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Logistics Review

Cumulative Outstanding Reading

Read chapter 1 from Fujishige’s book.
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Logistics Review

Announcements, Assignments, and Reminders

Homework 1 is now available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Friday at 5:00pm.

Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google
hangout (set up meeting via our our discussion board (https:
//canvas.uw.edu/courses/1039754/discussion_topics)).
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Logistics Review

Class Road Map - IT-I

L1(3/28): Motivation, Applications, &
Basic Definitions

L2(3/30): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).

L3(4/4): Info theory exs, more apps,
definitions, graph/combinatorial examples,
matrix rank example, visualization

L4(4/6):

L5(4/11):

L6(4/13):

L7(4/18):

L8(4/20):

L9(4/25):

L10(4/27):

L11(5/2):

L12(5/4):

L13(5/9):

L14(5/11):

L15(5/16):

L16(5/18):

L17(5/23):

L18(5/25):

L19(6/1):

L20(6/6): Final Presentations
maximization.

Finals Week: June 6th-10th, 2016.
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Logistics Review

Two Equivalent Submodular Definitions

Definition 3.2.1 (submodular concave)

A function f : 2V → R is submodular if for any A,B ⊆ V , we have that:

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (3.8)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.2.2 (diminishing returns)

A function f : 2V → R is submodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B) (3.9)

The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as
the context in which v is considered grows from A to B.
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Two Equivalent Supermodular Definitions

Definition 3.2.1 (supermodular)

A function f : 2V → R is supermodular if for any A,B ⊆ V , we have that:

f(A) + f(B) ≤ f(A ∪B) + f(A ∩B) (3.8)

Definition 3.2.2 (supermodular (improving returns))

A function f : 2V → R is supermodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≤ f(B ∪ {v})− f(B) (3.9)

Incremental “value”, “gain”, or “cost” of v increases (improves) as the
context in which v is considered grows from A to B.
A function f is submodular iff −f is supermodular.
If f both submodular and supermodular, then f is said to be modular,
and f(A) = c+

∑
a∈A f(a) (often c = 0).
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Logistics Review

Submodularity’s utility in ML

A model of a physical process :
When maximizing, submodularity naturally models: diversity, coverage,
span, and information.
When minimizing, submodularity naturally models: cooperative costs,
complexity, roughness, and irregularity.
vice-versa for supermodularity.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence,
structured sparse convex norms for use in regularization).

Itself, as an object or function to learn , based on data.

A surrogate or relaxation strategy for optimization or analysis
An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a means
towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.
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Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples

Ground set: E or V ?

Submodular functions are functions defined on subsets of some finite set,
called the ground set .

It is common in the literature to use either E or V as the ground set
— we will at different times use both (there should be no confusion).

The terminology ground set comes from lattice theory, where V are
the ground elements of a lattice (just above 0).
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Notation RE

What does x ∈ RE mean?

RE = {x = (xj ∈ R : j ∈ E)} (3.1)

RE
+ = {x = (xj : j ∈ E) : x ≥ 0} (3.2)

Any vector x ∈ RE can be treated as a normalized modular function, and
vice verse. That is

x(A) =
∑

a∈A
xa (3.3)

Note that x is said to be normalized since x(∅) = 0.
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characteristic vectors of sets & modular functions

Given an A ⊆ E, define the vector 1A ∈ RE
+ to be

1A(j) =

{
1 if j ∈ A;

0 if j /∈ A
(3.4)

Sometimes this will be written as χA ≡ 1A.

Thus, given modular function x ∈ RE , we can write x(A) in a variety
of ways, i.e.,

x(A) = x · 1A =
∑

i∈A
x(i) (3.5)
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Other Notation: singletons and sets

When A is a set and k is a singleton (i.e., a single item), the union is
properly written as A ∪ {k}, but sometimes we will write just A+ k.
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What does ST mean when S and T are arbitrary sets?

Let S and T be two arbitrary sets (either of which could be countable,
or uncountable).

We define the notation ST to be the set of all functions that map from
T to S. That is, if f ∈ ST , then f : T → S.

Hence, given a finite set E, RE is the set of all functions that map
from elements of E to the reals R, and such functions are identical to
a vector in a vector space with axes labeled as elements of E (i.e., if
m ∈ RE , then for all e ∈ E, m(e) ∈ R).

Often “2” is shorthand for the set {0, 1}. I.e., R2 where 2 ≡ {0, 1}.
Similarly, 2E is the set of all functions from E to “two” — so 2E is
shorthand for {0, 1}E

— hence, 2E is the set of all functions that map
from elements of E to {0, 1}, equivalent to all binary vectors with
elements indexed by elements of E, equivalent to subsets of E. Hence,
if A ∈ 2E then A ⊆ E.

What might 3E mean?
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Example Submodular: Entropy from Information Theory

Entropy is submodular. Let V be the index set of a set of random
variables, then the function

f(A) = H(XA) = −
∑

xA

p(xA) log p(xA) (3.6)

is submodular.

Proof: (further) conditioning reduces entropy. With A ⊆ B and v /∈ B,

H(Xv|XB) = H(XB+v)−H(XB) (3.7)

≤ H(XA+v)−H(XA) = H(Xv|XA) (3.8)

We say “further” due to B \A not nec. empty.
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Example Submodular: Entropy from Information Theory

Alternate Proof: Conditional mutual Information is always non-negative.

