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Cumulative Outstanding Reading

@ Read chapter 1 from Fujishige's book.
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Announcements, Assignments, and Reminders

@ Homework 1 is now available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Friday at 5:00pm.

@ Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google
hangout (set up meeting via our our discussion board (https:
//canvas.uw.edu/courses/1039754/discussion_topics)).
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Class Road Map - IT-I

@ L1(3/28): Motivation, Applications, & @ L11(5/2):
Basic Definitions @ L12(5/4):

@ L2(3/30): Machine Learning Apps @ L13(5/9):
(diversity, complexity, parameter, learning o L14(5/11):
target, surrogate). o L15(5/16):

o L3(.4./£.1): Info theory exs, more apps, o L16(5/18):
definitions, graph/combinatorial examples,
matrix rank example, visualization ® L17(5/23):

® L4(4/6): @ L18(5/25):

o L5(4/11): © L19(6/1):

o L6(4/13): ° L20(.6/.6):.Final Presentations

o L7(4/18): maximization.

@ L8(4/20):

@ L9(4/25):

@ L10(4/27):

Finals Week: June 6th-10th, 2016.
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Two Equivalent Submodular Definitions

Definition 3.2.1 (submodular concave)

A function f : 2V 5 R is submodular if for any A, B C V, we have that:

f(A)+ f(B) 2 f(AUB) + f(AN B) (3-8)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.2.2 (diminishing returns)

A function f : 2V 5 R is submodular if for any AC BCYV, and
v € V \ B, we have that:

f(AU{v}) = f(A) = f(BU{v}) — f(B) (3.9)

v

The incremental ‘“value”, “gain”, or “cost” of v decreases (diminishes) as
the context in which v is considered grows from A to B.
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Two Equivalent Supermodular Definitions

Definition 3.2.1 (supermodular)

A function f : 2V — R is supermodular if for any A, B C V, we have that:

f(A) + f(B) < f(AUB) + f(AN B) (3-8)

v

Definition 3.2.2 (supermodular (improving returns))

A function f : 2V — R is supermodular if for any A C B C V, and
v € V' \ B, we have that:

fLAU{v}) = f(A) < fF(BU{v}) — f(B) (3.9)
@ Incremental “value”, “gain”, or “cost” of v increases (improves) as the
context in which v is considered grows from A to B.
@ A function f is submodular iff —f is supermodular.
e If f both submodular and supermodular, then f is said to be modular,
and f(A) =c+ > ,c4 f(a) (often c = 0).
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Submodularity's utility in ML

@ A model of a physical process :
e When maximizing, submodularity naturally models: diversity, coverage,
span, and information.
e When minimizing, submodularity naturally models: cooperative costs,
complexity, roughness, and irregularity.
e vice-versa for supermodularity.
@ A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence,
structured sparse convex norms for use in regularization).

@ ltself, as an object or function to learn, based on data.

@ A surrogate or relaxation strategy for optimization or analysis

e An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). l.e., a means
towards tractable surrogates for graphical models.

e Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.

e Non-submodular problems can be analyzed via submodularity.
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Bit More Notation
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Ground set: E or V7

Submodular functions are functions defined on subsets of some finite set,
called the ground set .

@ It is common in the literature to use either E' or V' as the ground set
— we will at different times use both (there should be no confusion).

@ The terminology ground set comes from lattice theory, where V' are
the ground elements of a lattice (just above 0).
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Notation R¥

What does z € RE mean?

RY ={z=(z; €R:j € E)} (3.1)

RY={z=(z;:j€E): x>0} (3.2)

Any vector x € RF can be treated as a normalized modular function, and
vice verse. That is

r(A) = Zxa (3.3)

Note that z is said to be normalized since z()) = 0.
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Bit More Notation
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characteristic vectors of sets & modular functions

@ Given an A C F, define the vector 14 € R_ZE to be

1 ifje A
14(7) = 3.4
A7) {0 if j ¢ A (3.4)
@ Sometimes this will be written as x4 = 14.

@ Thus, given modular function x € RE, we can write x(A) in a variety
of ways, i.e.,

p(A)=x-1x=> (i) (3.5)

1€EA
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Bit More Notation
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Other Notation: singletons and sets

When A is a set and k is a singleton (i.e., a single item), the union is
properly written as AU {k}, but sometimes we will write just A + k.
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Bit More Notation
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What does S mean when S and T are arbitrary sets?

