Submodular Functions, Optimization, and Applications to Machine Learning — Spring Quarter, Lecture 3 —

http://www.ee.washington.edu/people/faculty/bilmes/classes/ee596b_spring_2016/

Prof. Jeff Bilmes

University of Washington, Seattle Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

Apr 4th, 2016

EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016

Cumulative Outstanding Reading

• Read chapter 1 from Fujishige's book.

Logistics

- Homework 1 is now available at our assignment dropbox (https://canvas.uw.edu/courses/1039754/assignments), due (electronically) Friday at 5:00pm.
- Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google hangout (set up meeting via our our discussion board (https://canvas.uw.edu/courses/1039754/discussion_topics)).

Logistics

Review

Class Road Map - IT-I

- L1(3/28): Motivation, Applications, & Basic Definitions
- L2(3/30): Machine Learning Apps (diversity, complexity, parameter, learning target, surrogate).
- L3(4/4): Info theory exs, more apps, definitions, graph/combinatorial examples, matrix rank example, visualization
- L4(4/6):
- L5(4/11):
- L6(4/13):
- L7(4/18):
- L8(4/20):
- L9(4/25):
- L10(4/27):

- L11(5/2):
- L12(5/4):
- L13(5/9):
- L14(5/11):
- L15(5/16):
- L16(5/18):
- L17(5/23):
- L18(5/25):
- L19(6/1):
- L20(6/6): Final Presentations maximization.

Finals Week: June 6th-10th, 2016.

Review

Two Equivalent Submodular Definitions

Definition 3.2.1 (submodular concave)

A function $f: 2^V \to \mathbb{R}$ is submodular if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$$

(3.8)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.2.2 (diminishing returns)

A function $f: 2^V \to \mathbb{R}$ is submodular if for any $A \subseteq B \subset V$, and $v \in V \setminus B$, we have that:

 $f(A \cup \{v\}) - f(A) \ge f(B \cup \{v\}) - f(B)$ (3.9)

The incremental "value", "gain", or "cost" of v decreases (diminishes) as the context in which v is considered grows from A to B.

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016

Definition 3.2.1 (supermodular)

A function $f: 2^V \to \mathbb{R}$ is supermodular if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \le f(A \cup B) + f(A \cap B)$$
(3.8)

Definition 3.2.2 (supermodular (improving returns))

A function $f: 2^V \to \mathbb{R}$ is supermodular if for any $A \subseteq B \subset V$, and $v \in V \setminus B$, we have that:

$$f(A \cup \{v\}) - f(A) \le f(B \cup \{v\}) - f(B)$$
(3.9)

• Incremental "value", "gain", or "cost" of v increases (improves) as the context in which v is considered grows from A to B.

• A function f is submodular iff -f is supermodular.

• If f both submodular and supermodular, then f is said to be modular, and $f(A) = c + \sum_{a \in A} \overline{f(a)}$ (often c = 0).

Prof. Jeff Bilmes

Review

Submodularity's utility in ML

- A model of a physical process :
 - When maximizing, submodularity naturally models: diversity, coverage, span, and information.
 - When minimizing, submodularity naturally models: cooperative costs, complexity, roughness, and irregularity.
 - vice-versa for supermodularity.
- A submodular function can act as a parameter for a machine learning strategy (active/semi-supervised learning, discrete divergence, structured sparse convex norms for use in regularization).
- Itself, as an object or function to learn, based on data.
- A surrogate or relaxation strategy for optimization or analysis
 - An alternate to factorization, decomposition, or sum-product based simplification (as one typically finds in a graphical model). I.e., a means towards tractable surrogates for graphical models.
 - Also, we can "relax" a problem to a submodular one where it can be efficiently solved and offer a bounded quality solution.
 - Non-submodular problems can be analyzed via submodularity.

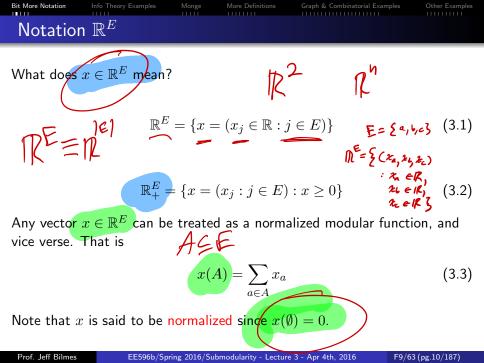
Logistics

Submodular functions are functions defined on subsets of some finite set, called the ground set .

• It is common in the literature to use either E or V as the ground set — we will at different times use both (there should be no confusion).

Submodular functions are functions defined on subsets of some finite set, called the ground set .

- It is common in the literature to use either E or V as the ground set — we will at different times use both (there should be no confusion).
- The terminology ground set comes from lattice theory, where V are the ground elements of a lattice (just above 0).



• Given an $A \subseteq E$, define the vector $\mathbf{1}_A \in \mathbb{R}_+^E$ to be $\overbrace{\mathbf{1}_A(j)}^{I} = \begin{cases} 1 & \text{if } j \in A; \\ 0 & \text{if } j \notin A \end{cases}$

F10/63 (pg.11/187)

(3.4)

• Given an $A\subseteq E$, define the vector $\mathbf{1}_A\in\mathbb{R}^E_+$ to be

$$\mathbf{1}_{A}(j) = \begin{cases} 1 & \text{if } j \in A; \\ 0 & \text{if } j \notin A \end{cases}$$
(3.4)

• Sometimes this will be written as $\chi_A \equiv \mathbf{1}_A$.

• Given an $A \subseteq E$, define the vector $\mathbf{1}_A \in \mathbb{R}^E_+$ to be

$$\mathbf{1}_{A}(j) = \begin{cases} 1 & \text{if } j \in A; \\ 0 & \text{if } j \notin A \end{cases}$$
(3.4)

- Sometimes this will be written as $\chi_A \equiv \mathbf{1}_A$.
- Thus, given modular function $x \in \mathbb{R}^E$, we can write x(A) in a variety of ways, i.e.,

$$x(A) = x \cdot \mathbf{1}_A = \sum_{i \in A} x(i)$$

When A is a set and k is a singleton (i.e., a single item), the union is properly written as $A \cup \{k\}$, but sometimes we will write just A + k.

• Let S and T be two arbitrary sets (either of which could be countable, or uncountable).

- Let S and T be two arbitrary sets (either of which could be countable, or uncountable).
- We define the notation S^T to be the set of all functions that map from T to S. That is, if $f \in S^T$, then $f: T \to S$.

- Let S and T be two arbitrary sets (either of which could be countable, or uncountable).
- We define the notation S^T to be the set of all functions that map from T to S. That is, if $f \in S^T$, then $f : T \to S$.
- Hence, given a finite set E, ℝ^E is the set of all functions that map from elements of E to the reals ℝ, and such functions are identical to a vector in a vector space with axes labeled as elements of E (i.e., if m ∈ ℝ^E, then for all e ∈ E, m(e) ∈ ℝ).

$$n \equiv \{1, 2, \dots, n\}$$

me M

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples What does S^T mean when S and T are arbitrary sets?

- Let S and T be two arbitrary sets (either of which could be countable, or uncountable).
- We define the notation S^T to be the set of all functions that map from T to S. That is, if $f \in S^T$, then $f : T \to S$.
- Hence, given a finite set E, ℝ^E is the set of all functions that map from elements of E to the reals ℝ, and such functions are identical to a vector in a vector space with axes labeled as elements of E (i.e., if m ∈ ℝ^E, then for all e ∈ E, m(e) ∈ ℝ).

• Often "2" is shorthand for the set $\{0,1\}$. I.e., \mathbb{R}^2 where $2 \equiv \{0,1\}$.

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples What does S^T mean when S and T are arbitrary sets?

- Let S and T be two arbitrary sets (either of which could be countable, or uncountable).
- We define the notation S^T to be the set of all functions that map from T to S. That is, if $f \in S^T$, then $f : T \to S$.
- Hence, given a finite set E, ℝ^E is the set of all functions that map from elements of E to the reals ℝ, and such functions are identical to a vector in a vector space with axes labeled as elements of E (i.e., if m ∈ ℝ^E, then for all e ∈ E, m(e) ∈ ℝ).
- Often "2" is shorthand for the set $\{0,1\}$. I.e., \mathbb{R}^2 where $2 \equiv \{0,1\}$.
- Similarly, 2^E is the set of all functions from E to "two" so 2^E is shorthand for {0,1}^E
 E → 20/13

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples What does S^T mean when S and T are arbitrary sets?

- Let S and T be two arbitrary sets (either of which could be countable, or uncountable).
- We define the notation S^T to be the set of all functions that map from T to S. That is, if $f \in S^T$, then $f: T \to S$.
- Hence, given a finite set E, ℝ^E is the set of all functions that map from elements of E to the reals ℝ, and such functions are identical to a vector in a vector space with axes labeled as elements of E (i.e., if m ∈ ℝ^E, then for all e ∈ E, m(e) ∈ ℝ).
- Often "2" is shorthand for the set $\{0,1\}$. I.e., \mathbb{R}^2 where $2 \equiv \{0,1\}$.
- Similarly, 2^E is the set of all functions from E to "two" so 2^E is shorthand for {0,1}^E hence, 2^E is the set of all functions that map from elements of E to {0,1}, equivalent to all binary vectors with elements indexed by elements of E, equivalent to subsets of E. Hence, if A ∈ 2^E then A ⊆ E.

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples What does S^T mean when S and T are arbitrary sets?

- Let S and T be two arbitrary sets (either of which could be countable, or uncountable).
- We define the notation S^T to be the set of all functions that map from T to S. That is, if $f \in S^T$, then $f: T \to S$.
- Hence, given a finite set E, \mathbb{R}^E is the set of all functions that map from elements of E to the reals \mathbb{R} , and such functions are identical to a vector in a vector space with axes labeled as elements of E (i.e., if $m \in \mathbb{R}^E$, then for all $e \in E$, $m(e) \in \mathbb{R}$).
- Often "2" is shorthand for the set $\{0,1\}$. I.e., \mathbb{R}^2 where $2 \equiv \{0,1\}$.
- Similarly, 2^E is the set of all functions from E to "two" so 2^E is shorthand for $\{0,1\}^E$ — hence, 2^E is the set of all functions that map from elements of E to $\{0, 1\}$, equivalent to all binary vectors with elements indexed by elements of E, equivalent to subsets of E. Hence, if $A \in 2^E$ then $A \subseteq E$.
- What might 3^E mean?

• Entropy is submodular. Let V be the index set of a set of random variables, then the function

$$f(A) = H(X_A) = -\sum_{x_A} p(x_A) \log p(x_A)$$
(3.6)

is submodular.

• Proof: (further) conditioning reduces entropy. With $A \subseteq B$ and $v \notin B$,

$$H(X_{v}|X_{B}) = H(X_{B+v}) - H(X_{B})$$
(3.7)
$$\leq H(X_{A+v}) - H(X_{A}) = H(X_{v}|X_{A})$$
(3.8)

• We say "further" due to $B \setminus A$ not nec. empty.

- Alternate Proof: Conditional mutual Information is always non-negative.
- Given $A, B \subseteq V$, consider conditional mutual information quantity:

$$I(X_{A\setminus B}; X_{B\setminus A} | X_{A\cap B}) = \sum_{x_{A\cup B}} p(x_{A\cup B}) \log \frac{p(x_{A\setminus B}, x_{B\setminus A} | x_{A\cap B})}{p(x_{A\setminus B} | x_{A\cap B})p(x_{B\setminus A} | x_{A\cap B})}$$
$$= \sum_{x_{A\cup B}} p(x_{A\cup B}) \log \frac{p(x_{A\cup B})p(x_{A\cap B})}{p(x_A)p(x_B)} \ge 0 \quad (3.9)$$
$$= H(X_A) + H(X_B) - H(X_{A\cup B}) - H(X_{A\cap B}) \ge 0 \quad (3.10)$$

so entropy satisfies

$$H(X_A) + H(X_B) \ge H(X_{A \cup B}) + H(X_{A \cap B})$$
(3.11)

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016

F14/63 (pg.23/187)

• Given a set of random variables $\{X_i\}_{i \in V}$ indexed by set V, how do we partition them so that we can best block-code them within each block.

