries in the rows/columns given by A.

@ We have that:

f(A) = logdet(X4) is submodular. (4.37)

@ The submodularity of the log determinant is crucial for determinantal
point processes (DPPs) (defined later in the class).

Proof of submodularity of the logdet function.
Suppose X € R" is multivariate Gaussian random variable, that is

1 1 _
» ) = e (se-w'=te-n) @)
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Examples and Properties
[NEARRARRRE RRRANRRRNRNRAN]

Log Determinant

...cont.
Then the (differential) entropy of the r.v. X is given by

h(X) = log \/|2meX| = log v/ (2me)" | Z| (4.39)
and in particular, for a variable subset A,
f(A) = h(Xa) = log 1/ (2me)l Al |2 4] (4.40)

Entropy is submodular (further conditioning reduces entropy), and moreover

) h(Xa) = A) + o log 2 (.41)
—

where m(A) is a modular function. O

Note: still submodular in the semi-definite case as well.
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Examples and Properties
[NEARRARRRRY ARRNRRRNRNRNN]

Summary so far

e Summing: if a; > 0 and f; : 2V — R is submodular, then so is
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Examples and Properties
[NEARRARRRRY ARRNRRRNRNRNN]

Summary so far

@ Summing: if @; >0 and f; : 2V — R is submodular, then so is
> ifi.
@ Restrictions: f/(A) = f(ANS)
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Examples and Properties
[NEARRARRRRY ARRNRRRNRNRNN]

Summary so far

@ Summing: if @; >0 and f; : 2V — R is submodular, then so is
> ifi.
@ Restrictions: f/(A) = f(ANS)

e max: f(A) = maxjca c; and facility location.
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Examples and Properties
[NEARRARRRRY ARRNRRRNRNRNN]

Summary so far

Summing: if a; > 0 and f; : 2V — R is submodular, then so is
> ifi.

Restrictions: f/(A) = f(ANS)

max: f(A) = maxjca ¢; and facility location.

Log determinant f(A) = logdet(X4)
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Examples and Properties
[NEARRARRRRRY NRNRRRNRNRNN]

Concave over non-negative modular

Let m € Rf be a non-negative modular function, and g a concave function

over R. WE — R as
f is\gl}'éﬁ(odular.

then

;UA

o~ At b by &

Proof.

Given AC B C E \ v, we have 0 <la = m(A) szm(B!I and
0 < ¢ =m(v). For g concave, we have g(a + ¢) — g(a) > g(b+ ¢) — g(b),
and thus

9(73\(;4) + @\(})) - g(@}gé)) > g(@r(\ff’) o) —aglE)  (64s)

O— v O

i

A form of converse is true as well.
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Examples and Properties
[NEARRARRRRRRT ARRRRNRRRAN]

Concave composed with non-negative modular

Theorem 4.5.1
Given a ground set V. The following two are equivalent:

@ For all modular functions m : 2V — R, then f : 2V — R defined as
is submodular

Q g: Ry — R s concave.

o If g is non-decreasing céficave, then f is polymatroidal.

/}
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Examples and Properties
[NEARRARRRRRRT ARRRRNRNRAN]

Concave composed with non-negative modular

Theorem 4.5.1
Given a ground set V. The following two are equivalent:

@ For all modular functions m : 2V — R, then f : 2V — R defined as
f(A) = g(m(A)) is submodular

@ ¢g: R, — R is concave.

@ If g is non-decreasing concave, then f is polymatroidal.
@ Sums of concave over modular functions are submodular

K
f(A) = Zgi(mi(A)) (4.44)
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Examples and Properties
[NEARRARRRRRRT ARRRRNRNRAN]

Concave composed with non-negative modular

Theorem 4.5.1
Given a ground set V. The following two are equivalent:

@ For all modular functions m : 2V — R, then f : 2V — R defined as
f(A) = g(m(A)) is submodular

@ ¢g: R, — R is concave.

@ If g is non-decreasing concave, then f is polymatroidal.
@ Sums of concave over modular functions are submodular

K
F(A) =" gi(mi(A)) (4.44)
i=1
@ Very large class of functions, including graph cut, bipartite

neighborhoods, set cover (Stobbe & Krause 2011), and “feature-based
submodular functions” (Wei, lyer, & Bilmes 2014).
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Examples and Properties
[NEARRARRRRRRT ARRRRNRNRAN]

Concave composed with non-negative modular

Theorem 4.5.1
Given a ground set V. The following two are equivalent:

@ For all modular functions m : 2V — R, then f : 2V — R defined as
f(A) = g(m(A)) is submodular

@ ¢g: R, — R is concave.

@ If g is non-decreasing concave, then f is polymatroidal.
@ Sums of concave over modular functions are submodular

K
F(A) = gi(ma(A)) (4.44)
i=1

@ Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause 2011), and “feature-based
submodular functions” (Wei, lyer, & Bilmes 2014).

@ However, Vondrak showed that a graphic matroid rank function over
K4 (we'll define this after we define matroids) are not members.
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Examples and Properties
[NEARRARRRRRNN] ARRRNRRRAN]

Monotonicity

Definition 4.5.2

A function f:2V — R is ndecreasing (resp. monotone
increasing) if for all A € B, we have ”2) < f(B) (resp. f(A) < f(B)).
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Examples and Properties

Monotonicity

Definition 4.5.2

A function f : 2V — R is monotone nondecreasing (resp. monotone
increasing) if for all A C B, we have f(A) < f(B) (resp. f(A) < f(B)).

