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Logistics Review

Cumulative Outstanding Reading

Read chapter 1 from Fujishige’s book.
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Logistics Review

Announcements, Assignments, and Reminders

Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google
hangout (set up meeting via our our discussion board (https:
//canvas.uw.edu/courses/1039754/discussion_topics)).
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Logistics Review

Class Road Map - IT-I

L1(3/28): Motivation, Applications, &
Basic Definitions

L2(3/30):

L3(4/4):

L4(4/6):

L5(4/11):

L6(4/13):

L7(4/18):

L8(4/20):

L9(4/25):

L10(4/27):

L11(5/2):

L12(5/4):

L13(5/9):

L14(5/11):

L15(5/16):

L16(5/18):

L17(5/23):

L18(5/25):

L19(6/1):

L20(6/6): Final Presentations
maximization.

Finals Week: June 6th-10th, 2016.
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Logistics Review

Two Equivalent Submodular Definitions

Definition 2.2.1 (submodular concave)

A function f : 2V → R is submodular if for any A,B ⊆ V , we have that:

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (2.8)

An alternate and (as we will soon see) equivalent definition is:

Definition 2.2.2 (diminishing returns)

A function f : 2V → R is submodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B) (2.9)

The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as
the context in which v is considered grows from A to B.
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Logistics Review

Example Submodular: Number of Colors of Balls in Urns

Consider an urn containing colored balls. Given a set S of balls, f(S)
counts the number of distinct colors in S.

Initial value: 2 (colors in urn).
New value with added blue ball: 3

Initial value: 3 (colors in urn).
New value with added blue ball: 3

Submodularity: Incremental Value of Object Diminishes in a Larger
Context (diminishing returns).

Thus, f is submodular.
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Logistics Review

Two Equivalent Supermodular Definitions

Definition 2.2.1 (supermodular)

A function f : 2V → R is supermodular if for any A,B ⊆ V , we have that:

f(A) + f(B) ≤ f(A ∪B) + f(A ∩B) (2.8)

Definition 2.2.2 (supermodular (improving returns))

A function f : 2V → R is supermodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≤ f(B ∪ {v})− f(B) (2.9)

Incremental “value”, “gain”, or “cost” of v increases (improves) as the
context in which v is considered grows from A to B.
A function f is submodular iff −f is supermodular.
If f both submodular and supermodular, then f is said to be modular,
and f(A) = c+

∑
a∈A f(a) (often c = 0).
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Logistics Review

Example Supermodular: Number of Balls with Two Lines

Given ball pyramid, bottom row V is size n = |V |. For subset S ⊆ V of
bottom-row balls, draw 45◦ and 135◦ diagonal lines from each s ∈ S. Let
f(S) be number of non-bottom-row balls with two lines ⇒ f(S) is
supermodular.

1 2 3 4 5 6 7 8 9 10
V

1 2 3 4 5 6 7 8 9 10
V

A = {2, 5, 9} A ∪ {4} = {2, 4, 5, 9}

1 2 3 4 5 6 7 8 9 10
V

1 2 3 4 5 6 7 8 9 10
V

B = {2, 5, 8, 9} B ∪ {4} = {2, 4, 5, 8, 9}

f(A) = 3 f(A ∪ {4}) = 6

f(B) = 6 f(B ∪ {4}) = 10
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Logistics Review

Further Review of Lecture 1

Machine learning paradigms should be: easy to define ,

mathematically rich , naturally applicable , and efficient/scalable .

Convexity (continuous structures) and graphical models (based on
factorization or additive separation) are two such modeling paradigms.

Submodularity/supermodularity offer a distinct mathematically rich
paradigm over discrete space that neither need be continous nor be
additively additively separable,

submodularity offers forms of structural decomposition, e.g.,
h = f + g, into potentially global (manner of interaction) terms.

Set cover, supply and demand side economies of scale,
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ML Apps Diversity Complexity Parameter ML Target Surrogate More Apps Info Theory Examples More Definitions

Submodularity’s utility in ML

A model of a physical process :
When maximizing, submodularity naturally models: diversity, coverage,
span, and information.
When minimizing, submodularity naturally models: cooperative costs,
complexity, roughness, and irregularity.
vice-versa for supermodularity.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence,
structured sparse convex norms for use in regularization).

Itself, as an object or function to learn , based on data.

A surrogate or relaxation strategy for optimization or analysis
An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a means
towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.
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Many different functions are submodular!

We will see many applications of submodularity in machine learning.

On next set of slides, we will state (without proof, for now) that many
of the functions are submodular (or supermodular).

In subsequent lectures, we will start showing how to prove
submodularity.
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Functions to Measure Diversity
Diversity is good, especially when it is high

Quantitative measurement diversity in data science and ML. Goal of
diversity: ensure small set properly represents the large.
Web search: given ambiguous search term (e.g., “jaguar”) with no
other information, one wants articles more than just about cars.

Try google searching for words (e.g., “break”) with many meanings
(http://muse.dillfrog.com/lists/ambiguous), how well does
google’s diversity measure do?
Overall goal: user quickly finds informative, concise, accurate, relevant,
comprehensive information ⇒ diversity

Given a set V of of items, how do we choose a subset S ⊆ V that is as
diverse as possible, with perhaps constraints on S such as its size?
Answer: submodular maximization.
How do we choose the smallest set S that maintains a given degree of
diversity? Constrained minimization (i.e., min |A| s.t. f(A) ≥ α).
Random sample has probability of poorly representing normally
underrepresented groups.
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Extractive Document Summarization

The figure below represents the sentences of a document

We extract sentences (green) as a summary of the full document

⊂

The summary on the left is a subset of the summary on the right.

Consider adding a new (blue) sentence to each of the two summaries.