Bit More Notation Info Theory Examples More Definitions Graph & Combinatorial Examples Other Examples

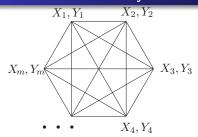
- Given a set of random variables $\{X_i\}_{i \in V}$ indexed by set V, how do we partition them so that we can best block-code them within each block.
- I.e., how do we form $S \subseteq V$ such that $I(X_S; X_{V \setminus S})$ is as small as possible, where $I(X_A; X_B)$ is the mutual information between random variables X_A and X_B , i.e.,

$$I(X_A; X_B) = H(X_A) + H(X_B) - H(X_A, X_B)$$
(3.12)

and $H(X_A) = -\sum_{x_A} p(x_A) \log p(x_A)$ is the joint entropy of the set X_A of random variables.

• Also, symmetric mutual information is submodular,

 $f(A) \neq I(X_A; X_{V \setminus A}) = H(X_A) + H(X_{V \setminus A}) - H(X_V)$ (3.13) Note that $f(A) = H(X_A)$ and $\bar{f}(A) = H(X_{V \setminus A})$, and adding submodular functions preserves submodularity (which we will see quite soon).



- A network of senders/receivers
- Each sender X_i is trying to communicate simultaneously with each receiver Y_i (i.e., for all *i*, X_i is sending to $\{Y_i\}_i$
- The X_i are not necessarily independent.
- Communication rates from i to j are $R^{(i \rightarrow j)}$ to send message $W^{(i \to j)} \in \left\{ 1, 2, \dots, 2^{nR^{(i \to j)}} \right\}.$
- Goal: necessary and sufficient conditions for achievability.
- I.e., can we find functions f such that any rates must satisfy

$$\forall S \subseteq V, \quad \sum_{i \in S, j \in V \setminus S} R^{(i \to j)} \le f(S) \tag{3.14}$$

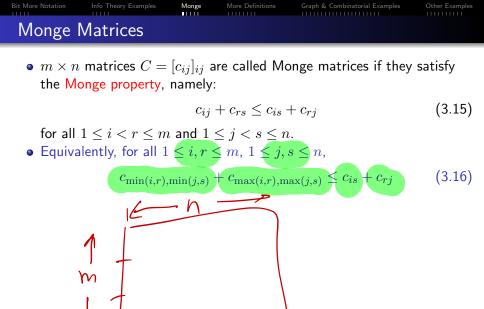
 Special cases MAC (Multi-Access Channel) for communication over $p(y|x_1, x_2)$ and Slepian-Wolf compression (independent compression of X and Y but at joint rate H(X,Y)F17/63 (pg.27/187)

Prof. Jeff Bilmes

• $m \times n$ matrices $C = [c_{ij}]_{ij}$ are called Monge matrices if they satisfy the Monge property, namely:

for all
$$1 \leq i < r \leq m$$
 and $1 \leq j < s \leq n$.

(3.15)



• $m \times n$ matrices $C = [c_{ij}]_{ij}$ are called Monge matrices if they satisfy the Monge property, namely:

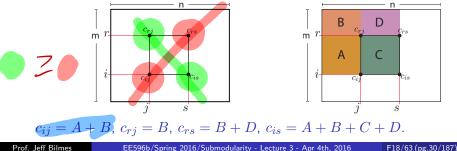
$$c_{ij} + c_{rs} \le c_{is} + c_{rj} \tag{3.15}$$

for all $1 \le i < r \le m$ and $1 \le j < s \le n$.

• Equivalently, for all $1 \le i, r \le m$, $1 \le j, s \le n$,

$$c_{\min(i,r),\min(j,s)} + c_{\max(i,r),\max(j,s)} \le c_{is} + c_{rj}$$
 (3.16)

• Consider four elements of the $m \times n$ matrix:

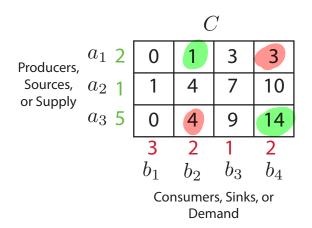


• Useful for speeding up many transportation, dynamic programming, flow, search, lot-sizing and many other problems.

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Info Theory Examples Info T

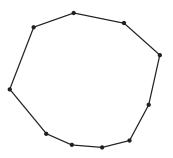
- Useful for speeding up many transportation, dynamic programming, flow, search, lot-sizing and many other problems.
- Example, Hitchcock transportation problem: Given $m \times n$ cost matrix $C = [c_{ij}]_{ij}$, a non-negative supply vector $a \in \mathbb{R}^m_+$, a non-negative demand vector $b \in \mathbb{R}^n_+$ with $\sum_{i=1}^m a(i) = \sum_{j=1}^n b_j$, we wish to optimally solve the following linear program:

$$\begin{array}{ll}
\underset{X \in \mathbb{R}^{m \times n}}{\text{minimize}} & \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} & (3.17) \\
\text{subject to} & \sum_{i=1}^{m} x_{ij} = b_j \quad \forall j = 1, \dots, n & (3.18) \\
& \sum_{j=1}^{n} x_{ij} = a_i \quad \forall i = 1, \dots, m & (3.19) \\
& x_{i,j} \ge 0 \quad \forall i, j & (3.20)
\end{array}$$



• Solving the linear program can be done easily and optimally using the "North West Corner Rule" in only O(m+n) if the matrix C is Monge!

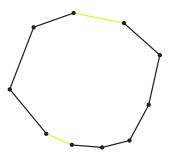
• Can generate a Monge matrix from a convex polygon - delete two segments, then separately number vertices on each chain. Distances c_{ij} satisfy Monge property (or quadrangle inequality).



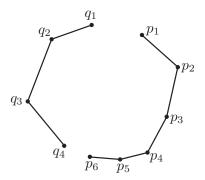
EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016

F21/63 (pg.34/187)

• Can generate a Monge matrix from a convex polygon - delete two segments, then separately number vertices on each chain. Distances c_{ij} satisfy Monge property (or quadrangle inequality).

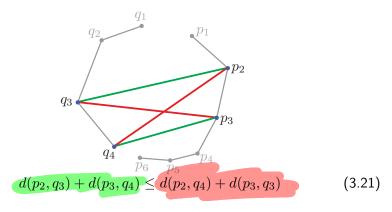


• Can generate a Monge matrix from a convex polygon - delete two segments, then separately number vertices on each chain. Distances c_{ij} satisfy Monge property (or quadrangle inequality).



F21/63 (pg.36/187)

• Can generate a Monge matrix from a convex polygon - delete two segments, then separately number vertices on each chain. Distances c_{ij} satisfy Monge property (or quadrangle inequality).



EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016

Bit More Notation	Info Theory Examples	Monge	More Definitions	Graph & Combinatorial Examples	Other Examples
Monge	Matrices and	у			

• A submodular function has the form: $f:2^V\to\mathbb{R}$ which can be seen as $f:\{0,1\}^V\to\mathbb{R}$

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Info Theory Examples Info T

- A submodular function has the form: $f:2^V\to\mathbb{R}$ which can be seen as $f:\{0,1\}^V\to\mathbb{R}$
- We can generalize this to $f : \{0, K\}^V \to \mathbb{R}$ for some constant $K \in \mathbb{Z}_+$.

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Info Theory Examples Info T

- A submodular function has the form: $f:2^V\to\mathbb{R}$ which can be seen as $f:\{0,1\}^V\to\mathbb{R}$
- We can generalize this to $f: \{0, K\}^V \to \mathbb{R}$ for some constant $K \in \mathbb{Z}_+$.
- We may define submodularity as: for all $x, y \in \{0, K\}^V$, we have

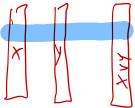
$$f(x) + f(y) \ge f(x \lor y) + f(x \land y)$$
(3.22)

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Monge More Definitions

- A submodular function has the form: $f:2^V\to\mathbb{R}$ which can be seen as $f:\{0,1\}^V\to\mathbb{R}$
- We can generalize this to $f : \{0, K\}^V \to \mathbb{R}$ for some constant $K \in \mathbb{Z}_+$.
- We may define submodularity as: for all $x, y \in \{0, K\}^V$, we have

$$f(x) + f(y) \ge f(x \lor y) + f(x \land y)$$
(3.22)

• $x \lor y$ is the (join) element-wise min of each element, that is $(x \lor y)(v) = \min(x(v), y(v))$ for $v \in V$.



Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Monge More Definitions

- A submodular function has the form: $f:2^V\to\mathbb{R}$ which can be seen as $f:\{0,1\}^V\to\mathbb{R}$
- We can generalize this to $f : \{0, K\}^V \to \mathbb{R}$ for some constant $K \in \mathbb{Z}_+$.
- We may define submodularity as: for all $x, y \in \{0, K\}^V$, we have

$$f(x) + f(y) \ge f(x \lor y) + f(x \land y)$$
(3.22)

- $x \vee y$ is the (join) element-wise min of each element, that is $(x \vee y)(v) = \min(x(v), y(v))$ for $v \in V$.
- $x \wedge y$ is the (meet) element-wise min of each element, that is, $(x \wedge y)(v) = \max(x(v), y(v))$ for $v \in V$.

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Info Theory Examples Info T

- A submodular function has the form: $f:2^V\to\mathbb{R}$ which can be seen as $f:\{0,1\}^V\to\mathbb{R}$
- We can generalize this to $f : \{0, K\}^V \to \mathbb{R}$ for some constant $K \in \mathbb{Z}_+$.
- We may define submodularity as: for all $x, y \in \{0, K\}^V$, we have

$$f(x) + f(y) \ge f(x \lor y) + f(x \land y)$$
(3.22)

- $x \lor y$ is the (join) element-wise min of each element, that is $(x \lor y)(v) = \min(x(v), y(v))$ for $v \in V$.
- $x \wedge y$ is the (meet) element-wise min of each element, that is, $(x \wedge y)(v) = \max(x(v), y(v))$ for $v \in V$.
- With K = 1, then this is the standard definition of submodularity.

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Monge More Definitions Graph & Combinatorial Examples Other Examples

- A submodular function has the form: $f:2^V\to\mathbb{R}$ which can be seen as $f:\{0,1\}^V\to\mathbb{R}$
- We can generalize this to $f : \{0, K\}^V \to \mathbb{R}$ for some constant $K \in \mathbb{Z}_+$.
- We may define submodularity as: for all $x, y \in \{0, K\}^V$, we have

$$f(x) + f(y) \ge f(x \lor y) + f(x \land y)$$
(3.22)

- $x \vee y$ is the (join) element-wise min of each element, that is $(x \vee y)(v) = \min(x(v), y(v))$ for $v \in V$.
- $x \wedge y$ is the (meet) element-wise min of each element, that is, $(x \wedge y)(v) = \max(x(v), y(v))$ for $v \in V$.
- With K = 1, then this is the standard definition of submodularity.
- With |V| = 2, and K + 1 the side-dimension of the matrix, we get a Monge property (on square matrices).