Definition 4.5.3

A function f : 2V — R is monotone nonincreasing (resp. monotone
decreasing) if for all A C B, we have f(A) > f(B) (resp. f(A) > f(B)).
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Examples and Properties
[NEARRARRRRRRNAY ERRNRNRAN]

Composition of non-decreasting submodular and
non-decreasing concave

Theorem 4.5.4

Given two functions, one defined on sets

f:2¥ >R (4.45)
and another continuous valued one:

g:R—R (4.46)

the composition formed as h = go f : 2V — R (defined as
h(S) = g(f(S))) is nondecreasing submodular, if g is non-decreasing
concave and f is nondecreasing submodular.
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Examples and Properties
[NEARRARRRRRRNANR ARNRANRNN]

Monotone difference of two functions

Let f and g both be submodular functions on subsets of V' and let
(f — g)(-) be either monotone increasing or monotone decreasing. Then
h: 2" — R defined by

h(A) = min(f(A),g(A4)) (4.47)
is submodular.

Proof.

If h(A) agrees with f on both X and Y (or g on both X and Y'), and since
(X)+ f(Y)> f(XUY)+ f(XNY) (4.48)

g(X)+g(Y) > g(XUY) +g(XNY), (4.49)

—

the result (Equation 4.47 being submodular) follows since

)+ A L |
9(X) + g(Y) >min(f(XUY),g(XUY))+min(f(XNY),g(X rz:;)()))
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Examples and Properties
[NEARRARRRRRRNANNR RNRNRAN]

Monotone difference of two functions

Otherwise, w.l.o.g., h(X) = f(X) and h(Y) = ¢g(Y), giving

MX) +h(Y) = f(X)+9(Y) 2 F(XUY) + f(XNY)+g(Y) - f((Y) :
4.51

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016 F48/77 (pg.146/221



Examples and Properties
[NEARRARRRRRRNANNR RNRNRAN]

Monotone difference of two functions

Otherwise, w.l.o.g., h(X) = f(X) and h(Y) = ¢g(Y), giving

MX)+h(Y) = f(X)+9(Y) 2 F(XUY)+ f(XNY)+g(Y) —f(Y) :
4.51

Assume the case where f — g is monotone increasing. Hence,
J(XUY) +g(Y) - f(Y) = g(X UY) giving

h(X)+h(Y) > g(XUY)+ f(XNY)>h(XUY)+h(XNY) (452)

Ol

What is an easy way to prove the case where f — g is monotone decreasing?
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Examples and Properties
[NEARRARRRRRRNANNNY NRRRAN]

Saturation via the min(-) function

Let f:2" — R be an monotone increasing or decreasing submodular
function and let k be a constant. Then the function  : 2V — R defined by

h(A) = min(k, f(A)) (4.53)

is submodular.
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Examples and Properties
[NEARRARRRRRRNANNNY NRRRAN]

Saturation via the min(-) function

Let f:2" — R be an monotone increasing or decreasing submodular
function and let k be a constant. Then the function  : 2V — R defined by

h(A) = min(k, f(A)) (4.53)

is submodular.

For constant k, we have that (f — k) is increasing (or decreasing) so this
follows from the previous result. O
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Examples and Properties
[NEARRARRRRRRNANNNY NRRRAN]

Saturation via the min(-) function

Let f:2" — R be an monotone increasing or decreasing submodular
function and let k be a constant. Then the function  : 2V — R defined by

h(A) = min(k, f(A)) (4.53)

is submodular.

For constant k, we have that (f — k) is increasing (or decreasing) so this
follows from the previous result. O

Note also, g(a) = min(k, a) for constant k is a non-decreasing concave
function, so when f is monotone nondecreasing submodular, we can use the
earlier result about composing a monotone concave function with a
monotone submodular function to get a version of this.
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Examples and Properties
[NEARRARRRRRRNANRNRY NRRAN]

More on Min - the saturate trick

@ In general, the minimum of two submodular functions is not
submodular (unlike concave functions, closed under min).
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Examples and Properties
[NEARRARRRRRRNANRNRY NRRAN]

More on Min - the saturate trick

@ In general, the minimum of two submodular functions is not
submodular (unlike concave functions, closed under min).

@ However, when wishing to maximize two monotone non-decreasing
submodular functions f, g, we can define function & : 2V — R as

ha(A) = min(a, f(A)) + min(a, g(A)) (4.54)

then h is submodular, and h(A) > k if and only if both f(A) > « and
g(A) > «, for constant a € R.
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Examples and Properties
[NEARRARRRRRRNANRNRY NRRAN]

More on Min - the saturate trick

@ In general, the minimum of two submodular functions is not
submodular (unlike concave functions, closed under min).

@ However, when wishing to maximize two monotone non-decreasing
submodular functions f, g, we can define function & : 2" — R as

ha(A) = min(a, f(A)) + min(a, g(A)) (4.54)

then h is submodular, and h(A) > k if and only if both f(A) > « and
g(A) > a, for constant a € R.

@ This can be useful in many applications. An instance of a submodular
surrogate (where we take a non-submodular problem and find a
submodular one that can tell us something).
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Examples and Properties
[NEARRARRRRRRNANRRNRNE NRRN]

Arbitrary functions as difference between submodular

funcs.