@ Let S and T be two arbitrary sets (either of which could be countable,
or uncountable).

o We define the notation ST to be the set of all functions that map from
T to S. Thatis, if f € ST, then f: T — S.

Hence, given a finite set E, R” is the set of all functions that map
from elements of E to the reals R, and such functions are identical to
a vector in a vector space with axes labeled as elements of F (i.e., if
m € R¥, then for all e € E, m(e) € R).

Often “2" is shorthand for the set {0,1}. l.e., R? where 2 = {0,1}.
Similarly, 2E is the set of all functions from E to “two”" — so 2F is
shorthand for {0, 1} — hence, 2F is the set of all functions that map
from elements of E to {0, 1}, equivalent to all binary vectors with
elements indexed by elements of F/, equivalent to subsets of E. Hence,
if A€ 2F then ACE.

e What might 3% mean?
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Info Theory Examples
[ AN

Example Submodular: Entropy from Information Theory

@ Entropy is submodular. Let V' be the index set of a set of random
variables, then the function

f(A)=H(Xa)=—) p(za)logp(za) (3.6)
TA
is submodular.
@ Proof: (further) conditioning reduces entropy. With A C B and v ¢ B,

H(X,|X5) = H(Xp10) — H(X5) .
< H(Xa4y) — H(Xa) = H(Xy|Xa) (3.8)

@ We say “further” due to B\ A not nec. empty.
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Info Theory Examples
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Example Submodular: Entropy from Information Theory

@ Alternate Proof: Conditional mutual Information is always non-negative.

@ Given A, B C V, consider conditional mutual information quantity:
p(Ta\B; Tp\AlTANB)

p(za\BlTanB)P(TB\4lTANE)

I(X4\B; XB\a|XanB) = Z p(rauB) log

TAUB
x x
= 3 pleavs) log p(zauB)p(Tans) >0 (39)
o p(za)p(zB)
then
I(X z\B; XB\4a|XanB)
:H(XA)+H(XB)—H(XAuB)—H(XAmB)ZO (3.10)
so entropy satisfies
H(XA)+ H(Xp) > H(XauB) + H(XanB) (3.11)
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Info Theory Examples
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Information Theory: Block Coding

@ Given a set of random variables {X;},.;- indexed by set V', how do we
partition them so that we can best block-code them within each block.

@ l.e., how do we form S C V such that I(XS;XV\S) is as small as
possible, where I(X 4; Xp) is the mutual information between random
variables X4 and Xp, i.e.,

I(Xa; Xp) = H(X4) + H(XB) — H(X4,XB) (3.12)

and H(X4) =—>_, p(za)logp(xa) is the joint entropy of the set
X 4 of random variables.
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Example Submodular: Mutual Information

@ Also, symmetric mutual information is submodular,
f(A) = I(Xa; Xvn\a) = H(Xa) + H(Xy\a) — H(Xy)  (3.13)

Note that f(A) = H(X4) and f(A) = H(Xy\ 4), and adding
submodular functions preserves submodularity (which we will see quite
soon).
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Info Theory Examples
[NEEN |

Information Theory: Network Communication
X1, 11 X2,Y

@ A network of senders/receivers

@ Each sender X is trying to
communicate simultaneously
with each receiver Y; (i.e., for all
i, X; is sending to {Y;},

@ The X; are not necessarily
independent.

me Ym X37YE)>

e o o X4’}/;1

e Communication rates from i to j are R(77) to send message
W) ¢ {1,2,...,2713“””}.
@ Goal: necessary and sufficient conditions for achievability.
@ l.e., can we find functions f such that any rates must satisfy
VSCV, Y REID<f(S) (3.14)
1€5,7eV\S
@ Special cases MAC (Multi-Access Channel) for communication over

p(y|x1,z2) and Slepian-Wolf compression (independent compression of
X and Y but at joint rate H(X,Y
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Monge Matrices

e m x n matrices C' = [¢;;];; are called Monge matrices if they satisfy
the Monge property, namely:

Cij + Crs < cis + Crj (315)
foralll<i<r<mand1<j)<s<n.
e Equivalently, for all 1 <i,r <m, 1< 7,8 <n,
Cmin(i,r),min(j,s) + Cmax(i,r),max(j,s) < Cis + Crj (316)

@ Consider four elements of the m X n matrix:
n n

Crj Crs

9 S
Cij:A_"B' er:B, ¢s =B+D,cs=A+B+C+ D.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016 F18/63 (pg.18/63)



Monge
[N RN

Monge Matrices, where useful

@ Useful for speeding up many transportation, dynamic programming,
flow, search, lot-sizing and many other problems.