 Bit More Notation
 Info Theory Examples
 Monge
 More Definitions
 Graph & Combinatorial Examples
 Other Examples

 Two Equivalent Submodular Definitions

Definition 3.6.1 (submodular concave)

A function $f: 2^V \to \mathbb{R}$ is submodular if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$$
(3.8)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.6.2 (diminishing returns)

A function $f: 2^V \to \mathbb{R}$ is submodular if for any $A \subseteq B \subset V$, and $v \in V \setminus B$, we have that:

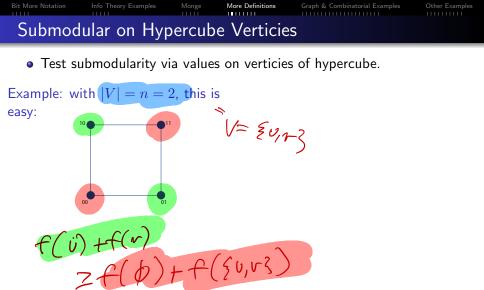
$$f(A \cup \{v\}) - f(A) \ge f(B \cup \{v\}) - f(B)$$
(3.9)

The incremental "value", "gain", or "cost" of v decreases (diminishes) as the context in which v is considered grows from A to B.

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016

• Test submodularity via values on verticies of hypercube.



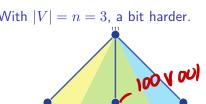
 $f(v) + f(\phi) \ge f(v) + f(\phi)$

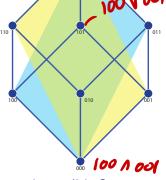
Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Submodular on Hypercube Verticies

• Test submodularity via values on verticies of hypercube.

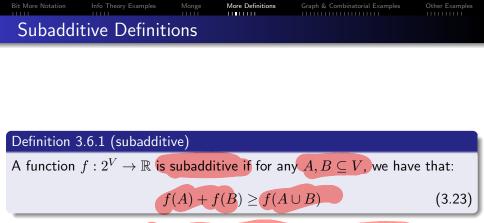
Example: with |V| = n = 2, this is With |V| = n = 3, a bit harder. easy:







How many inequalities?



This means that the "whole" is less than the sum of the parts.

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Two Equivalent Supermodular Definitions

Definition 3.6.1 (supermodular)

A function $f: 2^V \to \mathbb{R}$ is supermodular if for any $A, B \subseteq V$, we have that:

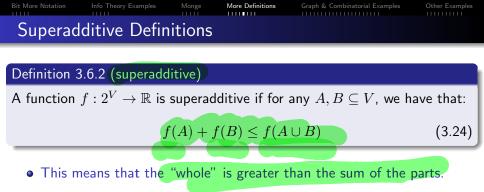
$$f(A) + f(B) \le f(A \cup B) + f(A \cap B)$$
(3.8)

Definition 3.6.2 (supermodular (improving returns))

A function $f: 2^V \to \mathbb{R}$ is supermodular if for any $A \subseteq B \subset V$, and $v \in V \setminus B$, we have that:

$$f(A \cup \{v\}) - f(A) \le f(B \cup \{v\}) - f(B)$$
(3.9)

- Incremental "value", "gain", or "cost" of v increases (improves) as the context in which v is considered grows from A to B.
- A function f is submodular iff -f is supermodular.
- If f both submodular and supermodular, then f is said to be modular, and $f(A) = c + \sum_{a \in A} f(a)$ (often c = 0).



Bit More Notation	Info Theory Examples	Monge	More Definitions	Graph & Combinatorial Examples	Other Examples
11111	11111		111111111		
Superad	ditive Defin	itions			

Definition 3.6.2 (superadditive)

A function $f: 2^V \to \mathbb{R}$ is superadditive if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \le f(A \cup B) \tag{3.24}$$

- This means that the "whole" is greater than the sum of the parts.
- In general, submodular and subadditive (and supermodular and superadditive) are different properties.

Bit More Notation	Info Theory Examples	Monge	More Definitions	Graph & Combinatorial Examples	Other Examples
	1111				
Superad	ditive Defin	itions			

Definition 3.6.2 (superadditive)

A function $f: 2^V \to \mathbb{R}$ is superadditive if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \le f(A \cup B) \tag{3.24}$$

- This means that the "whole" is greater than the sum of the parts.
- In general, submodular and subadditive (and supermodular and superadditive) are different properties.
- Ex: Let 0 < k < |V|, and consider $f : 2^V \to \mathbb{R}_+$ where:

$$f(A) = \begin{cases} 1 & \text{if } |A| \le k \\ 0 & \text{else} \end{cases}$$
(3.25)

Bit More Notation	Info Theory Examples	Monge	More Definitions	Graph & Combinatorial Examples	Other Examples
Superac	lditive Defin	itions			

Definition 3.6.2 (superadditive)

A function $f: 2^V \to \mathbb{R}$ is superadditive if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \le f(A \cup B) \tag{3.24}$$

- This means that the "whole" is greater than the sum of the parts.
- In general, submodular and subadditive (and supermodular and superadditive) are different properties.

• Ex: Let 0 < k < |V|, and consider $f : 2^V \to \mathbb{R}_+$ where: $f(A) = \begin{cases} 1 & \text{if } |A| \le k \\ 0 & \text{else} \end{cases}$ (3.25)

This function is subadditive but not submodular.

Definition 3.6.3 (modular)

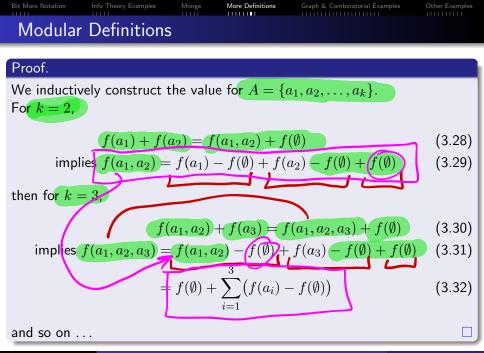
A function that is both submodular and supermodular is called modular

If f is a modular function, than for any $A, B \subseteq V$, we have

$$f(A) + f(B) = f(A \cap B) + f(A \cup B)$$

In modular functions, elements do not interact (or cooperate, or compete, or influence each other), and have value based only on singleton values.

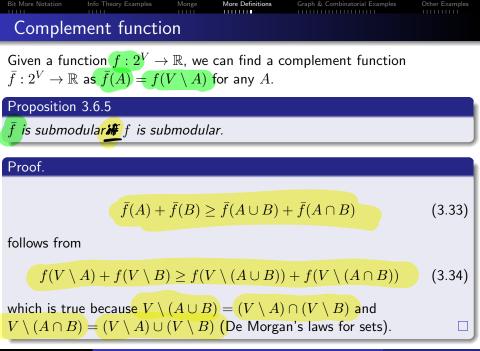
Proposition 3.6.4
If
$$f$$
 is modular, it may be written as
$$f(A) = f(\emptyset) + \sum_{a \in A} \left(f(\{a\}) - f(\emptyset) \right) = c + \sum_{a \in A} f'(a) \quad (3.27)$$
which has only $|V| + 1$ parameters.



Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016

F30/63 (pg.56/187)



Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016

F31/63 (pg.57/187)

Bit More Notation	Info Theory Examples	Monge	More Definitions	Graph & Combinatorial Examples	Other Examples
	11111	11111			
1.					

Undirected Graphs

• Let G = (V, E) be a graph with vertices V = V(G) and edges $E = E(G) \subseteq V \times V$.

- Let G = (V, E) be a graph with vertices V = V(G) and edges $E = E(G) \subseteq V \times V$.
- If G is undirected, define

 $E(X,Y) = \{\{x,y\} \in E(G) : x \in X \setminus Y, y \in Y \setminus X\}$ (3.35)

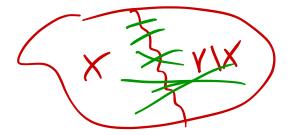
as the edges strictly between X and Y.

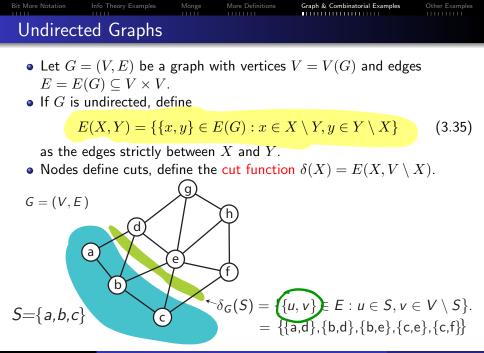
- Let G = (V, E) be a graph with vertices V = V(G) and edges $E = E(G) \subseteq V \times V$.
- If G is undirected, define

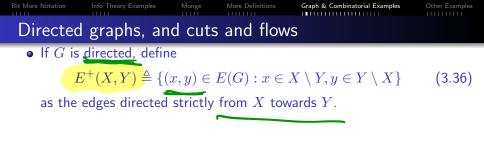
$$E(X,Y) = \{\{x,y\} \in E(G) : x \in X \setminus Y, y \in Y \setminus X\}$$
(3.35)

as the edges strictly between X and Y.

• Nodes define cuts, define the cut function $\delta(X) = E(X, V \setminus X)$.







Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Directed graphs, and cuts and flows • If G is directed, define $E^+(X,Y) \triangleq \{(x,y) \in E(G) : x \in X \setminus Y, y \in Y \setminus X\}$ (3.36)as the edges directed strictly from X towards Y. • Nodes define cuts and flows. Define edges leaving X (out-flow) as $\delta^+(X) \triangleq E^+(X, V \setminus X)$ (3.37) and edges entering X (in-flow) as $\delta^{-}(X) \triangleq E^{+}(V \setminus X, X)$ (3.38)

Directed graphs, and cuts and flows

 $\bullet~$ If G is directed, define

Info Theory Examples

Bit More Notation

$$E^{+}(X,Y) \triangleq \{(x,y) \in E(G) : x \in X \setminus Y, y \in Y \setminus X\}$$
(3.36)

as the edges directed strictly from X towards Y.

Monge

• Nodes define cuts and flows. Define edges leaving X (out-flow) as

More Definitions

$$\delta^+(X) \triangleq E^+(X, V \setminus X) \tag{3.37}$$

Graph & Combinatorial Examples

and edges entering X (in-flow) as

$$\delta^{-}(X) \triangleq E^{+}(V \setminus X, X)$$
(3.38)

$$\delta_{\overline{G}}(S) = \{(v, u) \in E : u \in S, v \in V \setminus S\}, \textcircled{g}$$

$$= \{(d, a), (d, b), (e, c)\}$$

$$\textcircled{g}$$

$$\textcircled{f}$$

$$d$$

$$(b, c)$$

$$(d, v) \in E : u \in S, v \in V \setminus S\}.$$

$$= \{(b, e), (c, f)\}$$

Other Examples

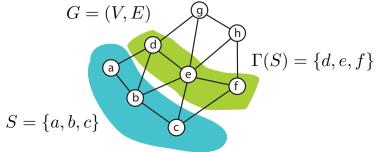
• Given a set $X \subseteq V$, the neighbor function of X is defined as

$$\Gamma(X) \triangleq \{ v \in V(G) \setminus X : E(X, \{v\}) \neq \emptyset \}$$
(3.39)

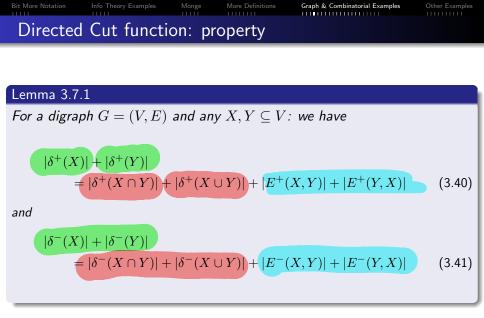
• Given a set $X \subseteq V$, the neighbor function of X is defined as

$$\Gamma(X) \triangleq \{ v \in V(G) \setminus X : E(X, \{v\}) \neq \emptyset \}$$
(3.39)

Example:



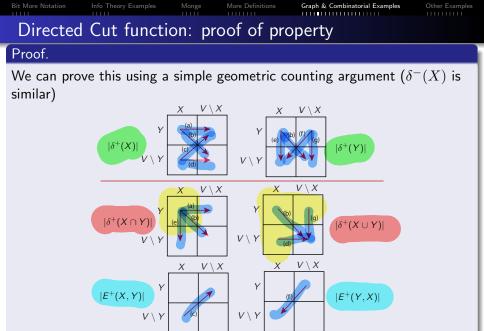
EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016



Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016

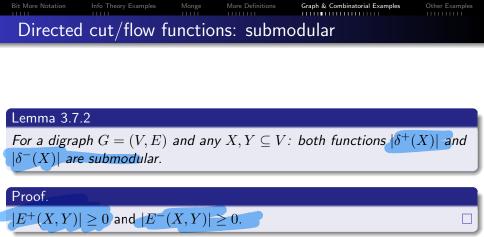
F35/63 (pg.67/187)



Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016

F36/63 (pg.68/187)



More generally, in the non-negative weighted case, both in-flow and out-flow are submodular on subsets of the vertices.

$$|A| = \overline{Z}w(a) \qquad w(a)=1$$

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016

F38/63 (pg.70/187)

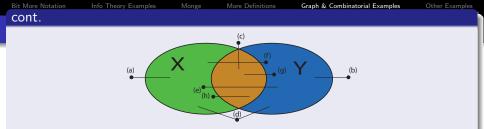
. . .