Given an arbitrary set function f, it can be expressed as a difference
between two submodular functions: f = g — h where both ¢ and h are
submodular.

Let f be given and arbitrary, and define:
A .
o 2uin(f(X)+ f(V) - [(XUY) = (X)) (455)

If @ > 0 then f is submodular, so by assumption a < 0.
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Examples and Properties
[NEARRARRRRRRNANRRNRNE NRRN]

Arbitrary functions as difference between submodular

funcs.

Given an arbitrary set function f, it can be expressed as a difference
between two submodular functions: f = g — h where both ¢ and h are
submodular.

Let f be given and arbitrary, and define:
A .
o 2uin(f(X)+ f(V) - [(XUY) = (X)) (455)

If @ > 0 then f is submodular, so by assumption @ < 0. Now let h be an
arbitrary strict submodular function and define

ga pmin (A0 + 1) = HX UY) = R(X NY)).  (456)

Strict means that 8 > 0.
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Examples and Properties
[NEARRARRRRRRNANRRRNRY NON]

Arbitrary functions as difference between submodular

funcs.

...cont.

Define f/: 2V = R as

74) = 14+ Elaca) (457)
Then f’ is submodular (why?), and f = f/(A) — %h(A), a difference

between two submodular functions as desired.
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Examples and Properties

@ We often wish to express the gain of an item j € V in context A,

namely f(AU{j}) — f(A).
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Examples and Properties
[NREARRARRRRRRNANRRRNRNY NI

Gain

@ We often wish to express the gain of an item j € V in context A,
namely /(AU {j}) - /(A).

@ This is called the gain and is used so often, there are equally as many
ways to notate this. l.e., you might see:

FAU{GY) — F(A) 2 pi(4) (4.58)
2 pa(j (4.59)
2V, f(A) (4.60)
2 f({5}14) (4.61)
2 1(j14) (4.62)
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Examples and Properties
[NREARRARRRRRRNANRRRNRNY NI

Gain

@ We often wish to express the gain of an item j € V in context A,
namely /(AU {j}) - /(A).

@ This is called the gain and is used so often, there are equally as many
ways to notate this. l.e., you might see:

FIAULGY) — F(A) 2 pi(A) (4.58)
2 pa(j (4.59)
2V, f(A) (4.60)
2 ({5114 (4.61)
2 1(j14) (4.62)

o We'll use f(j|A).
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Examples and Properties
[NREARRARRRRRRNANRRRNRNY NI

Gain

@ We often wish to express the gain of an item j € V in context A,
namely /(AU {j}) - /(A).

@ This is called the gain and is used so often, there are equally as many
ways to notate this. l.e., you might see:

FIAULGY) — F(A) 2 pi(A) (4.58)
2 pa(j (4.59)
2V, f(A) (4.60)
2 ({5114 (4.61)
2 1(j14) (4.62)

o We'll use f(j|A).

@ Submodularity’s diminishing returns definition can be stated as saying
that f(j|A) is a monotone non-increasing function of A, since
f(jlA) > f(j|B) whenever A C B (conditioning reduces valuation).
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Gain Notation

It will also be useful to extend this to sets.
Let A, B be any two sets. Then

f(AIB) £ f(AUB) - f(B) (4.63)
So when j is any singleton

fGIB) = f({5}B) = f{i} U B) — f(B) (4.64)
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Gain Notation

It will also be useful to extend this to sets.
Let A, B be any two sets. Then

f(AIB) £ f(AUB) - f(B) (4.63)
So when j is any singleton
fGIB) = f({5}B) = f{i} U B) — f(B) (4.64)

Note that this is inspired from information theory and the notation used for
conditional entropy H(X4|Xp) = H(Xa,Xp) — H(Xp).
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Arbitrary function as difference between two polymatroids

@ Any normalized submodular function g can be represented as a sum of a
polymatroid (normalized monotone non-decreasing submodular) function
g and a modular function my.
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Arbitrary function as difference between two polymatroids

@ Any normalized submodular function g can be represented as a sum of a
polymatroid (normalized monotone non-decreasing submodular) function
g and a modular function my.

@ Given submodular g : 2V — R, construct g : 2 — R as

9(A) = 9(A) = Xaeag(alV \ {a}). Let my(A) =37, 4 g(alV\ {a})
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Arbitrary function as difference between two polymatroids

@ Any normalized submodular function g can be represented as a sum of a
polymatroid (normalized monotone non-decreasing submodular) function
g and a modular function my.

e Given submodular g : 2V — R, construct g : 2V — R as
§(A) = 9(A) — Yoen9(alV\ {a}). Let my(4) 2 3,y g(alV\ {a))

@ Then, given arbitrary f = g — h where g and h are normalized
submodular,

f= g—hfq—&-mg (h +mp,)

=g+ 777(] h (i] + (_mg—}1)+)

where m™ is the positive part of modular function m. That is,
mt(A) =3 ,cam(a)l(m(a) > 0).
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Arbitrary function as difference between two polymatroids

@ Any normalized submodular function g can be represented as a sum of a
polymatroid (normalized monotone non-decreasing submodular) function
g and a modular function my.

e Given submodular g : 2V — R, construct g : 2V — R as
§(A) = 9(A) — Yoeng(alV\ {a}). Let my(4) 2 3,y g(alV\ {a))