Given A,B ⊆ V , consider conditional mutual information quantity:

I(XA\B;XB\A|XA∩B) =
∑

xA∪B

p(xA∪B) log
p(xA\B, xB\A|xA∩B)

p(xA\B|xA∩B)p(xB\A|xA∩B)

=
∑

xA∪B

p(xA∪B) log
p(xA∪B)p(xA∩B)

p(xA)p(xB)
≥ 0 (3.9)

then

I(XA\B;XB\A|XA∩B)

= H(XA) +H(XB)−H(XA∪B)−H(XA∩B) ≥ 0 (3.10)

so entropy satisfies

H(XA) +H(XB) ≥ H(XA∪B) +H(XA∩B) (3.11)
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Information Theory: Block Coding

Given a set of random variables {Xi}i∈V indexed by set V , how do we
partition them so that we can best block-code them within each block.

I.e., how do we form S ⊆ V such that I(XS ;XV \S) is as small as
possible, where I(XA;XB) is the mutual information between random
variables XA and XB, i.e.,

I(XA;XB) = H(XA) +H(XB)−H(XA, XB) (3.12)

and H(XA) = −∑xA
p(xA) log p(xA) is the joint entropy of the set

XA of random variables.
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Example Submodular: Mutual Information

Also, symmetric mutual information is submodular,

f(A) = I(XA;XV \A) = H(XA) +H(XV \A)−H(XV ) (3.13)

Note that f(A) = H(XA) and f̄(A) = H(XV \A), and adding
submodular functions preserves submodularity (which we will see quite
soon).
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Information Theory: Network Communication
X1, Y1 X2, Y2

X3, Y3

X4, Y4. . .

Xm, Ym

A network of senders/receivers

Each sender Xi is trying to
communicate simultaneously
with each receiver Yi (i.e., for all
i, Xi is sending to {Yi}i
The Xi are not necessarily
independent.

Communication rates from i to j are R(i→j) to send message

W (i→j) ∈
{

1, 2, . . . , 2nR
(i→j)

}
.

Goal: necessary and sufficient conditions for achievability.
I.e., can we find functions f such that any rates must satisfy

∀S ⊆ V,
∑

i∈S,j∈V \S

R(i→j) ≤ f(S) (3.14)

Special cases MAC (Multi-Access Channel) for communication over
p(y|x1, x2) and Slepian-Wolf compression (independent compression of
X and Y but at joint rate H(X,Y )).
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Monge Matrices

m× n matrices C = [cij ]ij are called Monge matrices if they satisfy
the Monge property, namely:

cij + crs ≤ cis + crj (3.15)

for all 1 ≤ i < r ≤ m and 1 ≤ j < s ≤ n.

Equivalently, for all 1 ≤ i, r ≤ m, 1 ≤ j, s ≤ n,

cmin(i,r),min(j,s) + cmax(i,r),max(j,s) ≤ cis + crj (3.16)

Consider four elements of the m× n matrix:

cij

crs

cis

crjm

n

i

j

r

s

cij

crs

cis

crjm

n

i

j

r

s

A

B

C

D

cij = A+B, crj = B, crs = B +D, cis = A+B + C +D.
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Monge Matrices, where useful

Useful for speeding up many transportation, dynamic programming,
flow, search, lot-sizing and many other problems.

Example, Hitchcock transportation problem: Given m× n cost matrix
C = [cij ]ij , a non-negative supply vector a ∈ Rm

+ , a non-negative
demand vector b ∈ Rn

+ with
∑m

i=1 a(i) =
∑n

j=1 bj , we wish to
optimally solve the following linear program:

minimize
X∈Rm×n

m∑

i=1

n∑

j=1

cijxij (3.17)

subject to
m∑

i=1

xij = bj ∀j = 1, . . . , n (3.18)

n∑

j=1

xij = ai ∀i = 1, . . . ,m (3.19)

xi,j ≥ 0 ∀i, j (3.20)
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Monge Matrices, Hitchcock transportation

a1

a2

a3

b1 b2 b3 b4

C

0 1 3 3
10

14940

1 4 7
2

1
5

3 2 1 2

Producers,
Sources,

or Supply

Consumers, Sinks, or
Demand

Solving the linear program can be done easily and optimally using the
“North West Corner Rule” in only O(m+ n) if the matrix C is Monge!
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Monge Matrices and Convex Polygons

Can generate a Monge matrix from a convex polygon - delete two
segments, then separately number vertices on each chain. Distances
cij satisfy Monge property (or quadrangle inequality).

d(p2, q3) + d(p3, q4) ≤ d(p2, q4) + d(p3, q3) (3.21)
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Monge Matrices and Submodularity

A submodular function has the form: f : 2V → R which can be seen
as f : {0, 1}V → R

We can generalize this to f : {0,K}V → R for some constant K ∈ Z+.

We may define submodularity as: for all x, y ∈ {0,K}V , we have

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) (3.22)

x ∨ y is the (join) element-wise min of each element, that is
(x ∨ y)(v) = min(x(v), y(v)) for v ∈ V .

x ∧ y is the (meet) element-wise min of each element, that is,
(x ∧ y)(v) = max(x(v), y(v)) for v ∈ V .