• Eq. (3.43) follows as shown in the following page.

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016

. . .



Graphically, we can count and see that

$$\Gamma(X) = (a) + (c) + (f) + (g) + (d)$$
(3.44)

$$\Gamma(Y) = (b) + (c) + (e) + (h) + (d)$$
(3.45)

$$\Gamma(X \cup Y) = (a) + (b) + (c) + (d)$$

$$\Gamma(X \cap Y) = (c) + (g) + (h)$$
(3.46)
(3.47)

 $\begin{aligned} |\Gamma(X)| + |\Gamma(Y)| &= (a) + (b) + 2(c) + 2(d) + (e) + (f) + (g) + (h) \\ &\geq (a) + (b) + 2(c) + (d) + (g) + (h) = |\Gamma(X \cup Y)| + |\Gamma(X \cap Y)| \end{aligned} (3.48)$

Therefore, the undirected cut function $|\delta(A)|$ and the neighbor function $|\Gamma(A)|$ of a graph G are both submodular.

• Another simple proof shows that $|\delta(X)|$ is submodular.

Bit More Notation Info Theory Examples More More Definitions Graph & Combinatorial Examples Other Examples Under Combinatorial Examples Other Examples Under Combinatorial Examples Other Examples

- Another simple proof shows that $|\delta(X)|$ is submodular.
- Define a graph $G_{uv} = (\{u, v\}, \{e\}, w)$ with two nodes u, v and one edge $e = \{u, v\}$ with non-negative weight $w(e) \in \mathbb{R}_+$.

Bit More Notation Info Theory Examples More More Definitions Graph & Combinatorial Examples Other Examples Under Examples Under Examples Other Examples Othe

- Another simple proof shows that $|\delta(X)|$ is submodular.
- Define a graph $G_{uv} = (\{u, v\}, \{e\}, w)$ with two nodes u, v and one edge $e = \{u, v\}$ with non-negative weight $w(e) \in \mathbb{R}_+$.
- Cut weight function over those two nodes: $w(\delta_{u,v}(\cdot))$ has valuation:

$$w(\delta_{u,v}(\emptyset)) = w(\delta_{u,v}(\{u,v\})) = 0$$
(3.49)

and

Prof. Jeff Bilmes

$$w(\delta_{u,v}(\{u\})) = w(\delta_{u,v}(\{v\})) = w \ge 0$$
(3.50)

Bit More Notation Info Theory Examples More Definitions Graph & Combinatorial Examples Other Examples Under Combinatorial Examples Other Exam

- Another simple proof shows that $|\delta(X)|$ is submodular.
- Define a graph $G_{uv} = (\{u, v\}, \{e\}, w)$ with two nodes u, v and one edge $e = \{u, v\}$ with non-negative weight $w(e) \in \mathbb{R}_+$.
- Cut weight function over those two nodes: $w(\delta_{u,v}(\cdot))$ has valuation:

$$w(\delta_{u,v}(\emptyset)) = w(\delta_{u,v}(\{u,v\})) = 0$$
(3.49)

and

$$w(\delta_{u,v}(\{u\})) = w(\delta_{u,v}(\{v\})) = w \ge 0$$
(3.50)

• Thus, $w(\delta_{u,v}(\cdot))$ is submodular since $w(\delta_{u,v}(\{u\})) + w(\delta_{u,v}(\{v\})) \ge w(\delta_{u,v}(\{u,v\})) + w(\delta_{u,v}(\emptyset))$ (3.51)

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Undirected cut/flow is submodular: alternate proof

- Another simple proof shows that $|\delta(X)|$ is submodular.
- Define a graph $G_{uv} = (\{u, v\}, \{e\}, w)$ with two nodes u, v and one edge $e = \{u, v\}$ with non-negative weight $w(e) \in \mathbb{R}_+$.
- Cut weight function over those two nodes: $w(\delta_{u,v}(\cdot))$ has valuation:

$$w(\delta_{u,v}(\emptyset)) = w(\delta_{u,v}(\{u,v\})) = 0$$
(3.49)

and

$$w(\delta_{u,v}(\{u\})) = w(\delta_{u,v}(\{v\})) = w \ge 0$$
(3.50)

• Thus, $w(\delta_{u,v}(\cdot))$ is submodular since $w(\delta_{u,v}(\{u\})) + w(\delta_{u,v}(\{v\})) \ge w(\delta_{u,v}(\{u,v\})) + w(\delta_{u,v}(\emptyset))$ (3.51) • General non-negative weighted graph G = (V, E, w), define $w(\delta(\cdot))$: $f(X) = w(\delta(X)) = \sum_{(u,v) \in E(G)} w(\delta_{u,v}(X \cap \{u,v\}))$ (3.52)

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Under Examples Under Examples Other Examples Under Examples Other Examples Oth

- Another simple proof shows that $|\delta(X)|$ is submodular.
- Define a graph $G_{uv} = (\{u, v\}, \{e\}, w)$ with two nodes u, v and one edge $e = \{u, v\}$ with non-negative weight $w(e) \in \mathbb{R}_+$.
- Cut weight function over those two nodes: $w(\delta_{u,v}(\cdot))$ has valuation:

$$w(\delta_{u,v}(\emptyset)) = w(\delta_{u,v}(\{u,v\})) = 0$$
(3.49)

and

$$w(\delta_{u,v}(\{u\})) = w(\delta_{u,v}(\{v\})) = w \ge 0$$
(3.50)

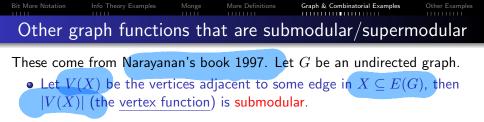
• Thus, $w(\delta_{u,v}(\cdot))$ is submodular since

 $w(\delta_{u,v}(\{u\})) + w(\delta_{u,v}(\{v\})) \ge w(\delta_{u,v}(\{u,v\})) + w(\delta_{u,v}(\emptyset))$ (3.51)

• General non-negative weighted graph G = (V, E, w), define $w(\delta(\cdot))$:

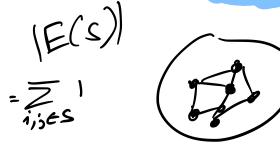
$$f(X) = w(\delta(X)) = \sum_{(u,v) \in E(G)} w(\delta_{u,v}(X \cap \{u,v\}))$$
(3.52)

 This is easily shown to be submodular using properties we will soon see (namely, submodularity closed under summation and restriction).
 Prof. Jeff Bilmes
 EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016
 F41/63 (pg.79/187)



Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples The State St

- Let V(X) be the vertices adjacent to some edge in $X \subseteq E(G)$, then |V(X)| (the vertex function) is submodular.
- Let E(S) be the edges with both vertices in $S \subseteq V(G)$. Then |E(S)| (the interior edge function) is supermodular.



Bit More Notation Info Theory Examples More More Definitions Graph & Combinatorial Examples Other Examples Other Examples The State of the Combinatorial Examples Other State of the Combinatorial Examples Other State of the Sta

- Let V(X) be the vertices adjacent to some edge in $X \subseteq E(G)$, then |V(X)| (the vertex function) is submodular.
- Let E(S) be the edges with both vertices in S ⊆ V(G). Then |E(S)| (the interior edge function) is supermodular.
- Let I(S) be the edges with at least one vertex in $S \subseteq V(G)$. Then |I(S)| (the incidence function) is submodular.

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples The State of t

- Let V(X) be the vertices adjacent to some edge in $X \subseteq E(G)$, then |V(X)| (the vertex function) is submodular.
- Let E(S) be the edges with both vertices in $S \subseteq V(G)$. Then |E(S)| (the interior edge function) is supermodular.
- Let I(S) be the edges with at least one vertex in $S \subseteq V(G)$. Then |I(S)| (the incidence function) is submodular.
- Recall $|\delta(S)|$, is the set size of edges with exactly one vertex in $S \subseteq V(G)$ is submodular (cut size function). Thus, we have $I(S) = E(S) \cup \delta(S)$ and $E(S) \cap \delta(S) = \emptyset$, and thus that $|I(S)| = |E(S)| + |\delta(S)|$.

Bit More Notation Info Theory Examples More More Definitions Graph & Combinatorial Examples Other Examples Other Examples Other State Stat

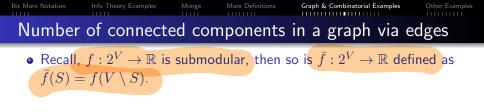
- Let V(X) be the vertices adjacent to some edge in $X \subseteq E(G)$, then |V(X)| (the vertex function) is submodular.
- Let E(S) be the edges with both vertices in $S \subseteq V(G)$. Then |E(S)| (the interior edge function) is supermodular.
- Let I(S) be the edges with at least one vertex in $S \subseteq V(G)$. Then |I(S)| (the incidence function) is submodular.
- Recall $|\delta(S)|$, is the set size of edges with exactly one vertex in $S \subseteq V(G)$ is submodular (cut size function). Thus, we have $I(S) = E(S) \cup \delta(S)$ and $E(S) \cap \delta(S) = \emptyset$, and thus that $|I(S)| \neq |E(S)| + |\delta(S)|$. So we can get a submodular function by summing a submodular and a supermodular function.

Bit More Notation Info Theory Examples More More Definitions Graph & Combinatorial Examples Other Examples Other Examples Other State Stat

- Let V(X) be the vertices adjacent to some edge in $X \subseteq E(G)$, then |V(X)| (the vertex function) is submodular.
- Let E(S) be the edges with both vertices in $S \subseteq V(G)$. Then |E(S)| (the interior edge function) is supermodular.
- Let I(S) be the edges with at least one vertex in $S \subseteq V(G)$. Then |I(S)| (the incidence function) is submodular.
- Recall $|\delta(S)|$, is the set size of edges with exactly one vertex in $S \subseteq V(G)$ is submodular (cut size function). Thus, we have $I(S) = E(S) \cup \delta(S)$ and $E(S) \cap \delta(S) = \emptyset$, and thus that $|I(S)| = |E(S)| + |\delta(S)|$. So we can get a submodular function by summing a submodular and a supermodular function. If you had to guess, is this always the case?

Bit More Notation Info Theory Examples More More Definitions Graph & Combinatorial Examples Other Examples Other Examples Other Examples

- Let V(X) be the vertices adjacent to some edge in $X \subseteq E(G)$, then |V(X)| (the vertex function) is submodular.
- Let E(S) be the edges with both vertices in $S \subseteq V(G)$. Then |E(S)| (the interior edge function) is supermodular.
- Let I(S) be the edges with at least one vertex in $S \subseteq V(G)$. Then |I(S)| (the incidence function) is submodular.
- Recall $|\delta(S)|$, is the set size of edges with exactly one vertex in $S \subseteq V(G)$ is submodular (cut size function). Thus, we have $I(S) = E(S) \cup \delta(S)$ and $E(S) \cap \delta(S) = \emptyset$, and thus that $|I(S)| = |E(S)| + |\delta(S)|$. So we can get a submodular function by summing a submodular and a supermodular function. If you had to guess, is this always the case?
- Consider $f(A) = |\delta^+(A)| |\delta^+(V \setminus A)|$. Guess, submodular, supermodular, modular, or neither? Exercise: determine which one and prove it.