@ Then, given arbitrary f = g — h where g and h are normalized
submodular,

where m™ is the positive part of modular function m. That is,

m*(A) =3 ,cam(a)l(m(a) > 0).
e But both g + m;_h and h + (—mg,h)+ are polymatroid functions.
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Arbitrary function as difference between two polymatroids

@ Any normalized submodular function g can be represented as a sum of a
polymatroid (normalized monotone non-decreasing submodular) function
g and a modular function my.

e Given submodular g : 2V — R, construct g : 2V — R as
§(A) = 9(A) — Yoeng(alV\ {a}). Let my(4) 2 3,y g(alV\ {a))

@ Then, given arbitrary f = g — h where g and h are normalized

submodular,
f=9g—h=g+mg—(h+mp) (4.65)
=g—h+(mg—mp) (4.66)
=g—h+mgy (4.67)
=g+m)_, — (h+(=mg-n)") (4.68)

where m™ is the positive part of modular function m. That is,
m*(A) =3 ,cam(a)l(m(a) > 0).
e But both g + mJr _, and h+ (—mgy_p)" are polymatroid functions.

@ Thus, an functlon can be expressed as a difference between two not
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Other Submodular Defs.
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Two Equivalent Submodular Definitions

Definition 4.6.1 (submodular concave)

A function f: 2V — R is submodular if for any A, B C V, we have that:

f(A)+ f(B) =z f(AUB) + f(AN B) (4.8)

An alternate and (as we will soon see) equivalent definition is:

Definition 4.6.2 (diminishing returns)

A function f: 2V — R is submodular if for any A C B C V, and
v € V'\ B, we have that:

f(AU{v}) = f(4) = f(BU{v}) — f(B) (4.9)

The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as
the context in which v is considered grows from A to B.
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Submodular Definition: Group Diminishing Returns

An alternate and equivalent definition is:

Definition 4.6.1 (group diminishing returns)

A function f : 2V 5 R is submodular if for any AC BCV, and
C C V' \ B, we have that:

f(AUC) = f(A) = f(BUC) — f(B) (4.69)

This means that the incremental “value” or “gain” of set C' decreases as the
context in which C' is considered grows from A to B (diminishing returns)
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Submodular Definition Basic Equivalencies

We want to show that Submodular Concave (Definition 4.6.1), Diminishing
Returns (Definition 4.6.2), and Group Diminishing Returns
(Definition 4.6.1) are identical.
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Submodular Definition Basic Equivalencies

We want to show that Submodular Concave (Definition 4.6.1), Diminishing
Returns (Definition 4.6.2), and Group Diminishing Returns
(Definition 4.6.1) are identical. We will show that:

@ Submodular Concave = Diminishing Returns
@ Diminishing Returns = Group Diminishing Returns

@ Group Diminishing Returns = Submodular Concave
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Submodular Concave = Diminishing Returns

fS)+f(T) = f(SUT)+ f(SNT) = f(v|A) > f(v|B),AC BCV\w.
@ Assume Submodular concave, so V.S, T we have

fS)+ (1) =2 f(SUT) + f(SNT).

Ol
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Submodular Concave = Diminishing Returns

f(S) + f(T) > f(SUT) + /(SN T) = f(v]A) > f(v|B),AC BCV \w.
@ Assume Submodular concave, so VS, T we have
FS)+f(T) = f(SUT)+ f(SNT).
@ Given A, B and v € V such that: A C B C V' \ {v}, we have from
submodular concave that:

f(A+v)+ f(B) > f(B+v) + f(4) (4.70)

Ol

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016 F59/77 (pg.173/221



Other Submodular Defs.
(AN AR NN RN RNNRRARN

Submodular Concave = Diminishing Returns

fS)+f(T) = f(SUT)+ f(SNT) = f(v|A) > f(v|B),AC BCV\w.
@ Assume Submodular concave, so VS, T we have
fS)+ (1) =2 f(SUT)+ f(SNT).
@ Given A, B and v € V such that: A C B C V' \ {v}, we have from
submodular concave that:

f(A+v) + f(B) 2 f(B +v) + f(4) (4.70)
@ Rearranging, we have

f(A+v) = f(A) 2 f(B+v) - f(B) (4.71)

Ol
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Diminishing Returns = Group Diminishing Returns

7(0lS) > F(u|T), 5 CT C V\v = f(C|A) > f(C|B),AC BCV\C.
Let C = {c1,¢2,...,ck}. Then diminishing returns implies

fAUC) = f(A) (4.72)

f(AUC) - Z( (AU{ca,...,ci}) ff(AU{cl,...,ci})) — f(A) (4.73)

k
= Z(f(A Ufcr...cid) — f(AU{cr ... ci_l})) (4.74)
k
2Z(f(BU{cl...ci})—f(BU{cl...ci,l})) (4.75)
= f(BU Z( (BU{c1,...,ci}) — fF(BU{cy, ... cl}))—f(B) (4.76)
— f(BUC) - f(B) (4.77)

Ol
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Group Diminishing Returns = Submodular Concave

fU1S) = f(UIT),S CT CV\U = f(A)+ f(B) > f(AUB)+ f(ANB).
Assume group diminishing returns. Assume A # B otherwise trivial. Define
A'=ANB,C=A\B, and B' = B. Then since A’ C B,

f(AA+C) = f(A) > f(B'+C) - f(B) (4.78)
giving
f(AA+C)+ f(B') > f(B'+C) + f(A) (4.79)
or
f(ANB+ A\ B)+ f(B) > f(B+ A\ B) + f(ANn B) (4.80)
which is the same as the submodular concave condition

f(A)+f(B) = f(AUB) + f(ANB) (4.81)
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Submodular Definition: Four Points

Definition 4.6.2 (“singleton”, or “four points™)

A function f : 2V — R is submodular iff for any A C V, and any
a,b eV \ A, we have that:

f(AU{a}) + f(AU{b}) = f(AU{a,b}) + f(A) (4.82)
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Submodular Definition: Four Points

Definition 4.6.2 (“singleton”, or “four points™)

A function f : 2V — R is submodular iff for any A C V, and any
a,b eV \ A, we have that:

f(AU{a}) + f(AU{b}) = f(AU{a,b}) + f(A) (4.82)

This follows immediately from diminishing returns.