@ Example, Hitchcock transportation problem: Given m X n cost matrix
C' = [cij]i; » a non-negative supply vector a € R, a non-negative
demand vector b € R’ with > i) a(i) = > ", bj, we wish to
optimally solve the following linear program:

minimize i zn: CijTij (317)

XeRmn =i, =i

subject to inj =b; Vj=1,...,n (3.18)
i=1
inj:ai Vizl,...,m (319)
j=1
x;; >0 Vi, j (3.20)
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Monge Matrices, Hitchcock transportation

aj O|1T |3 |3
Producers,
Sources, Q9 1 4 7 (10
or Supply
as 0|49 (14
3 2 1 2

bl bg bg b4

Consumers, Sinks, or
Demand

@ Solving the linear program can be done easily and optimally using the
“North West Corner Rule” in only O(m + n) if the matrix C' is Monge!
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Monge Matrices and Convex Polygons

@ Can generate a Monge matrix from a convex polygon - delete two
segments, then separately number vertices on each chain. Distances
cij satisfy Monge property (or quadrangle inequality).

d(p2,q3) + d(ps, q4) < d(p2, q4) + d(p3, g3) (3.21)
q1
q2 P
P2 b2
a3 q3
P3 P3
qa b3 D4 qa
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Monge Matrices and Submodularity

e A submodular function has the form: f : 2" — R which can be seen
as f:{0,1}Y > R

@ We can generalize this to f : {0, K}V — R for some constant K € Z, .

@ We may define submodularity as: for all x,y € {O,K}V, we have

fle)+ fy) =2 flevy) + flzny) (3.22)

@ x V y is the (join) element-wise min of each element, that is
(z Vy)(v) = min(z(v),y(v)) forv e V.
@ x Ay is the (meet) element-wise min of each element, that is,
(x Ay)(v) = max(z(v),y(v)) forv e V.
@ With K =1, then this is the standard definition of submodularity.

e With |V| =2, and K + 1 the side-dimension of the matrix, we get a
Monge property (on square matrices).
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More Definitions
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Submodular Motivation Recap

o Given a set of objects V = {v1,...,v,} and a function f:2" — R
that returns a real value for any subset S C V.

@ Suppose we are interested in finding the subset that either maximizes
or minimizes the function, e.g., argmaxgcy f(S), possibly subject to
some constraints.

@ In general, this problem has exponential time complexity.

@ Example: f might correspond to the value (e.g., information gain) of a
set of sensor locations in an environment, and we wish to find the best
set S C V of sensors locations given a fixed upper limit on the number
of sensors |5)|.

@ In many cases (such as above) f has properties that make its
optimization tractable to either exactly or approximately compute.

@ One such property is submodularity.
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Two Equivalent Submodular Definitions

Definition 3.6.1 (submodular concave)

A function f : 2V 5 R is submodular if for any A, B C V, we have that:

f(A)+f(B) 2 f(AUB) + f(AN B) (3.8)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.6.2 (diminishing returns)

A function f : 2V 5 R is submodular if for any AC BCV, and
v € V' \ B, we have that:

f(AU{v}) = F(A) = f(BU{v}) — f(B) (3.9)

v

The incremental ‘“value”, “gain”, or “cost” of v decreases (diminishes) as
the context in which v is considered grows from A to B.
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More Definitions
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Submodular on Hypercube Verticies

@ Test submodularity via values on verticies of hypercube.
Example: with |[V| =n =2, thisis  With |V| =n = 3, a bit harder.