The marginal (incremental) benefit of adding the new (blue) sentence
to the smaller (left) summary is no more than the marginal benefit of
adding the new sentence to the larger (right) summary.
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Large image collections need to be summarized

Many images, also that have a higher level gestalt than just a few, want a
summary (subset of images) to represent the diversity in the large image set.
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Image Summarization

10×10 image collection: 3 good summaries (diverse):

3 ok summaries:

3 poor summaries (redundant):
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Variable Selection in Classification/Regression

Let Y be a random variable we wish to accurately predict based on at
most n = |V | observed measurement variables (X1, X2, . . . , Xn) = XV

in a probability model Pr(Y,X1, X2, . . . , Xn).
Too costly to use all V variables. Goal: choose subset A ⊆ V of variables
within budget |A| ≤ k. Predictions based on only Pr(y|xA), hence subset
A should retain accuracy.
The mutual information function f(A) = I(Y ;XA) (“information gain”)
measures how well variables A can predicting Y (entropy reduction,
reduction of uncertainty of Y ).
The mutual information function f(A) = I(Y ;XA) is defined as:

I(Y ;XA) =
∑
y,xA

Pr(y, xA) log
Pr(y, xA)

Pr(y) Pr(xA)
= H(Y )−H(Y |XA) (2.1)

= H(XA)−H(XA|Y ) = H(XA) +H(Y )−H(XA, Y ) (2.2)

Applicable in pattern recognition, also in sensor coverage problem, where
Y is whatever question we wish to ask about environment.
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Information Gain and Feature Selection
in Pattern Classification: Näıve Bayes

Näıve Bayes property: XA⊥⊥XB|Y for all A,B.

Y

X1 X2 X3 X4 X5

Y

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4

When XA⊥⊥XB|Y for all A,B (the Näıve Bayes assumption holds),
then

f(A) = I(Y ;XA) = H(XA)−H(XA|Y ) = H(XA)−
∑
a∈A

H(Xa|Y )

(2.3)

is submodular (submodular minus modular).
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Variable Selection in Pattern Classification

Näıve Bayes property fails:

Y

X1 X2 X3 X4 X5

Y

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4

f(A) naturally expressed as a difference of two submodular functions

f(A) = I(Y ;XA) = H(XA)−H(XA|Y ), (2.4)

which is a DS (difference of submodular) function.

Alternatively, when Näıve Bayes assumption is false, we can make a
submodular approximation (Peng-2005). E.g., functions of the form:

f(A) =
∑
a∈A

I(Xa;Y )− λ
∑
a,a′∈A

I(Xa;Xa′ |Y ) (2.5)

where λ ≥ 0 is a tradeoff constant.
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Variable Selection: Linear Regression Case

Next, let Z be continuous. Predictor is linear Z̃A =
∑

i∈A αiXi.

Error measure is the residual variance

R2
Z,A =

Var(Z)− E[(Z − Z̃A)2]

Var(Z)
(2.6)

R2
Z,A’s minimizing parameters, for a given A, can be easily computed

(R2
Z,A = bA

ᵀ(C−1A )
ᵀ
bA when VarZ = 1, where bi = Cov(Z,Xi) and

C = E[(X − E[X])ᵀ(X − E[X])] is the covariance matrix).

When there are no “suppressor” variables (essentially, no
v-structures that converge on Xj with parents Xi and Z),
then

f(A) = R2
Z,A = bA

ᵀ(C−1A )
ᵀ
bA (2.7)

is a submodular function (so the greedy algorithm gives
the 1− 1/e guarantee). (Das&Kempe).

ZXi

Xj
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Data Subset Selection

Suppose we are given a large data set D = {xi}ni=1 of n data items
V = {v1, v2, . . . , vn} and we wish to choose a subset A ⊂ V of items
that is good in some way (e.g., a summary).

Suppose moreover each data item v ∈ V is described by a vector of
non-negative scores for a set U of features (or “properties”, or
“concepts”, etc.) of each data item.

That is, for u ∈ U and v ∈ V , let mu(v) represent the “degree of
u-ness” possessed by data item v. Then mu ∈ RV+ for all u ∈ U .

Example: U could be a set of colors, and for an image v ∈ V , mu(v)
could represent the number of pixels that are of color u.

Example: U might be a set of textual features (e.g., ngrams), and
mu(v) is the number of ngrams of type u in sentence v. E.g., if a
document consists of the sentence

v = “Whenever I go to New York City, I visit the New York City museum.”

then m’the’(v) = 1 while m’New York City’(v) = 2.
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Data Subset Selection

For X ⊆ V , define mu(X) =
∑

x∈X mu(x), so mu(X) is a modular
function representing the “degree of u-ness” in subset X.
Since mu(X) is modular, it does not have a diminishing returns property.
I.e., as we add to X, the degree of u-ness grows additively.
With g non-decreasing concave, g(mu(X)) grows subadditively (if we add
v to a context A with less u-ness, the u-ness benefit is more than if we
add v to a context B ⊇ A having more u-ness). That is

g(mu(A+ v))− g(mu(A)) ≥ g(mu(B + v))− g(mu(B)) (2.8)

Consider the following class of feature functions f : 2V → R+

f(X) =
∑
u∈U

αugu(mu(X)) (2.9)

where gu is a non-decreasing concave, and αu ≥ 0 is a feature importance
weight. Thus, f is submodular.
f(X) measures X’s ability to represent set of features U as measured by
mu(X), with diminishing returns function g, and importance weights αu.
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Data Subset Selection, KL-divergence

Let p = {pu}u∈U be a desired probability distribution over features (i.e.,∑
u pu = 1 and pu ≥ 0 for all u ∈ U).

Next, normalize the modular weights for each feature:

m̄u(X) =
mu(X)∑

u′∈U mu′(X)
=
mu(X)

m(X)
(2.10)

where m(X) ,
∑

u′∈U mu′(X).
Then m̄u(X) can also be seen as a distribution over features since
m̄u(X) ≥ 0 and

∑
u m̄u(X) = 1 for any X ⊆ V .

Consider the KL-divergence between these two distributions:

D(p||{m̄u(X)}u∈U ) =
∑
u∈U

pu log pu −
∑
u∈U

pu log(m̄u(X)) (2.11)

=
∑
u∈U

pu log pu −
∑
u∈U

pu log(mu(X)) + log(m(X))

= −H(p) + logm(X)−
∑
u∈U

pu log(mu(X)) (2.12)
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Data Subset Selection, KL-divergence

The objective once again, treating entropy H(p) as a constant,

D(p||{m̄u(X)}) = const. + logm(X)−
∑
u∈U

pu log(mu(X)) (2.13)

But seen as a function of X, both logm(X) and
∑

u∈U pu logmu(X)
are submodular functions.

Hence the KL-divergence, seen as a function of X, i.e.,
f(X) = D(p||{m̄u(X)}) is quite naturally represented as a difference
of submodular functions.

Alternatively, if we define (Shinohara, 2014)

g(X) , logm(X)−D(p||{m̄u(X)}) =
∑
u∈U

pu log(mu(X)) (2.14)

we have a submodular function g that represents a combination of its
quantity of X via its features (i.e., logm(X)) and its feature
distribution closeness to some distribution p (i.e., D(p||{m̄u(X)})).
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Information Gain for Sensor Placement

Given an environment, V is set of candidate locations for placement of
a sensor (e.g., temperature, gas, audio, video, bacteria or other
environmental contaminant, etc.).