F62/77 (pg.178/221
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Submodular Definition: Four Points

Definition 4.6.2 (“singleton”, or “four points™)

A function f : 2V — R is submodular iff for any A C V, and any
a,b eV \ A, we have that:

f(AU{a}) + f(AU{b}) = f(AU{a,b}) + f(A) (4.82)

This follows immediately from diminishing returns. To achieve diminishing
returns, assume A C B with B\ A = {b1,b2,...,b;}. Then

f(A+a) = f(A) = f(A+b1+a)— f(A+b) (4.83)

> f(A+bi+by+a)— f(A+Db1 +b2) (4.84)

> (4.85)
>fA+bi+--+bp+a)— f(A+br+---+b)

(4.86)

= f(B+a)— f(B) (4.87)
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Submodular on Hypercube Vertices

@ Test submodularity via values on verticies of hypercube.

Example: with |V| =n =2, thisis  With |V| =n = 3, a bit harder.
easy: o

10 n

@,
110
00 01 |
[ )
10

How many inequalities?

3

on

010

2
8

000
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Submodular Definitions

Theorem 4.6.3

Given function f : 2V 5 R, then
f(A)+ f(B)> f(AUB)+ f(ANDB) forall A,BCV (SQO)
if and only if
f|X) > f(w]Y) forall X CY CVandv ¢Y (DR)

Proof.

(SC)=(DR): Set A+~ X U{v}, B« Y. Then AUB = BU {v} and

ANB=X and f(A) — f(ANB) > f(AU B) — f(B) implies (DR).

(DR)=-(SC): Order A\ B = {v1,va,...,v,} arbitrarily. Fori € 1:r,
fwi|(ANB)U {v1,v2,...,vi—1}) > f(vi|BU{v1,v2,...,05-1}).

Applying telescoping summation to both sides, we get:

z:f(vi|(f4m B) U{vi,v2,...,v-1}) > Zf(vi|B U {v1,v2,...,v-1})
i=1 =1

= f(A)-f(ANB) = f(AUB) - f(B)
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Use of gain: submodular bounds of a difference

@ Given submodular f, and given you have C, D C E with either D D C
or D C (', and have an expression of the form:

f(C) = f(D) (4.88)
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Use of gain: submodular bounds of a difference

@ Given submodular f, and given you have C, D C FE with either D O C
or D C (', and have an expression of the form:

f(C) - f(D) (4.88)
o If D D C, then for any X with D = C U X then
f(C) = f(D)=f(C) - f(CUX) > f(CNX)— f(X)

(4.90)
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Use of gain: submodular bounds of a difference

@ Given submodular f, and given you have C, D C FE with either D O C
or D C (', and have an expression of the form:

f(C) - f(D) (4.88)
o If D D C, then for any X with D = C U X then
f(C)=fD)=f(C)- f(CUX) > f(CNX)—f(X) (489)

f(CUX|O) < f(X|CNX) (4.90)
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Use of gain: submodular bounds of a difference

@ Given submodular f, and given you have C, D C FE with either D O C
or D C (', and have an expression of the form:

f(C) - f(D) (4.88)
o If D D C, then for any X with D = C U X then
(€)= f(D)=f(C) = fF(CUX) = f(CNX) - f(X) (489)
or
f(CuX|C) < f(XICNX) (4.90)
@ Alternatively, if D C C, given any Y such that D = CNY then
(€)= f(D) = f(C) = f(CNY) = f(CUY) = f(Y)

(4.92)
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Use of gain: submodular bounds of a difference

@ Given submodular f, and given you have C, D C FE with either D O C
or D C (', and have an expression of the form:

f(C) - f(D) (4.88)
o If D D C, then for any X with D = C U X then
(€)= f(D)=f(C) = fF(CUX) = f(CNX) - f(X) (489)
or
f(CuX|C) < f(XICNX) (4.90)
o Alternatively, if D C C, given any Y such that D = CNY then
F(C)=f(D)=f(C) = f(ICNY) = f(CUY) - f(Y)  (491)
or

fClonY) = f(CUYY) (4.92)
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Use of gain: submodular bounds of a difference

@ Given submodular f, and given you have C, D C FE with either D O C
or D C (', and have an expression of the form:

f(C) - f(D) (4.88)
o If D D C, then for any X with D = C U X then
(€)= f(D)=f(C) = fF(CUX) = f(CNX) - f(X) (489)
or
f(CuX|C) < f(XICNX) (4.90)
o Alternatively, if D C C, given any Y such that D = CNY then
F(C) = f(D)=f(C)=f(CNY) = f(CUY) = f(Y)  (491)
or
fleleny) > f(Cuyly) (4.92)
e Equations (4.90) and (4.92) have same form.
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Many (Equivalent) Definitions of Submodularity