With K = 1, then this is the standard definition of submodularity.

With |V | = 2, and K + 1 the side-dimension of the matrix, we get a
Monge property (on square matrices).
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Two Equivalent Submodular Definitions

Definition 3.6.1 (submodular concave)

A function f : 2V → R is submodular if for any A,B ⊆ V , we have that:

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (3.8)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.6.2 (diminishing returns)

A function f : 2V → R is submodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B) (3.9)

The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as
the context in which v is considered grows from A to B.
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Submodular on Hypercube Verticies

Test submodularity via values on verticies of hypercube.

Example: with |V | = n = 2, this is
easy:

00 01

1110

With |V | = n = 3, a bit harder.

000

001100 010

011101110

111

How many inequalities?
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Subadditive Definitions

Definition 3.6.1 (subadditive)

A function f : 2V → R is subadditive if for any A,B ⊆ V , we have that:

f(A) + f(B) ≥ f(A ∪B) (3.23)

This means that the “whole” is less than the sum of the parts.
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Two Equivalent Supermodular Definitions

Definition 3.6.1 (supermodular)

A function f : 2V → R is supermodular if for any A,B ⊆ V , we have that:

f(A) + f(B) ≤ f(A ∪B) + f(A ∩B) (3.8)

Definition 3.6.2 (supermodular (improving returns))

A function f : 2V → R is supermodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≤ f(B ∪ {v})− f(B) (3.9)

Incremental “value”, “gain”, or “cost” of v increases (improves) as the
context in which v is considered grows from A to B.
A function f is submodular iff −f is supermodular.
If f both submodular and supermodular, then f is said to be modular,
and f(A) = c+

∑
a∈A f(a) (often c = 0).
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Superadditive Definitions

Definition 3.6.2 (superadditive)

A function f : 2V → R is superadditive if for any A,B ⊆ V , we have that:

f(A) + f(B) ≤ f(A ∪B) (3.24)

This means that the “whole” is greater than the sum of the parts.

In general, submodular and subadditive (and supermodular and
superadditive) are different properties.

Ex: Let 0 < k < |V |, and consider f : 2V → R+ where:

f(A) =

{
1 if |A| ≤ k
0 else

(3.25)

This function is subadditive but not submodular.
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Modular Definitions

Definition 3.6.3 (modular)

A function that is both submodular and supermodular is called modular

If f is a modular function, than for any A,B ⊆ V , we have

f(A) + f(B) = f(A ∩B) + f(A ∪B) (3.26)

In modular functions, elements do not interact (or cooperate, or compete,
or influence each other), and have value based only on singleton values.

Proposition 3.6.4

If f is modular, it may be written as

f(A) = f(∅) +
∑

a∈A

(
f({a})− f(∅)

)
= c+

∑

a∈A
f ′(a) (3.27)

which has only |V |+ 1 parameters.
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Modular Definitions

Proof.

We inductively construct the value for A = {a1, a2, . . . , ak}.
For k = 2,

f(a1) + f(a2) = f(a1, a2) + f(∅) (3.28)

implies f(a1, a2) = f(a1)− f(∅) + f(a2)− f(∅) + f(∅) (3.29)

then for k = 3,

f(a1, a2) + f(a3) = f(a1, a2, a3) + f(∅) (3.30)

implies f(a1, a2, a3) = f(a1, a2)− f(∅) + f(a3)− f(∅) + f(∅) (3.31)

= f(∅) +

3∑

i=1

(
f(ai)− f(∅)

)
(3.32)

and so on . . .
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Complement function

Given a function f : 2V → R, we can find a complement function
f̄ : 2V → R as f̄(A) = f(V \A) for any A.

Proposition 3.6.5

f̄ is submodular if f is submodular.

Proof.

f̄(A) + f̄(B) ≥ f̄(A ∪B) + f̄(A ∩B) (3.33)

follows from

f(V \A) + f(V \B) ≥ f(V \ (A ∪B)) + f(V \ (A ∩B)) (3.34)

which is true because V \ (A ∪B) = (V \A) ∩ (V \B) and
V \ (A ∩B) = (V \A) ∪ (V \B) (De Morgan’s laws for sets).

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016 F31/63 (pg.57/187)



Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples

Undirected Graphs

Let G = (V,E) be a graph with vertices V = V (G) and edges
E = E(G) ⊆ V × V .

If G is undirected, define

E(X,Y ) = {{x, y} ∈ E(G) : x ∈ X \ Y, y ∈ Y \X} (3.35)

as the edges strictly between X and Y .
Nodes define cuts, define the cut function δ(X) = E(X,V \X).

G = (V ,E )

S={a,b,c} δG (S) = {{u, v}∈ E : u ∈ S , v ∈ V \ S}.

a

b

c

e
f

h

g

d

 = {{a,d},{b,d},{b,e},{c,e},{c,f}}
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Directed graphs, and cuts and flows
If G is directed, define

E+(X,Y ) , {(x, y) ∈ E(G) : x ∈ X \ Y, y ∈ Y \X} (3.36)

as the edges directed strictly from X towards Y .

