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Logistics

Announcements

Welcome to: Submodular Functions, Optimization, and Applications to
Machine Learning, EE596B.

Class: An introduction to submodular functions including methods for
their optimization, and how they have been (and can be) applied in
many application domains.

Weekly O�ce Hours: Mondays, 3:30-4:30, 10 minutes after class ends
on Mondays.

Loew 116, class web page is at our web page
(http://www.ee.washington.edu/people/faculty/bilmes/
classes/ee596b_spring_2016/).

Use our discussion board
(https://canvas.uw.edu/courses/1039754/discussion_topics)
for all questions, comments, so that all will benefit from them being
answered.
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Rough Class Outline

Introduction to submodular functions: definitions, real-world and
contrived examples, properties, operations that preserve submodularity,
inequalities, variants and special submodular functions, and
computational properties. Gain intution, when is submodularity and
supermodularity useful?

Applications in data science , computer vision , tractable

substructures in constraint satisfaction/SAT and graphical models ,

game theory , social networks , economics , information theory ,

structured convex norms , natural language processing ,

genomics/proteomics , sensor networks , probabilistic inference , and

other areas of machine learning .

Submodularity is an ideal model for cooperation, complexity,

and attractiveness as well as for diversity, coverage, & information
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Rough Class Outline (cont. II)

theory of matroids and lattices.

Polyhedral properties of submodular functions, polymatroids generalize
matroids.

The Lovász extension of submodular functions, the Choquet integral,
and convex and concave extensions.

Submodular maximization algorithms under constraints, submodular
cover problems, greedy algorithms, approximation guarantees.

Submodular minimization algorithms, a history of submodular
minimization, including both numerical and combinatorial algorithms,
computational properties, and descriptions of both known results and
currently open problems in this area.

Submodular flow problems, the principle partition of a submodular
function and its variants.
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Rough Class Outline (cont. III)

Constrained optimization problems with submodular functions,
including maximization and minimization problems with various
constraints. An overview of recent problems addressed in the
community.
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Classic References

Jack Edmonds’s paper “Submodular Functions, Matroids, and Certain
Polyhedra” from 1970.

Nemhauser, Wolsey, Fisher, “A Analysis of Approximations for
Maximizing Submodular Set Functions-I”, 1978

Lovász’s paper, “Submodular functions and convexity”, from 1983.
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Useful Books

Fujishige, “Submodular Functions and Optimization”, 2005

Narayanan, “Submodular Functions and Electrical Networks”, 1997

Welsh, “Matroid Theory”, 1975.

Oxley, “Matroid Theory”, 1992 (and 2011).

Lawler, “Combinatorial Optimization: Networks and Matroids”, 1976.

Schrijver, “Combinatorial Optimization”, 2003

Gruenbaum, “Convex Polytopes, 2nd Ed”, 2003.

Additional readings that will be announced here.
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Recent online material (some with an ML slant)

Previous version of this class http:
//j.ee.washington.edu/

~

bilmes/classes/ee596a_fall_2014/.
Stefanie Jegelka & Andreas Krause’s 2013 ICML tutorial
http://techtalks.tv/talks/

submodularity-in-machine-learning-new-directions-part-i/

58125/

NIPS, 2013 tutorial on submodularity http://melodi.ee.washington.

edu/

~

bilmes/pgs/b2hd-bilmes2013-nips-tutorial.html and
http://youtu.be/c4rBof38nKQ

Andreas Krause’s web page http://submodularity.org.
Francis Bach’s updated 2013 text. http://hal.archives-ouvertes.
fr/docs/00/87/06/09/PDF/submodular_fot_revised_hal.pdf

Tom McCormick’s overview paper on submodular minimization http:

//people.commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf

Georgia Tech’s 2012 workshop on submodularity:
http://www.arc.gatech.edu/events/arc-submodularity-workshop
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Facts about the class

Prerequisites: ideally knowledge in probability, statistics, convex
optimization, and combinatorial optimization these will be reviewed as
necessary. The course is open to students in all UW departments. Any
questions, please contact me.

Text: We will be drawing from the book by Satoru Fujishige entitled
”Submodular Functions and Optimization” 2nd Edition, 2005, but we
will also be reading research papers that will be posted here on this
web page, especially for some of the application areas.

Grades and Assignments: Grades will be based on a combination of a
final project (45%), homeworks (55%). There will be between 3-6
homeworks during the quarter.

Final project: The final project will consist of a 4-page paper
(conference style) and a final project presentation. The project must
involve using/dealing mathematically with submodularity in some way
or another, and might involve a contest!
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Facts about the class

Homework must be submitted electronically using our assignment
dropbox
(https://canvas.uw.edu/courses/1039754/assignments). PDF
submissions only please. Photos of neatly hand written solutions,
combined into one PDF, are fine

Lecture slides - are being updated and improved this quarter. They will
likely appear on the web page the night before, and the final version
will appear just before class.

Slides from previous version of this class are at http:
//j.ee.washington.edu/

~

bilmes/classes/ee596a_fall_2014/.
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Cumulative Outstanding Reading

Read chapter 1 from Fujishige’s book.
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Class Road Map - IT-I

L1(3/28): Motivation, Applications, &

Basic Definitions

L2(3/30):

L3(4/4):

L4(4/6):

L5(4/11):

L6(4/13):

L7(4/18):

L8(4/20):

L9(4/25):

L10(4/27):

L11(5/2):

L12(5/4):

L13(5/9):

L14(5/11):

L15(5/16):

L16(5/18):

L17(5/23):

L18(5/25):

L19(6/1):

L20(6/6): Final Presentations

maximization.

Finals Week: June 6th-10th, 2016.
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Background Definitions Simple Examples ML Apps Diversity Complexity Parameter ML Target Surrogate

Machine Learning and Machine Intelligence

Machine learning: our acknowledgement that humans might might be
intelligent enough only to produce intelligent machines indirectly
This is yet another instance of “All problems in computer science can be
solved by another level of indirection” David Wheeler.
Progress: natural language processing (NLP), computer vision, robotics,
smart homes, genomics/proteomics, and game playing (e.g., GO).
Promise: education, poverty, energy/climate change, and health.
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The Ideal Machine Learning Methods

Simple to define

Mathematically rich

Naturally suited to many
real-world applications

E�cient & scalable to large
problem instances
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Convex Analysis in Machine Learning
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Successful Convexity in Machine Learning

Linear and logistic regresion, surrogate loss functions.

Convex sparse regularizers (such as the `
p

family and nuclear norms).

PSD matrices (i.e., positive semidefinite cone) and Gaussian densities.

Optimizing non-linear and even non-convex classification/regression
methods such as support-vector (SVMs) and kernel machines via
convex optimization.

Maximum entropy estimation

The expectation-maximization (EM) algorithm.

Ideas/techniques/insight for non-convex methods, convex minimization
useful even for non-convex problems, such as Deep Neural Networks
(DNNs).
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A Convexity Limitation: Discrete Problems

Many Machine Learning problems are inherently discrete:

Active learning/label selection.

MAP & diverse k-best discrete
probabilistic inference

Data Science: data partitioning,
clustering, selection; data
summarization; the science of data
management.

Sparse modeling, compressed
sensing, low-rank approximation.

Graphical models structure learning

Variable, feature, and data
selection; dictionary selection.

Natural language processing
(NLP): words, phrases, sentences,
paragraphs, n-grams, syntax trees,
graphs, semantic structures.

Social choice and voting theory,
social networks, viral marketing,

Multi-label image segmentation in
computer vision

Proteomics: selecting or identifying
peptides, proteins, drug trial
participants

Genomics: cell-type or assay
selection, genomic summarization

Might not always be perfectly satisfied with only convex functions.
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More Examples: Discrete Optimization Problems

Combinatorial Problems: e.g., set cover, max k coverage, vertex cover, edge cover,

graph cut problems.

Operations Research/Industrial Engineering: facility and factory location, packing

and covering.

Sensor placement where to optimally place sensors?

Information: Information gain and feature selection, information theory

Mathematics: e.g., monge matrices, e�cient dynamic programming

Networks: Social networks, influence, viral marketing, information cascades, di↵usion

networks

Algorithms: limits of polynomial time complexity

Diversity and its models, subset selection, data summarization

Economics: markets, economies of scale, mathematics of supply & demand

General Integer Programming (e.g., Integer Linear Programming (ILP),
Integer Quadratic Programming (IQP), etc), but general case might ignore
important, useful, and natural structures common to many problems.
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Attractions of Convex Functions

Why do we like Convex Functions? (Quoting Lovász 1983):

1 Convex functions occur in many mathematical models in economy,
engineering, and other sciences. Convexity is a very natural property of
various functions and domains occurring in such models; quite often
the only non-trivial property which can be stated in general.

2 Convexity is preserved under many natural operations and
transformations, and thereby the e↵ective range of results can be
extended, elegant proof techniques can be developed as well as
unforeseen applications of certain results can be given.

3 Convex functions and domains exhibit su�cient structure so that a
mathematically beautiful and practically useful theory can be
developed.

4 There are theoretically and practically (reasonably) e�cient methods
to find the minimum of a convex function.
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Attractions of Submodular Functions

In this course, we wish to demonstrate that submodular and
supermodular functions also possess attractions of these four sorts as
well.

Next we consider graphical models. Can’t they provide useful
structural properties that make many discrete problems easy?

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 1 - Mar 28th, 2016

F20/107 (pg.23/351)



Background Definitions Simple Examples ML Apps Diversity Complexity Parameter ML Target Surrogate

Attractions of Submodular Functions

In this course, we wish to demonstrate that submodular and
supermodular functions also possess attractions of these four sorts as
well.
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Graphical Models and Decomposition

Let B be the set of cliques of a graph G. A graphical model prescribes
how to write functions f : {0, 1}n ! R. Let x 2 {0, 1}n

f(x) =
X

B2B
f
B

(x
B

) (1.1)

Example: Undirected Graphs

X2

X1

X3

X4
X6

X5

f(x1:6) = f(x1, x2, x3) + f(x2, x3, x4)

+ f(x3, x5) + f(x5, x6) + f(x4, x6)

f(x1:6) = f(x1, x2) + f(x2, x3) + f(x3, x1)

+ f(x2, x3) + f(x3, x4) + f(x4, x2)

+ f(x3, x5) + f(x5, x6) + f(x4, x6)

Example: Factor/Hyper Graphs
x1

x2

x3

x4

f1

f2

f3

f4

f(x1:4) = f1(x1, x2, x3) + f2(x2, x3)

= f3(x1, x3, x4) + f4(x3)
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Graphical Models/Decomposition: Real-Object Example

How to valuate a set of items?
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Graphical Models/Decomposition: Real-Object Example

How to valuate a set of items?

Let C, T , and L be binary variables indicating the presence or absence
of items, and we wish to compute value(C, T, L).
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Graphical Models/Decomposition: Real-Object Example

How to valuate a set of items?

Let C, T , and L be binary variables indicating the presence or absence
of items, and we wish to compute value(C, T, L).

Example: Value of Co↵ee (C), Tea (T), and Lemon (L).

C T L

value(C, T, L) = value(C, T ) + value(T, L) (1.2)
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Graphical Decomposition Limitation: Manner of Interaction

Value of Co↵ee (C), Tea (T), and Lemon (L).

C T L

value(C, T, L) = value(C, T ) + value(T, L) (1.3)
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Graphical Decomposition Limitation: Manner of Interaction

Value of Co↵ee (C), Tea (T), and Lemon (L).

C T L

value(C, T, L) = value(C, T ) + value(T, L) (1.3)

Co↵ee and Tea are “substitutive”

value(C, T )  value(C) + value(T ) (1.4)
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Graphical Decomposition Limitation: Manner of Interaction

Value of Co↵ee (C), Tea (T), and Lemon (L).

C T L

value(C, T, L) = value(C, T ) + value(T, L) (1.3)

Co↵ee and Tea are “substitutive”

value(C, T )  value(C) + value(T ) (1.4)

Tea and Lemon are “complementary”

value(T, L) � value(T ) + value(L) (1.5)
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Graphical Decomposition Limitation: Manner of Interaction

Value of Co↵ee (C), Tea (T), and Lemon (L).

C T L

value(C, T, L) = value(C, T ) + value(T, L) (1.3)

Co↵ee and Tea are “substitutive”

value(C, T )  value(C) + value(T ) (1.4)

Tea and Lemon are “complementary”

value(T, L) � value(T ) + value(L) (1.5)

These are distinct non-graphically expressed manners of interaction!
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Options for Cost Models via Graphical Decomposition

Three items. Hamburger (H), Fries (F), Soda (S)
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Options for Cost Models via Graphical Decomposition

Three items. Hamburger (H), Fries (F), Soda (S)

Some graphical model options for costs(H,F, S):

costs(H,F, S ) = csthfc(H,F, S )

costs(H,F, S ) = csthf(H,F ) + cstfc(F, S )

costs(H,F, S ) = csth(H) + cstf(F ) + cstc(S )
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Decompositions via Manner of Interaction

costs(H,F, S) of Hamburger (H), Fries (F), Soda (S)

Consider components of cost: consumer-costs (ccs) and health-costs
(hcs), each of which is ternary.

costs(H,F, S) = ccs(H,F, S) + hcs(H,F, S) (1.6)
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Decompositions via Manner of Interaction

costs(H,F, S) of Hamburger (H), Fries (F), Soda (S)

Consider components of cost: consumer-costs (ccs) and health-costs
(hcs), each of which is ternary.

costs(H,F, S) = ccs(H,F, S) + hcs(H,F, S) (1.6)

Consumer costs

( ) ( )� ( )( )ccs ccs ccs ccs
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Decompositions via Manner of Interaction

costs(H,F, S) of Hamburger (H), Fries (F), Soda (S)

Consider components of cost: consumer-costs (ccs) and health-costs
(hcs), each of which is ternary.

costs(H,F, S) = ccs(H,F, S) + hcs(H,F, S) (1.6)

Consumer costs

( ) ( )� ( )( )ccs ccs ccs ccs

Health costs

( ) ( ) ( )( )hcs hcs hcs hcs
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Decompositions via Manner of Interaction

costs(H,F, S) of Hamburger (H), Fries (F), Soda (S)

Consider components of cost: consumer-costs (ccs) and health-costs
(hcs), each of which is ternary.

costs(H,F, S) = ccs(H,F, S) + hcs(H,F, S) (1.6)

Consumer costs

( ) ( )� ( )( )ccs ccs ccs ccs

Health costs

( ) ( ) ( )( )hcs hcs hcs hcs

In both cases, graphical-only decompositions fail!
Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 1 - Mar 28th, 2016

F25/107 (pg.38/351)



Background Definitions Simple Examples ML Apps Diversity Complexity Parameter ML Target Surrogate

Sets and set functions f : 2V ! R

We are given a finite “ground” set V of objects, 2V , {A : A ✓ V }

V =

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>;

Also given a set function f : 2

V ! R that valuates subsets A ✓ V .
Ex: f(V ) = 6
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Sets and set functions f : 2V ! R

Subset A ✓ V of objects:

A =

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>;

Also given a set function f : 2

V ! R that valuates subsets A ✓ V .
Ex: f(A) = 1
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Sets and set functions f : 2V ! R

Subset B ✓ V of objects:

B =

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>;

Also given a set function f : 2

V ! R that valuates subsets A ✓ V .
Ex: f(B) = 6
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Set functions are pseudo-Boolean functions

Any set A ✓ V can be represented as a binary vector
x 2 {0, 1}V (a “bit vector” representation of a set).