FA) + f(B) > f(AUB)+ f(ANB), VA, BCV (4.93)
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Many (Equivalent) Definitions of Submodularity

f(A) + f(B)

f(AUB)+ f(ANB), YA, BCV (4.93)
fG1S) = f

>
> f(4|T), VS CT CV, withj e V\T (4.94)
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Many (Equivalent) Definitions of Submodularity

f(A)+ f(B) > f(AUB)+ f(ANB), VA, BCV (4.93)
FGIS) = fGIT), YSCT CV, with j e V\ T (4.94)
F(C|S) = F(C|T),YS CT CV, with C CV\T (4.95)
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Many (Equivalent) Definitions of Submodularity

f(A)+ f(B)> f(AUB)+ f(ANB), VA,BCV (4.93)
fGIS) = fUIT), VSCT CV, withj e V\T (4.94)
f(C)S) > fICIT),VSCTCV, withCCV\T (4.95)

FU1S) = fUISU{k}), VS CV with j € V \ (SU{k}) (4.96)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016 F66/77 (pg.191/221



Other Submodular Defs.
(ARRNRRNNRY RRRRNRRRARN

Many (Equivalent) Definitions of Submodularity

f(A)+ f(B)> f(AUB)+ f(ANB), VA,BCV (4.93)
FGi1S) > F(IT), ¥S CT CV, with j € V\ T (4.94)

f(C)S) > f(CIT),YSCT CV, withCCV\T (4.95)

fG1S) = fFUGISULR}), VS SV with j e VA (SU{k})  (4.96)
f(AUBIANB) < f(A|[ANnB)+ f(BJ[ANnB), VA, BCV (4.97)
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Many (Equivalent) Definitions of Submodularity

f(A)+ f(B)> f(AUB)+ f(AnB), VA BCV (4.93)
Fi18) = fGIT), VS CT C V. with j € VAT (4.94)
f(C1S) > f(C|T),¥S CT CV, with C CV\T (4.95)
F18) = fISU{RY), VS CV with j € VA (SU{k))  (4.96)
f(AUB\AﬁB) < f(AJANB)+ f(BJANB), VA, BCV (4.97)

FS)+ D0 fGIS) = D0 fUISUT —{j}), VS, T CV

JET\S JjeES\T

(4.98)
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Many (Equivalent) Definitions of Submodularity

f(A)+f(B) > f(AUB) + f(ANB), YA, BCV (4.93)
fG1S) = f(IT), VS CT CV, with j € VAT (4.94)
F(C|8) > F(CIT),YSCT CV, with CCV\T (4.95)
FGIS) > FGISULRY), ¥S CV with j € V\ (SU{k})  (4.96)
f(AUB|ANB) < f(AJANB) + f(BIJANB), YA,BCV (4.97)
FI) < FS)+ Y0 FGIS) = > fGISUT = {j}), VS, TCV
JET\S JES\T
4.98)
FO)< S+ Y fGlS), vscT Vv (4.99)
JET\S
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Many (Equivalent) Definitions of Submodularity

fLA+fB)>f(AUB)+ f(ANB), YA, BCV (4.93)
FG18) = f(IT), ¥S ST CV, with j € V\ T (4.94)
f(C1S) > f(C|T),¥S CT CV, with C CV\T (4.95)
FG1S) > F(ISU{RY), VS CV with je V\ (SU{k})  (4.96)
f(AUB|ANB) < f(A|JANB) + f(BJANB), VA, BCV (4.97)
FI) < FS)+ Y0 FGIS) = > fGISUT = {j}), VS, TCV
JET\S JES\T
(4.98)
D)< FS)+ > fGlS), vScTCV (4.99)
JET\S
FT) < FS) = > fUISNGH+ Y fUISNT)VS,TCV
jES\T JET\S
(4.100)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 4 - Apr 6th, 2016



Many (Equivalent) Definitions of Submodularity

f(A) + f(B)> f(AUB)+ f(ANB), YA,BCV (4.93)
FG1S) > f(IT), VST CV, with j € V\T (4.94)
f(C1S) > f(C|T),¥S CT CV, with C CV\T (4.95)
FG1S) > F(ISU{RY), VS CV with je V\ (SU{k})  (4.96)
f(AUB|ANB) < f(A|JANB) + f(BJANB), VA, BCV (4.97)
FI) < FS)+ Y0 FGIS) = > fGISUT = {j}), VS, TCV
JET\S JES\T

(4.98)
D)< FS)+ > fGlS), vScTCV (4.99)

JET\S
FT)<FS) = > FUIS\NUGD+ D fUISNT)VS, T CV

JES\T JET\S

(4.100)
FI) < f(S)= D fGIS\N{G}, VT CSCV (4.101)

JES\T
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Equivalent Definitions of Submodularity

We've already seen that Eq. 4.93 = Eq. 4.94 = Eq. 4.95 = Eq. 4.96 =
Eq. 4.97.
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Equivalent Definitions of Submodularity

We've already seen that Eq. 4.93 = Eq. 4.94 = Eq. 4.95 = Eq. 4.96 =
Eq. 4.97.
We next show that Eq. 4.96 = Eq. 4.98 = Eq. 4.99 = Eq. 4.96.
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Other Submodular Defs.
(ARRNRRNNARNI RRRRRRARN