111
easy:

10 11

XX
N

How many |nequaI|t|es?
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More Definitions
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Subadditive Definitions

Definition 3.6.1 (subadditive)
A function f : 2"V — R is subadditive if for any A, B C V, we have that:

f(A)+ f(B) = f(AU B) (3.23)

This means that the “whole” is less than the sum of the parts.
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More Definitions
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Two Equivalent Supermodular Definitions

Definition 3.6.1 (supermodular)
A function f : 2V — R is supermodular if for any A4, B C V, we have that:

f(A) + f(B) < f(AUB) + f(AN B) (3-8)

v

Definition 3.6.2 (supermodular (improving returns))

A function f : 2V — R is supermodular if for any A C B C V, and
v € V' \ B, we have that:

f(AU{v}) = F(A) < fF(BU{v}) - f(B) (3.9)

@ Incremental “value”, “gain”, or “cost” of v increases (improves) as the
context in which v is considered grows from A to B.

@ A function f is submodular iff —f is supermodular.

e If f both submodular and supermodular, then f is said to be modular,
and f(A) =c+ > ,c4 f(a) (often c = 0).
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More Definitions
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Superadditive Definitions

Definition 3.6.2 (superadditive)
A function f : 2V — R is superadditive if for any A, B C V, we have that:

f(A)+ f(B) < f(AUB) (3.24)

@ This means that the “whole” is greater than the sum of the parts.

@ In general, submodular and subadditive (and supermodular and
superadditive) are different properties.

o Ex: Let 0 < k < |V, and consider f : 2V — R, where:

F(A) = {1 tlAl< (3.25)

0 else

@ This function is subadditive but not submodular.
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More Definitions
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Modular Definitions

Definition 3.6.3 (modular)

A function that is both submodular and supermodular is called modular

If fis a modular function, than for any A, B C V', we have
f(A) + f(B) = f(ANnB) + f(AU B) (3.26)

In modular functions, elements do not interact (or cooperate, or compete,
or influence each other), and have value based only on singleton values.

Proposition 3.6.4
If f is modular, it may be written as

F(A) = FO) + > (F({ad) = F®) = e+ > f(a) (3.27)

acA acA

which has only |V | + 1 parameters.
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Modular Definitions

Proof.
We inductively construct the value for A = {aj,as,...,a;}.
For k = 2,
fla1) + f(a2) = f(a1,a2) + f(0) (3.28)

implies f(a1,a2) = f(a1) — f(0) + f(a2) — f(0) + £ (D) (3.29)

then for k = 3,

flai, a2) + f(as) = f(ar,a2,a3) + f(0)  (3.30)
implies f(a1,az2,a3) = f(a1,a2) — f(0) + f(az) — f(0) + f(0) (3.31)

3

= FO)+> _(fla:) — f(0)) (3.32)

1=1

and soon ... ]

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016 F30/63 (pg.30/63)



More Definitions
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Complement function

Given a function f : 2" — R, we can find a complement function

f:2V 2 Ras f(A) = f(V\ A) for any A.

Proposition 3.6.5

f is submodular if f is submodular.

Proof.

f(A)+ f(B) > f(AUB) + f(ANB) (3.33)

follows from
fFVNA)+ f(VAB) = f(VN(AUB))+ f(V\(ANB))  (3.34)

which is true because V' \ (AUB) = (V\A)n(V\B) and
VN(ANB)=(V\A) U(V\ B) (De Morgan's laws for sets). O

v
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Graph & Combinatorial Examples
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Undirected Graphs

o Let G = (V, E) be a graph with vertices V = V(G) and edges
E=FEG)CVxV.
@ If G is undirected, define
EX,)Y)={{z,y} € E(G):z € X\ Y,ye Y\ X} (3.35)

as the edges strictly between X and Y.
@ Nodes define cuts, define the cut function 6(X) = E(X,V \ X).

