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f(A) + f(B) > f(AUB) + f(ANB)
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Cumulative Outstanding Reading

@ Read chapter 1 from Fujishige's book.
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Announcements, Assignments, and Reminders

@ Homework 1 is now available at our assignment dropbox
(https://canvas.us courses/1039754/assignments), due
(electronica riday at 5:00pm.

@ Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google
hangout (set up meeting via our our discussion board (https:
//canvas.uw.edu/courses/1039754/discussion_topics)).
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Class Road Map - IT-

@ L1(3/28): Motivation, Applications, & @ L11(5/2):
Basic Definitions ° 2(5/4)

@ L2(3/30): Machine Learning Apps @ L13(5/9):
(diversity, complexity, parameter, learning o L14(5/11):
target, surrogate). o L15(5/16):

° L3(.4_/l.l): Info theory exs, more apps, o L16(5/18):
definitions, graph/combinatorial examples, '
matrix rank example, visualization @ L17(5/23):

® L4(4/6): © L18(5/25):

o L5(4/11): © L19(6/1):

o L6(4/13): ° L20(.6/.6)..Final Presentations

o L7(4/18): maximization.

o L8(4/20):

@ L9(4/25):

o L10(4/27):

Finals Week: June 6th-10th, 2016.
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Two Equivalent Submodular Definitions

Definition 3.2.1 (submodular concave)

A function f: 2V — R is submodular if for any A, B C V, we have that:

f(A)+f(B) = f(AUB) + f(ANB) (3.8)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.2.2 (diminishing returns)

A function f : 2V — R is submodular if for any A C B C V, and
v € V'\ B, we have that:

f(AU{v}) = f(4) = f(BU{v}) — f(B) (3.9)

The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as
the context in which v is considered grows from A to B.
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i

Two Equivalent Supermodular Definitions

Definition 3.2.1 (supermodular)
A function f :2¥ — R is supermodular if for any A, B C V, we have that:

f(A) + f(B) S f(AUB) + f(AN B) (3.8)

Definition 3.2.2 (supermodular (improving returns))

A function f: 2" — R is supermodular if for any A C B C V, and
v € V'\ B, we have that:

f(AU{v}) — f(A) < f(BU{v}) - f(B) (3.9)
@ Incremental “value”, “gain”, or “cost” of v increases (improves) as the
context in which v is considered grows from A to B.
@ A function f is submodular iff —f is supermodular.
o If f both submodular and supermodular, then f is said to be modular,
and f(A) =c+ > ,c4 fla) (often c = 0).
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Submodularity’s utility in ML

@ A model of a physical process :
o When-maximizing;-submodularity naturally models: diversity, coverage,
span, and information.
o _When.minimizing;-submodularity naturally models: cooperative costs,
complexity, roughness, and irregularity.
e vice-versa for supermodularity:

@ A submodular function can act/as a. parameter for a-machine learning
strategy (active/semi-supervised learning, discrete divergence,
structured sparse convex norms.for.use in regularization).

o ltself, as.an object or function ‘to learn, based on data.

o A surrogate or relaxation striegy foroptimization or analysis

o An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). l.e., a means
towards tractable surrogates for graphical models.

o Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.

o Non-submodular problems can be analyzed via submodularity.
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Bit More Notation
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Ground set: E or V7

Submodular functions are functions defined on subsets of some finite set,
called the ground set .

@ It is common in the literature to use either £ or V' as the ground set
— we will at different times use both (there should be no confusion).
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Bit More Notation
(NNAN}

Ground set: E or V7

Submodular functions are functions defined on subsets of some finite set,
called the ground set .

@ It is common in the literature to use either £ or V' as the ground set
— we will at different times use both (there should be no confusion).

@ The terminology ground set comes from lattice theory, where V' are
the ground elements of a lattice (just above 0).
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Bit More Notation
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Notation RZ

What doe€ z € RE mean? WZQ- ﬂj"

)¢ Ei: {r=(x;eR:jeFE)} £z Sl (3.1)

E-; = — <
ﬂz - M ‘EC&,A};—‘)
S A eK,
sz{m:(fcj:jeE)::L‘ZO} ety (3.2)
% el |
Any vector € R can be treated as a normalized modular function, and
i . That i
vice verse at is Aé
z(A) = Zma (3.3)

a€A

Note that x is said to be normalized singe z(()) = 0.
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Bit More Notation
(RE NN

characteristic vectors of sets & modular functions

@ Given an A C E, define the vector 14 € ]Rf to be
F

1 ifje s
o ifjgA

(3.4)
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Bit More Notation
(RE NN

characteristic vectors of sets & modular functions

@ Given an A C FE, define the vector 14 € ]Rf to be

10) = {(1) e (34

@ Sometimes this will be written as x4 = 14.

=
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Bit More Notation
(RE NN

characteristic vectors of sets & modular functions

@ Given an A C FE, define the vector 14 € ]Rf to be
1 <ifjeA,
14(7) = 3.4
A7) {0 ifidA (3.4)

@ Sometimes this will be written as x4 = 14.

@ Thus, given modular function @ € R, we can write x(A) in a variety
of ways, i.e.,

(3.5)
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Bit More Notation
(RRA NI

Other Notation: singletons and sets

When A is a set and k is a singleton (i.e., a single item), the union is
properly written as AU {k}, but sometimes we will write just A + k.
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Bit More Notation
(RNAA |

What does S” mean when S and T are arbitrary sets?

@ Let S and T be two arbitrary sets (either of which could be countable,
or uncountable).

FapAE T4
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Bit More Notation
(RNAA |

What does ST mean when S and T are arbitrary sets?

@ Let S and T be two arbitrary sets (either of which could be countable,
or uncountable).

@ We define the notation.ST.to be the set of all functions that map from
T to S. Thatis, if f€ ST, then f:T — S.
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Bit More Notation
(RNAA |

What does ST mean when S and T are arbitrary sets?

@ Let S and T be two arbitrary sets (either of which could be countable,
or uncountable).

o We define the notation S” to be the set of all functions that map from
TtoS. Thatis, if f€ ST, then f: T — S.

@ Hence, given a finite set By RF is the set of all functions that map
from elements of E to the reals R, and such functions are identical to
a vector in a vector space with axes labeled as elements of E (i.e., if
m € R, then for all e € E, m(e) € R).

mel?  wmE g

Mé‘ﬂzh H;i(/zl..,)Wg
=
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Bit More Notation
(RNAA |

What does ST mean when S and T are arbitrary sets?

@ Let S and T be two arbitrary sets (either of which could be countable,
or uncountable).

o We define the notation S” to be the set of all functions that map from
Tto S. Thatis, if f€ ST, then f:T — S.

@ Hence, given a finite set E, R” is the set of all functions that map
from elements of E to the reals R, and such functions are identical to
a vector in a vector space with axes labeled as elements of E (i.e., if
m € R¥, then for all e € E, m(e) € R).

e Often “2" is shorthand for the set {0,1}. l.e; R? where 2 = {0, 1}.
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Bit More Notation
(RNAA |

What does ST mean when S and T are arbitrary sets?

@ Let S and T be two arbitrary sets (either of which could be countable,
or uncountable).

o We define the notation S” to be the set of all functions that map from
Tto S. Thatis, if f€ ST, then f:T — S.

@ Hence, given a finite set E, R” is the set of all functions that map
from elements of E to the reals R, and such functions are identical to
a vector in a vector space with axes labeled as elements of E (i.e., if
m € R¥, then for all e € E, m(e) € R).

e Often “2" is shorthand for the set {0,1}. l.e., R? where 2 = {0,1}.

@ Similarly, 2E is the set of all functions from E to “two’ — so 2F is
shorthand for {0,1}*

= E-= fo//g
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Bit More Notation
(RNAA |

What does ST mean when S and T are arbitrary sets?

@ Let S and T be two arbitrary sets (either of which could be countable,
or uncountable).

o We define the notation S” to be the set of all functions that map from
TtoS. Thatis, if f € ST, then f:T — S.

@ Hence, given a finite set E, R” is the set of all functions that map
from elements of E to the reals R, and such functions are identical to
a vector in a vector space with axes labeled as elements of E (i.e., if
m € R¥, then for all e € E, m(e) € R).

e Often “2" is shorthand for the set {0,1}. l.e., R? where 2 = {0,1}.

@ Similarly, 2E is the set of all functions from E to “two’ — so 2F is
shorthand for {0,1}¥ — hence, 27 is the set of all functions that map
from elements of E to {0, 1}, equivalent to all binary vectors with
elements indexed by elements of F, equivalent to subsets of E. Hence,
if Ae2F then AC E.
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Bit More Notation
(RNRA |

What does ST mean when S and T are arbitrary sets?

@ Let S and T be two arbitrary sets (either of which could be countable,
or uncountable).

o We define the notation S” to be the set of all functions that map from
Tto S. Thatis, if f€ ST, then f:T — S.

@ Hence, given a finite set E, R” is the set of all functions that map
from elements of E to the reals R, and such functions are identical to
a vector in a vector space with axes labeled as elements of E (i.e., if
m € R¥, then for all e € E, m(e) € R).

e Often “2" is shorthand for the set {0,1}. l.e., R? where 2 = {0,1}.

@ Similarly, 2E is the set of all functions from E to “two’ — so 2F is
shorthand for {0,1}¥ — hence, 2% is the set of all functions that map
from elements of E to {0, 1}, equivalent to all binary vectors with
elements indexed by elements of F, equivalent to subsets of E. Hence,

if A€ 2” then AC E. e
e What might 3¥ mean? 20/ //}S
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Info Theory Examples
[NRRN]

Example Submodular: Entropy from Information Theory

o Entropy is submodular. Let V' be the index set of a set of random
variables, then the function

f(A) = H(X4) == plza)logp(za) (3.6)
T
is submodular.