We have a function f(A) that measures the “coverage” of any given
set A of sensor placement decisions. If a point is covered, we can
answer a question about it (i.e., temperature, degree of contaminant).

f(V ) is maximum coverage.

One possible goal: choose smallest set A such that f(A) ≥ αf(V )
with 0 < α ≤ 1 (recall the submodular set cover problem)

Another possible goal: choose size at most k set A such that f(A) is
maximized.

Environment could be a floor of a building, water network, monitored
ecological preservation.
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Sensor Placement within Buildings

The left shows a possible room layout.

Sensors cannot sense beyond the walls (thick black lines).

The right shows the coverage of a given set of sensors where the
sensor locations are at the red dot and the coverage of each sensor the
enclosing sphere.
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Social Networks

(from Newman, 2004). Clockwise from top
left: 1) predator-prey interactions, 2) scientific
collaborations, 3) sexual contact, 4) school
friendships.
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The value of a friend

1982 1992 1997 2002 2012

Let V be a set of individuals in a network. How valuable is a given
friend v ∈ V ? It depends on how many friends you have.

Valuate a group of friends S ⊆ V via set function f(S).

A submodular model: a friend becomes less marginally valuable as your
set of friends grows.

Supermodular model: a friend becomes more valuable the more friends
you have.

Which is a better model?
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Information Cascades, Diffusion Networks

How to model flow of information from source to the point it reaches
users — information used in its common sense (like news events).

Orig
inal Event

Goal: How to find the most influential sources, the ones that often set
off cascades, which are like large “waves” of information flow?
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Diffusion Networks
Where are they useful?

Information propagation: when blogs or news stories break, and
creates an information cascade over multiple other
blogs/newspapers/magazines.

Viral marketing: What is the pattern of trendsetters that cause an
individual to purchase a product?

Epidemiology: who gets sick from whom? What is the infection
network of such links? Given finite supply of vaccine, who to inoculate
to protect overall population (cut the network)?

Infer the connectivity of a network (memes, purchase decisions, viruses,
etc.) based only on diffusion traces (the time that each node is
“infected”)?
How to find the most likely tree or graph?
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A model of influence in social networks

Given a graph G = (V,E), each v ∈ V corresponds to a person, to each
v we have an activation function fv : 2V → [0, 1] dependent only on its
neighbors. I.e., fv(A) = fv(A ∩ Γ(v)).

Goal - Viral Marketing: find a small subset S ⊆ V of individuals to
directly influence, and thus indirectly influence the greatest number of
possible other individuals (via the social network G).

Define function f : 2V → Z+ to model the ultimate influence of an
initial infected nodes S. Use following iterative process; at each step:

Given previous set of infected nodes S that have not yet had their chance
to infect their neighbors,
activate new nodes v ∈ V \ S if fv(S ∩ Γv) ≥ U [0, 1], where U [0, 1] is a
uniform random number between 0 and 1, and Γv are the neighbors of v.

For many fv (including simple linear functions, and where fv is
submodular itself), we can show f is submodular (Kempe, Kleinberg,
Tardos 1993).
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Graphical Model Structure Learning

A probability distribution on binary vectors p : {0, 1}V → [0, 1]:

p(x) =
1

Z
exp(−E(x)) (2.15)

where E(x) is the energy function.

A graphical model G = (V, E) represents a family of probability
distributions p ∈ F(G) all of which factor w.r.t. the graph.

I.e., if C are a set of cliques of graph G, then we must have:

E(x) =
∑
c∈C

Ec(xc) (2.16)

The problem of structure learning in graphical models is to find the
graph G based on data.

This can be viewed as a discrete optimization problem on the potential
(undirected) edges of the graph V × V .
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Graphical Models: Learning Tree Distributions

Goal: find the closest distribution pt to p subject to pt factoring w.r.t.
some tree T = (V, F ), i.e., pt ∈ F(T,M).
This can be expressed as a discrete optimization problem:

minimize
pt∈F(G,M)

D(p||pt)

subject to pt ∈ F(T,M).

T = (V, F ) is a tree

H

F G

C

ED

J
I

A B

K

H

F G

C

ED

J
I

A B

K

Discrete problem: choose the optimal set of edges A ⊆ E that constitute
tree (i.e., find a spanning tree of G of best quality).
Define f : 2E → R+ where f is a weighted cycle matroid rank function
(a type of submodular function), with weights
w(e) = w(u, v) = I(Xu;Xv) for e ∈ E.
Then finding the maximum weight base of the matroid is solved by
the greedy algorithm, and also finds the optimal tree (Chow & Liu, 1968)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 2 - Mar 30th, 2016 F32/84 (pg.32/84)



ML Apps Diversity Complexity Parameter ML Target Surrogate More Apps Info Theory Examples More Definitions

Determinantal Point Processes (DPPs)

Sometimes we wish not only to valuate subsets A ⊆ V but to induce
probability distributions over all subsets.
We may wish to prefer samples where elements of A are diverse (i.e.,
given a sample A, for a, b ∈ A, we prefer a and b to be different).

(Kulesza,
Gillen-
water, &
Taskar,
2011)

A Determinantal point processes (DPPs) is a probability distribution
over subsets A of V where the “energy” function is submodular.
More “diverse” or “complex” samples are given higher probability.
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DPPs and log-submodular probability distributions

Given binary vectors x, y ∈ {0, 1}V , y ≤ x if y(v) ≤ x(v), ∀v ∈ V .
Given a positive-definite n× n matrix M , a subset X ⊆ V , let MX be
|X| × |X| principle submatrix, rows/columns specified by X ⊆ V .
A Determinantal Point Process (DPP) is a distribution of the form:

Pr(X = x) =
|MX(x)|
|M + I| = exp

(
log
( |MX(x)|
|M + I|

))
∝ det(MX(x))

(2.17)

where I is n× n identity matrix, and X ∈ {0, 1}V is a random vector.
Equivalently, defining K as K = M(M + I)−1, we have:∑
x∈{0,1}V :x≥y

Pr(X = x) = Pr(X ≥ y) = exp
(

log
(
|KY (y)|

))
(2.18)

Given positive definite matrix M , function f : 2V → R with
f(A) = log |MA| (the logdet function) is submodular.
Therefore, a DPP is a log-submodular probability distribution.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 2 - Mar 30th, 2016 F34/84 (pg.34/84)



ML Apps Diversity Complexity Parameter ML Target Surrogate More Apps Info Theory Examples More Definitions

Graphical Models and fast MAP Inference

Given distribution that factors w.r.t. a graph:

p(x) =
1

Z
exp(−E(x)) (2.19)

where E(x) =
∑

c∈C Ec(xc) and C are cliques of graph G = (V, E).
MAP inference problem is important in ML: compute

x∗ ∈ argmax
x∈{0,1}V

p(x) (2.20)

Easy when G a tree, exponential in k (tree-width of G) in general.
Even worse, NP-hard to find the tree-width.
Tree-width can be large even when degree is small (e.g., regular grid
graphs have low-degree but Ω(

√
n) tree-width).