(S)={{u,v}€e E:ueS,ve V\S}
= {{ad}.{bd}.{be} {ce}{c.f}}
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Graph & Combinatorial Examples

Directed graphs, and cuts and flows
e If G is directed, define

ET(X,)Y)E2{(z,y) €eEG):z2€ X \Y,ye Y\ X} (3.36)

as the edges directed strictly from X towards Y.
@ Nodes define cuts and flows. Define edges leaving X (out-flow) as

ST(X) 2 ET(X,V\X) (3.37)
and edges entering X (in-flow) as
S (X)E2ET(V\X,X) (3.38)

{(u,v) €eE:ueS,veV\S}
{(be) ,(c,N}
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Graph & Combinatorial Examples
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The Neighbor function in undirected graphs

@ Given a set X C V, the neighbor function of X is defined as
I'(X)={veV(G)\ X : E(X,{v}) #0} (3.39)

@ Example:
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Graph & Combinatorial Examples
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Directed Cut function: property

Lemma 3.7.1

For a digraph G = (V, E) and any X,Y C V: we have

|67 (X)) + |67 (V)]

=0T XNY)|+|6T(XUY)|+ |ET(X,Y)|+ |ET(Y, X)| (3.40)
and
67 (X)) +[67(Y)]
=[0"(XNY)|+ [0 (XUY)|+ |E-(X,Y)|+ |E~(Y,X)| (3.41)
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Graph & Combinatorial Examples
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Directed Cut function: proof of property
Proof.

We can prove this using a simple geometric counting argument (6~ (X) is
similar)
X _ V\X X V\X
(@)
Y b)_) Y (e) 19 |(g)
0% (X) Q TN 07 (Y)]
VAY| “gr> VY
X V\X X V\X
y (@) > % .
by
5t(XnY)|  Le ¥ 9O XUy
viy| Y V\Y = Y
X V\X X V\X
Y Y
|ET(X, ) () |EF(Y, X))
V\Y © V\Y
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Graph & Combinatorial Examples
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Directed cut/flow functions: submodular

For a digraph G = (V, E) and any X,Y C V: both functions |67 (X)| and
|07 (X)| are submodular.

|[EH(X,Y)| >0and |[E~(X,Y)| > 0. O]

More generally, in the non-negative weighted case, both in-flow and
out-flow are submodular on subsets of the vertices.
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Graph & Combinatorial Examples
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Undirected Cut/Flow & the Neighbor function: submodular
Lemma 3.7.3

For an undirected graph G = (V, E) and any X,Y C V': we have that both
the undirected cut (or flow) function |0(X)| and the neighbor function
IT'(X)| are submodular. le.,

0(X)|+0(Y)|=16(XNY)|+|0(XUY)|+2|E(X,Y)| (3.42)

and

P+ (V)| = DX NY)[+ (X UY) (3.43)

Proof.
e Eq. (3.42) follows from Eq. (3.40): we replace each undirected edge
{u, v} with two oppositely-directed directed edges (u,v) and (v, u).
Then we use same counting argument.

e Eq. (3.43) follows as shown in the following page.
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—(d) —
Graphically, we can count and see that

['(X) = (a) + (¢) + () + (9) + (d) (3.44)
L(Y) = (b) + (c) + (e) + (h) + (d) (3.45)
T(XUY)=(a)+ (b) + (c) + (d) (3.46)
T(XNY)=(c)+ (g9) + (h) (3.47)

SO

IT(X)| + [T = (a) + (0) +2(c) +2(d) + (¢) + () + (g9) + (h)
> (a) + (b) +2(c) + (d) + (9) + (h) = T(X UY)|+ T(X NY)| (3.48)
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Undirected Neighbor functions

Therefore, the undirected cut function |§(A)| and the neighbor function
IT'(A)| of a graph G are both submodular.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016 F40/63 (pg.40/63)



Graph & Combinatorial Examples
[EERERERER ARAREN]

Undirected cut/flow is submodular: alternate proof

@ Another simple proof shows that |0(X)| is submodular.
@ Define a graph Gy, = ({u, v}, {e}, w) with two nodes u, v and one
edge e = {u, v} with non-negative weight w(e) € R,
e Cut weight function over those two nodes: w(dy, ,(+)) has valuation:
W(6uw(B) = w(dun({u,v})) =0 (3.49)
and
w(0uw({u})) = w(lup({v})) =w >0 (3.50)
@ Thus, w(dy,(-)) is submodular since
w(0y,p({u})) + w(buw({v})) = w(0uw({y,v})) + w(duwn(?)) (3.51)
@ General non-negative weighted graph G = (V, E, w), define w(d(-)):

FX) =w@E(X) = > w(luu(X N{u,0})) (3.52)
(u,0)EE(Q)
@ This is easily shown to be submodular using properties we will soon see

namely, submodularity closed under summation and restriction).
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Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

@ Let V(X) be the vertices adjacent to some edge in X C F(G), then
|V (X)| (the vertex function) is submodular.