The characteristic vector 1
A

2 {0, 1}V of a set A is defined one where
element v 2 V has value:

1

A

(v) =

(
1 if v 2 A

0 else
(1.7)

Useful to be able to quickly map between X = X(1

X

) and

x(X)

�
= 1

X

.

f : {0, 1}V ! {0, 1} are known as Boolean function.

f : {0, 1}V ! R is a pseudo-Boolean function (submodular functions
are a special case).
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Two Equivalent Submodular Definitions

Definition 1.3.1 (submodular concave)

A function f : 2

V ! R is submodular if for any A,B ✓ V , we have that:

f(A) + f(B) � f(A [B) + f(A \B) (1.8)

An alternate and (as we will soon see) equivalent definition is:

Definition 1.3.2 (diminishing returns)

A function f : 2

V ! R is submodular if for any A ✓ B ⇢ V , and
v 2 V \B, we have that:

f(A [ {v})� f(A) � f(B [ {v})� f(B) (1.9)

The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as
the context in which v is considered grows from A to B.
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Example Submodular: Number of Colors of Balls in Urns

Consider an urn containing colored balls. Given a set S of balls, f(S)
counts the number of distinct colors in S.

Submodularity: Incremental Value of Object Diminishes in a Larger
Context (diminishing returns).

Thus, f is submodular.
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Example Submodular: Number of Colors of Balls in Urns

Consider an urn containing colored balls. Given a set S of balls, f(S)
counts the number of distinct colors in S.

Initial value: 2 (colors in urn).
New value with added blue ball: 3

Initial value: 3 (colors in urn).
New value with added blue ball: 3

Submodularity: Incremental Value of Object Diminishes in a Larger
Context (diminishing returns).

Thus, f is submodular.
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Two Equivalent Supermodular Definitions

Definition 1.3.3 (supermodular)

A function f : 2

V ! R is supermodular if for any A,B ✓ V , we have that:

f(A) + f(B)  f(A [B) + f(A \B) (1.10)

Definition 1.3.4 (supermodular (improving returns))

A function f : 2

V ! R is supermodular if for any A ✓ B ⇢ V , and
v 2 V \B, we have that:

f(A [ {v})� f(A)  f(B [ {v})� f(B) (1.11)

Incremental “value”, “gain”, or “cost” of v increases (improves) as the
context in which v is considered grows from A to B.
A function f is submodular i↵ �f is supermodular.
If f both submodular and supermodular, then f is said to be modular,
and f(A) = c+

P
a2A f(a) (often c = 0).
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Example Supermodular: Number of Balls with Two Lines

Given ball pyramid, bottom row V is size n = |V |. For subset S ✓ V of
bottom-row balls, draw 45� and 135� diagonal lines from each s 2 S. Let
f(S) be number of non-bottom-row balls with two lines ) f(S) is
supermodular.

1 2 3 4 5 6 7 8 9 10
V

1 2 3 4 5 6 7 8 9 10
V

A = {2, 5, 9} A [ {4} = {2, 4, 5, 9}

1 2 3 4 5 6 7 8 9 10
V

1 2 3 4 5 6 7 8 9 10
V

B = {2, 5, 8, 9} B [ {4} = {2, 4, 5, 8, 9}

f(A) = 3 f(A [ {4}) = 6

f(B) = 6

f(B [ {4}) = 10
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Scientific Anecdote: Emergent Properties

New York Times column (D. Brooks), March 28th, 2011 on “Tools for
Thinking” was about responses to Steven Pinker’s (Harvard) asking a
number of scientists “What scientific concept would improve everybody’s
cognitive toolkit?”
See http://edge.org/responses/

what-scientific-concept-would-improve-everybodys-cognitive-toolkit

A common theme was “emergent properties” or “emergent systems”

Emergent systems are ones in which many di↵erent elements
interact. The pattern of interaction then produces a new element
that is greater than the sum of the parts, which then exercises a
top-down influence on the constituent elements.

Emergent properties are well modeled by supermodular functions!
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Submodular-Supermodular Decomposition

As an alternative to graphical decomposition, we can decompose a
function without resorting sums of local terms.

Theorem 1.3.5 (Additive Decomposition (Narasimhan & Bilmes, 2005))

Let h : 2

V ! R be any set function. Then there exists a submodular
function f : 2

V ! R and a supermodular function g : 2

V ! R such that h
may be additively decomposed as follows: For all A ✓ V ,

h(A) = f(A) + g(A) (1.12)

For many applications (as we will see), either the submodular or
supermodular component is naturally zero.
Sometimes more natural than a graphical decomposition.
Sometimes h(A) has structure in terms of submodular functions but is
non additively decomposed (one example is h(A) = f(A)/g(A)).
Complementary: simultaneous graphical/submodular-supermodular
decomposition (i.e., submodular + supermodular tree).
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Submodular-Supermodular Decomposition

As an alternative to graphical decomposition, we can decompose a
function without resorting sums of local terms.

Theorem 1.3.5 (Additive Decomposition (Narasimhan & Bilmes, 2005))

Let h : 2

V ! R be any set function. Then there exists a submodular
function f : 2

V ! R and a supermodular function g : 2

V ! R such that h
may be additively decomposed as follows: For all A ✓ V ,

h(A) = f(A) + g(A) (1.12)

For many applications (as we will see), either the submodular or
supermodular component is naturally zero.
Sometimes more natural than a graphical decomposition.

Sometimes h(A) has structure in terms of submodular functions but is
non additively decomposed (one example is h(A) = f(A)/g(A)).
Complementary: simultaneous graphical/submodular-supermodular
decomposition (i.e., submodular + supermodular tree).
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Submodular-Supermodular Decomposition

As an alternative to graphical decomposition, we can decompose a
function without resorting sums of local terms.

Theorem 1.3.5 (Additive Decomposition (Narasimhan & Bilmes, 2005))

Let h : 2

V ! R be any set function. Then there exists a submodular
function f : 2

V ! R and a supermodular function g : 2

V ! R such that h
may be additively decomposed as follows: For all A ✓ V ,

h(A) = f(A) + g(A) (1.12)

For many applications (as we will see), either the submodular or
supermodular component is naturally zero.
Sometimes more natural than a graphical decomposition.
Sometimes h(A) has structure in terms of submodular functions but is
non additively decomposed (one example is h(A) = f(A)/g(A)).

Complementary: simultaneous graphical/submodular-supermodular
decomposition (i.e., submodular + supermodular tree).
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The Ideal Machine Learning Methods

Simple to define

Mathematically rich

Naturally suited to many
real-world applications

E�cient & scalable to large
problem instances
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Discrete Optimization

Unconstrained minimization and maximization:

min

X✓V

f(X) (1.13) max

X✓V

f(X) (1.14)

Knowing nothing about f , need
2

n queries for any quality as-
surance on candidate solution.
Otherwise, solution can be un-
boundedly poor!!

Alternatively, we may partition V into (necessarily disjoint) blocks
{V1, V2, . . .} that collectively are good in some way.
When f is submodular, however, Eq. (1.13) is polytime, and Eq. (1.14)
is constant-factor approximable. Partitionings are also approximable!
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Constrained Discrete Optimization

Constrained case: interested only in a subset of subsets S ✓ 2

V .

Ex: Bounded size S =

{S ✓ V : |S|  k}, or given cost
vector w and budget, bounded cost�
S ✓ V :

P
s2S w(s)  b

 
.

Ex: feasible sets S as combina-
torial objects

Ex: feasible sets S as matroids.

Ex: feasible sets S

as sub-level sets of g,
S = {S ✓ V : g(S)  ↵},
sup-level sets S =

{S ✓ V : g(S) � ↵}
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Constrained Discrete Optimization

Constrained discrete optimization problems:

maximize f(S)

subject to S 2 S (1.15)

minimize f(S)

subject to S 2 S (1.16)

where S ✓ 2

V is the feasible set of sets.

Fortunately, when f (and g) are submodular, these problems can often
be solved with guarantees, often very e�ciently! (Feige, Mirrokni &

Vondrák 20XX; Goel, Karande, Tripathi & Wang; Svitkina & Fleischer 2010;

Jegelka & Bilmes 2011, Iyer, Jegelka, & Bilmes 2013, Iyer & Bilmes 2014, and

many many others).
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Submodular and Supermodular Applications

Algorithms: Algorithms can be developed that often are tractable (and
as we will see many in this class).

Applications: There are many seemingly di↵erent applications that are
strongly related to submodularity.

Submodularity and supermodularity is as common and natural for
discrete problems in machine learning as is convexity/concavity for
continuous problems.

First, lets look at a few more very simple examples of submodular
functions.
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Continuous Set Cover
The area of the union of areas indexed by A

Let V be a set of indices, and each v 2 V indexes a given fixed
sub-area of some region in R2.

Let area(v) be the area corresponding to item v.

Let f(S) =
S

s2S area(s) be the union of the areas indexed by
elements in S.

Then f(S) is submodular, and corresponds to a continuous set cover
function.
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Continuous Set Cover
The area of the union of areas indexed by A — Example

Union of areas of elements of A is given by:

f(A) = f({a1, a2, a3, a4})
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Continuous Set Cover
The area of the union of areas indexed by A — Example

Area of A along with with v:

f(A [ {v}) = f({a1, a2, a3, a4} [ {v})
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Continuous Set Cover
The area of the union of areas indexed by A — Example

Gain (value) of v in context of A:

f(A [ {v})� f(A) = f({v})

We get full value f({v}) in this case since the area of v has no overlap with
that of A.
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Continuous Set Cover
The area of the union of areas indexed by A — Example

Area of A once again.

f(A) = f({a1, a2, a3, a4})
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Continuous Set Cover
The area of the union of areas indexed by A — Example

Union of areas of elements of B � A, where v is not included:

f(B) where v /2 B and where A ✓ B
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Continuous Set Cover
The area of the union of areas indexed by A — Example

Area of B now also including v:

f(B [ {v})

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 1 - Mar 28th, 2016

F40/107 (pg.80/351)



Background Definitions Simple Examples ML Apps Diversity Complexity Parameter ML Target Surrogate

Continuous Set Cover
The area of the union of areas indexed by A — Example

Incremental value of v in the context of B � A.

f(B [ {v})� f(B) < f({v}) = f(A [ {v})� f(A)

So benefit of v in the context of A is greater than the benefit of v in the
context of B ◆ A.
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Simple Consumer Costs

Grocery store: finite set of items V that one can purchase.
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Simple Consumer Costs

Grocery store: finite set of items V that one can purchase.
Each item v 2 V has a price m(v).
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Simple Consumer Costs

Grocery store: finite set of items V that one can purchase.
Each item v 2 V has a price m(v).
Basket of groceries A ✓ V costs:

m(A) =

X

a2A
m(a), (1.17)

the sum of individual item costs (no two-for-one discounts).
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Simple Consumer Costs

Grocery store: finite set of items V that one can purchase.
Each item v 2 V has a price m(v).
Basket of groceries A ✓ V costs:

m(A) =

X

a2A
m(a), (1.17)

the sum of individual item costs (no two-for-one discounts).
This is known as a modular function.
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Discounted Consumer Costs (as we saw earlier)

Let f be the cost of purchasing a set of items (consumer cost). For
example, V = {”coke”, ”fries”, ”hamburger”} and f(A) measures the
cost of any subset A ✓ V .We get diminishing returns:

f ( ) f ( ) � f ( ) f ( )

Simply rearranging terms, we get the other definition of submodularity:

f ( ) � f ( ) + f ( )f ( )+

Typical: additional cost of a coke is free only if you add it to a fries
and hamburger order.
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Shared Fixed Costs (interacting costs)

Costs often interact in the real world.

Ex: Let V = {v1, v2} be a set of actions with:
v1 = “buy milk at the store” v2 = “buy honey at the store”

For A ✓ V , let f(A) be the consumer cost of set of items A.

f({v1}) = cost to drive to and from store c
d

, and cost to purchase
milk c

m

, so f({v1}) = c
d

+ c
m

.

f({v2}) = cost to drive to and from store c
d

, and cost to purchase
honey c

h

, so f({v2}) = c
d

+ c
h

.

But f({v1, v2}) = c
d

+ c
m

+ c
h

< 2c
d

+ c
m

+ c
h

since c
d

(driving) is a
shared fixed cost.

Shared fixed costs are submodular: f(v1) + f(v2) � f(v1, v2) + f(;)
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Shared Fixed Costs (interacting costs)

Costs often interact in the real world.

Ex: Let V = {v1, v2} be a set of actions with:
v1 = “buy milk at the store” v2 = “buy honey at the store”

For A ✓ V , let f(A) be the consumer cost of set of items A.

f({v1}) = cost to drive to and from store c
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, and cost to purchase
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+ c
m
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f({v2}) = cost to drive to and from store c
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, and cost to purchase
honey c

h

, so f({v2}) = c
d

+ c
h

.

But f({v1, v2}) = c
d

+ c
m

+ c
h

< 2c
d

+ c
m

+ c
h

since c
d

(driving) is a
shared fixed cost.

Shared fixed costs are submodular: f(v1) + f(v2) � f(v1, v2) + f(;)
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Shared Fixed Costs (interacting costs)

Costs often interact in the real world.

Ex: Let V = {v1, v2} be a set of actions with:
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Shared Fixed Costs (interacting costs)

Costs often interact in the real world.

Ex: Let V = {v1, v2} be a set of actions with:
v1 = “buy milk at the store” v2 = “buy honey at the store”

For A ✓ V , let f(A) be the consumer cost of set of items A.
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, and cost to purchase
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, and cost to purchase
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, so f({v2}) = c
d

+ c
h

.

But f({v1, v2}) = c
d

+ c
m

+ c
h

< 2c
d

+ c
m

+ c
h

since c
d

(driving) is a
shared fixed cost.

Shared fixed costs are submodular: f(v1) + f(v2) � f(v1, v2) + f(;)
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Shared Fixed Costs (interacting costs)

Costs often interact in the real world.
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Shared Fixed Costs (interacting costs)
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Shared Fixed Costs (interacting costs)

Costs often interact in the real world.