Many approximate inference strategies utilize additional factorization
assumptions (e.g., mean-field, variational inference, expectation
propagation, etc).
Can we do exact MAP inference in polynomial time regardless of the
tree-width, without even knowing the tree-width?
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Order-two (edge) graphical models

Given G let p ∈ F(G,M(f)) such that we can write the global energy
E(x) as a sum of unary and pairwise potentials:

E(x) =
∑

v∈V (G)

ev(xv) +
∑

(i,j)∈E(G)

eij(xi, xj) (2.21)

ev(xv) and eij(xi, xj) are like local energy potentials.

Since log p(x) = −E(x) + const., the smaller ev(xv) or eij(xi, xj)
become, the higher the probability becomes.

Further, say that DXv = {0, 1} (binary), so we have binary random
vectors distributed according to p(x).

Thus, x ∈ {0, 1}V , and finding MPE solution is setting some of the
variables to 0 and some to 1, i.e.,

min
x∈{0,1}V

E(x) (2.22)
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MRF example

Markov random field

log p(x) ∝
∑

v∈V (G)

ev(xv) +
∑

(i,j)∈E(G)

eij(xi, xj) (2.23)

When G is a 2D grid graph, we have
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Create an auxiliary graph

We can create auxiliary graph Ga that involves two new “terminal”
nodes s and t and all of the original “non-terminal” nodes v ∈ V (G).

The non-terminal nodes represent the original random variables
xv, v ∈ V .

Starting with the original grid-graph amongst the vertices v ∈ V , we
connect each of s and t to all of the original nodes.

I.e., we form Ga = (V ∪ {s, t}, E + ∪v∈V ((s, v) ∪ (v, t))).
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Transformation from graphical model to auxiliary graph

Original 2D-grid graphical model G and energy function
E(x) =

∑
v∈V (G) ev(xv) +

∑
(i,j)∈E(G) eij(xi, xj) needing to be minimized

over x ∈ {0, 1}V . Recall, tree-width is O(
√
|V |).Augmented (graph-cut)

directed graph Ga. Edge
weights (soon defined) of graph are derived
from {ev(·)}v∈V and {eij(·, ·)}(i,j)∈E(G).

An (s, t)-cut C ⊆ E(Ga) is a set of
edges that cut all paths from s to
t. A minimum (s, t)-cut is one
that has minimum weight
where w(C) =

∑
e∈C we

is the cut weight.
To be a cut, must
have that, for
every v ∈ V ,
either (s, v) ∈ C or
(v, t) ∈ C. Graph is
directed, arrows pointing down
from s towards t or from i→ j.Cut edges that are incident to terminal
nodes
s and t are indicated in green. Cut edges that are incident to terminal
nodes
s and t removed from graph. But there are
still un-cut (s, t)-paths remaining. Additional cut edges incident to two
non-terminal nodes are indicated in green. Vertices adjacent to t are shaded
blue,
vertices adjacent to s shaded red. Additional cut edges incident to two
non-terminal nodes are removed from graph. Augmented graph-cut graph
with cut edges
removed corresponds to particular binary
vector x̄ ∈ {0, 1}n. Each vector x̄ has a
score corresponding to log p(x̄).
When can graph cut scores
correspond precisely to log p(x̄)
in a way that min-cut
algorithms can find
minimum of
energy E(x)?
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Setting of the weights in the auxiliary cut graph

Any graph cut corresponds to a vector x̄ ∈ {0, 1}n.

If weights of all edges, except those involving terminals s and t, are
non-negative, graph cut computable in polynomial time via max-flow
(many algorithms, e.g., Edmonds&Karp O(nm2) or O(n2m log(nC));
Goldberg&Tarjan O(nm log(n2/m)), see Schrijver, page 161).

If weights are set correctly in the cut graph, and if edge functions eij
satisfy certain properties, then graph-cut score corresponding to x̄ can
be made equivalent to E(x) = log p(x̄) + const..

Hence, poly time graph cut, can find the optimal MPE assignment,
regardless of the graphical model’s tree-width!

In general, finding MPE is an NP-hard optimization problem.
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Setting of the weights in the auxiliary cut graph

Edge weight assignments. Start with all weights set to zero.

For (s, v) with v ∈ V (G), set edge

ws,v = (ev(1)− ev(0))1(ev(1) > ev(0)) (2.24)

For (v, t) with v ∈ V (G), set edge

wv,t = (ev(0)− ev(1))1(ev(0) ≥ ev(1)) (2.25)

For original edge (i, j) ∈ E, i, j ∈ V , set weight

wi,j = eij(1, 0) + eij(0, 1)− eij(1, 1)− eij(0, 0) (2.26)

and if eij(1, 0) > eij(0, 0), and eij(1, 1) > eij(0, 1),

ws,i ← ws,i + (eij(1, 0)− eij(0, 0)) (2.27)

wj,t ← wj,t + (eij(1, 1)− eij(0, 1)) (2.28)

and analogous increments if inequalities are flipped.
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Non-negative edge weights

The inequalities ensures that we are adding non-negative weights to
each of the edges. I.e., we do ws,i ← ws,i + (eij(1, 0)− eij(0, 0)) only
if eij(1, 0) > eij(0, 0).

For (i, j) edge weight, it takes the form:

wi,j = eij(1, 0) + eij(0, 1)− eij(1, 1)− eij(0, 0) (2.29)

For this to be non-negative, we need:

eij(1, 0) + eij(0, 1) ≥ eij(1, 1) + eij(0, 0) (2.30)

Thus weights wij in s, t-graph above are always non-negative, so
graph-cut solvable exactly.
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Submodular potentials
submodularity is what allows graph cut to find exact solution

Edge functions must be submodular (in the binary case, equivalent to
“associative”, “attractive”, “regular”, “Potts”, or “ferromagnetic”):
for all (i, j) ∈ E(G), must have:

eij(0, 1) + eij(1, 0) ≥ eij(1, 1) + eij(0, 0) (2.31)

This means: on average, preservation is preferred over change.