@ Let E(S) be the edges with both vertices in S C V(G). Then |E(S)|
(the interior edge function) is supermodular.

@ Let /(S) be the edges with at least one vertex in S C V(G). Then
|1(,S)| (the incidence function) is submodular.

@ Recall |§(.9)], is the set size of edges with exactly one vertex in
S C V(@) is submodular (cut size function). Thus, we have
I(S) = E(S)Ud(S) and E(S)Nd(S) =0, and thus that
|1(S)| = |E(S)| + |6(S)|. So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?

e Consider f(A) = [61(A)| — |67 (V \ A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one and
prove it.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016 F42/63 (pg.42/63)



Graph & Combinatorial Examples
Lrrrrrrrrrrnrntd

Number of connected components in a graph via edges

o Recall, f:2Y — R is submodular, then so is f : 2 — R defined as
f(8) = F(V\5).

e Hence, if f:2Y — R is supermodular, then so is f : 2V — R defined
as F(S) = F(V'\ S).

e Given a graph G = (V, E), for each A C E(G), let ¢(A) denote the
number of connected components of the (spanning) subgraph
(V(G), A), with ¢ : 28 = R,

@ ¢(A) is monotone non-increasing, ¢(A+a) —c(A) <0 .

@ Then ¢(A) is supermodular, i.e.,

c(A+a)—c(A) <c(B+a)—c(B) (3.53)
with AC BC FE\ {a}.

@ Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of conected components) when
edge is added in a smaller context than when added in a larger context.

@ ¢(A) =c(E\ A) is the number of connected components in G when
we remove A, so is also supermodular, but monotone non-decreasing.
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Graph Strength

@ So ¢(A) =c(F \ A) is the number of connected components in G
when we remove A, is supermodular.

@ Maximizing ¢(A) might seem as a goal for a network attacker — many

connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

@ If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.

@ An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.

o Let G = (V, E,w) with w : E — R+ be a weighted graph with
non-negative weights.

@ For (u,v) =e € E, let w(e) be a measure of the strength of the
connection between vertices u and v (strength meaning the difficulty
of cutting the edge e).
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Graph Strength

@ Then w(A) for A C FE is a modular function

w(d) =) we (3.54)
ecA
so that w(E(G[S])) is the “internal strength” of the vertex set .S.

@ Suppose removing A shatters GG into a graph with ¢(A) > 1
components — then w(A)/(¢(A) — 1) is like the “effort per achieved
component” for a network attacker.

@ A form of graph strength can then be defined as the following:

w(A)

T 3.55
AgE(g'l)lzrél(A)>l c(A) —1 ( )

strength(G, w) =
@ Graph strength is like the minimum effort per component. An attacker
would use the argument of the min to choose which edges to attack. A
network designer would maximize, over G and/or w, the graph
strength, strength(G,w).

@ Since submodularity, problems have strongly-poly-time solutions.
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Submodularity, Quadratic Structures, and Cuts

Lemma 3.7.4

Let M € R™ ™ be a symmetric matrix and m € R™ be a vector. Then
f:2YV = R defined as

1
f(X) =mT1x + 51k M1y (3.56)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.

@ Given a complete graph G = (V, E), recall that E(X) is the edge set
with both vertices in X C V(G), and that |E(X)| is supermodular.

@ Non-negative modular weights w™ : E — R, w(F (X)) is also
supermodular, so —w(E(X)) (non-positive modular) is submodular.

e f is a modular function m™14 = m(A) added to a weighted

submodular function, hence f is submodular.
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Submodularity, Quadratic Structures, and Cuts

Proof of Lemma 3.7.4 cont.

@ Conversely, suppose f is submodular.

o Then f({u})+ f({v}) = f({u,v}) + f(0) while f(0) = 0.
@ Then:

0 < f({u}) + f({v}) — f({u,v}) (3.57)
=m(u) + %Mu’u + m(v) + %Mv,v (3.58)
~ (m(w) +m(w) + % e+ Moy + %M) (3.59)

— M, (3.60)

So that Vu,v € V, M,,, < 0.
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SET COVER and MAXIMUM COVERAGE

@ We are given a finite set V' of n elements and a set of subsets
V ={V1,Va,...,Vy,} of m subsets of V, so that V; C V and
UVi=V.