Approach

To show these next results, we essentially first use:
F(SUT) = f(S)+ f(T|S) < f(S) + upper-bound (4.102)
and

f(T) + lower-bound < f(T') + f(S|T) = f(SUT) (4.103)
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Other Submodular Defs.
(ARRNNRNNARNI FRNNANAY

Approach

To show these next results, we essentially first use:

fF(SUT) = f(S)+ f(T]S) < f(S) + upper-bound (4.102)
and
J(T) 4 lower-bound < f(T') + f(S|T) = f(SUT) (4.103)
leading to
f(T') + lower-bound < f(S) + upper-bound (4.104)
or
F(T) < f(S) + upper-bound — lower-bound (4.105)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016 F68/77 (pg.200/221



Other Submodular Defs.
(ARRNRRNRRRNNY RRRRRARN

Eq. 4.96 = Eq. 4.98

Let 7'\ S ={j1,...,jr} and S\ T = {ki1,...,kq}.
First, we upper bound the gain of T in the context of S:

r

FSUT) = £(8) =S (FS UL, 0deh) = FSU L, dia))

t=1
(4.106)

= Zf GelS UL, oG }) < ) f(lS)  (4.107)
t=1
Z £Gi19) (4.108)

JET\S

or

FTIS) < D F3IS) (4.109)

JET\S
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Other Submodular Defs.
(ARRNRRNNRRNRY NRRRARN

Eq. 4.96 = Eq. 4.98

Let T\S:{jl,,jT} and S\T:{k‘l,,]{q}
Next, lower bound S in the context of T":

fSUT) — = [f(TU{kr,.. . k}) = F(T ULk, ko))
t=1

(4.110)

= fhTU ks k) \ {Re}) = > F(Rl T U S\ {ke})
t=1

t=1
(4.111)

= Y fUlsuT\{j}) (4.112)

JES\T
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Other Submodular Defs.
(ARRNRRNNRRRARNE NARARN

Eq. 4.96 = Eq. 4.98

LetT\S:{jl,...,jT} and S\T:{kl,...,k)q}.
So we have the upper bound

f(T]S) = f(SUT) — < > f3IS) (4.113)
JET\S

and the lower bound

FSIT) = f(SUT) = f(T) = Y fUISUT\{5}) (4.114)

FES\T
This gives upper and lower bounds of the form

f(T) + lower bound < f(SUT) < f(S) + upper bound, (4.115)

and combining directly the left and right hand side gives the desired
inequality.
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Other Submodular Defs.
(ARRNRRNNRRRNRNNT ARRRN

Eq. 4.98 = Eq. 4.99

This follows immediately since if S C T', then S\ T = (), and the last term
of Eq. 4.98 vanishes.
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Eq. 4.99 = Eq. 4.96

Here, we set T'= S U {j,k}, j ¢ SU{k} into Eq. 4.99 to obtain

FSU{y,k}) < F(S) + F(5IS) + f(KLS) (4.116)
= f(9) + F(S+{i}) = f(S) + f(S +{k}) — f(5) (4117)
= f(S+{ih) + F(S+{k}) — f(5) (4.118)
= f(jI1S) + f(S + {k}) (4.119)

giving
FGUISULR}Y) = F(SU{s k}) — F(SU{R}) (4.120)
< f(jl5) (4.121)
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Other Submodular Defs.
(ARRNRRNNRRRRRRNRER ARN

Submodular Concave

e Why do we call the f(A) + f(B) > f(AUB) + f(AnN B) definition of
submodularity, submodular concave?
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Other Submodular Defs.
(ARRNRRNNRRRRRRNRER ARN

Submodular Concave

e Why do we call the f(A) + f(B) > f(AUB) + f(AN B) definition of
submodularity, submodular concave?

@ A continuous twice differentiable function f : R™ — R is concave iff
V2f < 0 (the Hessian matrix is nonpositive definite).
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Other Submodular Defs.
(ARRNRRNNRRRRRRNRER ARN

Submodular Concave

e Why do we call the f(A) + f(B) > f(AUB) + f(AN B) definition of
submodularity, submodular concave?

@ A continuous twice differentiable function f : R” — R is concave iff
V2f =0 (the Hessian matrix is nonpositive definite).

@ Define a “discrete derivative” or difference operator defined on discrete
functions f : 2V — R as follows:

(VBf)(A) 2 f(AUB) — f(A\ B) = f(B|(A\ B)) (4.122)
read as: the derivative of f at A in the direction B.
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Other Submodular Defs.
(ARRNRRNNRRRRRRNRER ARN

Submodular Concave

e Why do we call the f(A) + f(B) > f(AUB) + f(AN B) definition of
submodularity, submodular concave?

@ A continuous twice differentiable function f : R” — R is concave iff
V2f =0 (the Hessian matrix is nonpositive definite).

@ Define a “discrete derivative” or difference operator defined on discrete
functions f : 2V — R as follows:

(Vsf)(A) £ f(AUB) - f(A\B) = f(BI(A\ B))  (4122)

read as: the derivative of f at A in the direction B.
@ Hence, if ANB =10, then (Vgf)(A) = f(B|A).
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Other Submodular Defs.
(ARRNRRNNRRRRRRNRER ARN

Submodular Concave

e Why do we call the f(A) + f(B) > f(AUB) + f(AN B) definition of
submodularity, submodular concave?