As a set function, this is the same as:

f(X) =
∑

{i,j}∈E(G)

fi,j(X ∩ {i, j}) (2.32)

which is submodular if each of the fi,j ’s are submodular!

A special case of more general submodular functions – unconstrained
submodular function minimization is solvable in polytime.
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On log-supermodular vs. log-submodular distributions

Log-supermodular distributions.

log Pr(x) = g(x) + const. = −E(x) + const. (2.33)

where g is supermodular (E(x) = −g(x) is submodular). MAP (or
high-probable) assignments should be “regular”, “homogeneous”,
“smooth”, “simple”. E.g., attractive potentials in computer vision,
ferromagnetic Potts models statistical physics.

Log-submodular distributions:

log Pr(x) = f(x) + const. (2.34)

where f is submodular. MAP or high-probable assignments should be
“diverse”, or “complex”, or “covering”, like in determinantal point
processes.
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Submodular potentials in GMs: Image Segmentation

Left: an image needing to be segmented. Center: labeled data in the
form of some pixels being marked foreground (red), and others being
marked background (blue). Right: the foreground is removed from the
background.
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Shrinking bias in graph cut image segmentation

What does graph-cut based
image segmentation do with
elongated structures (top) or
contrast gradients (bottom)?
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Shrinking bias in image segmentation

An image needing to be segmented

Clear high-contrast boundaries

Graph-cut (MRF with submodular edge potentials) works well.

Now with contrast gradient (less clear segment as we move up).

The “elongated structure” also poses a challenge.

Unary potentials {ev(xv)}v∈V prefer a different segmentation.

Edge weights are the same regardless of where they are
wi,j = eij(1, 0) + eij(0, 1)− eij(1, 1)− eij(0, 0) ≥ 0.

And the shrinking bias occurs, truncating the segmentation since it
results in lower energy.

With “typed” edges, we can have cut cost be sum of edge color
weights, not sum of edge weights.

Submodularity to the rescue: balls & urns.
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Addressing shrinking bias with edge submodularity

Standard graph cut, uses a modular function w : 2E → R+ defined on
the edges to measure cut costs. Graph cut node function is
submodular.

fw(X) = w
(
{(u, v) ∈ E : u ∈ X, v ∈ V \X}

)
(2.35)

Instead, we can use a submodular function g : 2E → R+ defined on
the edges to express cooperative costs.

fg(X) = g
(
{(u, v) ∈ E : u ∈ X, v ∈ V \X}

)
(2.36)

Seen as a node function, fg : 2V → R+ is not submodular, but it uses
submodularity internally to solve the shrinking bias problem.

⇒ cooperative-cut (Jegelka & B., 2011).
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Graph-cut vs. cooperative-cut comparisons

Graph Cut Cooperative Cut

(Jegelka&Bilmes,’11). There are fast algorithms for solving as well.
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A submodular function as a parameter

In some cases, it may be useful to view a submodular function
f : 2V → R as a input “parameter” to a machine learning algorithm.

Machine Learning
Problem or Instance

Data

f : 2V → R+ Output

A given submodular function f ∈ S ⊆ R2n can be seen as a vector in a
2n-dimensional compact cone.

S is a submodular cone since submodularity is closed under
non-negative (conic) combinations.

2n-dimensional since for certain f ∈ S, there exists fε ∈ R2n having no
zero elements with f + fε ∈ S (more on problem sets).
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Supervised Machine Learning
From F. Bach

We are given n samples of observed data (xi, yi) ∈ Rp × R, i ∈ [n].
Response vector y = (y1, . . . , yn)

ᵀ ∈ Rn

Design matrix X = (x1, . . . , xn)
ᵀ ∈ Rn×p.

Regularized empirical risk minimization:

min
w∈Rp

1

n

n∑
i=1

`(yi, w
ᵀxi) + λΩ(w) = min

w∈Rp
L(y,Xw) + λΩ(w) (2.37)

where `(·) is a loss function (e.g., squared error) and Ω(w) is a (perhaps
sparse) norm.

When data has multiple (k) responses, y = (y1, . . . , yk) ∈ Rn×k, we get:

min
w1,...,wk∈Rn

k∑
j=1

{
L(yj , Xwj) + λΩ(wj)

}
(2.38)
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Dictionary Learning and Selection

When only the multiple responses y = (y1, . . . , yk) ∈ Rn×k are
observed, we get either dictionary learning

min
X=(x1,...,xp)∈Rn×p

min
w1,...,wk∈Rp

k∑
j=1

{
L(yj , Xwj) + λΩ(wj)

}
(2.39)

or when we select sub-dimensions of x, we get dictionary selection
(Cevher & Krause, Das & Kempe).

f(D) = min
S⊆D,|S|≤k

min
wjS∈RS

k∑
j=1

{
L(yj , XSw

j
S) + λΩ(wjS)

}
(2.40)

where D is the dictionary (allowed indices of X), and XS ∈ Rn×|S| is a
column sub-matrix of X.

This is a subset selection problem, and the regularizer Ω(·) is critical
(could be structured sparse convex norm, via Lovász extension!).
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Norms, sparse norms, and computer vision

Common norms include p-norm Ω(w) = ‖w‖p = (
∑p

i=1w
p
i )

1/p

1-norm promotes sparsity (prefer solutions with zero entries).
Image denoising, total variation is useful, norm takes form:

Ω(w) =

N∑
i=2

|wi − wi−1| (2.41)

related to Lovász extension of a graph-cut submodular function.
Points of difference should be “sparse” (frequently zero).