@ The goal of minimum SET COVER is to choose the smallest subset
AC[m] & {1,...,m} such that J,.4, Vo = V.

@ Maximum k cover: The goal in MAXIMUM COVERAGE is, given an
integer k < m, select k subsets, say {a1,as,...,a;} with a; € [m]
such that |Uf:1 Va,| is maximized.

@ Both SET COVER and MAXIMUM COVERAGE are well known to be
NP-hard, but have a fast greedy approximation algorithm.
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Other Covers

Definition 3.7.5 (vertex cover)

A vertex cover (a “vertex-based cover of edges”) in graph G = (V, E) is a
set S C V(@) of vertices such that every edge in GG is incident to at least
one vertex in S.

o Let /(S) be the number of edges incident to vertex set S. Then we
wish to find the smallest set S C V subject to I(S) = |E|.

Definition 3.7.6 (edge cover)

A edge cover (an “edge-based cover of vertices”) in graph G = (V, E) is a
set I' C E(G) of edges such that every vertex in G is incident to at least
one edge in F.

@ Let |V|(F') be the number of vertices incident to edge set F'. Then we
wish to find the smallest set F' C E subject to |V|(F) = |V].
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Graph Cut Problems

MINIMUM cUT: Given a graph G = (V, E), find a set of vertices
S C V that minimize the cut (set of edges) between S and V' \ S.

MAxiMUM cuUT: Given a graph G = (V, E), find a set of vertices
S C V that minimize the cut (set of edges) between S and V' \ S.

Let f:2Y — R, be the cut function, namely for any given set of
nodes X C V, f(X) measures the number of edges between nodes X
and V'\ X.

Weighted versions, where rather than count, we sum the
(non-negative) weights of the edges of a cut.
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Facility /Plant Location (uncapacitated)

@ Core problem in operations research, early motivation for submodularity.

@ Goal: as efficiently as possible, place “facilities” (factories) at certain
locations to satisfy sites (at all locations) having various demands.

facility locations sites

Benefit of having
site 2 serviced by
facility 4.
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Facility /Plant Location (uncapacitated) w. plant benefits

o Let F={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

o S={1,...,s} is a set of sites (e.g., cities, clients) needing service.

o Let ¢;j be the "benefit” (e.g., 1/c;; is the cost) of servicing site ¢ with
facility location j.

@ Let m; be the benefit (e.g., either 1/m; is the cost or —m; is the
cost) to build a plant at location j.

@ Each site should be serviced by only one plant but no less than one.

@ Define f(A) as the "delivery benefit” plus “construction benefit” when
the locations A C F' are to be constructed.

@ We can define the (uncapacitated) facility location function

f(A) = ij + Zmajccij. (3.61)
jEA ier 7€
@ Goal is to find a set A that maximizes f(A) (the benefit) placing a
bound on the number of plants A (e.g., |A| < k).
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Matrix Rank functions

o Let V, with |V| = m be an index set of a set of vectors in R™ for some
n (unrelated to m).

e For a given set {v,v1,vs,...,vt}, it might or might not be possible to
find («;); such that:

k
Ty — Zaixvi (3.62)
i=1
If not, then z, is linearly independent of x,,,...,Zy,.

@ Let 7(S) for S C V be the rank of the set of vectors S. Then r(-) is a
submodular function, and in fact is called a matric matroid rank
function.
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Example: Rank function of a matrix

e Given n x m matrix X = (z1,z2,...,Zy) with z; € R™ for all 1.
There are m length-n column vectors {z;},

o Let V={1,2,...,m} be the set of column vector indices.

@ Forany A CV, let r(A) be the rank of the column vectors indexed by
A.