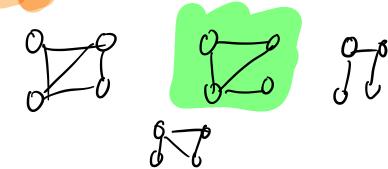


Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Number of connected components in a graph via edges

Recall, f: 2^V → ℝ is submodular, then so is f̄: 2^V → ℝ defined as f̄(S) = f(V \ S).
Hence, if f: 2^V → ℝ is supermodular, then so is f̄: 2^V → ℝ defined as f̄(S) = f(V \ S).

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Example Number of connected components in a graph via edges

- Recall, $f: 2^V \to \mathbb{R}$ is submodular, then so is $\overline{f}: 2^V \to \mathbb{R}$ defined as $\overline{f}(S) = f(V \setminus S)$.
- Hence, if $f: 2^V \to \mathbb{R}$ is supermodular, then so is $\overline{f}: 2^V \to \mathbb{R}$ defined as $\overline{f}(S) = f(V \setminus S)$.
- Given a graph G = (V, E), for each $A \subseteq E(G)$, let c(A) denote the number of connected components of the (spanning) subgraph (V(G), A), with $c : 2^E \to \mathbb{R}_+$.



Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Number of connected components in a graph via edges

- Recall, $f: 2^V \to \mathbb{R}$ is submodular, then so is $\overline{f}: 2^V \to \mathbb{R}$ defined as $\overline{f}(S) = f(V \setminus S)$.
- Hence, if $f: 2^V \to \mathbb{R}$ is supermodular, then so is $\overline{f}: 2^V \to \mathbb{R}$ defined as $\overline{f}(S) = f(V \setminus S)$.
- Given a graph G = (V, E), for each $A \subseteq E(G)$, let c(A) denote the number of connected components of the (spanning) subgraph (V(G), A), with $c : 2^E \to \mathbb{R}_+$.
- c(A) is monotone non-increasing, $c(A+a) c(A) \leq 0$.

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Number of connected components in a graph via edges

- Recall, $f: 2^V \to \mathbb{R}$ is submodular, then so is $\overline{f}: 2^V \to \mathbb{R}$ defined as $\overline{f}(S) = f(V \setminus S)$.
- Hence, if $f: 2^V \to \mathbb{R}$ is supermodular, then so is $\overline{f}: 2^V \to \mathbb{R}$ defined as $\overline{f}(S) = f(V \setminus S)$.
- Given a graph G = (V, E), for each $A \subseteq E(G)$, let c(A) denote the number of connected components of the (spanning) subgraph (V(G), A), with $c : 2^E \to \mathbb{R}_+$.
- c(A) is monotone non-increasing, $c(A+a)-c(A)\leq 0$.

• Then c(A) is supermodular, i.e., $c(A+a) - c(A) \le c(B+a) - c(B)$ (3.53) with $A \subseteq B \subseteq E \setminus \{a\}$.

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examp Number of connected components in a graph via edges

- Recall, $f: 2^V \to \mathbb{R}$ is submodular, then so is $\overline{f}: 2^V \to \mathbb{R}$ defined as $\overline{f}(S) = f(V \setminus S)$.
- Hence, if $f: 2^V \to \mathbb{R}$ is supermodular, then so is $\overline{f}: 2^V \to \mathbb{R}$ defined as $\overline{f}(S) = f(V \setminus S)$.
- Given a graph G = (V, E), for each $A \subseteq E(G)$, let c(A) denote the number of connected components of the (spanning) subgraph (V(G), A), with $c : 2^E \to \mathbb{R}_+$.
- c(A) is monotone non-increasing, $c(A+a)-c(A)\leq 0$.
- Then c(A) is supermodular, i.e.,

$$c(A+a) - c(A) \le c(B+a) - c(B)$$
 (3.53)

with $A \subseteq B \subseteq E \setminus \{a\}$.

• Intuition: an edge is "more" (no less) able to bridge separate components (and reduce the number of conected components) when edge is added in a smaller context than when added in a larger context.

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Number of connected components in a graph via edges

- Recall, $f: 2^V \to \mathbb{R}$ is submodular, then so is $\overline{f}: 2^V \to \mathbb{R}$ defined as $\overline{f}(S) = f(V \setminus S)$.
- Hence, if $f: 2^V \to \mathbb{R}$ is supermodular, then so is $\overline{f}: 2^V \to \mathbb{R}$ defined as $\overline{f}(S) = f(V \setminus S)$.
- Given a graph G = (V, E), for each $A \subseteq E(G)$, let c(A) denote the number of connected components of the (spanning) subgraph (V(G), A), with $c : 2^E \to \mathbb{R}_+$.
- $\bullet \ c(A)$ is monotone non-increasing, $c(A+a)-c(A)\leq 0$.
- Then c(A) is supermodular, i.e.,

$$c(A+a) - c(A) \le c(B+a) - c(B)$$
 (3.53)

with $A \subseteq B \subseteq E \setminus \{a\}$.

Intuition: an edge is "more" (no less) able to bridge separate components (and reduce the number of conected components) when edge is added in a smaller context than when added in a larger context.
c̄(A) = c(E \ A) is the number of connected components in G when we remove A, so is also supermodular, but monotone non-decreasing.

F43/63 (pg.93/187)

Bit More Notation	Info Theory Examples	Monge	More Definitions	Graph & Combinatorial Examples	Other Examples
11111	11111				
Graph S	Strength				

• So $\bar{c}(A) = c(E \setminus A)$ is the number of connected components in G when we remove A, is supermodular.

Bit More Notation	Info Theory Examples	More Definitions	Graph & Combinatorial Examples	Other Examples
Graph S				

- Maximizing $\bar{c}(A)$ might seem as a goal for a network attacker many connected components means that many points in the network have lost connectivity to many other points (unprotected network).

Bit More Notation	Info Theory Examples	More Definitions	Graph & Combinatorial Examples	Other Examples
Graph S	trength			

- Maximizing $\bar{c}(A)$ might seem as a goal for a network attacker many connected components means that many points in the network have lost connectivity to many other points (unprotected network).
- If we can remove a small set A and shatter the graph into many connected components, then the graph is weak.

Bit More Notation	Info Theory Examples	More Definitions	Graph & Combinatorial Examples	Other Examples
Graph S	trength			

- So $\bar{c}(A) = c(E \setminus A)$ is the number of connected components in G when we remove A, is supermodular.
- Maximizing $\bar{c}(A)$ might seem as a goal for a network attacker many connected components means that many points in the network have lost connectivity to many other points (unprotected network).
- If we can remove a small set A and shatter the graph into many connected components, then the graph is weak.
- An attacker wishes to choose a small number of edges (since it is cheap) to shatter the graph into as many components as possible.

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Other Examples Information Inf

- So $\bar{c}(A) = c(E \setminus A)$ is the number of connected components in G when we remove A, is supermodular.
- Maximizing $\bar{c}(A)$ might seem as a goal for a network attacker many connected components means that many points in the network have lost connectivity to many other points (unprotected network).
- If we can remove a small set A and shatter the graph into many connected components, then the graph is weak.
- An attacker wishes to choose a small number of edges (since it is cheap) to shatter the graph into as many components as possible.
- Let G = (V, E, w) with $w : E \to \mathbb{R}+$ be a weighted graph with non-negative weights.

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Graph Strength

- So $\bar{c}(A) = c(E \setminus A)$ is the number of connected components in G when we remove A, is supermodular.
- Maximizing $\bar{c}(A)$ might seem as a goal for a network attacker many connected components means that many points in the network have lost connectivity to many other points (unprotected network).
- If we can remove a small set A and shatter the graph into many connected components, then the graph is weak.
- An attacker wishes to choose a small number of edges (since it is cheap) to shatter the graph into as many components as possible.
- Let G=(V,E,w) with $w:E\to \mathbb{R}+$ be a weighted graph with non-negative weights.
- For $(u, v) = e \in E$, let w(e) be a measure of the strength of the connection between vertices u and v (strength meaning the difficulty of cutting the edge e).

Bit More Notation			Graph & Combinatorial Examples	Other Examples
Graph S	Strength			

• Then w(A) for $A \subseteq E$ is a modular function

$$w(A) = \sum_{e \in A} w_e \tag{3.54}$$

so that w(E(G[S])) is the "internal strength" of the vertex set S. Notation: S is a set of nodes, G[S] is the vertex-induced subgraph of G induced by vertices S, E(G[S]) are the edges contained within this induced subgraph, and w(E(G[S])) is the weight of these edges.

• Then w(A) for $A \subseteq E$ is a modular function

$$w(A) = \sum_{e \in A} w_e \tag{3.54}$$

so that w(E(G[S])) is the "internal strength" of the vertex set S.

• Suppose removing A shatters G into a graph with $\bar{c}(A) > 1$ components — then $w(A)/(\bar{c}(A) - 1)$ is like the "effort per achieved component" for a network attacker.

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Information Info Theory Examples Information Informati

• Then w(A) for $A \subseteq E$ is a modular function

$$w(A) = \sum_{e \in A} w_e \tag{3.54}$$

so that w(E(G[S])) is the "internal strength" of the vertex set S.

- Suppose removing A shatters G into a graph with $\bar{c}(A) > 1$ components then $w(A)/(\bar{c}(A)-1)$ is like the "effort per achieved component" for a network attacker.
- A form of graph strength can then be defined as the following:

$$strength(G, w) = \min_{A \subseteq E(G): \bar{c}(A) > 1} \frac{w(A)}{\bar{c}(A) - 1}$$
(3.55)

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Information Info Theory Examples Information Informati

• Then w(A) for $A \subseteq E$ is a modular function

$$w(A) = \sum_{e \in A} w_e \tag{3.54}$$

so that w(E(G[S])) is the "internal strength" of the vertex set S.

- Suppose removing A shatters G into a graph with $\bar{c}(A) > 1$ components — then $w(A)/(\bar{c}(A) - 1)$ is like the "effort per achieved component" for a network attacker.
- A form of graph strength can then be defined as the following:

$$strength(G, w) = \min_{A \subseteq E(G): \bar{c}(A) > 1} \frac{w(A)}{\bar{c}(A) - 1}$$
(3.55)

• Graph strength is like the minimum effort per component. An attacker would use the argument of the min to choose which edges to attack. A network designer would maximize, over G and/or w, the graph strength, strength(G, w).

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Information Info Theory Examples Information Info Theory Examples Information Information

• Then w(A) for $A \subseteq E$ is a modular function

$$w(A) = \sum_{e \in A} w_e \tag{3.54}$$

so that w(E(G[S])) is the "internal strength" of the vertex set S.

- Suppose removing A shatters G into a graph with $\bar{c}(A) > 1$ components — then $w(A)/(\bar{c}(A) - 1)$ is like the "effort per achieved component" for a network attacker.
- A form of graph strength can then be defined as the following:

$$strength(G, w) = \min_{A \subseteq E(G): \overline{c}(A) > 1} \frac{w(A)}{\overline{c}(A) - 1}$$
(3.55)

- Graph strength is like the minimum effort per component. An attacker would use the argument of the min to choose which edges to attack. A network designer would maximize, over G and/or w, the graph strength, strength(G, w).
- Since submodularity, problems have strongly-poly-time solutions.

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016

F45/63 (pg.104/187)

Lemma 3.7.4

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$ be a symmetric matrix and $m \in \mathbb{R}^n$ be a vector. Then $f: 2^V \to \mathbb{R}$ defined as

$$f(X) = m^{\mathsf{T}} \mathbf{1}_X + \frac{1}{2} \mathbf{1}_X^{\mathsf{T}} \mathbf{M} \mathbf{1}_X$$
(3.56)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.