(Rodriguez,

2009)
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w ∈ RV , supp(w) ∈ {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Given submodular function f : 2V → R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it’s convex envelope f̃(|w|) (i.e.,
largest convex under-estimator of f(supp(w))) is obtained via the
Lovász-extension f̃ of f (Bolton et al. 2008, Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
The Lovász-extension (Lovász ’82, Edmonds ’70) is easy to get via the
greedy algorithm: sort wσ1 ≥ wσ2 ≥ · · · ≥ wσn , then

f̃(w) =

n∑
i=1

wσi(f(σ1, . . . , σi)− f(σ1, . . . , σi−1)) (2.42)

Ex: total variation is the Lovász-extension of graph cut
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Submodular Generalized Dependence
there is a notion of “independence” , i.e., A⊥⊥B:

f(A ∪B) = f(A) + f(B), (2.43)

and a notion of “conditional independence” , i.e., A⊥⊥B|C:

f(A ∪B ∪ C) + f(C) = f(A ∪ C) + f(B ∪ C) (2.44)

and a notion of “dependence” (conditioning reduces valuation):

f(A|B) , f(A ∪B)− f(B) < f(A), (2.45)

and a notion of “conditional mutual information”

If (A;B|C) , f(A ∪ C) + f(B ∪ C)− f(A ∪B ∪ C)− f(C) ≥ 0

and two notions of “information amongst a collection of sets”:

If (S1;S2; . . . ;Sk) =

k∑
i=1

f(Sk)− f(S1 ∪ S2 ∪ · · · ∪ Sk) (2.46)

I ′f (S1;S2; . . . ;Sk) =
∑

A⊆{1,2,...,k}
(−1)|A|+1f(

⋃
j∈A

Sj) (2.47)
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Submodular Parameterized Clustering

Given a submodular function f : 2V → R, form the combinatorial
dependence function If (A;B) = f(A) + f(B)− f(A ∪B).

Consider clustering algorithm: First find partition
A∗1 ∈ argminA⊆V If (A;V \A) and A∗2 = V \A∗1.

Then partition the partitions: A∗11 ∈ argminA⊆A∗1 If (A;A∗1 \A),
A∗12 = A∗1 \A∗11, and A∗21 ∈ argminA⊆A∗2 If (A;A∗2 \A), etc.

Recursively partition the partitions, we end up with a partition
V = V1 ∪ V2 ∪ · · · ∪ Vk that clusters the data.

Each minimization can be done using Queyranne’s algorithm
(alternatively can construct a Gomory-Hu tree). This gives a partition
no worse than factor 2 away from optimal partition.
(Narasimhan&Bilmes, 2007).

Hence, family of clustering algorithms parameterized by f .
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Is Submodular Maximization Just Clustering?

1 Clustering objectives often NP-hard and inapproximable, submodular
maximization is approximable for any submodular function.

2 To have guarantee, clustering typically needs metricity, submodularity
parameterized via any non-negative pairwise values.

3 Clustering often requires separate process to choose representatives
within each cluster. Submodular max does this automatically. Can also
do submodular data partitioning (like clustering).

4 Submodular max covers clustering objectives such as k-medoids.
5 Can learn submodular functions (hence, learn clustering objective).
6 We can choose quality guarantee for any submodular function via

submodular set cover (only possible for some clustering algorithms).
7 Submodular max with constraints, ensures representatives are feasible

(e.g., knapsack, matroid independence, combinatorial, submodular level
set, etc.)

8 Submodular functions may be more general than clustering objectives
(submodularity allows high-order interactions between elements).
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Active Learning and Semi-Supervised Learning

Given training data DV = {(xi, yi)}i∈V of (x, y) pairs where x is a
query (data item) and y is an answer (label), goal is to learn a good
mapping y = h(x).

Often, getting y is time-consuming, expensive, and error prone
(manual transcription, Amazon Turk, etc.)

Batch active learning: choose a subset S ⊂ V so that only the labels
{yi}i∈S should be acquired.

Adaptive active learning: choose a policy whereby we choose an
i1 ∈ V , get the label yi1 , choose another i2 ∈ V , get label yi2 ,where
each chose can be based on previously acquired labels.

Semi-supervised (transductive) learning: Once we have {yi}i∈S , infer
the remaining labels {yi}i∈V \S .
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Active Transductive Semi-Supervised Learning

Batch/Offline active learning: Given a set V of unlabeled data items,
learner chooses subset L ⊆ V of items to be labeled

Nature reveals labels yL ∈ {0, 1}L, learner predicts labels ŷ ∈ {0, 1}V

+
-

+
+

+

-
- -+

-

-

++
Learner suffers loss ‖ŷ − y‖1, where y is truth. Below, ‖ŷ − y‖1 = 2.
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Choosing labels: how to select L

Consider the following objective

Ψ(L) = min
T⊆V \L:T 6=∅

Γ(T )

|T | (2.48)

where Γ(T ) = If (T ;V \ T ) = f(T ) + f(V \ T )− f(V ) is an arbitrary
symmetric submodular function (e.g., graph cut value between T and
V \ T , or combinatorial mutual information).

Small Ψ(L) means an adversary can separate away many (|T | is big)
combinatorially “independent” (Γ(T ) is small) points from L.

L
T

V \L

L
V \L

Ψ(L) = 1/8 Ψ(L) = 1

This suggests choosing (bounded cost) L that maximizes Ψ(L).
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Choosing remaining labels: semi-supervised learning

Once given labels for L, how to complete the remaining labels?

We form a labeling ŷ ∈ {0, 1}V such that ŷL = yL (i.e., we agree with
the known labels).

Γ(T ) measures label smoothness, how much combinatorial
“information” between labels T and complement V \ T (e.g., in
graph-cut case, says label change should be across small cuts).

Hence, choose labels to minimize Γ(Y (ŷ)) such that ŷL = yL.

This is submodular function minimization on function g : 2V \L → R+

where for A ⊆ V \ L,

g(A) = Γ(A ∪ {v ∈ L : yL(v) = 1}) (2.49)

In graph cut case, this is standard min-cut (Blum & Chawla 2001)
approach to semi-supervised learning.
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Generalized Error Bound

Theorem 2.6.1 (Guillory & B., ’11)

For any symmetric submodular Γ(S), assume ŷ minimizes Γ(Y (ŷ)) subject
to ŷL = yL. Then

‖ŷ − y‖1 ≤ 2
Γ(Y (y))

Ψ(L)
(2.50)

where y ∈ {0, 1}V are the true labels.

All is defined in terms of the symmetric submodular function Γ (need
not be graph cut), where:

Ψ(S) = min
T⊆V \S:T 6=∅

Γ(T )

|T | (2.51)

Γ(T ) = If (T ;V \ T ) = f(S) + f(V \ S)− f(V ) determined by
arbitrary submodular function f , different error bound for each.
Joint algorithm is “parameterized” by a submodular function f .
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Discrete Submodular Divergences

A convex function parameterizes a Bregman divergence, useful for
clustering (Banerjee et al.), includes KL-divergence, squared l2, etc.