@ Proof: (further) conditioning reduces entropy. With A C B and v ¢ B,

H(Xy|XB) = H(Xp+v) — H(XB) (3.7)
< H(Xaty) — H(Xa) = H(Xy|Xa) (3-8)

o We say “further” due to B\ A not nec. empty.

HCx) ZHOED) ZHE [)y)
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Info Theory Examples
(LARN]

Example Submodular: Entropy from Information Theory

o Alternate Proof: Conditional mutual Information is always non-negative.

o Given A, B C V, consider conditional mutual information quantity:
p(Ta\B, T\ AlTANB)

(xa\BlTAnB)P(ZB\AlTANB)

I(Xa\5; Xp\alXanp) = > p(l‘AuB)logp

TAUB

_ Z p(zaun) log p(zauB)P(TAnB) >0 (3.9)

e
then AA&
I(XAlB'ﬂX §A|XAHB)
=H(X4)+ H(Xp) — HXaup) — HXanB) >0 (3.10)
so entropy satisfies
H(Xa)+ H(Xp) > HXauB) + H(XanB) (3.11)
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Info Theory Examples
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Information Theory: Block Coding

@ Given a set of random variables { X;}, - indexed by set V, how do we
partition them so that we can best block-code them within each block.
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Info Theory Examples
(NLRN]

Information Theory: Block Coding

@ Given a set of random variables { X;}, - indexed by set V', how do we
partition them so that we can best block-code them within each block.

@ l.e., how do we form S C V' such that I(Xg; Xy, ) is as small as
possible, where I(X 4; Xp) is the mutual'information between random
variables X4 and Xpg, i.e.,

I(Xa; Xp) = H(X4) + H(Xp) — H(X4, X5) (3.12)

and H(X4)=—>_, p(wa)logp(za) is the joint entropy of the set
X 4 of random variables.
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Info Theory Examples
LI

Example Submodular: Mutual Information

@ Also, symmetric mutual information is submodular,

I(Xa; X\4) = H(Xy\4)& @ (3.13)

Note that f(A) = H(X4) and_f(. 7\4), and adding
submodular functions preserves submodularity (which we will see quite
soon).
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Info Theory Examples
(WAL

Information Theory: Network Communication
Xl,Yi XZ,YQ

@ A network of senders/receivers

@ Each sender X; is trying to
communicate simultaneously
with each receiver Y; (i.e., for all
i, X; is sending to {Y;},

@ The X, are not necessarily
independent.

vaym X.‘Sv}/S

e o o X4/Y21

e Communication rates from i to j are R(077) to send message
i) ¢ {1,2,...,2’13(“” .

@ Goal: necessary and sufficient conditions for achievability.
@ l.e., can we find functions f such that any rates must satisfy
vSCV, Y. RUD<F(S) (3.14)
1€S5,jeV\S
@ Special cases MAC (Multi-Access Channel) for communication over

p(y|z1,2z2) and Slepian-Wolf compression (independent compression of
X and Y but at joint rate H(X.Y
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Monge Matrices

e mxn miiiices C' = [¢ij)i; are called Monge matrices if they satisfy
the Monge property, namely:

Cij + Crs < Cis + Crj (3.15)

foralll<i<r<mand 1€ j<s<n.
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Monge Matrices

e m x n matrices C' = [¢;;];; are called Monge matrices if they satisfy
the Monge property, namely:

Cij + Crs < s+ Crj (315)

foralll1<i<r<mand1<j<s<n.
o Equivalently, forall 1 <é,r <m, 1 < 4,8 <n,

Castin( ) I CoomdGmesd(ie) = Cp §r @ (3.16)

e —=

=-3 >
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Monge Matrices

e m x n matrices C' = [¢;;];; are called Monge matrices if they satisfy
the Monge property, namely:

Cij + Crs < cis + Crj (3.15)
foralll<i<r<mand1<j<s<n.
o Equivalently, forall 1 <i,r <m, 1 <j,s<n,
Cmin(i,r),min(4,s) + Cmax(i,r),max(j,s) < ¢is + Crj (316)

@ Consider four elements of the m x n matrix:

N

n

N

m 7

gj=A4B c;=B c¢s=B+D, cs=A+B+C+D.

Prof. Jeff Bilmes
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Monge Matrices, where useful

@ Useful for speeding up many transportation, dynamic programming,
flow, search, lot-sizing and many other problems.
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Monge
(LARN]

Monge Matrices, where useful

@ Useful for speeding up many transportation, dynamic programming,
flow, search, lot-sizing and many other problems.

o Example, Hitehcock transportation problemiyGiven @grmmxangeost matrix
C=cjli» . a non-negative supply vector@ € R, a non-negative
demand vector € R ‘with Y7, a(@) =3 _7_; bj, we wish to
optimally solve the following linear program:

m n
minimize Z Zcijxij (3.17)
Xl i=1 j=1
m
subject to Z.I,J =b; Vj=1,...,n (3.18)
i=1
n
Zmij:aqj Vizl,...,m (319)
j=1
zi; >0 Vi, j (3.20)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016 F19/63 (pg.32/187)



Monge
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Monge Matrices, Hitchcock transportation

ai O |1 |3 (3
Producers,
Sources, Q9 1 4 7 110
or Supply
as O|l@4 |9 |14
3 2 1 2

by by b3 by

Consumers, Sinks, or
Demand

@ Solving the linear program can be done easily and optimally using the
“North West Corner Rule” in only O(m + n) if the matrix C' is Monge!
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Monge
1

Monge Matrices and Convex Polygons

@ Can generate a Monge matrix from a convex polygon - delete two
segments, then separately number vertices on each chain. Distances
¢;j satisfy Monge property (or quadrangle inequality).
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Monge
1

Monge Matrices and Convex Polygons

@ Can generate a Monge matrix from a convex polygon - delete two
segments, then separately number vertices on each chain. Distances
¢;j satisfy Monge property (or quadrangle inequality).
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Monge
1

Monge Matrices and Convex Polygons

@ Can generate a Monge matrix from a convex polygon - delete two
segments, then separately number vertices on each chain. Distances
¢;j satisfy Monge property (or quadrangle inequality).

q1
q2 P1

P2

Ps3

q4
Pe Ps b
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Monge
1

Monge Matrices and Convex Polygons

@ Can generate a Monge matrix from a convex polygon - delete two
segments, then separately number vertices on each chain. Distances
¢;j satisfy Monge property (or quadrangle inequality).

P2
q3
p3
q4 i
d(p2, q3) + d(ps, qa) < d[(,;z, q4) + d(ps, g3) (3.21)
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Monge
(ANRT ]

Monge Matrices and Submodularity

@ A submodular function has the formi f: 2% — R which can be seen
as f:{0,1}V - R
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Monge Matrices and Submodularity

@ A submodular function has the form: f : 2" — R which can be seen
as f:{0,1}V =R
e We can generalize this to f : {0, K} — R for some constant' K € Z..

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016 F22/63 (pg.39/187)



Monge
(ANRT ]

Monge Matrices and Submodularity

@ A submodular function has the form: f : 2" — R which can be seen
as f:{0,1}V =R

o We can generalize this to f : {0, K}¥ — R for some constant K € Z..

e We may define submodularity as: for allix,y € {0, K}V, we have

f@)+fy) = flavy) + flzAy) (3.22)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016 F22/63 (pg.40/187)



Monge
(ANRT ]

Monge Matrices and Submodularity

@ A submodular function has the form: f : 2" — R which can be seen
as f:{0,1}V =R

o We can generalize this to f : {0, K}¥ — R for some constant K € Z..

@ We may define submodularity as: for all z,y € {O,K}V, we have

f@)+ f(y) > flzVvy) + flzAy) (3.22)

@ z V y is the'(join) element-wise min of each element, that is
(x Vy)(v) = min(z(v),y(v)) for v € V.
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Monge Matrices and Submodularity

@ A submodular function has the form: f : 2" — R which can be seen
as f:{0,1}V =R

o We can generalize this to f : {0, K}¥ — R for some constant K € Z..

@ We may define submodularity as: for all z,y € {O,K}V, we have

f@)+ f(y) > flzVvy) + flzAy) (3.22)

e x Vy is the (join) element-wise min of each element, that is
(x Vy)(v) =min(z(v),y(v)) forv e V.

@ x Ay is the (meet) element-wise min of each element, that is,
(x Ay)(v) <Fmax(z(v), y(v)) for v € V.
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Monge Matrices and Submodularity

@ A submodular function has the form: f : 2" — R which can be seen
as f:{0,1}V =R

o We can generalize this to f : {0, K}¥ — R for some constant K € Z..

e We may define submodularity as: for all z,y € {0, K}") we have

@)+ fy) 2 fleVy) + flzAy) (3.22)

e x Vy is the (join) element-wise min of each element, that is
(x Vy)(v) =min(z(v),y(v)) forv e V.
e x Ay is the (meet) element-wise min of each element, that is,
(x Ay)(v) = max(z(v),y(v)) for v e V.
@ With'K = 1, then this is the standard definition of submodularity.
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Monge Matrices and Submodularity

@ A submodular function has the form: f : 2" — R which can be seen
as f:{0,1}V =R

o We can generalize this to f : {0, K}¥ — R for some constant K € Z..