• Given a complete graph G = (V, E), recall that E(X) is the edge set with both vertices in $X \subseteq V(G)$, and that |E(X)| is supermodular.

Lemma 3.7.4

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$ be a symmetric matrix and $m \in \mathbb{R}^n$ be a vector. Then $f: 2^V \to \mathbb{R}$ defined as

$$f(X) = m^{\mathsf{T}} \mathbf{1}_X + \frac{1}{2} \mathbf{1}_X^{\mathsf{T}} \mathbf{M} \mathbf{1}_X$$
(3.56)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.

- Given a complete graph G = (V, E), recall that E(X) is the edge set with both vertices in $X \subseteq V(G)$, and that |E(X)| is supermodular.
- Non-negative modular weights $w^+ : E \to \mathbb{R}_+$, w(E(X)) is also supermodular, so -w(E(X)) (non-positive modular) is submodular.

Lemma 3.7.4

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$ be a symmetric matrix and $m \in \mathbb{R}^n$ be a vector. Then $f: 2^V \to \mathbb{R}$ defined as

$$f(X) = m^{\mathsf{T}} \mathbf{1}_X + \frac{1}{2} \mathbf{1}_X^{\mathsf{T}} \mathbf{M} \mathbf{1}_X$$
(3.56)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.

- Given a complete graph G = (V, E), recall that E(X) is the edge set with both vertices in $X \subseteq V(G)$, and that |E(X)| is supermodular.
- Non-negative modular weights $w^+: E \to \mathbb{R}_+$, w(E(X)) is also supermodular, so -w(E(X)) (non-positive modular) is submodular.
- f is a modular function $m^{\mathsf{T}} \mathbf{1}_A = m(A)$ added to a weighted submodular function, hence f is submodular.

Prof. Jeff Bilmes

Proof of Lemma 3.7.4 cont.

• Conversely, suppose f is submodular.

Proof of Lemma 3.7.4 cont.

- Conversely, suppose f is submodular.
- Then $f(\{u\}) + f(\{v\}) \ge f(\{u,v\}) + f(\emptyset)$ while $f(\emptyset) = 0$.

Proof of Lemma 3.7.4 cont.

- Conversely, suppose f is submodular.
- Then $f(\{u\}) + f(\{v\}) \ge f(\{u,v\}) + f(\emptyset)$ while $f(\emptyset) = 0$.

• Then:

$$0 \le f(\{u\}) + f(\{v\}) - f(\{u, v\})$$
(3.57)

$$= m(u) + \frac{1}{2}M_{u,u} + m(v) + \frac{1}{2}M_{v,v}$$
(3.58)

$$-\left(m(u) + m(v) + \frac{1}{2}M_{u,u} + M_{u,v} + \frac{1}{2}M_{v,v}\right)$$
(3.59)
= $-M_{u,v}$ (3.60)

So that $\forall u, v \in V$, $M_{u,v} \leq 0$.

• We are given a finite set V of n elements and a set of subsets $\mathcal{V} = \{V_1, V_2, \dots, V_m\}$ of m subsets of V, so that $V_i \subseteq V$ and $\bigcup_i V_i = V$.

- We are given a finite set V of n elements and a set of subsets $\mathcal{V} = \{V_1, V_2, \dots, V_m\}$ of m subsets of V, so that $V_i \subseteq V$ and $\bigcup_i V_i = V$.
- The goal of minimum SET COVER is to choose the smallest subset $A \subseteq [m] \triangleq \{1, \ldots, m\}$ such that $\bigcup_{a \in A} V_a = V$.

- We are given a finite set V of n elements and a set of subsets $\mathcal{V} = \{V_1, V_2, \dots, V_m\}$ of m subsets of V, so that $V_i \subseteq V$ and $\bigcup_i V_i = V$.
- The goal of minimum SET COVER is to choose the smallest subset $A \subseteq [m] \triangleq \{1, \dots, m\}$ such that $\bigcup_{a \in A} V_a = V$.
- Maximum k cover: The goal in MAXIMUM COVERAGE is, given an integer k ≤ m, select k subsets, say {a₁, a₂,..., a_k} with a_i ∈ [m] such that |∪_{i=1}^k V_{ai}| is maximized.

- We are given a finite set V of n elements and a set of subsets $\mathcal{V} = \{V_1, V_2, \dots, V_m\}$ of m subsets of V, so that $V_i \subseteq V$ and $\bigcup_i V_i = V$.
- The goal of minimum SET COVER is to choose the smallest subset $A \subseteq [m] \triangleq \{1, \ldots, m\}$ such that $\bigcup_{a \in A} V_a = V$.
- Maximum k cover: The goal in MAXIMUM COVERAGE is, given an integer k ≤ m, select k subsets, say {a₁, a₂,..., a_k} with a_i ∈ [m] such that |∪_{i=1}^k V_{ai}| is maximized.
- Both SET COVER and MAXIMUM COVERAGE are well known to be NP-hard, but have a fast greedy approximation algorithm.

Bit More Notation	Info Theory Examples	Monge	More Definitions	Graph & Combinatorial Examples	Other Examples
	11111	11111			
Other C	overs				

Definition 3.7.5 (vertex cover)

A vertex cover (a "vertex-based cover of edges") in graph G = (V, E) is a set $S \subseteq V(G)$ of vertices such that every edge in G is incident to at least one vertex in S.

• Let I(S) be the number of edges incident to vertex set S. Then we wish to find the smallest set $S \subseteq V$ subject to I(S) = |E|.

Definition 3.7.6 (edge cover)

A edge cover (an "edge-based cover of vertices") in graph G = (V, E) is a set $F \subseteq E(G)$ of edges such that every vertex in G is incident to at least one edge in F.

• Let |V|(F) be the number of vertices incident to edge set F. Then we wish to find the smallest set $F \subseteq E$ subject to |V|(F) = |V|.

Prof. Jeff Bilmes

Bit More Notation	Info Theory Examples		More Definitions	Graph & Combinatorial Examples	Other Examples	
Graph Cut Problems						

• MINIMUM CUT: Given a graph G = (V, E), find a set of vertices $S \subseteq V$ that minimize the cut (set of edges) between S and $V \setminus S$.

- MINIMUM CUT: Given a graph G = (V, E), find a set of vertices $S \subseteq V$ that minimize the cut (set of edges) between S and $V \setminus S$.
- MAXIMUM CUT: Given a graph G = (V, E), find a set of vertices $S \subseteq V$ that minimize the cut (set of edges) between S and $V \setminus S$.

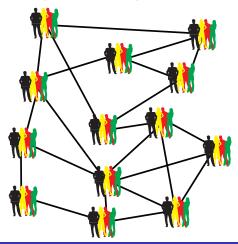
- MINIMUM CUT: Given a graph G = (V, E), find a set of vertices $S \subseteq V$ that minimize the cut (set of edges) between S and $V \setminus S$.
- MAXIMUM CUT: Given a graph G = (V, E), find a set of vertices $S \subseteq V$ that minimize the cut (set of edges) between S and $V \setminus S$.
- Let $f: 2^V \to \mathbb{R}_+$ be the cut function, namely for any given set of nodes $X \subseteq V$, f(X) measures the number of edges between nodes X and $V \setminus X$.

- MINIMUM CUT: Given a graph G = (V, E), find a set of vertices $S \subseteq V$ that minimize the cut (set of edges) between S and $V \setminus S$.
- MAXIMUM CUT: Given a graph G = (V, E), find a set of vertices $S \subseteq V$ that minimize the cut (set of edges) between S and $V \setminus S$.
- Let $f: 2^V \to \mathbb{R}_+$ be the cut function, namely for any given set of nodes $X \subseteq V$, f(X) measures the number of edges between nodes X and $V \setminus X$.
- Weighted versions, where rather than count, we sum the (non-negative) weights of the edges of a cut.

- MINIMUM CUT: Given a graph G = (V, E), find a set of vertices $S \subseteq V$ that minimize the cut (set of edges) between S and $V \setminus S$.
- MAXIMUM CUT: Given a graph G = (V, E), find a set of vertices $S \subseteq V$ that minimize the cut (set of edges) between S and $V \setminus S$.
- Let $f: 2^V \to \mathbb{R}_+$ be the cut function, namely for any given set of nodes $X \subseteq V$, f(X) measures the number of edges between nodes X and $V \setminus X$.
- Weighted versions, where rather than count, we sum the (non-negative) weights of the edges of a cut.
- Many examples of this, we will see more later.

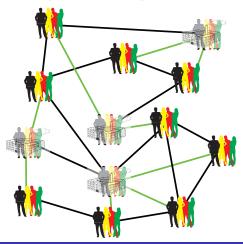
Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Facility/Plant Location (uncapacitated)

- Core problem in operations research, early motivation for submodularity.
- Goal: as efficiently as possible, place "facilities" (factories) at certain locations to satisfy sites (at all locations) having various demands.



Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Facility/Plant Location (uncapacitated)

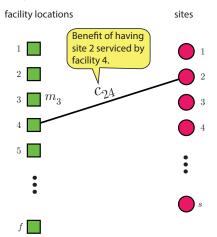
- Core problem in operations research, early motivation for submodularity.
- Goal: as efficiently as possible, place "facilities" (factories) at certain locations to satisfy sites (at all locations) having various demands.



Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Facility/Plant Location (uncapacitated)

- Core problem in operations research, early motivation for submodularity.
- Goal: as efficiently as possible, place "facilities" (factories) at certain locations to satisfy sites (at all locations) having various demands.
- We can model this with a weighted bipartite graph G = (F, S, E, c) where F is set of possible factory/plant locations, S is set of sites needing service, E are edges indicating (factory,site) service possibility pairs, and c : E → ℝ₊ is the benefit of a given pair.
- Facility location function has form:

$$f(A) = \sum_{i \in F} \max_{j \in A} c_{ij}.$$
 (3.61)



• Let $F = \{1, \ldots, f\}$ be a set of possible factory/plant locations for facilities to be built.

- Let $F = \{1, \dots, f\}$ be a set of possible factory/plant locations for facilities to be built.
- $S = \{1, \ldots, s\}$ is a set of sites (e.g., cities, clients) needing service.

- Let $F=\{1,\ldots,f\}$ be a set of possible factory/plant locations for facilities to be built.
- $S=\{1,\ldots,s\}$ is a set of sites (e.g., cities, clients) needing service.
- Let c_{ij} be the "benefit" (e.g., $1/c_{ij}$ is the cost) of servicing site *i* with facility location *j*.

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Info Theory Plant Location (uncapacitated) w. plant benefits

- Let $F = \{1, \ldots, f\}$ be a set of possible factory/plant locations for facilities to be built.
- $S=\{1,\ldots,s\}$ is a set of sites (e.g., cities, clients) needing service.
- Let c_{ij} be the "benefit" (e.g., $1/c_{ij}$ is the cost) of servicing site i with facility location j.
- Let m_j be the benefit (e.g., either $1/m_j$ is the cost or $-m_j$ is the cost) to build a plant at location j.

- Let $F = \{1, \ldots, f\}$ be a set of possible factory/plant locations for facilities to be built.
- $S=\{1,\ldots,s\}$ is a set of sites (e.g., cities, clients) needing service.
- Let c_{ij} be the "benefit" (e.g., $1/c_{ij}$ is the cost) of servicing site i with facility location j.
- Let m_j be the benefit (e.g., either $1/m_j$ is the cost or $-m_j$ is the cost) to build a plant at location j.
- Each site should be serviced by only one plant but no less than one.