Nodes define cuts and flows. Define edges leaving X (out-flow) as

δ+(X) , E+(X,V \X) (3.37)

and edges entering X (in-flow) as

δ−(X) , E+(V \X,X) (3.38)

S={a,b,c}

a

b

c

e
f

h

g

d

δG (S) = {(u, v ) ∈ E : u ∈ S , v ∈ V \ S}.
 = {(b,e) ,(c,f)}

+

 = {(d,a) ,(d,b) ,(e,c)}
δG (S) = {(v , u) ∈ E : u ∈ S , v ∈ V \ S}.-
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The Neighbor function in undirected graphs

Given a set X ⊆ V , the neighbor function of X is defined as

Γ(X) , {v ∈ V (G) \X : E(X, {v}) 6= ∅} (3.39)

Example:

a

b

c

e
f

h

g

d

G = (V,E)

S = {a, b, c}

Γ(S) = {d, e, f}
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Directed Cut function: property

Lemma 3.7.1

For a digraph G = (V,E) and any X,Y ⊆ V : we have

|δ+(X)|+ |δ+(Y )|
= |δ+(X ∩ Y )|+ |δ+(X ∪ Y )|+ |E+(X,Y )|+ |E+(Y,X)| (3.40)

and

|δ−(X)|+ |δ−(Y )|
= |δ−(X ∩ Y )|+ |δ−(X ∪ Y )|+ |E−(X,Y )|+ |E−(Y,X)| (3.41)
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Directed Cut function: proof of property
Proof.

We can prove this using a simple geometric counting argument (δ−(X) is
similar)

X V \ X

Y

V \ Y

X V \ X

Y

V \ Y

X V \ X

Y

V \ Y

X V \ X

Y

V \ Y

(e)

(e)

(b)
(a)

(a)

(b)

(b)
(b)

(c)

(c)

(f )

(f )

(g)

(g)

(d)

(d)

X V \ X

Y

V \ Y

X V \ X

Y

V \ Y

|δ+(X )| |δ+(Y )|

|δ+(X ∩ Y )| |δ+(X ∪ Y )|

|E+(X ,Y )| |E+(Y ,X )|
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Directed cut/flow functions: submodular

Lemma 3.7.2

For a digraph G = (V,E) and any X,Y ⊆ V : both functions |δ+(X)| and
|δ−(X)| are submodular.

Proof.

|E+(X,Y )| ≥ 0 and |E−(X,Y )| ≥ 0.

More generally, in the non-negative weighted case, both in-flow and
out-flow are submodular on subsets of the vertices.
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Undirected Cut/Flow & the Neighbor function: submodular

Lemma 3.7.3

For an undirected graph G = (V,E) and any X,Y ⊆ V : we have that both
the undirected cut (or flow) function |δ(X)| and the neighbor function
|Γ(X)| are submodular. I.e.,

|δ(X)|+ |δ(Y )| = |δ(X ∩ Y )|+ |δ(X ∪ Y )|+ 2|E(X,Y )| (3.42)

and

|Γ(X)|+ |Γ(Y )| ≥ |Γ(X ∩ Y )|+ |Γ(X ∪ Y )| (3.43)

Proof.

Eq. (3.42) follows from Eq. (3.40): we replace each undirected edge
{u, v} with two oppositely-directed directed edges (u, v) and (v, u).
Then we use same counting argument.

Eq. (3.43) follows as shown in the following page.

. . .
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Undirected Neighbor function
cont.

X Y(a) (b)

(c)

(f )

(g)

(h)
(e)

(d)

Graphically, we can count and see that

Γ(X) = (a) + (c) + (f) + (g) + (d) (3.44)

Γ(Y ) = (b) + (c) + (e) + (h) + (d) (3.45)

Γ(X ∪ Y ) = (a) + (b) + (c) + (d) (3.46)

Γ(X ∩ Y ) = (c) + (g) + (h) (3.47)

so

|Γ(X)|+ |Γ(Y )| = (a) + (b) + 2(c) + 2(d) + (e) + (f) + (g) + (h)

≥ (a) + (b) + 2(c) + (d) + (g) + (h) = |Γ(X ∪ Y )|+ |Γ(X ∩ Y )| (3.48)
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Undirected Neighbor functions

Therefore, the undirected cut function |δ(A)| and the neighbor function
|Γ(A)| of a graph G are both submodular.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016 F40/63 (pg.73/187)



Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples

Undirected cut/flow is submodular: alternate proof

Another simple proof shows that |δ(X)| is submodular.

Define a graph Guv = ({u, v}, {e}, w) with two nodes u, v and one
edge e = {u, v} with non-negative weight w(e) ∈ R+.
Cut weight function over those two nodes: w(δu,v(·)) has valuation:

w(δu,v(∅)) = w(δu,v({u, v})) = 0 (3.49)

and

w(δu,v({u})) = w(δu,v({v})) = w ≥ 0 (3.50)

Thus, w(δu,v(·)) is submodular since

w(δu,v({u})) + w(δu,v({v})) ≥ w(δu,v({u, v})) + w(δu,v(∅)) (3.51)

General non-negative weighted graph G = (V,E,w), define w(δ(·)):

f(X) = w(δ(X)) =
∑

(u,v)∈E(G)

w(δu,v(X ∩ {u, v})) (3.52)

This is easily shown to be submodular using properties we will soon see
(namely, submodularity closed under summation and restriction).
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Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.