Ex: Let V = {v1, v2} be a set of actions with:
v1 = “buy milk at the store” v2 = “buy honey at the store”

For A ✓ V , let f(A) be the consumer cost of set of items A.
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Shared fixed costs are submodular: f(v1) + f(v2) � f(v1, v2) + f(;)
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Markets: Supply Side Economies of scale

Economies of Scale : Many goods and services can be produced at a
much lower per-unit cost only if they are produced in very large
quantities.

The profit margin for producing a unit of goods is improved as more
of those goods are created.

If you already make a good, making a similar good is easier than if you
start from scratch (e.g., Apple making both iPod and iPhone).

An argument in favor of free trade is that it opens up larger markets
for firms (especially in otherwise small markets), thereby enabling
better economies of scale, and hence greater e�ciency (lower costs
and resources per unit of good produced).
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Supply Side Economies of Scale

What is a good model of the cost of manufacturing a set of items?

Let V be a set of possible items to manufacture, and let f(S) for
S ✓ V be the manufacture costs of items in the subset S.

Ex: V might be paint colors to produce: green, red, blue, yellow,
white, etc.

Producing green when you are already producing yellow and blue is
probably cheaper than if you were only producing some other colors.

f(green, blue, yellow)� f(blue, yellow) <= f(green, blue)� f(blue)

So diminishing returns (a submodular function) would be a good
model.

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 1 - Mar 28th, 2016

F45/107 (pg.95/351)



Background Definitions Simple Examples ML Apps Diversity Complexity Parameter ML Target Surrogate

Supply Side Economies of Scale

What is a good model of the cost of manufacturing a set of items?

Let V be a set of possible items to manufacture, and let f(S) for
S ✓ V be the manufacture costs of items in the subset S.

Ex: V might be paint colors to produce: green, red, blue, yellow,
white, etc.

Producing green when you are already producing yellow and blue is
probably cheaper than if you were only producing some other colors.

f(green, blue, yellow)� f(blue, yellow) <= f(green, blue)� f(blue)

So diminishing returns (a submodular function) would be a good
model.

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 1 - Mar 28th, 2016

F45/107 (pg.96/351)



Background Definitions Simple Examples ML Apps Diversity Complexity Parameter ML Target Surrogate

Supply Side Economies of Scale

What is a good model of the cost of manufacturing a set of items?

Let V be a set of possible items to manufacture, and let f(S) for
S ✓ V be the manufacture costs of items in the subset S.

Ex: V might be paint colors to produce: green, red, blue, yellow,
white, etc.

Producing green when you are already producing yellow and blue is
probably cheaper than if you were only producing some other colors.

f(green, blue, yellow)� f(blue, yellow) <= f(green, blue)� f(blue)

So diminishing returns (a submodular function) would be a good
model.

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 1 - Mar 28th, 2016

F45/107 (pg.97/351)



Background Definitions Simple Examples ML Apps Diversity Complexity Parameter ML Target Surrogate

Supply Side Economies of Scale

What is a good model of the cost of manufacturing a set of items?

Let V be a set of possible items to manufacture, and let f(S) for
S ✓ V be the manufacture costs of items in the subset S.

Ex: V might be paint colors to produce: green, red, blue, yellow,
white, etc.

Producing green when you are already producing yellow and blue is
probably cheaper than if you were only producing some other colors.

f(green, blue, yellow)� f(blue, yellow) <= f(green, blue)� f(blue)

So diminishing returns (a submodular function) would be a good
model.

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 1 - Mar 28th, 2016

F45/107 (pg.98/351)



Background Definitions Simple Examples ML Apps Diversity Complexity Parameter ML Target Surrogate

Supply Side Economies of Scale

What is a good model of the cost of manufacturing a set of items?

Let V be a set of possible items to manufacture, and let f(S) for
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Demand side Economies of Scale: Network Externalities

Value of a network to a user
depends on the number of other
users in that network. External
use benefits internal use.

Va
lu

e 
of

 N
et

w
or

k
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Demand side Economies of Scale: Network Externalities

Value of a network to a user
depends on the number of other
users in that network. External
use benefits internal use.

Consumers derive positive
incremental value when size of
the market for that good
increases.
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Demand side Economies of Scale: Network Externalities

Value of a network to a user
depends on the number of other
users in that network. External
use benefits internal use.

Consumers derive positive
incremental value when size of
the market for that good
increases.

Va
lu

e 
of

 N
et

w
or

k

Called network externalities (Katz & Shapiro 1986), or network e↵ects
and is a form of demand-side economies of scale
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Demand side Economies of Scale: Network Externalities

Value of a network to a user
depends on the number of other
users in that network. External
use benefits internal use.

Consumers derive positive
incremental value when size of
the market for that good
increases.

Va
lu

e 
of

 N
et

w
or

k

Called network externalities (Katz & Shapiro 1986), or network e↵ects
and is a form of demand-side economies of scale
Ex: durable goods (e.g., a car or phone), software (facebook,
smartphone apps), and technology-specific human capital investment
(e.g., education in a skill), benefit depends on total user base.
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Demand side Economies of Scale: Network Externalities

Value of a network to a user
depends on the number of other
users in that network. External
use benefits internal use.

Consumers derive positive
incremental value when size of
the market for that good
increases.

Va
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Called network externalities (Katz & Shapiro 1986), or network e↵ects
and is a form of demand-side economies of scale
Ex: durable goods (e.g., a car or phone), software (facebook,
smartphone apps), and technology-specific human capital investment
(e.g., education in a skill), benefit depends on total user base.
Let V be a set of goods, A a subset and v /2 A. Incremental gain of
good f(A+ v)� f(A) gets larger as size of market A grows. This is
known as a supermodular function.
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Examples: Positive Network E↵ects
railroad - standard rail format and shared access
The telephone, who wants to talk by phone only to oneself?
the internet, more valuable per person the more people use it.
ebooks (the more people comment, the better it gets)
social network sites: facebook more valuable with everyone online
online education, Massive Open Online Courses (MOOCs) such as
Coursera, edX, etc. – with many people simultaneously taking a class,
all gain due to richer peer discussions due to greater pool of well
matched study groups, more simultaneous similar questions/problems
that are asked ) more e�cient learning & training data for ML
algorithms to learn how people learn.
Software (e.g., Microsoft o�ce, smartphone apps, etc.): more people
means more bug reporting ) better & faster software evolution.
gmail and web-based email (collaborative spam filtering).
wikipedia, collaborative documents
any widely used standard (job training now is useful in the future)
the “tipping point”, and “winner take all” (one platform prevails)
markets.Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 1 - Mar 28th, 2016
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Examples: Other Network E↵ects

No Network Externalities

food/drink - (should be) independent of how many others are eating
the type of food.

Music - your enjoyment should (ideally) be independent of others’
enjoyment (but maybe not, see Salganik, Dodds, Watts’06).

Negative Network E↵ects

clothing

(Halloween) costumes

perfume?
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enjoyment (but maybe not, see Salganik, Dodds, Watts’06).

Negative Network E↵ects

clothing

(Halloween) costumes

perfume?
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No Network Externalities

food/drink - (should be) independent of how many others are eating
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Submodularity’s utility in ML

A model of a physical process:

What a submodular function is good for modeling depends on if we wish
to maximize or wish to minimize it.
Submodular functions naturally model aspects like:
diversity, coverage, span, and information in maximization problems,
and cooperative costs, complexity, roughness, and irregularity in
minimization problems.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence,
structured sparse convex norms for use in regularization).
Itself, as an object or function to learn, based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a means
towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
e�ciently solved and o↵er a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.
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A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a means
towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
e�ciently solved and o↵er a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 1 - Mar 28th, 2016

F49/107 (pg.116/351)



Background Definitions Simple Examples ML Apps Diversity Complexity Parameter ML Target Surrogate

Submodularity’s utility in ML

A model of a physical process:
What a submodular function is good for modeling depends on if we wish
to maximize or wish to minimize it.
Submodular functions naturally model aspects like:
diversity, coverage, span, and information in maximization problems,
and cooperative costs, complexity, roughness, and irregularity in
minimization problems.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence,
structured sparse convex norms for use in regularization).

Itself, as an object or function to learn, based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a means
towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
e�ciently solved and o↵er a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 1 - Mar 28th, 2016

F49/107 (pg.117/351)



Background Definitions Simple Examples ML Apps Diversity Complexity Parameter ML Target Surrogate

Submodularity’s utility in ML

A model of a physical process:
What a submodular function is good for modeling depends on if we wish
to maximize or wish to minimize it.
Submodular functions naturally model aspects like:
diversity, coverage, span, and information in maximization problems,
and cooperative costs, complexity, roughness, and irregularity in
minimization problems.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence,
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An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a means
towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
e�ciently solved and o↵er a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 1 - Mar 28th, 2016

F49/107 (pg.118/351)



Background Definitions Simple Examples ML Apps Diversity Complexity Parameter ML Target Surrogate
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An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a means
towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
e�ciently solved and o↵er a bounded quality solution.
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What a submodular function is good for modeling depends on if we wish
to maximize or wish to minimize it.
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and cooperative costs, complexity, roughness, and irregularity in
minimization problems.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence,
structured sparse convex norms for use in regularization).
Itself, as an object or function to learn, based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a means
towards tractable surrogates for graphical models.

Also, we can “relax” a problem to a submodular one where it can be
e�ciently solved and o↵er a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.
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Submodularity’s utility in ML

A model of a physical process:
What a submodular function is good for modeling depends on if we wish
to maximize or wish to minimize it.
Submodular functions naturally model aspects like:
diversity, coverage, span, and information in maximization problems,
and cooperative costs, complexity, roughness, and irregularity in
minimization problems.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence,
structured sparse convex norms for use in regularization).
Itself, as an object or function to learn, based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a means
towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
e�ciently solved and o↵er a bounded quality solution.

Non-submodular problems can be analyzed via submodularity.
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Submodularity’s utility in ML

A model of a physical process:
What a submodular function is good for modeling depends on if we wish
to maximize or wish to minimize it.
Submodular functions naturally model aspects like:
diversity, coverage, span, and information in maximization problems,
and cooperative costs, complexity, roughness, and irregularity in
minimization problems.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence,
structured sparse convex norms for use in regularization).
Itself, as an object or function to learn, based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a means
towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
e�ciently solved and o↵er a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.
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Diversity Functions

Diverse web search. Given search term (e.g., “jaguar”) but no other
information, one probably does not want only articles about cars.

Given a set V of of items, how do we choose a subset S ✓ V that is as
diverse as possible, with perhaps constraints on S such as its size.

How do we choose the smallest set S that maintains a given quality of
diversity?

Goal of diversity: ensure proper representation in chosen set that, say
otherwise in a random sample, could lead to poor representation of
normally underrepresented groups.
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Diversity Functions

Diverse web search. Given search term (e.g., “jaguar”) but no other
information, one probably does not want only articles about cars.

Given a set V of of items, how do we choose a subset S ✓ V that is as
diverse as possible, with perhaps constraints on S such as its size.

How do we choose the smallest set S that maintains a given quality of
diversity?
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Extractive Document Summarization

The figure below represents the sentences of a document

The summary on the left is a subset of the summary on the right.

Consider adding a new (blue) sentence to each of the two summaries.

The marginal (incremental) benefit of adding the new (blue) sentence
to the smaller (left) summary is no more than the marginal benefit of
adding the new sentence to the larger (right) summary.

diminishing returns $ submodularity
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Extractive Document Summarization

We extract sentences (green) as a summary of the full document

The summary on the left is a subset of the summary on the right.

Consider adding a new (blue) sentence to each of the two summaries.

The marginal (incremental) benefit of adding the new (blue) sentence
to the smaller (left) summary is no more than the marginal benefit of
adding the new sentence to the larger (right) summary.

diminishing returns $ submodularity
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Extractive Document Summarization

We extract sentences (green) as a summary of the full document

⇢

The summary on the left is a subset of the summary on the right.

Consider adding a new (blue) sentence to each of the two summaries.

The marginal (incremental) benefit of adding the new (blue) sentence
to the smaller (left) summary is no more than the marginal benefit of
adding the new sentence to the larger (right) summary.

diminishing returns $ submodularity
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Extractive Document Summarization

We extract sentences (green) as a summary of the full document

⇢

The summary on the left is a subset of the summary on the right.

Consider adding a new (blue) sentence to each of the two summaries.

The marginal (incremental) benefit of adding the new (blue) sentence
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Image collections

Many images, also that have a higher level gestalt than just a few.
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Web search and information retrieval

A web search is a form of summarization based on query.

Goal of a web search engine is to produce a ranked list of web pages
that, conditioned on the text query entered, summarizes the most
important links on the web.

Information retrieval (the science of automatically acquiring
information), book and music recommendation systems —

Overall goal: user should quickly find information that is informative,
concise, accurate, relevant (to the user’s needs), and comprehensive.
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Image Summarization

10⇥10 image collection: 3 best summaries:

3 medium summaries:

3 worst summaries:

The three best summaries exhibit diversity. The three worst summaries
exhibit redundancy (Tschiatschek, Iyer, & B, NIPS 2014).
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Variable Selection in Classification/Regression

Let Y be a random variable we wish to accurately predict based on at
most n = |V | observed measurement variables (X1, X2, . . . , Xn

) = X
V

in a probability model Pr(Y,X1, X2, . . . , Xn

).