@ A continuous twice differentiable function f : R” — R is concave iff
V2f =0 (the Hessian matrix is nonpositive definite).

@ Define a “discrete derivative” or difference operator defined on discrete
functions f : 2V — R as follows:

(Vef)(A) £ f(AUB) - f(A\ B) = f(B|(A\ B)) (4122
read as: the derivative of f at A in the direction B.

@ Hence, if AN B =10, then (Vpf)(A) = f(B|A).
@ Consider a form of second derivative or 2nd difference:

(Ve f)(A)
(VoVB[)(A) = Ve[ f(AUB) — f(A\ B) | (4.123)
= (VB(AUC) = (VBf)(A\C) (4.124)

= f(AUBUC) - f((AUC)\ B)
—f((A\NC)UB) + fF((A\NC)\ B)  (4.125)
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Other Submodular Defs.
(ARRNRRNNRRRNRNNRNE I

Submodular Concave

o If the second difference operator everywhere nonpositive:

fLAUBUC) = f((AUC)\ B)
—f(A\NC)UB)+ f(A\NC\B) <0  (41206)
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Other Submodular Defs.
(ARRNRRNNRRRNRNNRNE I

Submodular Concave

@ If the second difference operator everywhere nonpositive:
f(AUBUC) - f((AUC)\ B)
— F((A\C)UB) + f(A\C\B) <0 (4.126)
then we have the equation:

F((AUC)\ B) + f((A\NC)UB) = f(AUBUC) + f(A\ C\ B)
(4.127)
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Other Submodular Defs.
(ARRNRRNNRRRNRNNRNE I

Submodular Concave

@ If the second difference operator everywhere nonpositive:

fLAUBUC) - f((AuC)\ B)
~J((A\O)UB) + [(A\C\B)<0  (4.126)

then we have the equation:

fAUC)\ B) + f((A\C)UB) = f(AUBUC) + f(A\C\ B)
(4.127)

@ Define A’ = (AUC)\ B and B'=(A\ C)U B. Then the above
implies:

F(A) + F(B)) > f(A' UB') + f(A'N B (4.128)

and note that A’ and B’ so defined can be arbitrary.
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Other Submodular Defs.
(ARRNRRNNRRRNRNNRNE I

Submodular Concave

@ If the second difference operator everywhere nonpositive:
f(AUBUC) = f(AUC)\ B)
— F((A\C)UB) + f(A\C\B) <0 (4.126)
then we have the equation:

fAUC)\ B) + f((A\C)UB) = f(AUBUC) + f(A\C\ B)
(4.127)

@ Define A’ = (AUC)\ B and B'=(A\ C)U B. Then the above
implies:

F(A) + f(B)) > f(A UB') + f(A'N B) (4.128)

and note that A’ and B’ so defined can be arbitrary.
@ One sense in which submodular functions are like concave functions.
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Other Submodular Defs

Submodular Concave

A B A

(a) A =(AUuC)\ B (b) B =(A\C)UB
Figure: A figure showing A/UB = AUBUC and A NB = A\C\ B.
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Other Submodular Defs.
(ARRNRRNNRRRRRNNNRNAY B

Submodular Concave

A B A

(a) A/A=(AUuC)\ B (b)y BP=(A\C)UB
Figure: A figure showing A/UB' = AUBUC and A NB =A\C\B.
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Other Submodular Defs.
(AR RNNR NN RRNNRNNNY |

Submodularity and Concave

@ This submodular/concave relationship is more simply done with
singletons.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 4 - Apr 6th, 2016 F77/77 (pg.217/221



Other Submodular Defs.
(AR RNNR NN RRNNRNNNY |

Submodularity and Concave

@ This submodular/concave relationship is more simply done with
singletons.

@ Recall four points definition: A function is submodular if for all X C V'
and j,ke V\X

fX+)+f(X+k)>f(X+i+k)+ f(X) (4.129)
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Other Submodular Defs.
(AR RNNR NN RRNNRNNNY |

Submodularity and Concave

@ This submodular/concave relationship is more simply done with
singletons.

@ Recall four points definition: A function is submodular if for all X C V
and j,ke V\ X

JX+5)+ (X +k) 2 f(X+]+Ek)+ f(X) (4.129)

@ This gives us a simpler notion corresponding to concavity.
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Other Submodular Defs.
(AR RNNR NN RRNNRNNNY |

Submodularity and Concave

@ This submodular/concave relationship is more simply done with
singletons.

@ Recall four points definition: A function is submodular if for all X C V
and j,ke V\ X

JX+5)+ (X +k) 2 f(X+]+Ek)+ f(X) (4.129)

@ This gives us a simpler notion corresponding to concavity.
@ Define gain as V;(X) = f(X +j) — f(X), a form of discrete gradient.
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Other Submodular Defs.
(AR RNNR NN RRNNRNNNY |

Submodularity and Concave

@ This submodular/concave relationship is more simply done with

singletons.
@ Recall four points definition: A function is submodular if for all X C V
and j,ke V\ X
JX+)+f(X+k) > f(X+j+Fk)+ f(X) (4.129)

@ This gives us a simpler notion corresponding to concavity.
@ Define gain as V;(X) = f(X +j) — f(X), a form of discrete gradient.

@ Trivially becomes a second-order condition, akin to concave functions:
A function is submodular if for all X C V and j,k € V, we have:

VVief(X) <0 (4.130)
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