Let V (X) be the vertices adjacent to some edge in X ⊆ E(G), then
|V (X)| (the vertex function) is submodular.

Let E(S) be the edges with both vertices in S ⊆ V (G). Then |E(S)|
(the interior edge function) is supermodular.
Let I(S) be the edges with at least one vertex in S ⊆ V (G). Then
|I(S)| (the incidence function) is submodular.
Recall |δ(S)|, is the set size of edges with exactly one vertex in
S ⊆ V (G) is submodular (cut size function). Thus, we have
I(S) = E(S) ∪ δ(S) and E(S) ∩ δ(S) = ∅, and thus that
|I(S)| = |E(S)|+ |δ(S)|.

So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?

Consider f(A) = |δ+(A)| − |δ+(V \A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one and
prove it.
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Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.

Let V (X) be the vertices adjacent to some edge in X ⊆ E(G), then
|V (X)| (the vertex function) is submodular.
Let E(S) be the edges with both vertices in S ⊆ V (G). Then |E(S)|
(the interior edge function) is supermodular.
Let I(S) be the edges with at least one vertex in S ⊆ V (G). Then
|I(S)| (the incidence function) is submodular.
Recall |δ(S)|, is the set size of edges with exactly one vertex in
S ⊆ V (G) is submodular (cut size function). Thus, we have
I(S) = E(S) ∪ δ(S) and E(S) ∩ δ(S) = ∅, and thus that
|I(S)| = |E(S)|+ |δ(S)|. So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?
Consider f(A) = |δ+(A)| − |δ+(V \A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one and
prove it.
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Number of connected components in a graph via edges

Recall, f : 2V → R is submodular, then so is f̄ : 2V → R defined as
f̄(S) = f(V \ S).

Hence, if f : 2V → R is supermodular, then so is f̄ : 2V → R defined
as f̄(S) = f(V \ S).
Given a graph G = (V,E), for each A ⊆ E(G), let c(A) denote the
number of connected components of the (spanning) subgraph
(V (G), A), with c : 2E → R+.
c(A) is monotone non-increasing, c(A+ a)− c(A) ≤ 0 .
Then c(A) is supermodular, i.e.,

c(A+ a)− c(A) ≤ c(B + a)− c(B) (3.53)

with A ⊆ B ⊆ E \ {a}.
Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of conected components) when
edge is added in a smaller context than when added in a larger context.
c̄(A) = c(E \A) is the number of connected components in G when
we remove A, so is also supermodular, but monotone non-decreasing.
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f̄(S) = f(V \ S).
Hence, if f : 2V → R is supermodular, then so is f̄ : 2V → R defined
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Given a graph G = (V,E), for each A ⊆ E(G), let c(A) denote the
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(V (G), A), with c : 2E → R+.
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Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of conected components) when
edge is added in a smaller context than when added in a larger context.
c̄(A) = c(E \A) is the number of connected components in G when
we remove A, so is also supermodular, but monotone non-decreasing.
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Recall, f : 2V → R is submodular, then so is f̄ : 2V → R defined as
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with A ⊆ B ⊆ E \ {a}.
Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of conected components) when
edge is added in a smaller context than when added in a larger context.
c̄(A) = c(E \A) is the number of connected components in G when
we remove A, so is also supermodular, but monotone non-decreasing.
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Given a graph G = (V,E), for each A ⊆ E(G), let c(A) denote the
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Then c(A) is supermodular, i.e.,

c(A+ a)− c(A) ≤ c(B + a)− c(B) (3.53)

with A ⊆ B ⊆ E \ {a}.

Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of conected components) when
edge is added in a smaller context than when added in a larger context.
c̄(A) = c(E \A) is the number of connected components in G when
we remove A, so is also supermodular, but monotone non-decreasing.
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edge is added in a smaller context than when added in a larger context.

c̄(A) = c(E \A) is the number of connected components in G when
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Recall, f : 2V → R is submodular, then so is f̄ : 2V → R defined as
f̄(S) = f(V \ S).
Hence, if f : 2V → R is supermodular, then so is f̄ : 2V → R defined
as f̄(S) = f(V \ S).
Given a graph G = (V,E), for each A ⊆ E(G), let c(A) denote the
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c(A) is monotone non-increasing, c(A+ a)− c(A) ≤ 0 .
Then c(A) is supermodular, i.e.,

c(A+ a)− c(A) ≤ c(B + a)− c(B) (3.53)

with A ⊆ B ⊆ E \ {a}.
Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of conected components) when
edge is added in a smaller context than when added in a larger context.
c̄(A) = c(E \A) is the number of connected components in G when
we remove A, so is also supermodular, but monotone non-decreasing.
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Graph Strength

So c̄(A) = c(E \A) is the number of connected components in G
when we remove A, is supermodular.

Maximizing c̄(A) might seem as a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.

An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.

Let G = (V,E,w) with w : E → R+ be a weighted graph with
non-negative weights.