@ We may define submodularity as: for all z,y € {O,K}V, we have

f@)+ f(y) > flzVvy) + flzAy) (3.22)

e x Vy is the (join) element-wise min of each element, that is
(x Vy)(v) =min(z(v),y(v)) forv e V.
e x Ay is the (meet) element-wise min of each element, that is,
(x Ay)(v) = max(z(v),y(v)) for v e V.
e With K =1, then this is the standard definition of submodularity.

o With|V| =2, and(K + 1 the side-dimension of the matrix, we get a
Monge property (on square matrices).
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More Definitions
[NERRARN

Two Equivalent Submodular Definitions

Definition 3.6.1 (submodular concave)

A function f: 2V — R is submodular if for any A, B C V, we have that:

f(A)+ f(B) =z f(AUB) + f(AN B) (3.8)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.6.2 (diminishing returns)

A function f: 2V — R is submodular if for any A C B C V, and
v € V'\ B, we have that:

f(AU{v}) = f(4) = f(BU{v}) — f(B) (3.9)

The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as
the context in which v is considered grows from A to B.
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More Definitions
(LNARRRN

Submodular on Hypercube Verticies

@ Test submodularity via values on verticies of hypercube.
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Submodular on Hypercube Verticies

@ Test submodularity via values on verticies of hypercube.

Example: with{|[V| = n = 2, this is
easy: >

L N

00 01

£ 0) +E(+)
‘ 2 e O) (50D

£(V) +£0h) 2 Ev) +£(0)
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More Definitions
(LNARRRN

Submodular on Hypercube Verticies

@ Test submodularity via values on verticies of hypercube.
Example: with |V| =n =2, thisis  With |V| =n = 3, a bit harder.

DY
easy:

10 n

\OU)

o XK
N

ooo laoﬂ 00’

How many inequalities?
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More Definitions
(NLRRRRN

Subadditive Definitions

Definition 3.6.1 (subadditive)
A function f: 2" — R lis subadditive if for any A, B C V/, we have that:

f(A) + f(B) = f(AU B) (3.23)

This means that the “whole” is less than the sum of the parts.
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More Definitions

Two Equivalent Supermodular Definitions

Definition 3.6.1 (supermodular)

A function f : 2V — R is supermodular if for any A, B C V, we have that:

f(A) + f(B) < f(AUB) + f(AN B) (3.8)

Definition 3.6.2 (supermodular (improving returns))

A function f: 2" — R is supermodular if for any A C B C V, and
v € V'\ B, we have that:

f(AU{o}) = f(A) < f(BU{v}) - f(B) (3.9)
@ Incremental “value”, “gain”, or “cost” of v increases (improves) as the
context in which v is considered grows from A to B.
@ A function f is submodular iff —f is supermodular.
o If f both submodular and supermodular, then f is said to be modular,
and f(A) =c+ > ,c4 f(a) (often ¢ = 0).
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More Definitions
(NRAR ARN

Superadditive Definitions

Definition 3.6.2 (superadditive)
A function f : 2V 5 Ris superadditive if for any A, B C V, we have that:

f(A)+ f(B) < f(AU B) (3.24)

@ This means that the “whole” is greater than the sum of the parts.
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More Definitions
(NRAR ARN

Superadditive Definitions

Definition 3.6.2 (superadditive)
A function f : 2V 5 Ris superadditive if for any A, B C V, we have that:

f(A)+f(B) < f(AUB) (3.24)

@ This means that the “whole” is greater than the sum of the parts.

@ In general, submodular and subadditive (and supermodular and
superadditive) are different properties.
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More Definitions
(NRAR ARN

Superadditive Definitions

Definition 3.6.2 (superadditive)
A function f : 2V 5 Ris superadditive if for any A, B C V, we have that:

f(A)+f(B) < f(AUB) (3.24)

@ This means that the “whole” is greater than the sum of the parts.

@ In general, submodular and subadditive (and supermodular and
superadditive) are different properties.

@ Ex: Let 0 < k < |V, and consider f: 2" — R where:

F(A) = {1 Al <k (3.25)

0 else
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More Definitions
(NRAR ARN

Superadditive Definitions

Definition 3.6.2 (superadditive)
A function f : 2V 5 Ris superadditive if for any A, B C V, we have that:

f(A)+f(B) < f(AUB) (3.24)

@ This means that the “whole” is greater than the sum of the parts.

@ In general, submodular and subadditive (and supermodular and
superadditive) are different properties.

e Ex: Let 0 < k < |V, and consider f: 2" — R, whe

f(A) = {1 FlAl<k (3.25)

0 else

@ This function is subadditive but not submodular.
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More Definitions
(NRANA AN

Modular Definitions

Definition 3.6.3 (modular)

A function that is both submodular and supermodular is called modular

If fis a modular function, than for any 4, B C V, we have
f(A)+ f(B) = f(AnB) + f(AU B) (3.26)

In modular functions, elements do not interact (or cooperate, or compete,
or influence each other), and have value based only on singleton values.

Proposition 3.6.4

If f is modular, it mayfbe written as

(4 = f@)+ > (Fdah) - £0) < c+ > fl@) (3.27)

acA ac€A

which has only |V'| + 1 parameters.
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Modular Definitions

Proof.

We inductively construct the value for A = {aj,as,...,ax}.
For k& = 2,

flar) + f(a2) = f(a1,a2) + f(0) (3.28)

implief f(ax, a2) = f(ar) — /(0) + f(a2) S F@OFFO) | (329)

then for &k = 2«

fla1,a2) + f(as) = f(a1,a2,a3) + f(0) (3.30)

implies f (a1, as,as) +If(a3) = f@a +L£@ (3:31)
(3.32)
and soon ... O
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More Definitions
[NNANNAT ]

Complement function

Given a function  f : 2V & R, we can find a complement function
f:2V = Ras f(A) = f(V\ A) for any A.

Proposition 3.6.5

f is submodularaf f is submodular.

Proof.

f(A) + f(B) > f(AUB) + f(AN B) (3.33)
follows from
FVNA)+f(VAB) = f(VAN(AUB))+ f(V\(ANB))  (3.34)

which is true because V'\ (AU B) = (V\ A)N(V \ B) and
VN(ANB)=(V\A) U((V\B) (De Morgan's laws for sets). O
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Graph & Combinatorial Examples
[NRRRERRNNRNNANY]

Undirected Graphs

e Let G = (V, E) be a graph with vertices V' = V(G) and edges
E=EG)CVxV.
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Graph & Combinatorial Examples
[NRRRERRNNRNNANY]

Undirected Graphs

o Let G = (V, E) be a graph with vertices V' = V(G) and edges
E=EG)CVxV.
o If GG is undirected, define
EX,Y)={{z,y} € E(G):z e X\Y,ye Y\ X} (3.35)
and Y.

as the edges Xrictly betwee
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Graph & Combinatorial Examples
[NRRRERRNNRNNANY]

Undirected Graphs

o Let G = (V, E) be a graph with vertices V' = V(G) and edges
E=EG) CVxV.
o If G is undirected, define

EX)Y)={{z,y} € E(G):2 € X\Y,ye Y\ X} (3.35)

as the edges strictly between X and Y.
@ Nodes define cuts, define the cut function §(X) = E(X,V \ X).

X
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Graph & Combinatorial Examples

Undirected Graphs

o Let G = (V, E) be a graph with vertices V' = V(G) and edges
E=EG) CVxV.
o If G is undirected, define
EX)Y)={{z,y} € E(G):z € X\Y,ye Y\ X} (3.35)

as the edges strictly between X and Y.
@ Nodes define cuts, define the cut function §(X) = E(X,V \ X).

E:uES,ve V\S}-
= {15} {b.d}.{be} {ce}.{c.f}}
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Graph & Combinatorial Examples
(R ERRNARNRRRNNRY]

Directed graphs, and cuts and flows
o If GG is directed, define

EN(X,)Y) 2 {(z,9) €EG):z€ X \Y,yc Y\ X} (3.36)
e
as the edges directed strictly from X towards Y.

[ ——
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Graph & Combinatorial Examples
(R ERRNARNRRRNNRY]

Directed graphs, and cuts and flows
o If GG is directed, define

EN(X,)Y)2 {(z,9) €EG):x € X \Y,yc Y\ X} (3.36)

as the edges directed strictly from X towards Y.
@ Nodes define cuts and flows. Define edges leaving X (out-flow) as

§T(X) &£ EN(X,V\ X) (3.37)
and edges entering X (in-flow) as
S (X)EEN(V\ X, X) (3.38)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016 F33/63 (pg.63/187)



Graph & Combinatorial Examples

Directed graphs, and cuts and flows
o If GG is directed, define

EN(X,)Y)2 {(z,9) €EG):x € X \Y,yc Y\ X} (3.36)

as the edges directed strictly from X towards Y.
@ Nodes define cuts and flows. Define edges leaving X (out-flow) as

§T(X) = ETN(X,V\ X) (3.37)
and edges entering X (in-flow) as
S (X) £ EN(V\ X, X) (3.38)

={(u,v)€E:ueS,veV\Sh
= {(be) ,(c.N}
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Graph & Combinatorial Examples
(NRRNARNRANNNRY]

The Neighbor function in undirected graphs

@ Given a set X C V, the neighbor function of X is defined as

I'X)2{weV(@)\X: EX,{v})#0} (3.39)
—— gy T,
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Graph & Combinatorial Examples

The Neighbor function in undirected graphs

@ Given a set X C V, the neighbor function of X is defined as

IX)2{weV(@)\X:EX,{v})#0 (3.39)

o Example:
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Graph & Combinatorial Examples
(NRE RRARNRRNNNRY]

Directed Cut function: property

Lemma 3.7.1

For a digraph G = (V, E) and any X, Y C V: we have

|67 ()] + 57 (V)]
£[FHX QY4 PHX UY))+ [EY(X,Y)| + B Y, X)|  (3.40)

and

|67 (X + [0~ (¥)|

=0 (XNY)|+ 0" (XUY)|+ |E-(X,Y)|+ |E~(Y,X)] (3.41)
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Graph & Combinatorial Examples
(NRRT RRRNRANNNRY]

Directed Cut function: proof of property

We can prove this using a simple geometric counting argument (6~ (X) is
similar)
X V\X
y @ | 5
)
67(X)| © [67(Y)
V\Y T
X V\X
y (a)_)
lrxny) el IsH(X U Y)|
2%%
X V\X X V\X
Y %
E+(X, V)] o IE+(Y, )|
V\Y (), \/\Y

[]
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Graph & Combinatorial Examples
(NRART ARNRRRNNRY]

Directed cut/flow functions: submodular

For a digraph G = (V, E) and any X,Y C V: both functions |6+ (X)| and
[0~ (X)| are submodular.

|E+(X,Y)| > 0and [E-(X,Y)| > 0.