- Let $F = \{1, \ldots, f\}$ be a set of possible factory/plant locations for facilities to be built.
- $S=\{1,\ldots,s\}$ is a set of sites (e.g., cities, clients) needing service.
- Let c_{ij} be the "benefit" (e.g., $1/c_{ij}$ is the cost) of servicing site i with facility location j.
- Let m_j be the benefit (e.g., either $1/m_j$ is the cost or $-m_j$ is the cost) to build a plant at location j.
- Each site should be serviced by only one plant but no less than one.
- Define f(A) as the "delivery benefit" plus "construction benefit" when the locations $A \subseteq F$ are to be constructed.

- Let $F = \{1, \dots, f\}$ be a set of possible factory/plant locations for facilities to be built.
- $S = \{1, \ldots, s\}$ is a set of sites (e.g., cities, clients) needing service.
- Let c_{ij} be the "benefit" (e.g., $1/c_{ij}$ is the cost) of servicing site i with facility location j.
- Let m_j be the benefit (e.g., either $1/m_j$ is the cost or $-m_j$ is the cost) to build a plant at location j.
- Each site should be serviced by only one plant but no less than one.
- Define f(A) as the "delivery benefit" plus "construction benefit" when the locations $A \subseteq F$ are to be constructed.
- We can define the (uncapacitated) facility location function

$$f(A) = \sum_{j \in A} m_j + \sum_{i \in F} \max_{j \in A} c_{ij}.$$
 (3.62)

- Let $F = \{1, \ldots, f\}$ be a set of possible factory/plant locations for facilities to be built.
- $S=\{1,\ldots,s\}$ is a set of sites (e.g., cities, clients) needing service.
- Let c_{ij} be the "benefit" (e.g., $1/c_{ij}$ is the cost) of servicing site i with facility location j.
- Let m_j be the benefit (e.g., either $1/m_j$ is the cost or $-m_j$ is the cost) to build a plant at location j.
- Each site should be serviced by only one plant but no less than one.
- Define f(A) as the "delivery benefit" plus "construction benefit" when the locations $A \subseteq F$ are to be constructed.
- We can define the (uncapacitated) facility location function

$$f(A) = \sum_{j \in A} m_j + \sum_{i \in F} \max_{j \in A} c_{ij}.$$
 (3.62)

• Goal is to find a set A that maximizes f(A) (the benefit) placing a bound on the number of plants A (e.g., $|A| \le k$).

Prof. Jeff Bilmes

Bit More Notation	Info Theory Examples		Graph & Combinatorial Examples	Other Examples
Matrix I	Rank function	ons		

• Let V, with |V| = m be an index set of a set of vectors in \mathbb{R}^n for some n (unrelated to m).

- Let V, with |V| = m be an index set of a set of vectors in \mathbb{R}^n for some n (unrelated to m).
- For a given set $\{v, v_1, v_2, \ldots, v_k\}$, it might or might not be possible to find $(\alpha_i)_i$ such that:

$$x_v = \sum_{i=1}^k \alpha_i x_{v_i} \tag{3.63}$$

If not, then x_v is linearly independent of x_{v_1}, \ldots, x_{v_k} .

- Let V, with |V| = m be an index set of a set of vectors in \mathbb{R}^n for some n (unrelated to m).
- For a given set $\{v, v_1, v_2, \dots, v_k\}$, it might or might not be possible to find $(\alpha_i)_i$ such that:

$$x_v = \sum_{i=1}^k \alpha_i x_{v_i} \tag{3.63}$$

If not, then x_v is linearly independent of x_{v_1}, \ldots, x_{v_k} .

• Let r(S) for $S \subseteq V$ be the rank of the set of vectors S. Then $r(\cdot)$ is a submodular function, and in fact is called a matric matroid rank function.

• Given $n \times m$ matrix $\mathbf{X} = (x_1, x_2, \dots, x_m)$ with $x_i \in \mathbb{R}^n$ for all i. There are m length-n column vectors $\{x_i\}_i$

- Given $n \times m$ matrix $\mathbf{X} = (x_1, x_2, \dots, x_m)$ with $x_i \in \mathbb{R}^n$ for all i. There are m length-n column vectors $\{x_i\}_i$
- Let $V = \{1, 2, \dots, m\}$ be the set of column vector indices.

- Given $n \times m$ matrix $\mathbf{X} = (x_1, x_2, \dots, x_m)$ with $x_i \in \mathbb{R}^n$ for all i. There are m length-n column vectors $\{x_i\}_i$
- Let $V = \{1, 2, \dots, m\}$ be the set of column vector indices.
- For any $A \subseteq V$, let r(A) be the rank of the column vectors indexed by A.

- Given $n \times m$ matrix $\mathbf{X} = (x_1, x_2, \dots, x_m)$ with $x_i \in \mathbb{R}^n$ for all i. There are m length-n column vectors $\{x_i\}_i$
- Let $V = \{1, 2, \dots, m\}$ be the set of column vector indices.
- For any $A \subseteq V$, let r(A) be the rank of the column vectors indexed by A.
- r(A) is the dimensionality of the vector space spanned by the set of vectors {x_a}_{a∈A}.

- Given $n \times m$ matrix $\mathbf{X} = (x_1, x_2, \dots, x_m)$ with $x_i \in \mathbb{R}^n$ for all i. There are m length-n column vectors $\{x_i\}_i$
- Let $V = \{1, 2, \dots, m\}$ be the set of column vector indices.
- For any $A \subseteq V$, let r(A) be the rank of the column vectors indexed by A.
- r(A) is the dimensionality of the vector space spanned by the set of vectors {x_a}_{a∈A}.
- Thus, r(V) is the rank of the matrix ${f X}.$

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Monge

More Definitions

• Let
$$A = \{1, 2, 3\}$$
, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
• Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.

Info Theory Examples

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Monge

More Definitions

• Let $A = \{1, 2, 3\}, B = \{3, 4, 5\}, C = \{6, 7\}, A_r = \{1\}, B_r = \{5\}.$

• Then
$$r(A) = 3$$
, $r(B) = 3$, $r(C) = 2$.

•
$$r(A \cup C) = 3$$
, $r(B \cup C) = 3$.

•
$$r(A \cup A_r) = 3$$
, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.

• $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

Bit More Notation

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Monge

More Definitions

• Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.

• Then
$$r(A) = 3$$
, $r(B) = 3$, $r(C) = 2$.

•
$$r(A \cup C) = 3, r(B \cup C) = 3.$$

- $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.
- $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

Bit More Notation

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Monge

More Definitions

• Let
$$A = \{1, 2, 3\}, B = \{3, 4, 5\}, C = \{6, 7\}, A_r = \{1\}, B_r = \{5\}.$$

• Then
$$r(A) = 3$$
, $r(B) = 3$, $r(C) = 2$.

•
$$r(A \cup C) = 3, r(B \cup C) = 3.$$

•
$$r(A \cup A_r) = 3$$
, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.

• $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

Bit More Notation

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Monge

More Definitions

• Let
$$A = \{1, 2, 3\}$$
, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.

• Then
$$r(A) = 3$$
, $r(B) = 3$, $r(C) = 2$.

•
$$r(A \cup C) = 3$$
, $r(B \cup C) = 3$.

•
$$r(A \cup A_r) = 3$$
, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.

• $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

Bit More Notation

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Monge

More Definitions

• Let
$$A = \{1, 2, 3\}$$
, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.

• Then
$$r(A) = 3$$
, $r(B) = 3$, $r(C) = 2$.

•
$$r(A \cup C) = 3$$
, $r(B \cup C) = 3$.

•
$$r(A \cup A_r) = 3$$
, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.

• $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

Bit More Notation

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Monge

More Definitions

• Let
$$A = \{1, 2, 3\}$$
, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.

• Then
$$r(A) = 3$$
, $r(B) = 3$, $r(C) = 2$.

•
$$r(A \cup C) = 3, r(B \cup C) = 3.$$

•
$$r(A \cup A_r) = 3$$
, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.

•
$$r(A \cup B) = 4$$
, $r(A \cap B) = 1 < r(C) = 2$

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Monge

More Definitions

Graph & Combinatorial Examples

- Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
- Then r(A) = 3, r(B) = 3, r(C) = 2.

•
$$r(A \cup C) = 3, r(B \cup C) = 3.$$

- $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.
- $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

Bit More Notation

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

• Let
$$A = \{1, 2, 3\}$$
, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
• Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.

Info Theory Examples

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Monge

- Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$. • Then r(A) = 3, r(B) = 3, r(C) = 2.
- $r(A \cup C) = 3, r(B \cup C) = 3.$
- r(A ∪ A_r) = 3, r(B ∪ B_r) = 3, r(A ∪ B_r) = 4, r(B ∪ A_r) = 4.
 r(A ∪ B) = 4, r(A ∩ B) = 1 < r(C) = 2.

Bit More Notation

Info Theory Examples

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Monge

More Definitions

Graph & Combinatorial Examples

• Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$. • Then r(A) = 3, r(B) = 3, r(C) = 2.

•
$$r(A \cup C) = 3$$
, $r(B \cup C) = 3$.

- $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.
- $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

Bit More Notation

Info Theory Examples

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Monge

More Definitions

- Let $A = \{1, 2, 3\}, B = \{3, 4, 5\}, C = \{6, 7\}, A_r = \{1\}, B_r = \{5\}.$
- Then r(A) = 3, r(B) = 3, r(C) = 2.
- $r(A \cup C) = 3$, $r(B \cup C) = 3$.
- $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.
- $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

Bit More Notation

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Monge

More Definitions

• Let
$$A = \{1, 2, 3\}$$
, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
• Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.

•
$$r(A \cup C) = 3$$
, $r(B \cup C) = 3$.

• $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.

• $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

Bit More Notation

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Monge

More Definitions

• Let
$$A = \{1, 2, 3\}$$
, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
• Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.

•
$$r(A \cup C) = 3$$
, $r(B \cup C) = 3$.

•
$$r(A \cup A_r) = 3$$
, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.

• $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

Bit More Notation

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Monge

More Definitions

• Let
$$A = \{1, 2, 3\}$$
, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
• Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$

•
$$r(A \cup C) = 3, r(B \cup C) = 3.$$

•
$$r(A \cup A_r) = 3$$
, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.

• $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

Bit More Notation

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Monge

More Definitions

• Let
$$A = \{1, 2, 3\}, B = \{3, 4, 5\}, C = \{6, 7\}, A_r = \{1\}, B_r = \{5\}.$$

• Then
$$r(A) = 3$$
, $r(B) = 3$, $r(C) = 2$

•
$$r(A \cup C) = 3$$
, $r(B \cup C) = 3$.

•
$$r(A \cup A_r) = 3$$
, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.

•
$$r(A \cup B) = 4$$
, $r(A \cap B) = 1 < r(C) = 2$.

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Monge

More Definitions

• Let
$$A = \{1, 2, 3\}$$
, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
• Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.
• $r(A \cup C) = 3$, $r(B \cup C) = 3$.
• $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.

•
$$r(A \cup B) = 4$$
, $r(A \cap B) = 1 < r(C) = 2$.

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Monge

More Definitions

• Let
$$A = \{1, 2, 3\}$$
, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$.
• Then $r(A) = 3$, $r(B) = 3$, $r(C) = 2$.
• $r(A \cup C) = 3$, $r(B \cup C) = 3$.
• $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.

• $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

Bit More Notation

Info Theory Examples

Consider the following 4×8 matrix, so $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

More Definitions

• Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5\}$, $C = \{6, 7\}$, $A_r = \{1\}$, $B_r = \{5\}$. • Then r(A) = 3, r(B) = 3, r(C) = 2.

• $r(A \cup C) = 3$, $r(B \cup C) = 3$.

- $r(A \cup A_r) = 3$, $r(B \cup B_r) = 3$, $r(A \cup B_r) = 4$, $r(B \cup A_r) = 4$.
- $r(A \cup B) = 4$, $r(A \cap B) = 1 < r(C) = 2$.

• $6 = r(A) + r(B) > r(A \cup B) + r(A \cap B) = 5$

Bit More Notation

		Graph & Combinatorial Examples	Other Examples
inction of a			

• Let $A, B \subseteq V$ be two subsets of column indices.