For (u, v) = e ∈ E, let w(e) be a measure of the strength of the
connection between vertices u and v (strength meaning the difficulty
of cutting the edge e).
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Graph Strength

Then w(A) for A ⊆ E is a modular function

w(A) =
∑

e∈A
we (3.54)

so that w(E(G[S])) is the “internal strength” of the vertex set S.
Notation: S is a set of nodes, G[S] is the vertex-induced subgraph of G induced by
vertices S, E(G[S]) are the edges contained within this induced subgraph, and
w(E(G[S])) is the weight of these edges.

Suppose removing A shatters G into a graph with c̄(A) > 1
components — then w(A)/(c̄(A)− 1) is like the “effort per achieved
component” for a network attacker.
A form of graph strength can then be defined as the following:

strength(G,w) = min
A⊆E(G):c̄(A)>1

w(A)

c̄(A)− 1
(3.55)

Graph strength is like the minimum effort per component. An attacker
would use the argument of the min to choose which edges to attack. A
network designer would maximize, over G and/or w, the graph
strength, strength(G,w).
Since submodularity, problems have strongly-poly-time solutions.
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Then w(A) for A ⊆ E is a modular function
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would use the argument of the min to choose which edges to attack. A
network designer would maximize, over G and/or w, the graph
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Submodularity, Quadratic Structures, and Cuts

Lemma 3.7.4

Let M ∈ Rn×n be a symmetric matrix and m ∈ Rn be a vector. Then
f : 2V → R defined as

f(X) = mᵀ1X +
1

2
1ᵀXM1X (3.56)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.

Given a complete graph G = (V,E), recall that E(X) is the edge set
with both vertices in X ⊆ V (G), and that |E(X)| is supermodular.

Non-negative modular weights w+ : E → R+, w(E(X)) is also
supermodular, so −w(E(X)) (non-positive modular) is submodular.

f is a modular function mᵀ1A = m(A) added to a weighted
submodular function, hence f is submodular.

. . .
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Submodularity, Quadratic Structures, and Cuts

Proof of Lemma 3.7.4 cont.

Conversely, suppose f is submodular.

Then f({u}) + f({v}) ≥ f({u, v}) + f(∅) while f(∅) = 0.

Then:

0 ≤ f({u}) + f({v})− f({u, v}) (3.57)

= m(u) +
1

2
Mu,u +m(v) +

1

2
Mv,v (3.58)

−
(
m(u) +m(v) +

1

2
Mu,u +Mu,v +

1

2
Mv,v

)
(3.59)

= −Mu,v (3.60)

So that ∀u, v ∈ V , Mu,v ≤ 0.
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Submodularity, Quadratic Structures, and Cuts

Proof of Lemma 3.7.4 cont.
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1

2
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1

2
Mv,v (3.58)

−
(
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1

2
Mu,u +Mu,v +

1

2
Mv,v

)
(3.59)
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Set Cover and Maximum Coverage

We are given a finite set V of n elements and a set of subsets
V = {V1, V2, . . . , Vm} of m subsets of V , so that Vi ⊆ V and⋃

i Vi = V .

The goal of minimum set cover is to choose the smallest subset
A ⊆ [m] , {1, . . . ,m} such that

⋃
a∈A Va = V .

Maximum k cover: The goal in maximum coverage is, given an
integer k ≤ m, select k subsets, say {a1, a2, . . . , ak} with ai ∈ [m]
such that |⋃k

i=1 Vai | is maximized.

Both Set cover and maximum coverage are well known to be
NP-hard, but have a fast greedy approximation algorithm.
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Other Covers

Definition 3.7.5 (vertex cover)

A vertex cover (a “vertex-based cover of edges”) in graph G = (V,E) is a
set S ⊆ V (G) of vertices such that every edge in G is incident to at least
one vertex in S.

Let I(S) be the number of edges incident to vertex set S. Then we
wish to find the smallest set S ⊆ V subject to I(S) = |E|.

Definition 3.7.6 (edge cover)

A edge cover (an “edge-based cover of vertices”) in graph G = (V,E) is a
set F ⊆ E(G) of edges such that every vertex in G is incident to at least
one edge in F .

Let |V |(F ) be the number of vertices incident to edge set F . Then we
wish to find the smallest set F ⊆ E subject to |V |(F ) = |V |.
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Graph Cut Problems

Minimum cut: Given a graph G = (V,E), find a set of vertices
S ⊆ V that minimize the cut (set of edges) between S and V \ S.

Maximum cut: Given a graph G = (V,E), find a set of vertices
S ⊆ V that minimize the cut (set of edges) between S and V \ S.

Let f : 2V → R+ be the cut function, namely for any given set of
nodes X ⊆ V , f(X) measures the number of edges between nodes X
and V \X.

Weighted versions, where rather than count, we sum the
(non-negative) weights of the edges of a cut.

Many examples of this, we will see more later.
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Facility/Plant Location (uncapacitated)

Core problem in operations research, early motivation for submodularity.

Goal: as efficiently as possible, place “facilities” (factories) at certain
locations to satisfy sites (at all locations) having various demands.

We can model this with a weighted
bipartite graph G = (F, S,E, c)
where F is set of possible
factory/plant locations, S is set of
sites needing service, E are edges
indicating (factory,site) service
possiblity pairs, and c : E → R+ is
the benefit of a given pair.