More generally, in the non-negative weighted case, both in-flow and
out-flow are submodular on subsets of the vertices.

H= Zwe) e
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Graph & Combinatorial Examples
(NRARNE RRRRRNNRY]

Undirected Cut/Flow & the Neighbor function: submodular

Lemma 3.7.3
For an undirected graph G = (V, E) and any X,Y C V: we have that both
the undirected cut (or flow) function{|6(X)| and the neighbor function
IT(X)| are submodular. le.,

’Jr 6(Y)| = 6(XNY)|+ (X UY)| +2|B(X,Y)| (3.42)

and

T+ [T = NX NY)|+ [T(XUY)| (3.43)

e Eq. (3.42) follows from Eq. (3.40): we repl i
{u,v} with two oppositely-directed directed u,v) and (v, u).

Then we use same counting argument.
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Graph & Combinatorial Examples
(NRARNE RRRRRNNRY]

Undirected Cut/Flow & the Neighbor function: submodular

Lemma 3.7.3

For an undirected graph G = (V, E) and any X,Y C V: we have that both
the undirected cut (or flow) function |6(X)| and the neighbor function
IT'(X)| are submodular. le.,

B(X)+[6(Y)] =[6(XNY)|[+ [6(XUY)|+2/E(X,Y)] (3.42)
and

(X +[F(Y)] = DX NY)[+ [T(XUY)| (3.43)

Proof.

e Eq. (3.42) follows from Eq. (3.40): we replace each undirected edge

{u,v} with two oppositely-directed directed edges (u,v) and (v, u).
Then we use same counting argument.

e Eq. (3.43) follows as shown in the following page.

Y
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SO

IT(X)| + [T(Y)] :‘(”w_ﬁ@u 2(d) + (e) + (f) + (9) + ()
> (a)+ (b)) +2(c) + (d) + (g9) + (h) = T(XUY)|+ |T(XNY)| (3.48)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016 F39/63 (pg.72/187)




Graph & Combinatorial Examples
(NRRRNARY RRRNNAY]

Undirected Neighbor functions

Therefore, the undirected cut function |§(A)| and the neighbor function
IT'(A)| of a graph G are both submodular.
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Graph & Combinatorial Examples
(NEARNARNL ARNRRY]

Undirected cut/flow is submodular: alternate proof

@ Another simple proof shows that |0(X)| is submodular.
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Graph & Combinatorial Examples
(NERRNAREL ARRNRY]

Undirected cut/flow is submodular: alternate proof

@ Another simple proof shows that |§(X)| is submodular.
@ Define a graph Gy, = ({u,v}, {e}, w) with two nodes u,v and one
edge e = {u, v} with non-negative weight w(e) € R.
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Graph & Combinatorial Examples
(NERRNAREL ARRNRY]

Undirected cut/flow is submodular: alternate proof

@ Another simple proof shows that |§(X)]| is submodular.
o Define a graph G, = ({u, v}, {e}, w) with two nodes u,v and one
edge e = {u, v} with non-negative weight w(e) € R...
e Cut weight function over those two nodes: w(dy, ,(-)) has valuation:
W(0y0(0)) = w(dy({u,v})) =0 (3.49)

and
w(0y({u})) = w(0y,({v})) =w >0 (3.50)
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Graph & Combinatorial Examples
(NERRNAREL ARRNRY]

Undirected cut/flow is submodular: alternate proof

@ Another simple proof shows that |§(X)| is submodular.

o Define a graph G, = ({u, v}, {e}, w) with two nodes u,v and one
edge e = {u, v} with non-negative weight w(e) € R...

o Cut weight function over those two nodes: w(d,, ,(+)) has valuation:

W(0y0(0)) = w(dy({u,v})) =0 (3.49)
and

w(bup({u})) = w(uu({v})) = w =0 (3.50)

@ Thus, w(dy(-)) is submodular since

w(éu-,v({u})) + w(dum({v})) > w((iw;({u, v})) + w((gu,v(@)) (3-51)
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Graph & Combinatorial Examples
(NERRNAREL ARRNRY]

Undirected cut/flow is submodular: alternate proof

@ Another simple proof shows that |§(X)| is submodular.

o Define a graph G, = ({u, v}, {e}, w) with two nodes u,v and one
edge e = {u, v} with non-negative weight w(e) € R...

o Cut weight function over those two nodes: w(d,, ,(+)) has valuation:

W(0y0(0)) = w(dy({u,v})) =0 (3.49)

and

w(bup({u})) = w(uu({v})) = w =0 (3.50)

@ Thus, w(dy(-)) is submodular since

w(Sup({u})) + w(dup({v})) = w(uw({u,v})) + w(uwn(®)) (3.51)
@ General non-negative weighted graph G = (V, E, w), define w(d(+)):

FX) =w@(X) = Y w(@uu(X N {uv}) (3.52)

(u,v)eE(Q)
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Graph & Combinatorial Examples
(NEARNARNL ARNRRY]

Undirected cut/flow is submodular: alternate proof

@ Another simple proof shows. that |d(X)| is submodular.
o Define a graph Guy = ({u, v}, {e}, w) with two nodes u,v and one
edge e = {u, v} with non-negative weight w(e) € R...
o Cut weight function over those two nodes: w(d,, ,(+)) has valuation:
W(0uw(0)) = w(bup({u,v})) =0 (3.49)

and
w(bup({u})) = w(bup({v})) =w =0 (3.50)
@ Thus, w(dy(-)) is submodular since
w(Sup({u})) + w(dup({v})) = w(uw({u,v})) + w(uwn(®)) (3.51)
o General non-negative weighted graph G = (V, .E, w), define w(d(-)):

FX) =w@(X) = Y wlue(X N{y,0})) (3.52)

(u,v)€EE(G)

@ This is easily shown to be submodular using properties we will soon see

namely, submodularity closed under summation and restriction).
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Graph & Combinatorial Examples
(NRRRNARNRI RN

Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

o LetA(X) be the vertices adjacent to some edge i X' € E(G), then
[V(X)| (the vertex function) is submodular.
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Graph & Combinatorial Examples
(NRRRNARNRI RN

Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

o Let V(X) be the vertices adjacent to some edge in X C E(G), then
|V (X)]| (the vertex function) is submodular,

o Let E(S) be the edges with both vertices in S C V(G).) Then |E(S)]
(the'interior edge function) is supermodular.

(<1¢ o)

= |\

1565
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Graph & Combinatorial Examples
(NRRRNARNRI RN

Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

o Let V(X) be the vertices adjacent to some edge in X C E(G), then
|[V(X)| (the vertex function) is submodular.

o Let E(S) be the edges with both vertices in S C V(G). Then |E(S)]
(the interior edge function) is supermodular.

o Let I(S) be the edges with at least one vertex in S € V(G). Then
|1(.S)| (the incidence function) is submodular.

Q
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Graph & Combinatorial Examples
(NRRRNARNRI RN

Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

o Let V(X) be the vertices adjacent to some edge in X C E(G), then
|[V(X)| (the vertex function) is submodular.

o Let E(S) be the edges with both vertices in S C V(G). Then |E(S)]
(the interior edge function) is supermodular.

o Let I(S) be the edges with at least one vertex in S C V(G). Then
|1(S)| (the incidence function) is submodular.

o Recall |0(S)], is the set size of edges with exactly one vertex in
S C V(G is submodular (cut size function). Thus, we have
1(8) = BE(S)U(S) and E(S) Nd(S) = B, and thus that
[(5)] = [E(S)[+ [o(5)].
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Graph & Combinatorial Examples
(NRRRNARNRI RN

Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

o Let V(X) be the vertices adjacent to some edge in X C E(G), then
|[V(X)| (the vertex function) is submodular.

o Let E(S) be the edges with both vertices in S C V(G). Then |E(S)]
(the interior edge function) is supermodular.

o Let I(S) be the edges with at least one vertex in S C V(G). Then
|1(S)| (the incidence function) is submodular.

o Recall [6(S)], is the set size of edges with exactly one vertex in
S C V(G) i1s submodular (cut size function). Thus, we have
I(S) = E(S)Ud(S) and F(S)Nd(S) =0, and thus that
|1(S)| = |E(S)] 4 ]0(S)]|. So we can get a submodular function by
summing a submodular and a supermodular function.
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Graph & Combinatorial Examples
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Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

o Let V(X) be the vertices adjacent to some edge in X C E(G), then
|[V(X)| (the vertex function) is submodular.

o Let E(S) be the edges with both vertices in S C V(G). Then |E(S)]
(the interior edge function) is supermodular.

o Let I(S) be the edges with at least one vertex in S C V(G). Then
|1(.S)| (the incidence function) is submodular.

@ Recall [6(5)], is the set size of edges with exactly one vertex in
S C V(G) is submodular (cut size function). Thus, we have
I(S) = E(S)Ud(S) and E(S)Nd(S) =0, and thus that
II(S)| = |E(S)| + [6(S)|. So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?
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Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

Let V(X)) be the vertices adjacent to some edge in X C E(G), then
|[V(X)| (the vertex function) is submodular.

Let £/(S) be the edges with both vertices in S C V(G). Then |E(S)|
(the interior edge function) is supermodular.