Too costly to use all V variables. Goal: choose subset A ✓ V of variables
within budget |A|  k. Predictions based on only Pr(y|x

A

), hence subset
A should retain accuracy.
The mutual information function f(A) = I(Y ;X

A

) (“information gain”)
measures how well variables A can predicting Y (entropy reduction,
reduction of uncertainty of Y ).
The mutual information function f(A) = I(Y ;X

A

) is defined as:

I(Y ;X
A

) =

X

y,xA

Pr(y, x
A

) log

Pr(y, x
A

)

Pr(y) Pr(x
A

)

= H(Y )�H(Y |X
A

) (1.18)

= H(X
A

)�H(X
A

|Y ) = H(X
A

) +H(Y )�H(X
A

, Y ) (1.19)

Applicable in pattern recognition, also in sensor coverage problem, where
Y is whatever question we wish to ask about environment.
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Variable Selection in Classification/Regression

Let Y be a random variable we wish to accurately predict based on at
most n = |V | observed measurement variables (X1, X2, . . . , Xn

) = X
V

in a probability model Pr(Y,X1, X2, . . . , Xn

).
Too costly to use all V variables. Goal: choose subset A ✓ V of variables
within budget |A|  k. Predictions based on only Pr(y|x
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= H(X
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A

) +H(Y )�H(X
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, Y ) (1.19)

Applicable in pattern recognition, also in sensor coverage problem, where
Y is whatever question we wish to ask about environment.
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Applicable in pattern recognition, also in sensor coverage problem, where
Y is whatever question we wish to ask about environment.
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Variable Selection in Classification/Regression

Let Y be a random variable we wish to accurately predict based on at
most n = |V | observed measurement variables (X1, X2, . . . , Xn

) = X
V

in a probability model Pr(Y,X1, X2, . . . , Xn

).
Too costly to use all V variables. Goal: choose subset A ✓ V of variables
within budget |A|  k. Predictions based on only Pr(y|x

A

), hence subset
A should retain accuracy.
The mutual information function f(A) = I(Y ;X
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Applicable in pattern recognition, also in sensor coverage problem, where
Y is whatever question we wish to ask about environment.
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Variable Selection in Classification/Regression

Let Y be a random variable we wish to accurately predict based on at
most n = |V | observed measurement variables (X1, X2, . . . , Xn

) = X
V

in a probability model Pr(Y,X1, X2, . . . , Xn

).
Too costly to use all V variables. Goal: choose subset A ✓ V of variables
within budget |A|  k. Predictions based on only Pr(y|x

A

), hence subset
A should retain accuracy.
The mutual information function f(A) = I(Y ;X

A

) (“information gain”)
measures how well variables A can predicting Y (entropy reduction,
reduction of uncertainty of Y ).
The mutual information function f(A) = I(Y ;X

A

) is defined as:

I(Y ;X
A

) =

X

y,xA

Pr(y, x
A

) log

Pr(y, x
A

)

Pr(y) Pr(x
A

)

= H(Y )�H(Y |X
A

) (1.18)

= H(X
A

)�H(X
A

|Y ) = H(X
A

) +H(Y )�H(X
A

, Y ) (1.19)

Applicable in pattern recognition, also in sensor coverage problem, where
Y is whatever question we wish to ask about environment.
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Information Gain and Feature Selection
in Pattern Classification: Näıve Bayes

Näıve Bayes property: X
A

??X
B

|Y for all A,B.

Y

X1 X2 X3 X4 X5

Y

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4

When X
A

??X
B

|Y for all A,B (the Näıve Bayes assumption holds),
then

f(A) = I(Y ;X
A

) = H(X
A

)�H(X
A

|Y ) = H(X
A

)�
X

a2A
H(X

a

|Y )

(1.20)

is submodular (submodular minus modular).
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Information Gain and Feature Selection
in Pattern Classification: Näıve Bayes

Näıve Bayes property: X
A

??X
B

|Y for all A,B.

Y

X1 X2 X3 X4 X5

Y

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4

When X
A

??X
B

|Y for all A,B (the Näıve Bayes assumption holds),
then

f(A) = I(Y ;X
A

) = H(X
A

)�H(X
A

|Y ) = H(X
A

)�
X

a2A
H(X

a

|Y )

(1.20)

is submodular (submodular minus modular).
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Variable Selection in Pattern Classification

Näıve Bayes property fails:
Y

X1 X2 X3 X4 X5

Y

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4

f(A) naturally expressed as a di↵erence of two submodular functions

f(A) = I(Y ;X
A

) = H(X
A

)�H(X
A

|Y ), (1.21)

which is a DS (di↵erence of submodular) function.
Alternatively, when Näıve Bayes assumption is false, we can make a
submodular approximation (Peng-2005). E.g., functions of the form:

f(A) =

X

a2A
I(X

a

;Y )� �
X

a,a

02A
I(X

a

;X
a

0 |Y ) (1.22)

where � � 0 is a tradeo↵ constant.
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Variable Selection in Pattern Classification

Näıve Bayes property fails:
Y

X1 X2 X3 X4 X5

Y

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4

f(A) naturally expressed as a di↵erence of two submodular functions

f(A) = I(Y ;X
A

) = H(X
A

)�H(X
A

|Y ), (1.21)

which is a DS (di↵erence of submodular) function.

Alternatively, when Näıve Bayes assumption is false, we can make a
submodular approximation (Peng-2005). E.g., functions of the form:

f(A) =

X

a2A
I(X

a

;Y )� �
X

a,a

02A
I(X

a

;X
a

0 |Y ) (1.22)

where � � 0 is a tradeo↵ constant.
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Variable Selection in Pattern Classification

Näıve Bayes property fails:
Y

X1 X2 X3 X4 X5

Y

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4

f(A) naturally expressed as a di↵erence of two submodular functions

f(A) = I(Y ;X
A

) = H(X
A

)�H(X
A

|Y ), (1.21)

which is a DS (di↵erence of submodular) function.
Alternatively, when Näıve Bayes assumption is false, we can make a
submodular approximation (Peng-2005). E.g., functions of the form:

f(A) =

X

a2A
I(X

a

;Y )� �
X

a,a

02A
I(X

a

;X
a

0 |Y ) (1.22)

where � � 0 is a tradeo↵ constant.
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Variable Selection: Linear Regression Case

Here Z is continuous and predictor is linear ˜Z
A

=

P
i2A ↵

i

X
i

.
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Variable Selection: Linear Regression Case

Here Z is continuous and predictor is linear ˜Z
A

=

P
i2A ↵

i

X
i

.
Error measure is the residual variance

R2
Z,A

=

Var(Z)� E[(Z � ˜Z
A

)

2
]

Var(Z)

(1.23)
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Variable Selection: Linear Regression Case

Here Z is continuous and predictor is linear ˜Z
A

=

P
i2A ↵

i

X
i

.
Error measure is the residual variance

R2
Z,A

=

Var(Z)� E[(Z � ˜Z
A

)

2
]

Var(Z)

(1.23)

R2
Z,A

’s minimizing parameters, for a given A, can be easily computed

(R2
Z,A

= b
A

|
(C�1

A

)

|
b
A

when VarZ = 1, where b
i

= Cov(Z,X
i

) and
C = E[(X � E[X])

|
(X � E[X])] is the covariance matrix).
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Variable Selection: Linear Regression Case

Here Z is continuous and predictor is linear ˜Z
A

=

P
i2A ↵

i

X
i

.
Error measure is the residual variance

R2
Z,A

=

Var(Z)� E[(Z � ˜Z
A

)

2
]

Var(Z)

(1.23)

R2
Z,A

’s minimizing parameters, for a given A, can be easily computed

(R2
Z,A

= b
A

|
(C�1

A

)

|
b
A

when VarZ = 1, where b
i

= Cov(Z,X
i

) and
C = E[(X � E[X])

|
(X � E[X])] is the covariance matrix).

When there are no “suppressor” variables (essentially, no
v-structures that converge on X

j

with parents X
i

and Z),
then

f(A) = R2
Z,A

= b
A

|
(C�1

A

)

|
b
A

(1.24)

is a polymatroid function (so the greedy algorithm gives
the 1� 1/e guarantee). (Das&Kempe).

ZXi

Xj
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Data Subset Selection

Suppose we are given a data set D = {x
i

}n
i=1 of n data items

V = {v1, v2, . . . , vn} and we wish to choose a subset A ⇢ V of items
that is good in some way.

Suppose moreover each data item v 2 V is described by a vector of
non-negative scores for a set U of “features” (or properties, or
characteristics, etc.) of each data item.
That is, for u 2 U and v 2 V , let m

u

(v) represent the “degree of
u-ness” possessed by data item v. Then m

u

2 RV

+ for all u 2 U .
Example: U could be a set of colors, and for an image v 2 V , m

u

(v)
could represent the number of pixels that are of color u.
Example: U might be a set of textual features (e.g., ngrams), and
m

u

(v) is the number of ngrams of type u in sentence v. E.g., if a
document consists of the sentence

v = “Whenever I go to New York City, I visit the New York City museum.”

then m
’the’

(v) = 1 while m
’New York City’

(v) = 2.
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Data Subset Selection

Suppose we are given a data set D = {x
i

}n
i=1 of n data items

V = {v1, v2, . . . , vn} and we wish to choose a subset A ⇢ V of items
that is good in some way.
Suppose moreover each data item v 2 V is described by a vector of
non-negative scores for a set U of “features” (or properties, or
characteristics, etc.) of each data item.

That is, for u 2 U and v 2 V , let m
u

(v) represent the “degree of
u-ness” possessed by data item v. Then m

u

2 RV

+ for all u 2 U .
Example: U could be a set of colors, and for an image v 2 V , m

u

(v)
could represent the number of pixels that are of color u.
Example: U might be a set of textual features (e.g., ngrams), and
m

u

(v) is the number of ngrams of type u in sentence v. E.g., if a
document consists of the sentence

v = “Whenever I go to New York City, I visit the New York City museum.”

then m
’the’

(v) = 1 while m
’New York City’

(v) = 2.
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Data Subset Selection

Suppose we are given a data set D = {x
i

}n
i=1 of n data items

V = {v1, v2, . . . , vn} and we wish to choose a subset A ⇢ V of items
that is good in some way.
Suppose moreover each data item v 2 V is described by a vector of
non-negative scores for a set U of “features” (or properties, or
characteristics, etc.) of each data item.
That is, for u 2 U and v 2 V , let m

u

(v) represent the “degree of
u-ness” possessed by data item v. Then m

u

2 RV

+ for all u 2 U .

Example: U could be a set of colors, and for an image v 2 V , m
u

(v)
could represent the number of pixels that are of color u.
Example: U might be a set of textual features (e.g., ngrams), and
m

u

(v) is the number of ngrams of type u in sentence v. E.g., if a
document consists of the sentence

v = “Whenever I go to New York City, I visit the New York City museum.”

then m
’the’

(v) = 1 while m
’New York City’

(v) = 2.
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Data Subset Selection

Suppose we are given a data set D = {x
i

}n
i=1 of n data items

V = {v1, v2, . . . , vn} and we wish to choose a subset A ⇢ V of items
that is good in some way.
Suppose moreover each data item v 2 V is described by a vector of
non-negative scores for a set U of “features” (or properties, or
characteristics, etc.) of each data item.
That is, for u 2 U and v 2 V , let m

u

(v) represent the “degree of
u-ness” possessed by data item v. Then m

u

2 RV

+ for all u 2 U .
Example: U could be a set of colors, and for an image v 2 V , m

u

(v)
could represent the number of pixels that are of color u.

Example: U might be a set of textual features (e.g., ngrams), and
m

u

(v) is the number of ngrams of type u in sentence v. E.g., if a
document consists of the sentence

v = “Whenever I go to New York City, I visit the New York City museum.”

then m
’the’

(v) = 1 while m
’New York City’

(v) = 2.
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Data Subset Selection

Suppose we are given a data set D = {x
i

}n
i=1 of n data items

V = {v1, v2, . . . , vn} and we wish to choose a subset A ⇢ V of items
that is good in some way.
Suppose moreover each data item v 2 V is described by a vector of
non-negative scores for a set U of “features” (or properties, or
characteristics, etc.) of each data item.
That is, for u 2 U and v 2 V , let m

u

(v) represent the “degree of
u-ness” possessed by data item v. Then m

u

2 RV

+ for all u 2 U .
Example: U could be a set of colors, and for an image v 2 V , m

u

(v)
could represent the number of pixels that are of color u.
Example: U might be a set of textual features (e.g., ngrams), and
m

u

(v) is the number of ngrams of type u in sentence v. E.g., if a
document consists of the sentence

v = “Whenever I go to New York City, I visit the New York City museum.”

then m
’the’

(v) = 1 while m
’New York City’

(v) = 2.
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Data Subset Selection

For X ✓ V , define m
u

(X) =

P
x2X m

u

(x), so m
u

(X) is a modular
function representing the “degree of u-ness” in subset X.

Since m
u

(X) is modular, it does not have a diminishing returns property.
I.e., as we add to X, the degree of u-ness grows additively.
With g non-decreasing concave, g(m

u

(X)) grows subadditively (if we add
v to a context A with less u-ness, the u-ness benefit is more than if we
add v to a context B ◆ A having more u-ness).

That is

g(m
u

(A+ v))� g(m
u

(A)) � g(m
u

(B + v))� g(m
u

(B)) (1.25)

Consider the following class of feature functions f : 2

V ! R+

f(X) =

X

u2U
↵
u

g
u

(m
u

(X)) (1.26)

where g
u

is a non-decreasing concave, and ↵
u

� 0 is a feature importance
weight. Thus, f is submodular.
f(X) measures X’s ability to represent set of features U as measured by
m

u

(X), with diminishing returns function g, and importance weights ↵
u

.
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Data Subset Selection

For X ✓ V , define m
u

(X) =

P
x2X m

u

(x), so m
u

(X) is a modular
function representing the “degree of u-ness” in subset X.
Since m

u

(X) is modular, it does not have a diminishing returns property.
I.e., as we add to X, the degree of u-ness grows additively.

With g non-decreasing concave, g(m
u

(X)) grows subadditively (if we add
v to a context A with less u-ness, the u-ness benefit is more than if we
add v to a context B ◆ A having more u-ness).

That is

g(m
u

(A+ v))� g(m
u

(A)) � g(m
u

(B + v))� g(m
u

(B)) (1.25)

Consider the following class of feature functions f : 2

V ! R+

f(X) =

X

u2U
↵
u

g
u

(m
u

(X)) (1.26)

where g
u

is a non-decreasing concave, and ↵
u

� 0 is a feature importance
weight. Thus, f is submodular.
f(X) measures X’s ability to represent set of features U as measured by
m

u

(X), with diminishing returns function g, and importance weights ↵
u

.
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Data Subset Selection

For X ✓ V , define m
u

(X) =

P
x2X m

u

(x), so m
u

(X) is a modular
function representing the “degree of u-ness” in subset X.
Since m

u

(X) is modular, it does not have a diminishing returns property.
I.e., as we add to X, the degree of u-ness grows additively.
With g non-decreasing concave, g(m

u

(X)) grows subadditively (if we add
v to a context A with less u-ness, the u-ness benefit is more than if we
add v to a context B ◆ A having more u-ness).

That is

g(m
u

(A+ v))� g(m
u

(A)) � g(m
u

(B + v))� g(m
u

(B)) (1.25)

Consider the following class of feature functions f : 2

V ! R+

f(X) =

X

u2U
↵
u

g
u

(m
u

(X)) (1.26)

where g
u

is a non-decreasing concave, and ↵
u

� 0 is a feature importance
weight. Thus, f is submodular.
f(X) measures X’s ability to represent set of features U as measured by
m

u

(X), with diminishing returns function g, and importance weights ↵
u

.
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Data Subset Selection

For X ✓ V , define m
u

(X) =

P
x2X m

u

(x), so m
u

(X) is a modular
function representing the “degree of u-ness” in subset X.
Since m

u

(X) is modular, it does not have a diminishing returns property.
I.e., as we add to X, the degree of u-ness grows additively.
With g non-decreasing concave, g(m

u

(X)) grows subadditively (if we add
v to a context A with less u-ness, the u-ness benefit is more than if we
add v to a context B ◆ A having more u-ness). That is

g(m
u

(A+ v))� g(m
u

(A)) � g(m
u

(B + v))� g(m
u

(B)) (1.25)

Consider the following class of feature functions f : 2

V ! R+

f(X) =

X

u2U
↵
u

g
u

(m
u

(X)) (1.26)

where g
u

is a non-decreasing concave, and ↵
u

� 0 is a feature importance
weight. Thus, f is submodular.
f(X) measures X’s ability to represent set of features U as measured by
m

u

(X), with diminishing returns function g, and importance weights ↵
u

.