Facility location function has form:

f(A) =
∑

i∈F
max
j∈A

cij . (3.61)
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Facility/Plant Location (uncapacitated) w. plant benefits

Let F = {1, . . . , f} be a set of possible factory/plant locations for
facilities to be built.

S = {1, . . . , s} is a set of sites (e.g., cities, clients) needing service.
Let cij be the “benefit” (e.g., 1/cij is the cost) of servicing site i with
facility location j.
Let mj be the benefit (e.g., either 1/mj is the cost or −mj is the
cost) to build a plant at location j.
Each site should be serviced by only one plant but no less than one.
Define f(A) as the “delivery benefit” plus “construction benefit” when
the locations A ⊆ F are to be constructed.
We can define the (uncapacitated) facility location function

f(A) =
∑

j∈A
mj +

∑

i∈F
max
j∈A

cij . (3.62)

Goal is to find a set A that maximizes f(A) (the benefit) placing a
bound on the number of plants A (e.g., |A| ≤ k).
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Matrix Rank functions

Let V , with |V | = m be an index set of a set of vectors in Rn for some
n (unrelated to m).

For a given set {v, v1, v2, . . . , vk}, it might or might not be possible to
find (αi)i such that:

xv =
k∑

i=1

αixvi (3.63)

If not, then xv is linearly independent of xv1 , . . . , xvk .

Let r(S) for S ⊆ V be the rank of the set of vectors S. Then r(·) is a
submodular function, and in fact is called a matric matroid rank
function.
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Example: Rank function of a matrix

Given n×m matrix X = (x1, x2, . . . , xm) with xi ∈ Rn for all i.
There are m length-n column vectors {xi}i

Let V = {1, 2, . . . ,m} be the set of column vector indices.

For any A ⊆ V , let r(A) be the rank of the column vectors indexed by
A.

r(A) is the dimensionality of the vector space spanned by the set of
vectors {xa}a∈A.

Thus, r(V ) is the rank of the matrix X.

Skip matrix rank example
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For any A ⊆ V , let r(A) be the rank of the column vectors indexed by
A.

r(A) is the dimensionality of the vector space spanned by the set of
vectors {xa}a∈A.

Thus, r(V ) is the rank of the matrix X.

Skip matrix rank example
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Example: Rank function of a matrix

Consider the following 4× 8 matrix, so V = {1, 2, 3, 4, 5, 6, 7, 8}.





1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5




=





1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |





Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.

r(A ∪ C) = 3, r(B ∪ C) = 3.

r(A ∪Ar) = 3, r(B ∪Br) = 3, r(A ∪Br) = 4, r(B ∪Ar) = 4.

r(A ∪B) = 4, r(A ∩B) = 1 < r(C) = 2.

6 = r(A) + r(B) > r(A ∪B) + r(A ∩B) = 5
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Then r(A) = 3, r(B) = 3, r(C) = 2.

r(A ∪ C) = 3, r(B ∪ C) = 3.

r(A ∪Ar) = 3, r(B ∪Br) = 3, r(A ∪Br) = 4, r(B ∪Ar) = 4.

r(A ∪B) = 4, r(A ∩B) = 1 < r(C) = 2.

6 = r(A) + r(B) > r(A ∪B) + r(A ∩B) = 5
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Rank function of a matrix

Let A,B ⊆ V be two subsets of column indices.

The rank of the two sets unioned together A ∪B is no more than the
sum of the two individual ranks.
In Venn diagram, Let area correspond to dimensions spanned by
vectors indexed by a set. Hence, r(A) can be viewed as an area.

r(A) + r(B) ≥ r(A ∪ B)

If some of the dimensions spanned by A overlap some of the
dimensions spanned by B (i.e., if ∃ common span), then that area is
counted twice in r(A) + r(B), so the inequality will be strict.
Any function where the above inequality is true for all A,B ⊆ V is
called subadditive.
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Rank functions of a matrix

Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning dimensions common to A and B.

Let Ar index vectors spanning dimensions spanned by A but not B.

Let Br index vectors spanning dimensions spanned by B but not A.

Then, r(A) = r(C) + r(Ar)

Similarly, r(B) = r(C) + r(Br).

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar) + 2r(C) + r(Br). (3.64)

But r(A ∪B) counts the dimensions spanned by C only once.

r(A ∪B) = r(Ar) + r(C) + r(Br) (3.65)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016 F57/63 (pg.165/187)



Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples

Rank functions of a matrix

Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning dimensions common to A and B.

Let Ar index vectors spanning dimensions spanned by A but not B.

Let Br index vectors spanning dimensions spanned by B but not A.

Then, r(A) = r(C) + r(Ar)

Similarly, r(B) = r(C) + r(Br).

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar) + 2r(C) + r(Br). (3.64)

But r(A ∪B) counts the dimensions spanned by C only once.

r(A ∪B) = r(Ar) + r(C) + r(Br) (3.65)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016 F57/63 (pg.166/187)



Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples

Rank functions of a matrix

Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning dimensions common to A and B.

Let Ar index vectors spanning dimensions spanned by A but not B.

Let Br index vectors spanning dimensions spanned by B but not A.

Then, r(A) = r(C) + r(Ar)

Similarly, r(B) = r(C) + r(Br).