Let 1(S) be the edges with at least one vertex in S C V(G). Then
|1(.S)| (the incidence function) is submodular.

Recall |§(S)], is the set size of edges with exactly one vertex in

S C V(G) is submodular (cut size function). Thus, we have

I(S) = E(S)Ud(S) and E(S)Nd(S) =0, and thus that

II(S)| = |E(S)| + [6(S)|. So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?

Consider f(A) = [6T(A)| —[67(V \ A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one and

prove it.
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Number of connected components in a graph via edges

° Riecall, f: 2V 5 R is submodular, then so is f: 2V 5 R defined as

f(8) =fF(V\S).

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016 F43/63 (pg.87/187)



Graph & Combinatorial Examples
(NRRRNARNNRY NRRY]

Number of connected components in a graph via edges

° |3eca||, f: 2V 5 R is submodular, then so is f: 2V s R defined as
f(S)=f(V\59).

@ Hence, if f:2Y — R is supermodular, then so is f : 2" — R defined

as f(8) = f(V\ 5).
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Number of connected components in a graph via edges

° |3eca||, f: 2V 5 R is submodular, then so is f: 2V s R defined as

f(8)=f(V\S).

e Hence, if f:2Y — R is supermodular, then so is f : 2" — R defined
as f(5) = f(V\9).

e Given a graph G = (V, E), for each A C E(G), let ¢(A) denote the
number of connected components of the (spanning) subgraph
(V(GRA), with c: 2P - R,

Nz A
j7
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Number of connected components in a graph via edges

° |3eca||, f: 2V 5 R is submodular, then so is f: 2V s R defined as
f(8) = f(V\S). .

@ Hence, if f: 2V — R is supermodular, then so is f : 2" — R defined
as f(S) = f(V\9).

e Given a graph G = (V, E), for each A C E(G), let ¢(A) denote the
number of connected components of the (spanning) subgraph
(V(G), A), with c: 2F — R,

@ ¢(A) is monotone non-increasing, €(A+a) —¢(A4) <0 .
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Number of connected components in a graph via edges

° |3eca||, f: 2V 5 R is submodular, then so is f: 2V s R defined as
f(8) = f(V\S). .

@ Hence, if f: 2V — R is supermodular, then so is f : 2" — R defined
as f(S) = f(V\9).

e Given a graph G = (V, E), for each A C E(G), let ¢(A) denote the
number of connected components of the (spanning) subgraph
(V(G), A), with c: 2F — R,

@ ¢(A) is monotone non-increasing, ¢c(A+a) —c(A) <0 .

(3.53)

with A C B C
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Number of connected components in a graph via edges

@ Recall, f: 2V 5 R is submodular, then so is f: 2V s R defined as
f(S)=f(V\S).

e Hence, if f:2Y — R is supermodular, then so is f : 2" — R defined
as f(5) = f(V\ 5).

e Given a graph G = (V, E), for each A C E(G), let ¢(A) denote the
number of connected components of the (spanning) subgraph
(V(G), A), with c: 2F — R,

@ ¢(A) is monotone non-increasing, ¢c(A+a) —c(A) <0 .

@ Then ¢(A) is supermodular, i.e.,

c(A+a)—c(A) <ce(B+a)—c(B) (3.53)

with A C B C E '\ {a}.

@ Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of conected components) when
edge is added in a smaller context than when added in a larger context.
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Number of connected components in a graph via edges

@ Recall, f: 2V 5 R is submodular, then so is f: 2V s R defined as
f(S)=f(V\S).

e Hence, if f:2Y — R is supermodular, then so is f : 2" — R defined
as f(5) = f(V\ 5).

e Given a graph G = (V, E), for each A C E(G), let ¢(A) denote the
number of connected components of the (spanning) subgraph
(V(G), A), with c: 2F — R,

@ ¢(A) is monotone non-increasing, ¢c(A+a) —c(A) <0 .

@ Then ¢(A) is supermodular, i.e.,

c(A+a)—c(A) <ce(B+a)—c(B) (3.53)
with A C B C E\ {a}.

@ Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of conected components) when
edge is added in a smaller context than when added in a larger context.

@ ¢(A) =c(E\ A) is the number of connected components in G when
we remove A, so is also supermodular, but monotone non-decreasing.
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Graph Strength

@ So ¢(A) =c¢(E\ A) is the number of connected components in G
when we remove A, is supermodular.
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Graph Strength

@ So ¢(A) = ¢(E\ A) is the number of connected components in G
when we remove A, is supermodular.

@ Maximizing ¢(A) might seem as a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).
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Graph Strength

@ So ¢(A) = ¢(E\ A) is the number of connected components in G
when we remove A, is supermodular.

e Maximizing ¢(A) might seem as a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

@ If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.
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Graph Strength

@ So ¢(A) = ¢(E\ A) is the number of connected components in G
when we remove A, is supermodular.

e Maximizing ¢(A) might seem as a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

@ If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.

@ An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.
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Graph Strength

@ So ¢(A) = ¢(E\ A) is the number of connected components in G
when we remove A, is supermodular.

e Maximizing ¢(A) might seem as a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

@ If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.

@ An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.

o Let G = (V,E,w) with w : E— R+ be a weighted graph with
non-negative weights.
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Graph Strength

So ¢(A) = ¢(E \ A) is the number of connected components in G
when we remove A, is supermodular.

e Maximizing ¢(A) might seem as a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

@ If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.

@ An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.

o Let G = (V,E,w) with w: E — R+ be a weighted graph with
non-negative weights.

@ For (u,v) =e € E, let w(e) be a measure of the strength of the

connection between vertices v and v (strength meaning the difficulty
of cutting the edge e).
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Graph Strength

@ Then w(A) for A C E is a modular function

w(A) = Z We (3.54)

ecA

so that w(E(G[S])) is the “internal strength” of the vertex set S.

Notation: S is a set of nodes, G[S] is the vertex-induced subgraph of G induced by
vertices S, E(G[S]) are the edges contained within this induced subgraph, and
w(E(G[S])) is the weight of these edges.
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Graph Strength

@ Then w(A) for A C E is a modular function
w(A) =) " w, (3.54)
ecA
so that w(E(G[S])) is the “internal strength” of the vertex set S.
@ Suppose removing A shatters G into a graph with ¢(A) > 1

components — then w(A)/(¢(A) — 1) is like the “effort per achieved
component” for a network attacker.
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Graph Strength

@ Then w(A) for A C E is a modular function

w(A) =) " w, (3.54)
ecA
so that w(E(G[S])) is the “internal strength” of the vertex set S.

@ Suppose removing A shatters G into a graph with ¢(A) > 1
components — then w(A)/(¢(A) — 1) is like the “effort per achieved
component” for a network attacker.

@ A form of graph strength can then be defined as the following:

w(A)

t th(G, = i1 — .
strength(Gi, w) AgE(gl)I:?(A)x c¢(A) -1 (3.55)
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Graph Strength

@ Then w(A) for A C E is a modular function

w(A) =) " w, (3.54)
ecA
so that w(E(G[S])) is the “internal strength” of the vertex set S.

@ Suppose removing A shatters G into a graph with ¢(A) > 1
components — then w(A)/(¢(A) — 1) is like the “effort per achieved
component” for a network attacker.

@ A form of graph strength can then be defined as the following:

. w(A)
strength(G,w) = AQE(ICIT})I:?(A)>1 ZA) -1 (3.55)

@ Graph strength is like the minimum effort per component. An attacker
would use the argument of the min to choose which edges to attack. A
network designer would maximize, over G and/or w, the graph
strength, strength(G,w).
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Graph Strength

@ Then w(A) for A C E is a modular function

w(A) =) " w, (3.54)
ecA
so that w(E(G[S])) is the “internal strength” of the vertex set S.

@ Suppose removing A shatters G into a graph with ¢(A) > 1
components — then w(A)/(¢(A) — 1) is like the “effort per achieved
component” for a network attacker.

@ A form of graph strength can then be defined as the following:

: w(A)
strength(G,w) = AQE(ICIT})I:?(A)>1 ZA) -1 (3.55)

@ Graph strength is like the minimum effort per component. An attacker
would use the argument of the min to choose which edges to attack. A
network designer would maximize, over G' and/or w, the graph
strength, strength(G,w).

@ Since submodularity, problems have strongly-poly-time solutions.
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Submodularity, Quadratic Structures, and Cuts

Lemma 3.7.4

Let M € R™™™ be a symmetric matrix and m € R™ be a vector. Then
f:2YV — R defined as

1
f(X) =mTly + 51;(M1X (356)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.

@ Given a complete graph G = (V, E), recall that E(X) is the edge set
with both vertices in X C V(G), and that |E(X)] is supermodular.
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Submodularity, Quadratic Structures, and Cuts

Lemma 3.7.4

Let M € R™™™ be a symmetric matrix and m € R™ be a vector. Then
f:2YV — R defined as

1
f(X) =mTly + 51;(M1X (356)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.
@ Given a complete graph G = (V, E), recall that E(X) is the edge set
with both vertices in X C V(G), and that |E(X)] is supermodular.
@ Non-negative modular weights w* : F — R, w(E(X)) is also
supermodular, so —w(E(X)) (non-positive modular) is submodular.
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Submodularity, Quadratic Structures, and Cuts

Lemma 3.7.4

Let M € R™™™ be a symmetric matrix and m € R™ be a vector. Then
f:2YV — R defined as

1
f(X) =mTly + 51;(M1X (356)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.
@ Given a complete graph G = (V, E), recall that E(X) is the edge set
with both vertices in X C V(G), and that |E(X)] is supermodular.
@ Non-negative modular weights w* : E — Ry, w(E(X)) is also
supermodular, so —w(E(X)) (non-positive modular) is submodular.