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 1 - Mar 28th, 2016

F60/107 (pg.159/351)



Background Definitions Simple Examples ML Apps Diversity Complexity Parameter ML Target Surrogate

Data Subset Selection

For X ✓ V , define m
u

(X) =

P
x2X m

u

(x), so m
u

(X) is a modular
function representing the “degree of u-ness” in subset X.
Since m

u

(X) is modular, it does not have a diminishing returns property.
I.e., as we add to X, the degree of u-ness grows additively.
With g non-decreasing concave, g(m

u

(X)) grows subadditively (if we add
v to a context A with less u-ness, the u-ness benefit is more than if we
add v to a context B ◆ A having more u-ness). That is

g(m
u

(A+ v))� g(m
u

(A)) � g(m
u

(B + v))� g(m
u

(B)) (1.25)

Consider the following class of feature functions f : 2

V ! R+

f(X) =

X

u2U
↵
u

g
u

(m
u

(X)) (1.26)

where g
u

is a non-decreasing concave, and ↵
u

� 0 is a feature importance
weight. Thus, f is submodular.

f(X) measures X’s ability to represent set of features U as measured by
m

u

(X), with diminishing returns function g, and importance weights ↵
u

.
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Data Subset Selection

For X ✓ V , define m
u

(X) =

P
x2X m

u

(x), so m
u

(X) is a modular
function representing the “degree of u-ness” in subset X.
Since m

u

(X) is modular, it does not have a diminishing returns property.
I.e., as we add to X, the degree of u-ness grows additively.
With g non-decreasing concave, g(m

u

(X)) grows subadditively (if we add
v to a context A with less u-ness, the u-ness benefit is more than if we
add v to a context B ◆ A having more u-ness). That is

g(m
u

(A+ v))� g(m
u

(A)) � g(m
u

(B + v))� g(m
u

(B)) (1.25)

Consider the following class of feature functions f : 2

V ! R+

f(X) =

X

u2U
↵
u

g
u

(m
u

(X)) (1.26)

where g
u

is a non-decreasing concave, and ↵
u

� 0 is a feature importance
weight. Thus, f is submodular.
f(X) measures X’s ability to represent set of features U as measured by
m

u

(X), with diminishing returns function g, and importance weights ↵
u

.
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Data Subset Selection, KL-divergence

Let p = {p
u

}
u2U be a desired probability distribution over features (i.e.,P

u

p
u

= 1 and p
u

� 0 for all u 2 U).

Next, normalize the modular weights for each feature:

m̄
u

(X) =

m
u

(X)P
u

02U m
u

0
(X)

=

m
u

(X)

m(X)

(1.27)

where m(X) ,P
u

02U m
u

0
(X).

Then m̄
u

(X) can also be seen as a distribution over features since
m̄

u

(X) � 0 and
P

u

m̄
u

(X) = 1 for any X ✓ V .
Consider the KL-divergence between these two distributions:

D(p||{m̄
u

(X)}
u2U ) =

X

u2U
p
u

log p
u

�
X

u2U
p
u

log(m̄
u

(X)) (1.28)

=

X

u2U
p
u

log p
u

�
X

u2U
p
u

log(m
u

(X)) + log(m(X))

= �H(p) + logm(X)�
X

u2U
p
u

log(m
u

(X)) (1.29)
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Data Subset Selection, KL-divergence

Let p = {p
u

}
u2U be a desired probability distribution over features (i.e.,P

u

p
u

= 1 and p
u

� 0 for all u 2 U).
Next, normalize the modular weights for each feature:
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Then m̄
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Data Subset Selection, KL-divergence

The objective once again, treating entropy H(p) as a constant,

D(p||{m̄
u

(X)}) = const.+ logm(X)�
X

u2U
p
u

log(m
u

(X)) (1.30)

But seen as a function of X, both logm(X) and
P

u2U p
u

logm
u

(X)

are submodular functions.
Hence the KL-divergence, seen as a function of X, i.e.,
f(X) = D(p||{m̄

u

(X)}) is quite naturally represented as a di↵erence
of submodular functions.
Alternatively, if we define (Shinohara, 2014)

g(X) , logm(X)�D(p||{m̄
u

(X)}) =
X

u2U
p
u

log(m
u

(X)) (1.31)

we have a submodular function g that represents a combination of its
quantity of X via its features (i.e., logm(X)) and its feature
distribution closeness to some distribution p (i.e., D(p||{m̄

u

(X)})).

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 1 - Mar 28th, 2016

F62/107 (pg.166/351)



Background Definitions Simple Examples ML Apps Diversity Complexity Parameter ML Target Surrogate

Data Subset Selection, KL-divergence

The objective once again, treating entropy H(p) as a constant,
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Data Subset Selection, KL-divergence
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Sensor Placement

Information gain applicable not only in pattern recognition, but in the
sensor coverage problem as well, where Y is whatever question we wish
to ask about an environment.

Given an environment, there is a set V of candidate locations for
placement of a sensor (e.g., temperature, gas, audio, video, bacteria or
other environmental contaminant, etc.).

We have a function f(A) that measures the “coverage” of any given
set A of sensor placement decisions. Then f(V ) is maximum possible
coverage.

One possible goal: choose smallest set A such that f(A) � ↵f(V )

with 0 < ↵  1 (recall the submodular set cover problem)

Another possible goal: choose size at most k set A such that f(A) is
maximized.

Environment could be a floor of a building, water network, monitored
ecological preservation.
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with 0 < ↵  1 (recall the submodular set cover problem)

Another possible goal: choose size at most k set A such that f(A) is
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Sensor Placement
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We have a function f(A) that measures the “coverage” of any given
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with 0 < ↵  1 (recall the submodular set cover problem)

Another possible goal: choose size at most k set A such that f(A) is
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Sensor Placement

Information gain applicable not only in pattern recognition, but in the
sensor coverage problem as well, where Y is whatever question we wish
to ask about an environment.

Given an environment, there is a set V of candidate locations for
placement of a sensor (e.g., temperature, gas, audio, video, bacteria or
other environmental contaminant, etc.).

We have a function f(A) that measures the “coverage” of any given
set A of sensor placement decisions. Then f(V ) is maximum possible
coverage.

One possible goal: choose smallest set A such that f(A) � ↵f(V )

with 0 < ↵  1 (recall the submodular set cover problem)

Another possible goal: choose size at most k set A such that f(A) is
maximized.

Environment could be a floor of a building, water network, monitored
ecological preservation.
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Sensor Placement within Buildings

An example of a room layout. Should be possible to determine
temperature at all points in the room. Sensors cannot sense beyond
wall (thick black line) boundaries.
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Sensor Placement within Buildings

Example sensor placement using small range cheap sensors (located at
red dots).
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Sensor Placement within Buildings

Example sensor placement using longer range expensive sensors
(located at red dots).
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Sensor Placement within Buildings

Example sensor placement using mixed range sensors (located at red
dots).
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Social Networks

(from Newman, 2004). Clockwise from top
left: 1) predator-prey interactions, 2) scientific
collaborations, 3) sexual contact, 4) school
friendships.
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The value of a friend

1982 1992 1997 2002 2012

Let V be a set of individuals, how valuable is a given friend v 2 V ?
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The value of a friend

1982 1992 1997 2002 2012

Let V be a set of individuals, how valuable is a given friend v 2 V ?

It depends on how many friends you have.

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 1 - Mar 28th, 2016

F66/107 (pg.182/351)



Background Definitions Simple Examples ML Apps Diversity Complexity Parameter ML Target Surrogate

The value of a friend

1982 1992 1997 2002 2012

Let V be a set of individuals, how valuable is a given friend v 2 V ?

It depends on how many friends you have.

Valuate a group of friends S ✓ V via set function f(S).
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The value of a friend

1982 1992 1997 2002 2012

Let V be a set of individuals, how valuable is a given friend v 2 V ?

It depends on how many friends you have.

Valuate a group of friends S ✓ V via set function f(S).

A submodular model: a friend becomes less marginally valuable as your
set of friends grows.
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The value of a friend

1982 1992 1997 2002 2012

Let V be a set of individuals, how valuable is a given friend v 2 V ?

It depends on how many friends you have.

Valuate a group of friends S ✓ V via set function f(S).

A submodular model: a friend becomes less marginally valuable as your
set of friends grows.

Supermodular model: a friend becomes more valuable the more friends
you have (“I’d get by with a little help from my friends”).
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The value of a friend

1982 1992 1997 2002 2012

Let V be a set of individuals, how valuable is a given friend v 2 V ?

It depends on how many friends you have.

Valuate a group of friends S ✓ V via set function f(S).

A submodular model: a friend becomes less marginally valuable as your
set of friends grows.

Supermodular model: a friend becomes more valuable the more friends
you have (“I’d get by with a little help from my friends”).

Which is a better model?
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Information Cascades, Di↵usion Networks

How to model flow of information from source to the point it reaches
users — information used in its common sense (like news events).

Orig
inal Event
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Information Cascades, Di↵usion Networks

How to model flow of information from source to the point it reaches
users — information used in its common sense (like news events).

Orig
inal Event

Goal: How to find the most influential sources, the ones that often set
o↵ cascades, which are like large “waves” of information flow?
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Di↵usion Networks

Information propagation: when blogs or news stories break, and creates
an information cascade over multiple other
blogs/newspapers/magazines.

Viral marketing: What is the pattern of trendsetters that cause an
individual to purchase a product?

Epidemiology: who got sick from whom, and what is the network of
such links?

How can we infer the connectivity of a network (of memes, purchase
decisions, virusus, etc.) based only on di↵usion traces (the time that
each node is “infected”)? How to find the most likely tree?
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A model of influence in social networks

Given a graph G = (V,E), each v 2 V corresponds to a person, to
each v we have an activation function f

v

: 2

V ! [0, 1] dependent only
on its neighbors. I.e., f

v

(A) = f
v

(A \ �(v)).
Goal - Viral Marketing: find a small subset S ✓ V of individuals to
directly influence, and thus indirectly influence the greatest number of
possible other individuals (via the social network G).

We define a function f : 2

V ! Z+ that models the ultimate influence
of an initial set S of nodes based on the following iterative process: At
each step, a given set of nodes S are activated, and we activate new
nodes v 2 V \ S if f

v

(S) � U [0, 1] (where U [0, 1] is a uniform random
number between 0 and 1).

It can be shown that for many f
v

(including simple linear functions,
and where f

v

is submodular itself) that f is submodular (Kempe,
Kleinberg, Tardos 1993).
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Graphical Model Structure Learning

A probability distribution on binary vectors p : {0, 1}V ! [0, 1]:

p(x) =
1

Z
exp(�E(x)) (1.32)

where E(x) is the energy function.

A graphical model G = (V, E) represents a family of probability
distributions p 2 F(G) all of which factor w.r.t. the graph.

I.e., if C are a set of cliques of graph G, then we must have:

E(x) =
X

c2C
E

c

(x
c

) (1.33)

The problem of structure learning in graphical models is to find the
graph G based on data.

This can be viewed as a discrete optimization problem on the potential
(undirected) edges of the graph V ⇥ V .
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A probability distribution on binary vectors p : {0, 1}V ! [0, 1]:

p(x) =
1
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where E(x) is the energy function.

A graphical model G = (V, E) represents a family of probability
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I.e., if C are a set of cliques of graph G, then we must have:

E(x) =
X

c2C
E

c

(x
c
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The problem of structure learning in graphical models is to find the
graph G based on data.

This can be viewed as a discrete optimization problem on the potential
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A probability distribution on binary vectors p : {0, 1}V ! [0, 1]:

p(x) =
1
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exp(�E(x)) (1.32)

where E(x) is the energy function.

A graphical model G = (V, E) represents a family of probability
distributions p 2 F(G) all of which factor w.r.t. the graph.

I.e., if C are a set of cliques of graph G, then we must have:
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) (1.33)

The problem of structure learning in graphical models is to find the
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Graphical Model Structure Learning

A probability distribution on binary vectors p : {0, 1}V ! [0, 1]:

p(x) =
1

Z
exp(�E(x)) (1.32)

where E(x) is the energy function.

A graphical model G = (V, E) represents a family of probability
distributions p 2 F(G) all of which factor w.r.t. the graph.

I.e., if C are a set of cliques of graph G, then we must have:

E(x) =
X

c2C
E

c

(x
c

) (1.33)

The problem of structure learning in graphical models is to find the
graph G based on data.

This can be viewed as a discrete optimization problem on the potential
(undirected) edges of the graph V ⇥ V .
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Graphical Models: Learning Tree Distributions

Goal: find the closest distribution p
t

to p subject to p
t

factoring w.r.t.
some tree T = (V, F ), i.e., p

t

2 F(T,M).

This can be expressed as a discrete optimization problem:

minimize
pt2F(G,M)

D(p||p
t

)

subject to p
t

2 F(T,M).

T = (V, F ) is a tree

Discrete problem: choose the optimal set of edges A ✓ E that constitute
tree (i.e., find a spanning tree of G of best quality).
Define f : 2

E ! R+ where f is a weighted cycle matroid rank function
(a type of submodular function), with weights
w(e) = w(u, v) = I(X

u

;X
v

) for e 2 E.
Then finding the maximum weight base of the matroid is solved by
the greedy algorithm, and also finds the optimal tree (Chow & Liu, 1968)
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Discrete problem: choose the optimal set of edges A ✓ E that constitute
tree (i.e., find a spanning tree of G of best quality).
Define f : 2

E ! R+ where f is a weighted cycle matroid rank function
(a type of submodular function), with weights
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Then finding the maximum weight base of the matroid is solved by
the greedy algorithm, and also finds the optimal tree (Chow & Liu, 1968)

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 1 - Mar 28th, 2016

F71/107 (pg.200/351)



Background Definitions Simple Examples ML Apps Diversity Complexity Parameter ML Target Surrogate

Determinantal Point Processes (DPPs)

Sometimes we wish not only to valuate subsets A ✓ V but to induce
probability distributions over all subsets.