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar) + 2r(C) + r(Br). (3.64)

But r(A ∪B) counts the dimensions spanned by C only once.

r(A ∪B) = r(Ar) + r(C) + r(Br) (3.65)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016 F57/63 (pg.167/187)



Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples

Rank functions of a matrix

Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning dimensions common to A and B.

Let Ar index vectors spanning dimensions spanned by A but not B.

Let Br index vectors spanning dimensions spanned by B but not A.

Then, r(A) = r(C) + r(Ar)

Similarly, r(B) = r(C) + r(Br).

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar) + 2r(C) + r(Br). (3.64)

But r(A ∪B) counts the dimensions spanned by C only once.

r(A ∪B) = r(Ar) + r(C) + r(Br) (3.65)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016 F57/63 (pg.168/187)



Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples

Rank functions of a matrix

Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning dimensions common to A and B.

Let Ar index vectors spanning dimensions spanned by A but not B.

Let Br index vectors spanning dimensions spanned by B but not A.

Then, r(A) = r(C) + r(Ar)

Similarly, r(B) = r(C) + r(Br).

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar) + 2r(C) + r(Br). (3.64)

But r(A ∪B) counts the dimensions spanned by C only once.

r(A ∪B) = r(Ar) + r(C) + r(Br) (3.65)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016 F57/63 (pg.169/187)



Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples

Rank functions of a matrix

Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning dimensions common to A and B.

Let Ar index vectors spanning dimensions spanned by A but not B.

Let Br index vectors spanning dimensions spanned by B but not A.

Then, r(A) = r(C) + r(Ar)

Similarly, r(B) = r(C) + r(Br).

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar) + 2r(C) + r(Br). (3.64)

But r(A ∪B) counts the dimensions spanned by C only once.

r(A ∪B) = r(Ar) + r(C) + r(Br) (3.65)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016 F57/63 (pg.170/187)



Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples

Rank functions of a matrix

Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning dimensions common to A and B.

Let Ar index vectors spanning dimensions spanned by A but not B.

Let Br index vectors spanning dimensions spanned by B but not A.

Then, r(A) = r(C) + r(Ar)

Similarly, r(B) = r(C) + r(Br).

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar) + 2r(C) + r(Br). (3.64)

But r(A ∪B) counts the dimensions spanned by C only once.

r(A ∪B) = r(Ar) + r(C) + r(Br) (3.65)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016 F57/63 (pg.171/187)



Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples

Rank functions of a matrix

Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning dimensions common to A and B.

Let Ar index vectors spanning dimensions spanned by A but not B.

Let Br index vectors spanning dimensions spanned by B but not A.

Then, r(A) = r(C) + r(Ar)

Similarly, r(B) = r(C) + r(Br).

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar) + 2r(C) + r(Br). (3.64)

But r(A ∪B) counts the dimensions spanned by C only once.

r(A ∪B) = r(Ar) + r(C) + r(Br) (3.65)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 3 - Apr 4th, 2016 F57/63 (pg.172/187)



Bit More Notation Info Theory Examples Monge More Definitions Graph & Combinatorial Examples Other Examples

Rank functions of a matrix

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar ) + 2r(C ) + r(Br )

But r(A ∪B) counts the dimensions spanned by C only once.

r(A ∪ B) = r(Ar ) +r(C ) + r(Br )

Thus, we have subadditivity: r(A) + r(B) ≥ r(A ∪B). Can we add
more to the r.h.s. and still have an inequality? Yes.
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Rank function of a matrix

Note, r(A ∩B) ≤ r(C). Why? Vectors indexed by A ∩B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C).

r(A ∩ B)≥r(C )

In short:

Common span (blue) is “more” (no less) than span of common index
(magenta).
More generally, common information (blue) is “more” (no less) than
information within common index (magenta).
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The Venn and Art of Submodularity

+r(A) + r(B) r(A ∪ B)

= r(Ar ) +r(C ) + r(Br )

≥
= r(A ∩ B)

r(A ∩ B)

= r(Ar ) + 2r(C ) + r(Br )

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
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Polymatroid rank function

Let S be a set of subspaces of a linear space (i.e., each s ∈ S is a
subspace of dimension ≥ 1).

For each X ⊆ S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.

We can think of S as a set of sets of vectors from the matrix rank
example, and for each s ∈ S, let Xs being a set of vector indices.

Then, defining f : 2S → R+ as follows,

f(X) = r(∪s∈SXs) (3.66)

we have that f is submodular, and is known to be a polymatroid rank
function.

In general (as we will see) polymatroid rank functions are submodular,
normalized f(∅) = 0, and monotone non-decreasing (f(A) ≤ f(B)
whenever A ⊆ B).
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Spanning trees

Let E be a set of edges of some graph G = (V,E), and let r(S) for
S ⊆ E be the maximum size (in terms of number of edges) spanning
forest in the vertex-induced graph, induced by vertices incident to
edges S.

Example: Given G = (V,E), V = {1, 2, 3, 4, 5, 6, 7, 8},
E = {1, 2, . . . , 12}. S = {1, 2, 3, 4, 5, 8, 9} ⊂ E. Two spanning trees
have the same edge count (the rank of S).
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corresponding to the incidence matrix of the graph.
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