@ f is a modular function m™1 4 = m(A) added to a weighted
submodular function, hence f is submodular.
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Submodularity, Quadratic Structures, and Cuts

Proof of Lemma 3.7.4 cont.

@ Conversely, suppose f is submodular.
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Submodularity, Quadratic Structures, and Cuts

Proof of Lemma 3.7.4 cont.

@ Conversely, suppose f is submodular.

@ Then f({u}) + f({v}) > f({u,v}) + f(D) while f() = 0.
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Submodularity, Quadratic Structures, and Cuts

Proof of Lemma 3.7.4 cont.

@ Conversely, suppose f is submodular.

o Then f({u}) + f({v}) = f({u,v}) + f(0) while f(0) = 0.
@ Then:

0 < f({u}) + f({v}) — f({w, v}) (3.57)
=m(u) + %]Wu,u + m(v) + %]Wv,v (3.58)

1 1 / 1 y
. (m(u) + m(v) + 5 My + Muy + §MM> (3.59)
=—M,, (3.60)

So that Yu,v € V, My, <0.
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SET CoVER and MAXIMUM COVERAGE

@ We are given a finite set V' of n elements and a set of subsets
V ={Vi,Va,...,V;,} of m subsets of V, so that V; C V' and
U, Vi=V.
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SET CoVER and MAXIMUM COVERAGE

@ We are given a finite set V' of n elements and a set of subsets
V ={V1,Va,...,Vin} of m subsets of V, so that V; C V" and
U, Vi=V.

@ The goal of minimum SET COVER is to choose the smallest subset
AC[m]£{1,...,m} such that J,c, Va = V.
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SET CoVER and MAXIMUM COVERAGE

@ We are given a finite set V' of n elements and a set of subsets
V ={V1,Va,...,Vin} of m subsets of V, so that V; C V" and

@ The goal of minimum SET COVER is to choose the smallest subset
AC[m]£{1,...,m} such that J,cy Va = V.

@ Maximum k cover: The goal in MAXIMUM COVERAGE is, given an
integer k < m, select k subsets, say {a1, as,...,ax} with a; € [m]
such that ]Ule Vg, | is maximized.
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SET CoVER and MAXIMUM COVERAGE

@ We are given a finite set V' of n elements and a set of subsets
V ={V1,Va,...,Vin} of m subsets of V, so that V; C V" and
U, Vi=V.

@ The goal of minimum SET COVER is to choose the smallest subset
AC[m]£{1,...,m} such that J,cy Va = V.

@ Maximum k cover: The goal in MAXIMUM COVERAGE is, given an
integer k < m, select k subsets, say {a1, as,...,ax} with a; € [m]
such that |Uf“‘:1 Vg, | is maximized.

@ Both SET COVER and MAXIMUM COVERAGE are well known to be
NP-hard, but have a fast greedy approximation algorithm.
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Other Covers

Definition 3.7.5 (vertex cover)

A vertex cover (a “vertex-based cover of edges”) in graph G = (V, E) is a
set S C V(G) of vertices such that every edge in G is incident to at least
one vertex in S.

@ Let I(S) be the number of edges incident to vertex set S. Then we
wish to find the smallest set S C V subject to I(S) = |E|.

Definition 3.7.6 (edge cover)

A edge cover (an “edge-based cover of vertices”) in graph G = (V, E) is a
set I' C E(G) of edges such that every vertex in G is incident to at least
one edge in F.

o Let |V|(F) be the number of vertices incident to edge set F'. Then we
wish to find the smallest set /' C E subject to |V|(F) = |V|.
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Graph Cut Problems

e MiNIMUM cuT: Given a graph G = (V, E), find a set of vertices
S C V that minimize the cut (set of edges) between S and V'\ S.
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Graph Cut Problems

e MiNIMUM cuT: Given a graph G = (V, E), find a set of vertices
S C V that minimize the cut (set of edges) between S and V'\ S.

e MAXIMUM cuUT: Given a graph G = (V, F), find a set of vertices
S C V that minimize the cut (set of edges) between S and V'\ S.
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Graph Cut Problems

e MiNIMUM cuT: Given a graph G = (V, E), find a set of vertices
S C V that minimize the cut (set of edges) between S and V'\ S.

e MAXIMUM CUT: Given a graph G = (V, E), find a set of vertices
S C V that minimize the cut (set of edges) between S and V'\ S.
o Let f:2Y — R, be the cut function, namely for any given set of

nodes X C V, f(X) measures the number of edges between nodes X
and V' \ X.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 3 - Apr 4th, 2016



Graph & Combinatorial Examples
[NR NN

Graph Cut Problems

e MiNIMUM cuT: Given a graph G = (V, E), find a set of vertices
S C V that minimize the cut (set of edges) between S and V'\ S.

e MAXIMUM CUT: Given a graph G = (V, E), find a set of vertices
S C V that minimize the cut (set of edges) between S and V'\ S.

o Let f:2Y — R, be the cut function, namely for any given set of
nodes X C V, f(X) measures the number of edges between nodes X
and V'\ X.

@ Weighted versions, where rather than count, we sum the
(non-negative) weights of the edges of a cut.
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Graph Cut Problems

e MiNIMUM cuT: Given a graph G = (V, E), find a set of vertices

S C V that minimize the cut (set of edges) between S and V'\ S.
MaxXiMUM cUT: Given a graph G = (V| E), find a set of vertices
S C V that minimize the cut (set of edges) between S and V'\ S.

Let f:2Y — R, be the cut function, namely for any given set of
nodes X C V, f(X) measures the number of edges between nodes X
and V'\ X.

Weighted versions, where rather than count, we sum the
(non-negative) weights of the edges of a cut.

Many examples of this, we will see more later.
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Facility/Plant Location (uncapacitated)

@ Core problem in operations research, early motivation for submodularity.

@ Goal: as efficiently as possible, place “facilities” (factories) at certain
locations to satisfy sites (at all locations) having various demands.

Prof. Jeff Bilmes



Graph & Combinatorial Examples
1

Facility/Plant Location (uncapacitated)

@ Core problem in operations research, early motivation for submodularity.

@ Goal: as efficiently as possible, place “facilities” (factories) at certain
locations to satisfy sites (at all locations) having various demands.
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Facility/Plant Location (uncapacitated)

@ Core problem in operations research, early motivation for submodularity.

@ Goal: as efficiently as possible, place “facilities” (factories) at certain

locations to satisfy sites (at all locations) having various demands.
facility locations sites

@ We can model this with a weighted
bipartite graph G = (F, S, E, ¢) |
where F' is set of possible
factory/plant locations, S is set of
sites needing service, E are edges
indicating (factory,site) service
possiblity pairs, and c: . — R is
the benefit of a given pair.

Benefit of having
site 2 serviced by

@ Facility location function has form: . :
F(A) =Y maxcy.  (3.61) @
ieF jed f
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Graph & Combinatorial Examples
(NN |

Facility/Plant Location (uncapacitated) w. plant benefits

o Let F={1,...,f} be a set of possible factory/plant locations for
facilities to be built.
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Graph & Combinatorial Examples
(NN |

Facility/Plant Location (uncapacitated) w. plant benefits

o Let F={1,..., f} be a set of possible factory/plant locations for
facilities to be built.
e S={1,...,s} is a set of sites (e.g., cities, clients) needing service.
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Graph & Combinatorial Examples
(NN |

Facility/Plant Location (uncapacitated) w. plant benefits

o Let F={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

e S={1,...,s} is a set of sites (e.g., cities, clients) needing service.

@ Let ¢;; be the “benefit” (e.g., 1/c;; is the cost) of servicing site i with
facility location j.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 3 - Apr 4th, 2016



Graph & Combinatorial Examples
(NN |

Facility/Plant Location (uncapacitated) w. plant benefits

o Let F={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

e S={1,...,s} is a set of sites (e.g., cities, clients) needing service.

o Let ¢;; be the “benefit” (e.g., 1/c;; is the cost) of servicing site i with
facility location j.

@ Let m; be the benefit (e.g., either 1/m; is the cost or —m; is the
cost) to build a plant at location j.
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Graph & Combinatorial Examples
(NN |

Facility/Plant Location (uncapacitated) w. plant benefits

o Let F={1,..., f} be a set of possible factory/plant locations for

facilities to be built.

S =1{1,...,s} is a set of sites (e.g., cities, clients) needing service.

Let ¢;; be the "benefit” (e.g., 1/¢;; is the cost) of servicing site ¢ with

facility location j.

o Let m; be the benefit (e.g., either 1/m; is the cost or —m; is the
cost) to build a plant at location j.

@ Each site should be serviced by only one plant but no less than one.
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Graph & Combinatorial Examples
(NN |

Facility/Plant Location (uncapacitated) w. plant benefits

o Let F={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

e S={1,...,s} is a set of sites (e.g., cities, clients) needing service.

o Let ¢;; be the “benefit” (e.g., 1/c;; is the cost) of servicing site i with
facility location j.

o Let m; be the benefit (e.g., either 1/m; is the cost or —m; is the
cost) to build a plant at location j.

@ Each site should be serviced by only one plant but no less than one.

@ Define f(A) as the “delivery benefit” plus “construction benefit” when
the locations A C F are to be constructed.
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Graph & Combinatorial Examples
(NN |

Facility/Plant Location (uncapacitated) w. plant benefits

Let F'={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

S =1{1,...,s} is a set of sites (e.g., cities, clients) needing service.
Let ¢;; be the "benefit” (e.g., 1/¢;; is the cost) of servicing site ¢ with
facility location j.

Let m; be the benefit (e.g., either 1/m; is the cost or —m; is the
cost) to build a plant at location j.

Each site should be serviced by only one plant but no less than one.
Define f(A) as the “delivery benefit” plus “construction benefit” when
the locations A C F' are to be constructed.