We may wish to prefer samples where elements of A are diverse (i.e.,
given a sample A, for a, b 2 A, we prefer a and b to be di↵erent).

(Kulesza,
Gillen-
water, &
Taskar,
2011)

A Determinantal point processes (DPPs) is a probability distribution
over subsets A of V where the “energy” function is submodular.
More “diverse” or “complex” samples are given higher probability.
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DPPs and log-submodular probability distributions

Given binary vectors x, y 2 {0, 1}V , y  x if y(v)  x(v), 8v 2 V .

Given a positive-definite n⇥ n matrix M and a subset X ✓ V , let M
X

be the |X|⇥ |X| principle submatrix as we’ve seen before.
A Determinantal Point Process (DPP) is a distribution of the form:

Pr(X = x) =
|M

X(x)|
|M + I| = exp

✓
log

⇣ |M
X(x)|

|M + I|
⌘◆
/ det(M

X(x))

(1.34)

where I is n⇥ n identity matrix, and X 2 {0, 1}V is a random vector.
Equivalently, defining K as K = M(M + I)�1, we have:

X

x2{0,1}V :x�y

Pr(X = x) = Pr(X � y) = exp

⇣
log

⇣
|K

Y (y)|
⌘⌘

(1.35)

Given positive definite matrix M , function f : 2

V ! R with
f(A) = log |M

A

| (the logdet function) is submodular.
Therefore, a DPP is a log-submodular probability distribution.
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Graphical Models and fast MAP Inference

Given distribution that factors w.r.t. a graph:

p(x) =
1

Z
exp(�E(x)) (1.36)

where E(x) =
P

c2C Ec

(x
c

) and C are cliques of graph G = (V, E).

MAP inference problem is important in ML: compute

x⇤ 2 argmax

x2{0,1}V
p(x) (1.37)

Easy when G a tree, exponential in k (tree-width of G) in general.
Even worse, NP-hard to find the tree-width.
Tree-width can be large even when degree is small (e.g., regular grid
graphs have low-degree but ⌦(

p
n) tree-width).

Many approximate inference strategies utilize additional factorization
assumptions (e.g., mean-field, variational inference, expectation
propagation, etc).
Can we do exact MAP inference in polynomial time regardless of the
tree-width, without even knowing the tree-width?
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Order-two (edge) graphical models

Given G let p 2 F(G,M(f)

) such that we can write the global energy
E(x) as a sum of unary and pairwise potentials:

E(x) =
X

v2V (G)

e
v

(x
v

) +

X

(i,j)2E(G)

e
ij

(x
i

, x
j

) (1.38)

e
v

(x
v

) and e
ij

(x
i

, x
j

) are like local energy potentials.

Since log p(x) = �E(x) + const., the smaller e
v

(x
v

) or e
ij

(x
i

, x
j

)

become, the higher the probability becomes.

Further, say that D
Xv = {0, 1} (binary), so we have binary random

vectors distributed according to p(x).

Thus, x 2 {0, 1}V , and finding MPE solution is setting some of the
variables to 0 and some to 1, i.e.,

min

x2{0,1}V
E(x) (1.39)
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Order-two (edge) graphical models

Given G let p 2 F(G,M(f)

) such that we can write the global energy
E(x) as a sum of unary and pairwise potentials:

E(x) =
X

v2V (G)

e
v

(x
v

) +

X

(i,j)2E(G)

e
ij

(x
i

, x
j

) (1.38)

e
v

(x
v

) and e
ij

(x
i

, x
j

) are like local energy potentials.

Since log p(x) = �E(x) + const., the smaller e
v

(x
v

) or e
ij

(x
i

, x
j

)

become, the higher the probability becomes.

Further, say that D
Xv = {0, 1} (binary), so we have binary random

vectors distributed according to p(x).

Thus, x 2 {0, 1}V , and finding MPE solution is setting some of the
variables to 0 and some to 1, i.e.,

min

x2{0,1}V
E(x) (1.39)
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Order-two (edge) graphical models

Given G let p 2 F(G,M(f)

) such that we can write the global energy
E(x) as a sum of unary and pairwise potentials:

E(x) =
X

v2V (G)

e
v

(x
v

) +

X

(i,j)2E(G)

e
ij

(x
i

, x
j

) (1.38)

e
v

(x
v

) and e
ij

(x
i

, x
j

) are like local energy potentials.

Since log p(x) = �E(x) + const., the smaller e
v

(x
v

) or e
ij

(x
i

, x
j

)

become, the higher the probability becomes.

Further, say that D
Xv = {0, 1} (binary), so we have binary random

vectors distributed according to p(x).

Thus, x 2 {0, 1}V , and finding MPE solution is setting some of the
variables to 0 and some to 1, i.e.,

min

x2{0,1}V
E(x) (1.39)
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Order-two (edge) graphical models

Given G let p 2 F(G,M(f)

) such that we can write the global energy
E(x) as a sum of unary and pairwise potentials:

E(x) =
X

v2V (G)

e
v

(x
v

) +

X

(i,j)2E(G)

e
ij

(x
i

, x
j

) (1.38)

e
v

(x
v

) and e
ij

(x
i

, x
j

) are like local energy potentials.

Since log p(x) = �E(x) + const., the smaller e
v

(x
v

) or e
ij

(x
i

, x
j

)

become, the higher the probability becomes.

Further, say that D
Xv = {0, 1} (binary), so we have binary random

vectors distributed according to p(x).

Thus, x 2 {0, 1}V , and finding MPE solution is setting some of the
variables to 0 and some to 1, i.e.,

min

x2{0,1}V
E(x) (1.39)
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Order-two (edge) graphical models

Given G let p 2 F(G,M(f)

) such that we can write the global energy
E(x) as a sum of unary and pairwise potentials:

E(x) =
X

v2V (G)

e
v

(x
v

) +

X

(i,j)2E(G)

e
ij

(x
i

, x
j

) (1.38)

e
v

(x
v

) and e
ij

(x
i

, x
j

) are like local energy potentials.

Since log p(x) = �E(x) + const., the smaller e
v

(x
v

) or e
ij

(x
i

, x
j

)

become, the higher the probability becomes.

Further, say that D
Xv = {0, 1} (binary), so we have binary random

vectors distributed according to p(x).

Thus, x 2 {0, 1}V , and finding MPE solution is setting some of the
variables to 0 and some to 1, i.e.,

min

x2{0,1}V
E(x) (1.39)
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MRF example

Markov random field

log p(x) /
X

v2V (G)

e
v

(x
v

) +

X

(i,j)2E(G)

e
ij

(x
i

, x
j

) (1.40)

When G is a 2D grid graph, we have
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Create an auxiliary graph

We can create auxiliary graph G
a

that involves two new “terminal”
nodes s and t and all of the original “non-terminal” nodes v 2 V (G).

The non-terminal nodes represent the original random variables
x
v

, v 2 V .

Starting with the original grid-graph amongst the vertices v 2 V , we
connect each of s and t to all of the original nodes.

I.e., we form G
a

= (V [ {s, t}, E + [
v2V ((s, v) [ (v, t))).
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Transformation from graphical model to auxiliary graph

Original 2D-grid graphical model G and energy function
E(x) =

P
v2V (G) ev(xv) +

P
(i,j)2E(G) eij(xi, xj) needing to be minimized

over x 2 {0, 1}V . Recall, tree-width is O(

p|V |).
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Transformation from graphical model to auxiliary graph

Augmented (graph-cut) directed graph G
a

. Edge
weights (soon defined) of graph are derived
from {e

v

(·)}
v2V and {e

ij

(·, ·)}(i,j)2E(G).

An (s, t)-cut C ✓ E(G
a

) is a set of
edges that cut all paths from s to
t. A minimum (s, t)-cut is one
that has minimum weight
where w(C) =

P
e2C w

e

is the cut weight.
To be a cut, must
have that, for
every v 2 V ,
either (s, v) 2 C or
(v, t) 2 C. Graph is
directed, arrows pointing down
from s towards t or from i! j.

t

s
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Transformation from graphical model to auxiliary graph

Augmented (graph-cut) directed graph G
a

. Edge
weights (soon defined) of graph are derived
from {e

v

(·)}
v2V and {e

ij

(·, ·)}(i,j)2E(G).

An (s, t)-cut C ✓ E(G
a

) is a set of
edges that cut all paths from s to
t. A minimum (s, t)-cut is one
that has minimum weight
where w(C) =

P
e2C w

e

is the cut weight.
To be a cut, must
have that, for
every v 2 V ,
either (s, v) 2 C or
(v, t) 2 C. Graph is
directed, arrows pointing down
from s towards t or from i! j.

t

s
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Transformation from graphical model to auxiliary graph

Cut edges that are incident to terminal nodes
s and t are indicated in green.

t

s
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Transformation from graphical model to auxiliary graph

Cut edges that are incident to terminal nodes
s and t removed from graph. But there are
still un-cut (s, t)-paths remaining.

t

s
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Transformation from graphical model to auxiliary graph

Additional cut edges incident to two
non-terminal nodes are indicated in green.

t

s
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Transformation from graphical model to auxiliary graph

Vertices adjacent to t are shaded blue,
vertices adjacent to s shaded red.

t

s
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Transformation from graphical model to auxiliary graph

Additional cut edges incident to two
non-terminal nodes are removed from graph.

t

s

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 1 - Mar 28th, 2016

F78/107 (pg.232/351)



Background Definitions Simple Examples ML Apps Diversity Complexity Parameter ML Target Surrogate

Transformation from graphical model to auxiliary graph

Augmented graph-cut graph with cut edges
removed corresponds to particular binary
vector x̄ 2 {0, 1}n. Each vector x̄ has a
score corresponding to log p(x̄).
When can graph cut scores
correspond precisely to log p(x̄)
in a way that min-cut
algorithms can find
minimum of
energy E(x)?

t

s
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Setting of the weights in the auxiliary cut graph

Any graph cut corresponds to a vector x̄ 2 {0, 1}n.

If weights of all edges, except those involving terminals s and t, are
non-negative, graph cut computable in polynomial time via max-flow
(many algorithms, e.g., Edmonds&Karp O(nm2

) or O(n2m log(nC));
Goldberg&Tarjan O(nm log(n2/m)), see Schrijver, page 161).

If weights are set correctly in the cut graph, and if edge functions e
ij

satisfy certain properties, then graph-cut score corresponding to x̄ can
be made equivalent to E(x) = log p(x̄) + const..

Hence, poly time graph cut, can find the optimal MPE assignment,
regardless of the graphical model’s tree-width!

In general, finding MPE is an NP-hard optimization problem.

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 1 - Mar 28th, 2016

F79/107 (pg.234/351)



Background Definitions Simple Examples ML Apps Diversity Complexity Parameter ML Target Surrogate

Setting of the weights in the auxiliary cut graph

Any graph cut corresponds to a vector x̄ 2 {0, 1}n.
If weights of all edges, except those involving terminals s and t, are
non-negative, graph cut computable in polynomial time via max-flow
(many algorithms, e.g., Edmonds&Karp O(nm2

) or O(n2m log(nC));
Goldberg&Tarjan O(nm log(n2/m)), see Schrijver, page 161).

If weights are set correctly in the cut graph, and if edge functions e
ij

satisfy certain properties, then graph-cut score corresponding to x̄ can
be made equivalent to E(x) = log p(x̄) + const..

Hence, poly time graph cut, can find the optimal MPE assignment,
regardless of the graphical model’s tree-width!

In general, finding MPE is an NP-hard optimization problem.
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Setting of the weights in the auxiliary cut graph

Any graph cut corresponds to a vector x̄ 2 {0, 1}n.
If weights of all edges, except those involving terminals s and t, are
non-negative, graph cut computable in polynomial time via max-flow
(many algorithms, e.g., Edmonds&Karp O(nm2

) or O(n2m log(nC));
Goldberg&Tarjan O(nm log(n2/m)), see Schrijver, page 161).

If weights are set correctly in the cut graph, and if edge functions e
ij

satisfy certain properties, then graph-cut score corresponding to x̄ can
be made equivalent to E(x) = log p(x̄) + const..

Hence, poly time graph cut, can find the optimal MPE assignment,
regardless of the graphical model’s tree-width!

In general, finding MPE is an NP-hard optimization problem.
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Setting of the weights in the auxiliary cut graph

Any graph cut corresponds to a vector x̄ 2 {0, 1}n.
If weights of all edges, except those involving terminals s and t, are
non-negative, graph cut computable in polynomial time via max-flow
(many algorithms, e.g., Edmonds&Karp O(nm2

) or O(n2m log(nC));
Goldberg&Tarjan O(nm log(n2/m)), see Schrijver, page 161).

If weights are set correctly in the cut graph, and if edge functions e
ij

satisfy certain properties, then graph-cut score corresponding to x̄ can
be made equivalent to E(x) = log p(x̄) + const..

Hence, poly time graph cut, can find the optimal MPE assignment,
regardless of the graphical model’s tree-width!

In general, finding MPE is an NP-hard optimization problem.
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Setting of the weights in the auxiliary cut graph

Any graph cut corresponds to a vector x̄ 2 {0, 1}n.
If weights of all edges, except those involving terminals s and t, are
non-negative, graph cut computable in polynomial time via max-flow
(many algorithms, e.g., Edmonds&Karp O(nm2

) or O(n2m log(nC));
Goldberg&Tarjan O(nm log(n2/m)), see Schrijver, page 161).

If weights are set correctly in the cut graph, and if edge functions e
ij

satisfy certain properties, then graph-cut score corresponding to x̄ can
be made equivalent to E(x) = log p(x̄) + const..

Hence, poly time graph cut, can find the optimal MPE assignment,
regardless of the graphical model’s tree-width!

In general, finding MPE is an NP-hard optimization problem.
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Setting of the weights in the auxiliary cut graph

Edge weight assignments. Start with all weights set to zero.

For (s, v) with v 2 V (G), set edge

w
s,v

= (e
v

(1)� e
v

(0))1(e
v

(1) > e
v

(0)) (1.41)

For (v, t) with v 2 V (G), set edge

w
v,t

= (e
v

(0)� e
v

(1))1(e
v

(0) � e
v

(1)) (1.42)

For original edge (i, j) 2 E, i, j 2 V , set weight

w
i,j

= e
ij

(1, 0) + e
ij

(0, 1)� e
ij

(1, 1)� e
ij

(0, 0) (1.43)

and if e
ij

(1, 0) > e
ij

(0, 0), and e
ij

(1, 1) > e
ij

(0, 1),

w
s,i

 w
s,i

+ (e
ij

(1, 0)� e
ij

(0, 0)) (1.44)

w
j,t

 w
j,t

+ (e
ij

(1, 1)� e
ij

(0, 1)) (1.45)

and analogous increments if inequalities are flipped.
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Non-negative edge weights

The inequalities ensures that we are adding non-negative weights to
each of the edges. I.e., we do w

s,i

 w
s,i

+ (e
ij

(1, 0)� e
ij

(0, 0)) only
if e

ij

(1, 0) > e
ij

(0, 0).