			Graph & Combinatorial Examples	Other Examples
Rank fur	nction of a	matrix		

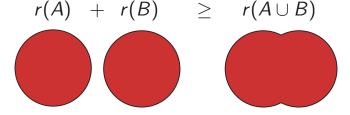
- Let $A, B \subseteq V$ be two subsets of column indices.
- The rank of the two sets unioned together $A \cup B$ is no more than the sum of the two individual ranks.

				Graph & Combinatorial Examples	Other Examples
11111		11111			111011111
Rank fui	nction of a	matrix	(

- Let $A, B \subseteq V$ be two subsets of column indices.
- The rank of the two sets unioned together $A \cup B$ is no more than the sum of the two individual ranks.
- In Venn diagram, Let area correspond to dimensions spanned by vectors indexed by a set. Hence, r(A) can be viewed as an area.

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Rank function of a matrix

- Let $A, B \subseteq V$ be two subsets of column indices.
- The rank of the two sets unioned together $A \cup B$ is no more than the sum of the two individual ranks.
- $\bullet\,$ In Venn diagram, Let area correspond to dimensions spanned by vectors indexed by a set. Hence, r(A) can be viewed as an area.



Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Rank function of a matrix

- Let $A, B \subseteq V$ be two subsets of column indices.
- The rank of the two sets unioned together $A \cup B$ is no more than the sum of the two individual ranks.
- $\bullet\,$ In Venn diagram, Let area correspond to dimensions spanned by vectors indexed by a set. Hence, r(A) can be viewed as an area.

 $r(A) + r(B) \geq r(A \cup B)$

• If some of the dimensions spanned by A overlap some of the dimensions spanned by B (i.e., if \exists common span), then that area is counted twice in r(A) + r(B), so the inequality will be strict.

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Info Theory Examples Info T

- Let $A, B \subseteq V$ be two subsets of column indices.
- The rank of the two sets unioned together $A \cup B$ is no more than the sum of the two individual ranks.
- In Venn diagram, Let area correspond to dimensions spanned by vectors indexed by a set. Hence, r(A) can be viewed as an area.

 $r(A) + r(B) \geq r(A \cup B)$

- If some of the dimensions spanned by A overlap some of the dimensions spanned by B (i.e., if \exists common span), then that area is counted twice in r(A) + r(B), so the inequality will be strict.
- Any function where the above inequality is true for all $A, B \subseteq V$ is called subadditive.

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016

• Vectors A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.

- Vectors A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.
- Let C index vectors spanning dimensions common to A and B.

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Rank functions of a matrix

- Vectors A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.
- Let C index vectors spanning dimensions common to A and B.
- Let A_r index vectors spanning dimensions spanned by A but not B.

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Rank functions of a matrix

- Vectors A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.
- Let C index vectors spanning dimensions common to A and B.
- Let A_r index vectors spanning dimensions spanned by A but not B.
- Let B_r index vectors spanning dimensions spanned by B but not A.

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Rank functions of a matrix

- Vectors A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.
- Let C index vectors spanning dimensions common to A and B.
- Let A_r index vectors spanning dimensions spanned by A but not B.
- Let B_r index vectors spanning dimensions spanned by B but not A.
- Then, $r(A) = r(C) + r(A_r)$

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Info Theory Examples Info T

- Vectors A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.
- Let C index vectors spanning dimensions common to A and B.
- Let A_r index vectors spanning dimensions spanned by A but not B.
- Let B_r index vectors spanning dimensions spanned by B but not A.
- Then, $r(A) = r(C) + r(A_r)$
- Similarly, $r(B) = r(C) + r(B_r)$.

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Info Rank functions of a matrix

- Vectors A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.
- Let C index vectors spanning dimensions common to A and B.
- Let A_r index vectors spanning dimensions spanned by A but not B.
- Let B_r index vectors spanning dimensions spanned by B but not A.
- Then, $r(A) = r(C) + r(A_r)$
- Similarly, $r(B) = r(C) + r(B_r)$.
- Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

$$r(A) + r(B) = r(A_r) + 2r(C) + r(B_r).$$
 (3.64)

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Info Theory Examples Info T

- Vectors A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.
- Let C index vectors spanning dimensions common to A and B.
- Let A_r index vectors spanning dimensions spanned by A but not B.
- Let B_r index vectors spanning dimensions spanned by B but not A.

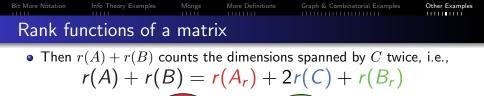
• Then,
$$r(A) = r(C) + r(A_r)$$

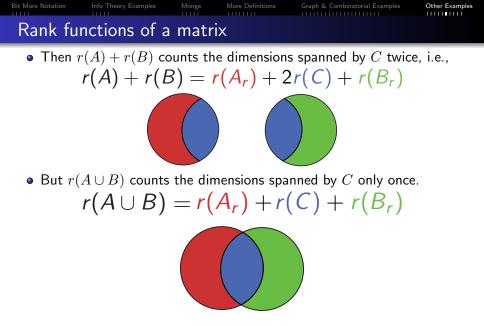
- Similarly, $r(B) = r(C) + r(B_r)$.
- Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

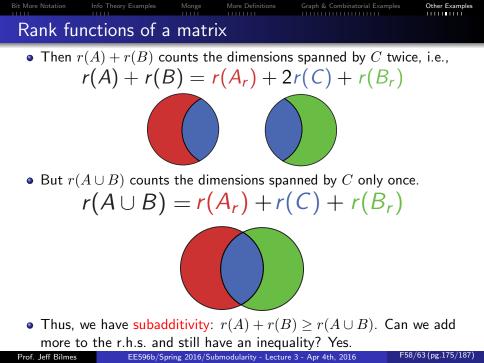
$$r(A) + r(B) = r(A_r) + 2r(C) + r(B_r).$$
 (3.64)

• But $r(A \cup B)$ counts the dimensions spanned by C only once.

$$r(A \cup B) = r(A_r) + r(C) + r(B_r)$$
 (3.65)



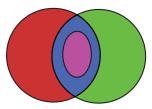




Rank function of a matrix

Note, r(A ∩ B) ≤ r(C). Why? Vectors indexed by A ∩ B (i.e., the common index set) span no more than the dimensions commonly spanned by A and B (namely, those spanned by the professed C).

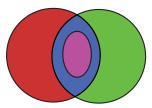
$$r(C) \geq r(A \cap B)$$



In short:

- Rank function of a matrix
 - Note, r(A ∩ B) ≤ r(C). Why? Vectors indexed by A ∩ B (i.e., the common index set) span no more than the dimensions commonly spanned by A and B (namely, those spanned by the professed C).

 $r(C) \geq r(A \cap B)$

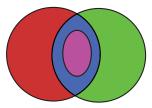


In short:

• Common span (blue) is "more" (no less) than span of common index (magenta).

- Rank function of a matrix
 - Note, r(A ∩ B) ≤ r(C). Why? Vectors indexed by A ∩ B (i.e., the common index set) span no more than the dimensions commonly spanned by A and B (namely, those spanned by the professed C).

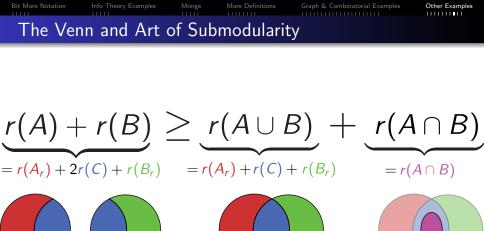
 $r(C) \geq r(A \cap B)$



In short:

- Common span (blue) is "more" (no less) than span of common index (magenta).
- More generally, common information (blue) is "more" (no less) than information within common index (magenta).

Prof. Jeff Bilmes



EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016

F60/63 (pg.179/187)

	Info Theory Examples			Other Examples
Polymat	troid rank fi	inctio	n	

Let S be a set of subspaces of a linear space (i.e., each s ∈ S is a subspace of dimension ≥ 1).

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples

Polymatroid rank function

- Let S be a set of subspaces of a linear space (i.e., each $s \in S$ is a subspace of dimension ≥ 1).
- For each $X \subseteq S$, let f(X) denote the dimensionality of the linear subspace spanned by the subspaces in X.

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Information Polymatroid rank function

- Let S be a set of subspaces of a linear space (i.e., each s ∈ S is a subspace of dimension ≥ 1).
- For each X ⊆ S, let f(X) denote the dimensionality of the linear subspace spanned by the subspaces in X.
- We can think of S as a set of sets of vectors from the matrix rank example, and for each $s \in S$, let X_s being a set of vector indices.

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples

- Let S be a set of subspaces of a linear space (i.e., each s ∈ S is a subspace of dimension ≥ 1).
- For each X ⊆ S, let f(X) denote the dimensionality of the linear subspace spanned by the subspaces in X.
- We can think of S as a set of sets of vectors from the matrix rank example, and for each $s \in S$, let X_s being a set of vector indices.
- Then, defining $f: 2^S \to \mathbb{R}_+$ as follows,

$$f(X) = r(\cup_{s \in S} X_s) \tag{3.66}$$

we have that f is submodular, and is known to be a polymatroid rank function.

Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples Info Theory Examples Info T

- Let S be a set of subspaces of a linear space (i.e., each s ∈ S is a subspace of dimension ≥ 1).
- For each X ⊆ S, let f(X) denote the dimensionality of the linear subspace spanned by the subspaces in X.
- We can think of S as a set of sets of vectors from the matrix rank example, and for each $s \in S$, let X_s being a set of vector indices.
- Then, defining $f: 2^S \to \mathbb{R}_+$ as follows,

$$f(X) = r(\cup_{s \in S} X_s) \tag{3.66}$$

we have that f is submodular, and is known to be a polymatroid rank function.

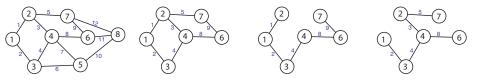
• In general (as we will see) polymatroid rank functions are submodular, normalized $f(\emptyset) = 0$, and monotone non-decreasing $(f(A) \le f(B))$ whenever $A \subseteq B$.

Bit More Notation	Info Theory Examples	Monge	More Definitions	Graph & Combinatorial Examples	Other Examples
11111	11111				111111111
Spannin	g trees				

• Let E be a set of edges of some graph G = (V, E), and let r(S) for $S \subseteq E$ be the maximum size (in terms of number of edges) spanning forest in the vertex-induced graph, induced by vertices incident to edges S.

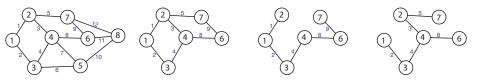
Bit More Notation	Info Theory Examples	Monge	More Definitions	Graph & Combinatorial Examples	Other Examples
11111	11111				111111111
Spannin	g trees				

- Let E be a set of edges of some graph G = (V, E), and let r(S) for $S \subseteq E$ be the maximum size (in terms of number of edges) spanning forest in the vertex-induced graph, induced by vertices incident to edges S.
- Example: Given G = (V, E), $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $E = \{1, 2, \dots, 12\}$. $S = \{1, 2, 3, 4, 5, 8, 9\} \subset E$. Two spanning trees have the same edge count (the rank of S).



Bit More Notation	Info Theory Examples	Monge	More Definitions	Graph & Combinatorial Examples	Other Examples
11111	11111				111111111
Spannin	g trees				

- Let E be a set of edges of some graph G = (V, E), and let r(S) for $S \subseteq E$ be the maximum size (in terms of number of edges) spanning forest in the vertex-induced graph, induced by vertices incident to edges S.
- Example: Given G = (V, E), $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $E = \{1, 2, ..., 12\}$. $S = \{1, 2, 3, 4, 5, 8, 9\} \subset E$. Two spanning trees have the same edge count (the rank of S).



• Then r(S) is submodular, and is another matrix rank function corresponding to the incidence matrix of the graph.