We can define the (uncapacitated) facility location function

f(A) = Z mj + Z max cij. (3.62)

jeEA i€F
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Graph & Combinatorial Examples
(NN |

Facility/Plant Location (uncapacitated) w. plant benefits

o Let F={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

e S={1,...,s} is a set of sites (e.g., cities, clients) needing service.

o Let ¢;; be the “benefit” (e.g., 1/c;; is the cost) of servicing site i with
facility location j.

o Let m; be the benefit (e.g., either 1/m; is the cost or —m; is the
cost) to build a plant at location j.

@ Each site should be serviced by only one plant but no less than one.

o Define f(A) as the “delivery benefit” plus “construction benefit” when
the locations A C F' are to be constructed.

@ We can define the (uncapacitated) facility location function

FA) = "m;+ Zmaﬁc Cij- (3.62)
jeA ier 'S
@ Goal is to find a set A that maximizes f(A) (the benefit) placing a
bound on the number of plants A (e.g., |A| < k).
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Other Examples
[ERRNRRNNR

Matrix Rank functions

@ Let V, with |[V| = m be an index set of a set of vectors in R™ for some
n (unrelated to m).
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Other Examples
[ERRNRRNNR

Matrix Rank functions

o Let V, with |V| = m be an index set of a set of vectors in R™ for some
n (unrelated to m).

e For a given set {v,v1,v2,..., v}, it might or might not be possible to
find (cy); such that:

k
Ty = Z QG Ty, (3.63)

=1

If not, then z, is linearly independent of z,,, ..., zy,.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 3 - Apr 4th, 2016



Other Examples
[ERRNRRNNR

Matrix Rank functions

o Let V, with |V| = m be an index set of a set of vectors in R™ for some
n (unrelated to m).

e For a given set {v,v1,v2,...,v;}, it might or might not be possible to
find (a;); such that:

k
Ty = Z QG Ty, (3.63)
i=1

If not, then z, is linearly independent of x,,, ..., %y,.

@ Let r(9) for S C V be the rank of the set of vectors S. Then r(:) is a
submodular function, and in fact is called a matric matroid rank
function.
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Other Examples
N RNNRRAY

Example: Rank function of a matrix

e Given n x m matrix X = (z1,z2,...,Ty) with z; € R for all i.
There are m length-n column vectors {x;},
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Other Examples
N RNNRRAY

Example: Rank function of a matrix

e Given n x m matrix X = (z1,z2,...,Ty) with z; € R for all i.
There are m length-n column vectors {x;},

o Let V=1{1,2,...,m} be the set of column vector indices.
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Other Examples
N RNNRRAY

Example: Rank function of a matrix

e Given n x m matrix X = (z1,z2,...,Ty) with z; € R for all i.
There are m length-n column vectors {z;},

o Let V=1{1,2,...,m} be the set of column vector indices.
@ Forany A CV, let r(A) be the rank of the column vectors indexed by
A.
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Other Examples
N RNNRRAY

Example: Rank function of a matrix

e Given n x m matrix X = (z1,z2,...,Ty) with z; € R for all i.
There are m length-n column vectors {z;},

o Let V=1{1,2,...,m} be the set of column vector indices.

@ Forany A CV, let r(A) be the rank of the column vectors indexed by
A.

@ 7(A) is the dimensionality of the vector space spanned by the set of

vectors {Zq},ca-
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Other Examples
N RNNRRAY

Example: Rank function of a matrix

e Given n x m matrix X = (z1,z2,...,Ty) with z; € R for all i.
There are m length-n column vectors {x;},

o Let V=1{1,2,...,m} be the set of column vector indices.

@ Forany A CV, let r(A) be the rank of the column vectors indexed by
A.

e r(A) is the dimensionality of the vector space spanned by the set of
vectors {Zq},ca-

@ Thus, r(V) is the rank of the matrix X.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 3 - Apr 4th, 2016



Other Examples
IR NNNARAY

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2301 3 1 Ll
200 30400 2 4|

— | X1 X0 X3 X4 X5 X X7 X

300003005 |1 ‘2 ‘3 ’4 ’5 ’6 |7 |8
4\2 000000 5

Let A ={1,2,3}, B=1{3,4,5}, C ={6,7}, A, ={1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3 r(BUB,) =3, rAUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C) =2.
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Other Examples
IR NNNARAY

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678
1 2 3 4 5 6 7 8
1/0 2 2301 3 1 e I
200 304002 4|
— | X1 X0 X3 X4 X5 X X7 X
300003005 |1 |2 |3 ‘4 ’5 ’6 |7 |8
4\2 00 000 0 5

Let A={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,)=3,r(AUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C)=2.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 3 - Apr 4th, 2016



Other Examples
IR NNNARAY

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2301 3 1 B S
200 30400 2 4|

— | X1 X0 X3 X4 X5 X X7 X

3o 0003005 |1 ‘2 |3 |4 |5 ’6 |7 |8
4\2 00 0000 5

Let A={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,)=3,r(AUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C)=2.
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Other Examples
IR NNNARAY

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2 3001 3 1 B B
200 30400 2 4|

— | X1 X0 X3 X4 X5 X X7 X

3o 0003005 |1 ‘2 ‘3 ‘4 ’5 |6 |7 |8
4\2 00 0000 5

Let A={1,2,3}, B={3,4,5}, C={6,7}, A, ={1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,)=3,r(AUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C)=2.
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Other Examples
IR NNNARAY

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2 301 3 1 T
200 30400 2 4|

— | X1 X0 X3 X4 X5 X X7 X

300003005 |1 ‘2 ‘3 ’4 ’5 ’6 |7 |8
4\2 00000 0 5

Let A={1,2,3}, B={3,4,5}, C ={6,7}, A, ={1}, B, ={5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,)=3,r(AUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C) =2.
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Other Examples
IR NNNARAY

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2301 3 1 B
200 30400 2 4|

— | X1 X0 X3 X4 X5 X X7 X

300003005 |1 ‘2 ‘3 ’4 |5 ’6 |7 |8
4\2 00 00 00 5

Let A={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, ={5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,)=3,r(AUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C) =2.
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Other Examples
IR NNNARAY

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2301 3 1 iR
200 304002 4|

— | X1 X0 X3 X4 X5 X X7 X

300003005 |1 |2 |3 ‘4 ’5 ’6 |7 |8
4\2 00 000 0 5

Let A =1{1,2,3}, B=1{3,4,5}, C ={6,7}, A, ={1}, B, = {5}.
Then r(4) =3, r(B) =3, r(C) =2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
r(AuUB)=4,r(ANB)=1<r(C)=2.
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Other Examples
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2301 3 1 T
200 30400 2 4|

— | X1 X0 X3 X4 X5 X X7 X

3o 0003005 |1 ‘2 |3 |4 |5 ’6 |7 |8
4\2 00 0000 5

Let A =1{1,2,3}, B=1{3,4,5}, C ={6,7}, A, ={1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C)=2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
r(AuUB)=4,r(ANB)=1<r(C)=2.
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Other Examples
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2 3001 3 1 B B
200 30400 2 4|

— | X1 X0 X3 X4 X5 X X7 X

3o 0003005 |1 ‘2 ‘3 ‘4 ’5 |6 |7 |8
4\2 00 0000 5

Let A =1{1,2,3}, B=1{3,4,5}, C ={6,7}, A, ={1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) =2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C)=2.
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Other Examples
IR NNNARAY

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8
1/{0 2 2 3 0 1 3 1
210 304002 4| SRR
3lo0 0003005 | (78S
4\2 0 0 0 0 O 0 5 | | | | | | | |
o Let A={1,2,3}, B—{3 4,5}, C =1{6,7}, A, = {1}, B, = {5}.
@ Thenr(A) =3, r(B)=3,r(C)=2.
e r(AUC) =3, r(B C) 3.
e r(AUA,)=3,r(BUB,)=3,1r(AUB,) (BUA,)
e r(AUB)=4,r(ANB)=1<r(C)=2.
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Other Examples
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2301 3 1 1 B
200 30400 2 4|

— | X1 X0 X3 X4 X5 X X7 X

300003005 |1 ‘2 |3 |4 |5 |6 |7 |8
4\2 00000 0 5

Let A ={1,2,3}, B=1{3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
r(AuUB)=4,r(ANB)=1<r(C)=2.
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Other Examples
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2301 3 1 iR
200 304002 4|

— | X1 X0 X3 X4 X5 X X7 X

300003005 |1 |2 |3 ‘4 ’5 ’6 |7 |8
4\2 00 000 0 5

Let A={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3, "(BUB,)=3,r(AUB,) =4, r(BUA,) =4.
r(AuUB)=4,r(ANB)=1<r(C)=2.
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Other Examples
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2301 3 1 T
200 30400 2 4|

— | X1 X0 X3 X4 X5 X X7 X

3o 0003005 |1 ‘2 |3 |4 |5 ’6 |7 |8
4\2 00 0000 5

Let A={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,)=3, r(AUB,) =4, r(BUA,) =4.
r(AuUB)=4,r(ANB)=1<r(C)=2.
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Other Examples
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2301 3 1 W
200 30400 2 4|

— | X1 X2 X3 X4 X5 X X7 X

300003005 |1 |2 |3 ‘4 |5 ’6 |7 |8
4\2 00 00 00 5

Let A={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA,)=3r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C)=2.
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Other Examples
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2301 3 1 . D |
200 30400 2 4|

— | X1 X0 X3 X4 X5 X X7 X

300003005 |1 ‘2 |3 |4 |5 ’6 |7 |8
4\2 00 0000 5

Let A={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA,) =3 r(BUB,) =3, rAUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C)=2.
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Other Examples
IR NNNARAY

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2301 3 1 =
200 30400 24|

— | X1 X0 X3 X4 X5 X X7 X

300003005 |1 |2 |3 |4 |5 ’6 |7 |8
4\2 00 0000 5

Let A =1{1,2,3}, B=1{3,4,5}, C ={6,7}, A, ={1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA4,)=3r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
r(AUB) =4, r(ANB)=1<r(C)=2.
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Other Examples
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2301 3 1 Y B
200 30400 2 4|

— | X1 X0 X3 X4 X5 X X7 X

3o 0003005 |1 ‘2 |3 ’4 ’5 ’6 |7 |8
4\2 00 0000 5

Let A =1{1,2,3}, B=1{3,4,5}, C ={6,7}, A, ={1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA,)=3r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
r(AuB) =4, r(AnB)=1 <r(C)=2.
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Other Examples
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2 3001 3 1 B B
200 30400 2 4|

— | X1 X0 X3 X4 X5 X X7 X

3o 0003005 |1 ‘2 ‘3 ‘4 ’5 |6 |7 |8
4\2 00 0000 5

Let A =1{1,2,3}, B=1{3,4,5}, C ={6,7}, A, ={1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

r(AUA4,)=3r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1 <r(C)=2.
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V = {1,2,3,4,5,6,7,8}.