Given a (not nec. differentiable) convex function φ and a sub-gradient
map Hφ (the gradient when φ is everywhere differentiable), the
generalized Bregman divergence is defined as:

d
Hφ
φ (x, y) = φ(x)− φ(y)− 〈Hφ(y), x− y〉, ∀x, y ∈ dom(φ) (2.52)

A submodular function parameterizes a discrete submodular Bregman
divergence (Iyer & B., 2012).

Example, lower-bound form:

d
Hf
f (X,Y ) = f(X)− f(Y )− 〈Hf (Y ), 1X − 1Y 〉 (2.53)

where Hf (Y ) is a sub-gradient map.

Submodular Bregman divergences also definable in terms of
supergradients.

General: Hamming, Recall, Precision, Cond. MI, Sq. Hamming, etc.
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Learning Submodular Functions

Learning submodular functions is hard

Goemans et al. (2009): “can one make only polynomial number of
queries to an unknown submodular function f and constructs a f̂ such
that f̂(S) ≤ f(S) ≤ g(n)f̂(S) where g : N→ R?” Many results,
including that even with adaptive queries and monotone functions,
can’t do better than Ω(

√
n/ log n).

Balcan & Harvey (2011): submodular function learning problem from a
learning theory perspective, given a distribution on subsets. Negative
result is that can’t approximate in this setting to within a constant
factor.

But can we learn a subclass, perhaps non-negative weighted mixtures
of submodular components?
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Structured Learning of Submodular Mixtures

Constraints specified in inference form:

minimize
w,ξt

1

T

∑
t

ξt +
λ

2
‖w‖2 (2.54)

subject to w>ft(y(t)) ≥ max
y∈Yt

(
w>ft(y) + `t(y)

)
− ξt,∀t (2.55)

ξt ≥ 0, ∀t. (2.56)

Exponential set of constraints reduced to an embedded optimization
problem, “loss-augmented inference.”

w>ft(y) is a mixture of submodular components.

If loss is also submodular, then loss-augmented inference is submodular
optimization.

If loss is supermodular, this is a difference-of-submodular (DS)
function optimization.
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Structured Prediction: Subgradient Learning

Solvable with simple sub-gradient descent algorithm using structured
variant of hinge-loss (Taskar, 2004).

Loss-augmented inference is either submodular optimization (Lin & B.
2012) or DS optimization (Tschiatschek, Iyer, & B. 2014).

Algorithm 1: Subgradient descent learning

Input : S = {(x(t),y(t))}Tt=1 and a learning rate sequence {ηt}Tt=1.
1 w0 = 0;
2 for t = 1, · · · , T do
3 Loss augmented inference: y∗t ∈ argmaxy∈Yt w

>
t−1ft(y) + `t(y);

4 Compute the subgradient: gt = λwt−1 + ft(y
∗)− ft(y

(t));
5 Update the weights: wt = wt−1 − ηtgt;
Return : the averaged parameters 1

T

∑
twt.
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Submodular Relaxation

We often are unable to optimize an objective. E.g., high tree-width
graphical models (as we saw).

If potentials are submodular, we can solve them.

When potentials are not, we might resort to factorization (e.g., the
marginal polytope in variational inference, were we optimize over a
tree-constrained polytope).

An alternative is submodular relaxation. I.e., given

Pr(x) =
1

Z
exp(−E(x)) (2.57)

where E(x) = Ef (x)− Eg(x) and both of Ef (x) and Eg(x) are
submodular.

Any function can be expressed as the difference between two
submodular functions.

Hence, rather than minimize E(x) (hard), we can minimize
Ef (x) ≥ E(x) (relatively easy), which is an upper bound.
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Submodular Analysis for Non-Submodular Problems

Sometimes the quality of solutions to non-submodular problems can be
analyzed via submodularity.
For example, “deviation from submodularity” can be measured using
the submodularity ratio (Das & Kempe):

γU,k(f) = min
L⊆U,S:|S|≤k,S∩L=∅

∑
s∈S f(x|L)

f(S|L)
(2.58)

f is submodular if γU,k ≥ 1 for all U and k.
For some variable selection problems, can get bounds of the form:

Solution ≥ (1− 1

eγU∗,k
)OPT (2.59)

where U∗ is the solution set of a variable selection algorithm.
This gradually get worse as we move away from an objective being
submodular (see Das & Kempe, 2011).
Other analogous concepts: curvature of a submodular function, and
also the submodular degree.
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Monge Matrices

m× n matrices C = [cij ]ij are called Monge matrices if they satisfy
the Monge property, namely:

cij + crs ≤ cis + crj (2.60)

for all 1 ≤ i < r ≤ m and 1 ≤ j < s ≤ n.

Consider four elements of the matrix:

cij

crscis

crj

Useful for speeding up certain dynamic programming problems.
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Monge Matrices

Can generate a Monge matrix from a convex polygon - delete two
segments, then separately number vertices on each chain. Distances
cij satisfy Monge property (or quadrangle inequality).
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Example Submodular: Entropy from Information Theory

Entropy is submodular. Let V be the index set of a set of random
variables, then the function

f(A) = H(XA) = −
∑
xA

p(xA) log p(xA) (2.61)

is submodular.

Proof: conditioning reduces entropy. With A ⊆ B and v /∈ B,

H(Xv|XB) = H(XB+v)−H(XB) (2.62)

≤ H(XA+v)−H(XA) = H(Xv|XA) (2.63)
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Information Theory: Block Coding

Given a set of random variables {Xi}i∈V indexed by set V , how do we
partition them so that we can best block-code them within each block.

I.e., how do we form S ⊆ V such that I(XS ;XV \S) is as small as
possible, where I(XA;XB) is the mutual information between random
variables XA and XB, i.e.,

I(XA;XB) = H(XA) +H(XB)−H(XA, XB) (2.64)

and H(XA) = −∑xA
p(xA) log p(xA) is the joint entropy of the set

XA of random variables.
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Information Theory: Network Communication
X1, Y1 X2, Y2

X3, Y3

X4, Y4. . .

Xm, Ym

A network of senders/receivers

Each sender Xi is trying to
communicate simultaneously
with each receiver Yi (i.e., for all
i, Xi is sending to {Yi}i
The Xi are not necessarily
independent.

Communication rates from i to j are R(i→j) to send message

W (i→j) ∈
{

1, 2, . . . , 2nR
(i→j)

}
.

Goal: necessary and sufficient conditions for achievability.
I.e., can we find functions f such that any rates must satisfy

∀S ⊆ V,
∑

i∈S,j∈V \S
R(i→j) ≤ f(S) (2.65)

Special cases MAC (Multi-Access Channel) for communication over
p(y|x1, x2) and Slepian-Wolf compression (independent compression of
X and Y but at joint rate H(X,Y )).
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Example Submodular: Entropy from Information Theory

Alternate Proof: Conditional mutual Information is always non-negative.