For (i, j) edge weight, it takes the form:

w
i,j

= e
ij

(1, 0) + e
ij

(0, 1)� e
ij

(1, 1)� e
ij

(0, 0) (1.46)

For this to be non-negative, we need:

e
ij

(1, 0) + e
ij

(0, 1) � e
ij

(1, 1) + e
ij

(0, 0) (1.47)

Thus weights w
ij

in s, t-graph above are always non-negative, so
graph-cut solvable exactly.
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Non-negative edge weights

The inequalities ensures that we are adding non-negative weights to
each of the edges. I.e., we do w

s,i

 w
s,i

+ (e
ij

(1, 0)� e
ij

(0, 0)) only
if e

ij

(1, 0) > e
ij

(0, 0).

For (i, j) edge weight, it takes the form:

w
i,j

= e
ij

(1, 0) + e
ij

(0, 1)� e
ij

(1, 1)� e
ij

(0, 0) (1.46)

For this to be non-negative, we need:

e
ij

(1, 0) + e
ij

(0, 1) � e
ij

(1, 1) + e
ij

(0, 0) (1.47)

Thus weights w
ij

in s, t-graph above are always non-negative, so
graph-cut solvable exactly.
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Non-negative edge weights

The inequalities ensures that we are adding non-negative weights to
each of the edges. I.e., we do w

s,i

 w
s,i

+ (e
ij

(1, 0)� e
ij

(0, 0)) only
if e

ij

(1, 0) > e
ij

(0, 0).

For (i, j) edge weight, it takes the form:

w
i,j

= e
ij

(1, 0) + e
ij

(0, 1)� e
ij

(1, 1)� e
ij

(0, 0) (1.46)

For this to be non-negative, we need:

e
ij

(1, 0) + e
ij

(0, 1) � e
ij

(1, 1) + e
ij

(0, 0) (1.47)

Thus weights w
ij

in s, t-graph above are always non-negative, so
graph-cut solvable exactly.
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Non-negative edge weights

The inequalities ensures that we are adding non-negative weights to
each of the edges. I.e., we do w

s,i

 w
s,i

+ (e
ij

(1, 0)� e
ij

(0, 0)) only
if e

ij

(1, 0) > e
ij

(0, 0).

For (i, j) edge weight, it takes the form:

w
i,j

= e
ij

(1, 0) + e
ij

(0, 1)� e
ij

(1, 1)� e
ij

(0, 0) (1.46)

For this to be non-negative, we need:

e
ij

(1, 0) + e
ij

(0, 1) � e
ij

(1, 1) + e
ij

(0, 0) (1.47)

Thus weights w
ij

in s, t-graph above are always non-negative, so
graph-cut solvable exactly.
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Submodular potentials

Edge functions must be submodular (in the binary case, equivalent to
“associative”, “attractive”, “regular”, “Potts”, or “ferromagnetic”):
for all (i, j) 2 E(G), must have:

e
ij

(0, 1) + e
ij

(1, 0) � e
ij

(1, 1) + e
ij

(0, 0) (1.48)

This means: on average, preservation is preferred over change.

As a set function, this is the same as:

f(X) =

X

{i,j}2E(G)

f
i,j

(X \ {i, j}) (1.49)

which is submodular if each of the f
i,j

’s are submodular!

A special case of more general submodular functions – unconstrained
submodular function minimization is solvable in polytime.
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Submodular potentials

Edge functions must be submodular (in the binary case, equivalent to
“associative”, “attractive”, “regular”, “Potts”, or “ferromagnetic”):
for all (i, j) 2 E(G), must have:

e
ij

(0, 1) + e
ij

(1, 0) � e
ij

(1, 1) + e
ij

(0, 0) (1.48)

This means: on average, preservation is preferred over change.

As a set function, this is the same as:

f(X) =

X

{i,j}2E(G)

f
i,j

(X \ {i, j}) (1.49)

which is submodular if each of the f
i,j

’s are submodular!

A special case of more general submodular functions – unconstrained
submodular function minimization is solvable in polytime.
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Submodular potentials

Edge functions must be submodular (in the binary case, equivalent to
“associative”, “attractive”, “regular”, “Potts”, or “ferromagnetic”):
for all (i, j) 2 E(G), must have:

e
ij

(0, 1) + e
ij

(1, 0) � e
ij

(1, 1) + e
ij

(0, 0) (1.48)

This means: on average, preservation is preferred over change.

As a set function, this is the same as:

f(X) =

X

{i,j}2E(G)

f
i,j

(X \ {i, j}) (1.49)

which is submodular if each of the f
i,j

’s are submodular!

A special case of more general submodular functions – unconstrained
submodular function minimization is solvable in polytime.
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Submodular potentials

Edge functions must be submodular (in the binary case, equivalent to
“associative”, “attractive”, “regular”, “Potts”, or “ferromagnetic”):
for all (i, j) 2 E(G), must have:

e
ij

(0, 1) + e
ij

(1, 0) � e
ij

(1, 1) + e
ij

(0, 0) (1.48)

This means: on average, preservation is preferred over change.

As a set function, this is the same as:

f(X) =

X

{i,j}2E(G)

f
i,j

(X \ {i, j}) (1.49)

which is submodular if each of the f
i,j

’s are submodular!

A special case of more general submodular functions – unconstrained
submodular function minimization is solvable in polytime.
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On log-supermodular vs. log-submodular distributions

Log-supermodular distributions.

log Pr(x) = f(x) + const. = �E(x) + const. (1.50)

where f is supermodular (E(x) is submodular). MAP (or
high-probable) assignments should be “regular”, “homogeneous”,
“smooth”, “simple”. E.g., attractive potentials in computer vision,
ferromagnetic Potts models statistical physics.

Log-submodular distributions:

log Pr(x) = f(x) + const. (1.51)

where f is submodular. MAP or high-probable assignments should be
“diverse”, or “complex”, or “covering”, like in determinantal point
processes.
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On log-supermodular vs. log-submodular distributions

Log-supermodular distributions.

log Pr(x) = f(x) + const. = �E(x) + const. (1.50)

where f is supermodular (E(x) is submodular). MAP (or
high-probable) assignments should be “regular”, “homogeneous”,
“smooth”, “simple”. E.g., attractive potentials in computer vision,
ferromagnetic Potts models statistical physics.

Log-submodular distributions:

log Pr(x) = f(x) + const. (1.51)

where f is submodular. MAP or high-probable assignments should be
“diverse”, or “complex”, or “covering”, like in determinantal point
processes.
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Submodular potentials in GMs: Image Segmentation

an image needing to be segmented.
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Submodular potentials in GMs: Image Segmentation

labeled data, some pixels being marked foreground (red) and others
marked background (blue) to train the unaries {e

v

(x
v

)}
v2V .
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Submodular potentials in GMs: Image Segmentation

Set of a graph over the image, graph shows binary pixel labels.
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Submodular potentials in GMs: Image Segmentation

Run graph-cut to segment the image, foreground in red, background in
white.
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Submodular potentials in GMs: Image Segmentation

the foreground is removed from the background.
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Shrinking bias in graph cut image segmentation

What does graph-cut based
image segmentation do with
elongated structures (top) or
contrast gradients (bottom)?
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Shrinking bias in graph cut image segmentation
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Shrinking bias in image segmentation

An image needing to be segmented

Clear high-contrast boundaries
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Shrinking bias in image segmentation

Graph-cut (MRF with submodular edge potentials) works well.
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Shrinking bias in image segmentation

Now with contrast gradient (less clear segment as we move up).

The “elongated structure” also poses a challenge.
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Shrinking bias in image segmentation

Unary potentials {e
v

(x
v

)}
v2V prefer a di↵erent segmentation.

Edge weights are the same regardless of where they are
w
i,j

= e
ij

(1, 0) + e
ij

(0, 1)� e
ij

(1, 1)� e
ij

(0, 0) � 0.
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Shrinking bias in image segmentation

And the shrinking bias occurs, truncating the segmentation since it
results in lower energy.

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 1 - Mar 28th, 2016

F86/107 (pg.261/351)



Background Definitions Simple Examples ML Apps Diversity Complexity Parameter ML Target Surrogate

Shrinking bias in image segmentation

With “typed” edges, we can have cut cost be sum of edge color
weights, not sum of edge weights.

Submodularity to the rescue: balls & urns.
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Addressing shrinking bias with edge submodularity

Standard graph cut, uses a modular function w : 2

E ! R+ defined on
the edges to measure cut costs. Graph cut node function is
submodular.

f
w

(X) = w
⇣
{(u, v) 2 E : u 2 X, v 2 V \X}

⌘
(1.52)

Instead, we can use a submodular function g : 2

E ! R+ defined on
the edges to express cooperative costs.

f
g

(X) = g
⇣
{(u, v) 2 E : u 2 X, v 2 V \X}

⌘
(1.53)

Seen as a node function, f
g

: 2

V ! R+ is not submodular, but it uses
submodularity internally to solve the shrinking bias problem.

) cooperative-cut (Jegelka & B., 2011).
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Addressing shrinking bias with edge submodularity
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Addressing shrinking bias with edge submodularity

Standard graph cut, uses a modular function w : 2

E ! R+ defined on
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(1.53)

Seen as a node function, f
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V ! R+ is not submodular, but it uses
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) cooperative-cut (Jegelka & B., 2011).
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Graph-cut vs. cooperative-cut comparisons

Graph Cut Cooperative Cut

(Jegelka&Bilmes,’11). There are fast algorithms for solving as well.
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A submodular function as a parameter

In some cases, it may be useful to view a submodular function
f : 2

V ! R as a input “parameter” to a machine learning algorithm.

Machine Learning
Problem or Instance

Data

f : 2

V ! R+ Output

A given submodular function f 2 S ✓ R2n can be seen as a vector in a
2

n-dimensional compact cone.

S is a submodular cone since submodularity is closed under
non-negative (conic) combinations.

2

n-dimensional since for certain f 2 S, there exists f
✏

2 R2n having no
zero elements with f + f

✏

2 S.
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A submodular function as a parameter

In some cases, it may be useful to view a submodular function
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V ! R as a input “parameter” to a machine learning algorithm.
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Data
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V ! R+ Output

A given submodular function f 2 S ✓ R2n can be seen as a vector in a
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n-dimensional since for certain f 2 S, there exists f
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Supervised Machine Learning

Given training data D = {(x
i

, y
i

)}m
i=1 with (x

i

, y
i

) 2 Rn ⇥ R, perform
the following risk minimization problem:

min

w2Rn

1

m

mX

i=1

`(y
i

, w|x
i

) + �⌦(w), (1.54)

where `(·) is a loss function (e.g., squared error) and ⌦(w) is a norm.

When data has multiple (k) responses (x
i

, y
i

) 2 Rn ⇥ Rk for each of
the m samples, learning becomes:

min

w

1
,...,w

k2Rn

kX

j=1

1

m

mX

i=1

`(yj
i

, (wj

)

|
x
i

) + �⌦(wj

), (1.55)
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Supervised Machine Learning

Given training data D = {(x
i

, y
i

)}m
i=1 with (x

i

, y
i

) 2 Rn ⇥ R, perform
the following risk minimization problem:

min

w2Rn

1

m

mX

i=1

`(y
i

, w|x
i

) + �⌦(w), (1.54)

where `(·) is a loss function (e.g., squared error) and ⌦(w) is a norm.

When data has multiple (k) responses (x
i

, y
i

) 2 Rn ⇥ Rk for each of
the m samples, learning becomes:

min

w

1
,...,w

k2Rn

kX

j=1

1

m

mX

i=1

`(yj
i

, (wj

)

|
x
i

) + �⌦(wj

), (1.55)
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Dictionary Learning and Selection

When only the multiple responses {y
i

}
i2[m] are observed, we get either

dictionary learning

min

x1,...,xm
min

w

1
,...,w

k2Rn

kX

j=1

1

m

mX

i=1

`(yj
i

, (wj

)

|
x
i

) + �⌦(wj

), (1.56)

or when we select sub-dimensions of x, we get dictionary selection
(Cevher & Krause, Das & Kempe).

f(D) =

kX

j=1

min

S✓D,|S|k

min

w

j2RS

 
mX

i=1

`(yj
i

, (wj

)

|
xS
i

) + �⌦(wj

)

!
(1.57)

where D is the dictionary (indices of x that are allowed), and xS is a
sub-vector of x. Each regression allows at most k  |D| variables.
In each case of the above cases, the regularizer ⌦(·) is critical.

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 1 - Mar 28th, 2016

F91/107 (pg.274/351)



Background Definitions Simple Examples ML Apps Diversity Complexity Parameter ML Target Surrogate

Dictionary Learning and Selection
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|
x
i
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j2RS
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`(yj
i

, (wj

)

|
xS
i
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)

!
(1.57)

where D is the dictionary (indices of x that are allowed), and xS is a
sub-vector of x. Each regression allows at most k  |D| variables.

In each case of the above cases, the regularizer ⌦(·) is critical.
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Dictionary Learning and Selection
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i2[m] are observed, we get either
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i
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where D is the dictionary (indices of x that are allowed), and xS is a
sub-vector of x. Each regression allows at most k  |D| variables.
In each case of the above cases, the regularizer ⌦(·) is critical.
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Norms, sparse norms, and computer vision

Common norms include p-norm ⌦(w) = kwk
p

= (

P
p

i=1w
p

i

)

1/p

1-norm promotes sparsity (prefer solutions with zero entries).
Image denoising, total variation is useful, norm takes form:

⌦(w) =
NX

i=2

|w
i

� w
i�1| (1.58)

Points of di↵erence should be “sparse” (frequently zero).