12345678

1 2 3 4 5 6 7 8

1/0 2 2301 3 1 Ll
200 30400 2 4|

— | X1 X0 X3 X4 X5 X X7 X

300003005 |1 ‘2 ‘3 ‘4 ’5 ’6 |7 |8
4\2 000000 5

Let A={1,2,3}, B={3,4,5}, C = {6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.

r(AuC) =3, r(BUC)=3.

(AUA)—3 r(BUB,) =3, r(AUB,) =4, r(BUA,) =
r(AUB) =4, r(AnB)=1 <r(C)=2.

6= r(A)+1"(B)>r(AUB)—|—r(AﬂB) =5
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Rank function of a matrix

o Let A, B CV be two subsets of column indices.
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Rank function of a matrix

o Let A, B CV be two subsets of column indices.
@ The rank of the two sets unioned together A U B is no more than the
sum of the two individual ranks.
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Rank function of a matrix

o Let A, B CV be two subsets of column indices.

@ The rank of the two sets unioned together A U B is no more than the
sum of the two individual ranks.

@ In Venn diagram, Let area correspond to dimensions spanned by
vectors indexed by a set. Hence, (A) can be viewed as an area.
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Rank function of a matrix

o Let A, B CV be two subsets of column indices.
@ The rank of the two sets unioned together A U B is no more than the

sum of the two individual ranks.
@ In Venn diagram, Let area correspond to dimensions spanned by

vectors indexed by a set. Hence r(A) can be viewed as an area.

> r(AUB)

r
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Rank function of a matrix

o Let A, B CV be two subsets of column indices.

@ The rank of the two sets unioned together A U B is no more than the
sum of the two individual ranks.

@ In Venn diagram, Let area correspond to dimensions spanned by
vectors indexed by a set. Hence, (A) can be viewed as an area.

fA) + r(B) > r(AUB)

@ If some of the dimensions spanned by A overlap some of the
dimensions spanned by B (i.e., if 3 common span), then that area is
counted twice in 7(A) 4+ r(B), so the inequality will be strict.
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Rank function of a matrix

o Let A, B CV be two subsets of column indices.

@ The rank of the two sets unioned together A U B is no more than the
sum of the two individual ranks.

@ In Venn diagram, Let area correspond to dimensions spanned by
vectors indexed by a set. Hence r(A) can be viewed as an area.

r(A >  r(AUB)
@ If some of the dimensions spanned by A overlap some of the

dimensions spanned by B (i.e., if 3 common span), then that area is

counted twice in 7(A) + r(B), so the inequality will be strict.

@ Any function where the above inequality is true for all A, B C V is
called subadditive.
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Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.
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Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

@ Let C' index vectors spanning dimensions common to A and B.
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Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

@ Let C index vectors spanning dimensions common to A and B.

@ Let A, index vectors spanning dimensions spanned by A but not B.
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Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

@ Let C index vectors spanning dimensions common to A and B.
@ Let A, index vectors spanning dimensions spanned by A but not B.

@ Let B, index vectors spanning dimensions spanned by B but not A.
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Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

@ Let C index vectors spanning dimensions common to A and B.

@ Let A, index vectors spanning dimensions spanned by A but not B.
@ Let B, index vectors spanning dimensions spanned by B but not A.
@ Then, r(A) =7(C) +r(A4,)
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Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C' index vectors spanning dimensions common to A and B.

Let A, index vectors spanning dimensions spanned by A but not B.

Then, r(A) =r(C) +r(A,)

°
°
@ Let B, index vectors spanning dimensions spanned by B but not A.
°
e Similarly, r(B) = r(C) + r(B,).
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Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C' index vectors spanning dimensions common to A and B.

Let A, index vectors spanning dimensions spanned by A but not B.
Let B, index vectors spanning dimensions spanned by B but not A.
Then, r(A) =r(C) +r(A,)

Similarly, r(B) = r(C) + r(B,).

Then r(A) + r(B) counts the dimensions spanned by C' twice, i.e.,

r(A) +r(B) =1r(A;) +2r(C) + r(B,). (3.64)
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Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C' index vectors spanning dimensions common to A and B.

Let A, index vectors spanning dimensions spanned by A but not B.
Let B, index vectors spanning dimensions spanned by B but not A.
Then, r(A) =r(C) +r(A,)

Similarly, r(B) = r(C) + r(B,).

Then r(A) + r(B) counts the dimensions spanned by C' twice, i.e.,

r(A) +r(B) =r(A;) +2r(C) 4+ r(B,). (3.64)

But 7(A U B) counts the dimensions spanned by C' only once.

r(AUB) =r(A,) +7(C)+r(B,) (3.65)
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Rank functions of a matrix

@ Then r(A) + r(B) counts the dimensions spanned by C' twice, i.e.,

r(A)+r(B) = r(A,) +2r(C) +
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Rank functions of a matrix

@ Then r(A) + r(B) counts the dimensions spanned by C' twice, i.e.,

r(A)+r(B) =r(A;)+2r(C)+ r(B,)

e But r(A U B) counts the dimensions spanned by C only once.

r(AUB) =r(A,)+r(C)+ r(B,)
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Rank functions of a matrix

@ Then r(A) + r(B) counts the dimensions spanned by C' twice, i.e.,

r(A)+r(B) =r(A;)+2r(C)+ r(B,)

e But r(A U B) counts the dimensions spanned by C only once.

r(AUB) =r(A,)+r(C)+ r(B,)

@ Thus, we have subadditivity: 7(A) 4+ r(B) > r(AU B). Can we add

more to the r.h.s. and still have an inequality? Yes.
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Rank function of a matrix

e Note, 7(AN B) < r(C). Why? Vectors indexed by AN B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C').

r(C) > r(AN B)

In short:
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Rank function of a matrix

e Note, 7(AN B) < r(C). Why? Vectors indexed by AN B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C').

r(C) > r(AN B)

In short:
e Common span (blue) is “more” (no less) than span of common index
(magenta).
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Rank function of a matrix

e Note, 7(AN B) < r(C). Why? Vectors indexed by AN B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C').

r(C) > r(AN B)

In short:
e Common span (blue) is “more” (no less) than span of common index
(magenta).
@ More generally, common information (blue) is “more” (no less) than
information within common index (magenta).
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The Venn and Art of Submodularity

r(A)+r(B) 2 r(AUB) 4 r(ANB)

=r(A)+2r(C)+r(B,) =r(A)+r(C)+r(B,) =r(ANB)

AN N
\\% i/: ;‘ : 4
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Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).
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Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).

@ For each X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.
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Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).

@ For each X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.

@ We can think of S as a set of sets of vectors from the matrix rank
example, and for each s € S, let X being a set of vector indices.
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Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).

@ For each X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.

@ We can think of S as a set of sets of vectors from the matrix rank
example, and for each s € S, let X being a set of vector indices.

@ Then, defining f : 25 — R as follows,
f(X) = r(Uses Xs) (3.66)

we have that f is submodular, and is known to be a polymatroid rank
function.
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Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S'is a
subspace of dimension > 1).

@ For each X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.

@ We can think of S as a set of sets of vectors from the matrix rank
example, and for each s € S, let X being a set of vector indices.

@ Then, defining f : 25 — R, as follows,
F(X) =r(Uses Xs) (3.66)

we have that f is submodular, and is known to be a polymatroid rank
function.

@ In general (as we will see) polymatroid rank functions are submodular,
normalized f(()) = 0, and monotone non-decreasing (f(A) < f(B)
whenever A C B).
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Spanning trees

@ Let E be a set of edges of some graph G = (V, E), and let r(S) for
S C E be the maximum size (in terms of number of edges) spanning

forest in the vertex-induced graph, induced by vertices incident to

edges S.
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Other Examples

Spanning trees

o Let E be a set of edges of some graph G = (V, E), and let r(S) for
S C E be the maximum size (in terms of number of edges) spanning
forest in the vertex-induced graph, induced by vertices incident to
edges S.

e Example: Given G = (V, E), V =1{1,2,3,4,5,6,7,8},
E={1,2,...,12}. S={1,2,3,4,5,8,9} C E. Two spanning trees
have the same edge count (the rank of 5).
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Spanning trees

o Let E be a set of edges of some graph G = (V, E), and let r(S) for
S C E be the maximum size (in terms of number of edges) spanning
forest in the vertex-induced graph, induced by vertices incident to
edges S.

e Example: Given G = (V,E), V ={1,2,3,4,5,6,7,8},
E={1,2,...,12}. S ={1,2,3,4,5,8,9} C E. Two spanning trees
have the same edge count (the rank of .S).

@ Then r(S) is submodular, and is another matrix rank function
corresponding to the incidence matrix of the graph.
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