@ r(A) is the dimensionality of the vector space spanned by the set of
vectors {Zq},c4-

@ Thus, 7(V) is the rank of the matrix X.
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7, 8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8
1/0 2 2 3 0 1 3 1
20 3 0 4 0 0 2 4| | | | | | | | |
310 000300 5| |72 ™m0
4\2 0 0 0 00O 05 | o | | | | |
o Let A={1,2,3}, B={3,4,5}, C = {6,7}, A, = {1}, B, = {5}.
@ Thenr(A) =3, r(B) =3, r(C) =2
o r(AUC)=3, r(BUC)=
or(AUA)—B r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
o "(AUB)=4, r(AnB)=1<r(C)=2.
e 6=[r(A)+ ( )>r(AUB)+r(ANB) =5
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Rank function of a matrix

o Let A, B C V be two subsets of column indices.

@ The rank of the two sets unioned together A U B is no more than the
sum of the two individual ranks.

@ In Venn diagram, Let area correspond to dimensions spanned by
vectors indexed by a set. Hence r(A) can be viewed as an area.

r(A >  r(AUB)

@ If some of the dimensions spanned by A overlap some of the
dimensions spanned by B (i.e., if 3 common span), then that area is
counted twice in 7(A) + r(B), so the inequality will be strict.

@ Any function where the above inequality is true for all A, B C V is

called subadditive.
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Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

@ Let C index vectors spanning dimensions common to A and B.

@ Let A, index vectors spanning dimensions spanned by A but not B.

@ Let B, index vectors spanning dimensions spanned by B but not A.

@ Then, r(A) =r(C) +r(4,)

e Similarly, r(B) = r(C) + r(B,).

@ Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,
r(A) +r(B) =r(A,) + 2r(C) + r(B,). (3.63)

e But (AU B) counts the dimensions spanned by C' only once.

r(AUB) =7r(A;) +r(C)+r(B,) (3.64)
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Rank functions of a matrix

@ Then r(A) + r(B) counts the dimensions spanned by C' twice, i.e.,

r(A)+ r(B) = r(Ar) +2r(C) + r(B,)

@ But (AU B) counts the dimensions spanned by C' only once.

r(AUB) =r(A;) +r(C)+ r(B))

@ Thus, we have subadditivity: 7(A) + r(B) > r(AU B). Can we add

more to the r.h.s. and still have an inequality? VYes.
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Rank function of a matrix

e Note, r(AN B) < r(C). Why? Vectors indexed by AN B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C').

r(C) > r(AN B)

In short:
@ Common span (blue) is “more” (no less) than span of common index
(magenta).
@ More generally, common information (blue) is “more” (no less) than
information within common index (magenta).
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The Venn and Art of Submodularity

f(A) - r(B) > \r(A U B)J -+ \r(A nB)

—I’ —|—2f = —I—r /“) AQB

00 ® ®
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Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).

@ For each X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.

@ We can think of S as a set of sets of vectors from the matrix rank
example, and for each s € S, let X, being a set of vector indices.

o Then, defining f : 25 — R as follows,
f(X) = T(USGSXS) (365)

we have that f is submodular, and is known to be a polymatroid rank
function.

@ In general (as we will see) polymatroid rank functions are submodular,
normalized f()) = 0, and monotone non-decreasing (f(A) < f(B)
whenever A C B).
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Spanning trees

@ Let E be a set of edges of some graph G = (V, E), and let r(.5) for
S C E be the maximum size (in terms of number of edges) spanning
forest in the vertex-induced graph, induced by vertices incident to
edges S.

@ Example: Given G = (V. E), V ={1,2,3,4,5,6,7, 8},
E={1,2,...,12}. §={1,2,3,4,5,8,9} C E. Two spanning trees
have the same edge count (the rank of S).

@ Then r(S) is submodular, and is another matrix rank function
corresponding to the incidence matrix of the graph.
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Submodular Polyhedra

@ Submodular functions have associated polyhedra with nice properties:
when a set of constraints in a linear program is a submodular
polyhedron, a simple greedy algorithm can find the optimal solution
even though the polyhedron is formed via an exponential number of
constraints.

Py ={z e R" : 2(S) < f(5),VS C E} (3.66)
P+:Pfﬂ{:ﬁ€RE:az20} (3.67)
By =Pin{z eR? :z(E) = f(E)} (3.68)

@ The linear programming problem is to, given ¢ € R¥, compute:
f(c) £ max {c"z:z € P} (3.69)
@ This can be solved using the greedy algorithm! Moreover, f(c)

computed using greedy is convex if and only of f is submodular (we
will go into this in some detail this quarter).
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