Given A,B ⊆ V , consider conditional mutual information quantity:

I(XA\B;XB\A|XA∩B) =
∑
xA∪B

p(xA∪B) log
p(xA\B, xB\A|xA∩B)

p(xA\B|xA∩B)p(xB\A|xA∩B)

=
∑
xA∪B

p(xA∪B) log
p(xA∪B)p(xA∩B)

p(xA)p(xB)
≥ 0 (2.66)

then

I(XA\B;XB\A|XA∩B)

= H(XA) +H(XB)−H(XA∪B)−H(XA∩B) ≥ 0 (2.67)

so entropy satisfies

H(XA) +H(XB) ≥ H(XA∪B) +H(XA∩B) (2.68)
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Example Submodular: Mutual Information

Also, symmetric mutual information is submodular,

f(A) = I(XA;XV \A) = H(XA) +H(XV \A)−H(XV ) (2.69)

Note that f(A) = H(XA) and f̄(A) = H(XV \A), and adding
submodular functions preserves submodularity (which we will see quite
soon).
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Optimization Problem Involving Network Externalities

(From Mirrokni, Roch, Sundararajan 2012): Let V be a set of users.

Let vi(S) be the value that user i has for a good if S ⊆ V already own
the good — e.g. vi(S) = ωi + fi(

∑
j∈S wij) where ωi is inherent

value, and fi might be a concave function, and wij is how important
j ∈ S is to i (e.g., a network). Weights might be random.

Given price p for good, user i buys good if vi(S) ≥ p.

We choose initial price p and initial set of users A ⊆ V who get the
good for free.

Define S1 = {i /∈ A : vi(A) ≥ p} initial set of buyers.

S2 = {i /∈ A ∪ S1 : vi(A ∪ S1) ≥ p}.
This starts a cascade. Let
Sk = {i /∈ ∪j<kSj ∪A : vj(∪j<kSj ∪A) ≥ p},
and let Sk∗ be the saturation point, lowest value of k such that
Sk = Sk+1

Goal: find A and p to maximize fp(A) = E[p× |Sk∗ |].
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Submodular Motivation Recap

Given a set of objects V = {v1, . . . , vn} and a function f : 2V → R
that returns a real value for any subset S ⊆ V .

Suppose we are interested in finding the subset that either maximizes
or minimizes the function, e.g., argmaxS⊆V f(S), possibly subject to
some constraints.

In general, this problem has exponential time complexity.

Example: f might correspond to the value (e.g., information gain) of a
set of sensor locations in an environment, and we wish to find the best
set S ⊆ V of sensors locations given a fixed upper limit on the number
of sensors |S|.
In many cases (such as above) f has properties that make its
optimization tractable to either exactly or approximately compute.

One such property is submodularity.
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Two Equivalent Submodular Definitions

Definition 2.11.1 (submodular concave)

A function f : 2V → R is submodular if for any A,B ⊆ V , we have that:

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (2.8)

An alternate and (as we will soon see) equivalent definition is:

Definition 2.11.2 (diminishing returns)

A function f : 2V → R is submodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B) (2.9)

The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as
the context in which v is considered grows from A to B.
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Subadditive Definitions

Definition 2.11.1 (subadditive)

A function f : 2V → R is subadditive if for any A,B ⊆ V , we have that:

f(A) + f(B) ≥ f(A ∪B) (2.70)

This means that the “whole” is less than the sum of the parts.
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Two Equivalent Supermodular Definitions

Definition 2.11.1 (supermodular)

A function f : 2V → R is supermodular if for any A,B ⊆ V , we have that:

f(A) + f(B) ≤ f(A ∪B) + f(A ∩B) (2.8)

Definition 2.11.2 (supermodular (improving returns))

A function f : 2V → R is supermodular if for any A ⊆ B ⊂ V , and
v ∈ V \B, we have that:

f(A ∪ {v})− f(A) ≤ f(B ∪ {v})− f(B) (2.9)

Incremental “value”, “gain”, or “cost” of v increases (improves) as the
context in which v is considered grows from A to B.
A function f is submodular iff −f is supermodular.
If f both submodular and supermodular, then f is said to be modular,
and f(A) = c+

∑
a∈A f(a) (often c = 0).
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Superadditive Definitions

Definition 2.11.2 (superadditive)

A function f : 2V → R is superadditive if for any A,B ⊆ V , we have that:

f(A) + f(B) ≤ f(A ∪B) (2.71)

This means that the “whole” is greater than the sum of the parts.

In general, submodular and subadditive (and supermodular and
superadditive) are different properties.
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Modular Definitions

Definition 2.11.3 (modular)

A function that is both submodular and supermodular is called modular

If f is a modular function, than for any A,B ⊆ V , we have

f(A) + f(B) = f(A ∩B) + f(A ∪B) (2.72)

In modular functions, elements do not interact (or cooperate, or compete,
or influence each other), and have value based only on singleton values.

Proposition 2.11.4

If f is modular, it may be written as

f(A) = f(∅) +
∑
a∈A

(
f({a})− f(∅)

)
(2.73)
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Modular Definitions

Proof.

We inductively construct the value for A = {a1, a2, . . . , ak}.
For k = 2,

f(a1) + f(a2) = f(a1, a2) + f(∅) (2.74)

implies f(a1, a2) = f(a1)− f(∅) + f(a2)− f(∅) + f(∅) (2.75)

then for k = 3,

f(a1, a2) + f(a3) = f(a1, a2, a3) + f(∅) (2.76)

implies f(a1, a2, a3) = f(a1, a2)− f(∅) + f(a3)− f(∅) + f(∅) (2.77)

= f(∅) +

3∑
i=1

(
f(ai)− f(∅)

)
(2.78)

and so on . . .
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Complement function

Given a function f : 2V → R, we can find a complement function
f̄ : 2V → R as f̄(A) = f(V \A) for any A.

Proposition 2.11.5

f̄ is submodular if f is submodular.

Proof.

f̄(A) + f̄(B) ≥ f̄(A ∪B) + f̄(A ∩B) (2.79)

follows from

f(V \A) + f(V \B) ≥ f(V \ (A ∪B)) + f(V \ (A ∩B)) (2.80)

which is true because V \ (A ∪B) = (V \A) ∩ (V \B) and
V \ (A ∩B) = (V \A) ∪ (V \B).
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