(Rodriguez,

2009)
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w 2 RV , supp(w) 2 {0, 1}V has supp(w)(v) = 1 i↵ w(v) > 0

Given submodular function f : 2

V ! R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it’s convex envelope ˜f(|w|) (i.e.,
largest convex under-estimator of f(supp(w))) is obtained via the
Lovász-extension ˜f of f (Bolton et al. 2008, Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
The Lovász-extension (Lovász ’82, Edmonds ’70) is easy to get via the
greedy algorithm: sort w

�1 � w
�2 � · · · � w

�n , then

˜f(w) =
nX

i=1

w
�i(f(�1, . . . ,�i)� f(�1, . . . ,�i�1)) (1.59)

Ex: total variation is the Lovász-extension of graph cut
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Submodular parameterization of a sparse convex norm
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Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w 2 RV , supp(w) 2 {0, 1}V has supp(w)(v) = 1 i↵ w(v) > 0

Given submodular function f : 2

V ! R+, f(supp(w)) measures the
“complexity” of the non-zero pattern of w; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f(supp(w)) is hard to optimize, but it’s convex envelope ˜f(|w|) (i.e.,
largest convex under-estimator of f(supp(w))) is obtained via the
Lovász-extension ˜f of f (Bolton et al. 2008, Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
The Lovász-extension (Lovász ’82, Edmonds ’70) is easy to get via the
greedy algorithm: sort w

�1 � w
�2 � · · · � w

�n , then

˜f(w) =
nX

i=1

w
�i(f(�1, . . . ,�i)� f(�1, . . . ,�i�1)) (1.59)

Ex: total variation is the Lovász-extension of graph cut
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Given submodular function f : 2

V ! R+, f(supp(w)) measures the
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largest convex under-estimator of f(supp(w))) is obtained via the
Lovász-extension ˜f of f (Bolton et al. 2008, Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
The Lovász-extension (Lovász ’82, Edmonds ’70) is easy to get via the
greedy algorithm: sort w

�1 � w
�2 � · · · � w

�n , then

˜f(w) =
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Submodular Generalized Dependence
there is a notion of “independence” , i.e., A??B:

f(A [B) = f(A) + f(B), (1.60)

and a notion of “conditional independence” , i.e., A??B|C:

f(A [B [ C) + f(C) = f(A [ C) + f(B [ C) (1.61)

and a notion of “dependence” (conditioning reduces valuation):

f(A|B) , f(A [B)� f(B) < f(A), (1.62)

and a notion of “conditional mutual information”

I
f

(A;B|C) , f(A [ C) + f(B [ C)� f(A [B [ C)� f(C) � 0

and two notions of “information amongst a collection of sets”:

I
f

(S1;S2; . . . ;S
k

) =

kX

i=1

f(S
k

)� f(S1 [ S2 [ · · · [ S
k

) (1.63)

I 0
f

(S1;S2; . . . ;S
k

) =

X

A✓{1,2,...,k}
(�1)|A|+1f(

[

j2A
S
j

) (1.64)
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and a notion of “conditional independence” , i.e., A??B|C:
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Submodular Generalized Dependence
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f(A [B [ C) + f(C) = f(A [ C) + f(B [ C) (1.61)

and a notion of “dependence” (conditioning reduces valuation):

f(A|B) , f(A [B)� f(B) < f(A), (1.62)

and a notion of “conditional mutual information”

I
f

(A;B|C) , f(A [ C) + f(B [ C)� f(A [B [ C)� f(C) � 0

and two notions of “information amongst a collection of sets”:

I
f

(S1;S2; . . . ;S
k

) =

kX

i=1

f(S
k

)� f(S1 [ S2 [ · · · [ S
k

) (1.63)

I 0
f

(S1;S2; . . . ;S
k

) =

X

A✓{1,2,...,k}
(�1)|A|+1f(

[

j2A
S
j

) (1.64)

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 1 - Mar 28th, 2016

F94/107 (pg.288/351)



Background Definitions Simple Examples ML Apps Diversity Complexity Parameter ML Target Surrogate
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Submodular Parameterized Clustering

Given a submodular function f : 2

V ! R, form the combinatorial
dependence function I

f

(A;B) = f(A) + f(B)� f(A [B).

Consider clustering algorithm: First find partition
A⇤

1 2 argmin

A✓V

I
f

(A;V \A) and A⇤
2 = V \A⇤

1.

Then partition the partitions: A⇤
11 2 argmin

A✓A

⇤
1
I
f

(A;A⇤
1 \A),

A⇤
12 = A⇤

1 \A⇤
11, and A⇤

21 2 argmin

A✓A

⇤
2
I
f

(A;A⇤
2 \A), etc.

Recursively partition the partitions, we end up with a partition
V = V1 [ V2 [ · · · [ V

k

that clusters the data.

Each minimization can be done using Queyranne’s algorithm
(alternatively can construct a Gomory-Hu tree). This gives a partition
no worse than factor 2 away from optimal partition.
(Narasimhan&Bilmes, 2007).

Hence, family of clustering algorithms parameterized by f .
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Submodular Parameterized Clustering

Given a submodular function f : 2

V ! R, form the combinatorial
dependence function I

f

(A;B) = f(A) + f(B)� f(A [B).

Consider clustering algorithm: First find partition
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Recursively partition the partitions, we end up with a partition
V = V1 [ V2 [ · · · [ V

k

that clusters the data.

Each minimization can be done using Queyranne’s algorithm
(alternatively can construct a Gomory-Hu tree). This gives a partition
no worse than factor 2 away from optimal partition.
(Narasimhan&Bilmes, 2007).

Hence, family of clustering algorithms parameterized by f .
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Submodular Parameterized Clustering

Given a submodular function f : 2

V ! R, form the combinatorial
dependence function I

f

(A;B) = f(A) + f(B)� f(A [B).

Consider clustering algorithm: First find partition
A⇤

1 2 argmin
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2 \A), etc.

Recursively partition the partitions, we end up with a partition
V = V1 [ V2 [ · · · [ V

k

that clusters the data.

Each minimization can be done using Queyranne’s algorithm
(alternatively can construct a Gomory-Hu tree). This gives a partition
no worse than factor 2 away from optimal partition.
(Narasimhan&Bilmes, 2007).

Hence, family of clustering algorithms parameterized by f .
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Submodular Parameterized Clustering

Given a submodular function f : 2

V ! R, form the combinatorial
dependence function I

f

(A;B) = f(A) + f(B)� f(A [B).

Consider clustering algorithm: First find partition
A⇤

1 2 argmin
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Recursively partition the partitions, we end up with a partition
V = V1 [ V2 [ · · · [ V

k

that clusters the data.

Each minimization can be done using Queyranne’s algorithm
(alternatively can construct a Gomory-Hu tree). This gives a partition
no worse than factor 2 away from optimal partition.
(Narasimhan&Bilmes, 2007).

Hence, family of clustering algorithms parameterized by f .
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Submodular Parameterized Clustering

Given a submodular function f : 2

V ! R, form the combinatorial
dependence function I

f

(A;B) = f(A) + f(B)� f(A [B).

Consider clustering algorithm: First find partition
A⇤
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2 \A), etc.

Recursively partition the partitions, we end up with a partition
V = V1 [ V2 [ · · · [ V

k

that clusters the data.

Each minimization can be done using Queyranne’s algorithm
(alternatively can construct a Gomory-Hu tree). This gives a partition
no worse than factor 2 away from optimal partition.
(Narasimhan&Bilmes, 2007).

Hence, family of clustering algorithms parameterized by f .
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Submodular Parameterized Clustering

Given a submodular function f : 2

V ! R, form the combinatorial
dependence function I

f

(A;B) = f(A) + f(B)� f(A [B).

Consider clustering algorithm: First find partition
A⇤

1 2 argmin

A✓V

I
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(A;V \A) and A⇤
2 = V \A⇤
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Then partition the partitions: A⇤
11 2 argmin
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2 \A), etc.

Recursively partition the partitions, we end up with a partition
V = V1 [ V2 [ · · · [ V

k

that clusters the data.

Each minimization can be done using Queyranne’s algorithm
(alternatively can construct a Gomory-Hu tree). This gives a partition
no worse than factor 2 away from optimal partition.
(Narasimhan&Bilmes, 2007).

Hence, family of clustering algorithms parameterized by f .
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Is Submodular Maximization Just Clustering?

1 Clustering objectives often NP-hard and inapproximable, submodular
maximization is approximable for any submodular function.

2 To have guarantee, clustering typically needs metricity, submodularity
parameterized via any non-negative pairwise values.

3 Clustering often requires separate process to choose representatives
within each cluster. Submodular max does this automatically. Can also
do submodular data partitioning (like clustering).

4 Submodular max covers clustering objectives such as k-medoids.
5 Can learn submodular functions (hence, learn clustering objective).
6 We can choose quality guarantee for any submodular function via

submodular set cover (only possible for some clustering algorithms).
7 Submodular max with constraints, ensures representatives are feasible

(e.g., knapsack, matroid independence, combinatorial, submodular level
set, etc.)

8 Submodular functions may be more general than clustering objectives
(submodularity allows high-order interactions between elements).
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Is Submodular Maximization Just Clustering?

1 Clustering objectives often NP-hard and inapproximable, submodular
maximization is approximable for any submodular function.

2 To have guarantee, clustering typically needs metricity, submodularity
parameterized via any non-negative pairwise values.

3 Clustering often requires separate process to choose representatives
within each cluster. Submodular max does this automatically. Can also
do submodular data partitioning (like clustering).

4 Submodular max covers clustering objectives such as k-medoids.
5 Can learn submodular functions (hence, learn clustering objective).
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submodular set cover (only possible for some clustering algorithms).
7 Submodular max with constraints, ensures representatives are feasible

(e.g., knapsack, matroid independence, combinatorial, submodular level
set, etc.)

8 Submodular functions may be more general than clustering objectives
(submodularity allows high-order interactions between elements).
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Is Submodular Maximization Just Clustering?

1 Clustering objectives often NP-hard and inapproximable, submodular
maximization is approximable for any submodular function.

2 To have guarantee, clustering typically needs metricity, submodularity
parameterized via any non-negative pairwise values.

3 Clustering often requires separate process to choose representatives
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5 Can learn submodular functions (hence, learn clustering objective).
6 We can choose quality guarantee for any submodular function via

submodular set cover (only possible for some clustering algorithms).
7 Submodular max with constraints, ensures representatives are feasible

(e.g., knapsack, matroid independence, combinatorial, submodular level
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8 Submodular functions may be more general than clustering objectives
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Is Submodular Maximization Just Clustering?

1 Clustering objectives often NP-hard and inapproximable, submodular
maximization is approximable for any submodular function.
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6 We can choose quality guarantee for any submodular function via
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7 Submodular max with constraints, ensures representatives are feasible
(e.g., knapsack, matroid independence, combinatorial, submodular level
set, etc.)

8 Submodular functions may be more general than clustering objectives
(submodularity allows high-order interactions between elements).
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Active Learning and Semi-Supervised Learning

Given training data D
V

= {(x
i

, y
i

)}
i2V of (x, y) pairs where x is a

query (data item) and y is an answer (label), goal is to learn a good
mapping y = h(x).

Often, getting y is time-consuming, expensive, and error prone
(manual transcription, Amazon Turk, etc.)

Batch active learning: choose a subset S ⇢ V so that only the labels
{y

i

}
i2S should be acquired.

Adaptive active learning: choose a policy whereby we choose an
i1 2 V , get the label y

i1 , choose another i2 2 V , get label y
i2 ,where

each chose can be based on previously acquired labels.

Semi-supervised (transductive) learning: Once we have {y
i

}
i2S , infer

the remaining labels {y
i

}
i2V \S .
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Active Transductive Semi-Supervised Learning

Batch/O✏ine active learning: Given a set V of unlabeled data items,
learner chooses subset L ✓ V of items to be labeled
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Active Transductive Semi-Supervised Learning

Batch/O✏ine active learning: Given a set V of unlabeled data items,
learner chooses subset L ✓ V of items to be labeled

Nature reveals labels y
L

2 {0, 1}L, learner predicts labels ŷ 2 {0, 1}V

+

-
+

+

+

-

- -+
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Active Transductive Semi-Supervised Learning

Batch/O✏ine active learning: Given a set V of unlabeled data items,
learner chooses subset L ✓ V of items to be labeled

Nature reveals labels y
L

2 {0, 1}L, learner predicts labels ŷ 2 {0, 1}V

+

-
+

+

+

-

- -+

-

-

++

Learner su↵ers loss kŷ � yk1, where y is truth. Below, kŷ � yk1 = 2.

+
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Choosing labels: how to select L

Consider the following objective

 (L) = min

T✓V \L:T 6=;
�(T )

|T | (1.65)

where �(T ) = I
f

(T ;V \ T ) = f(T ) + f(V \ T )� f(V ) is an arbitrary
symmetric submodular function (e.g., graph cut value between T and
V \ T , or combinatorial mutual information).

Small  (L) means an adversary can separate away many (|T | is big)
combinatorially “independent” (�(T ) is small) points from L.

This suggests choosing (bounded cost) L that maximizes  (L).
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Choosing labels: how to select L

Consider the following objective

 (L) = min

T✓V \L:T 6=;
�(T )

|T | (1.65)

where �(T ) = I
f

(T ;V \ T ) = f(T ) + f(V \ T )� f(V ) is an arbitrary
symmetric submodular function (e.g., graph cut value between T and
V \ T , or combinatorial mutual information).
Small  (L) means an adversary can separate away many (|T | is big)
combinatorially “independent” (�(T ) is small) points from L.

L
T

V \L

L
V \L

This suggests choosing (bounded cost) L that maximizes  (L).
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Choosing labels: how to select L

Consider the following objective

 (L) = min

T✓V \L:T 6=;
�(T )

|T | (1.65)

where �(T ) = I
f

(T ;V \ T ) = f(T ) + f(V \ T )� f(V ) is an arbitrary
symmetric submodular function (e.g., graph cut value between T and
V \ T , or combinatorial mutual information).
Small  (L) means an adversary can separate away many (|T | is big)
combinatorially “independent” (�(T ) is small) points from L.

 (L) = 1/8  (L) = 1
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Choosing labels: how to select L

Consider the following objective

 (L) = min

T✓V \L:T 6=;
�(T )

|T | (1.65)

where �(T ) = I
f

(T ;V \ T ) = f(T ) + f(V \ T )� f(V ) is an arbitrary
symmetric submodular function (e.g., graph cut value between T and
V \ T , or combinatorial mutual information).
Small  (L) means an adversary can separate away many (|T | is big)
combinatorially “independent” (�(T ) is small) points from L.

 (L) = 1/8  (L) = 1
This suggests choosing (bounded cost) L that maximizes  (L).
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Choosing remaining labels: semi-supervised learning

Once given labels for L, how to complete the remaining labels?

We form a labeling ŷ 2 {0, 1}V such that ŷ
L

= y
L

(i.e., we agree with
the known labels).

�(T ) measures label smoothness, how much combinatorial
“information” between labels T and complement V \ T (e.g., in
graph-cut case, says label change should be across small cuts).

Hence, choose labels to minimize �(Y (ŷ)) such that ŷ
L

= y
L

.

This is submodular function minimization on function g : 2

V \L ! R+

where for A ✓ V \ L,

g(A) = �(A [ {v 2 L : y
L

(v) = 1}) (1.66)

In graph cut case, this is standard min-cut (Blum & Chawla 2001)
approach to semi-supervised learning.
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V \L ! R+

where for A ✓ V \ L,

g(A) = �(A [ {v 2 L : y
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(v) = 1}) (1.66)
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where for A ✓ V \ L,
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Choosing remaining labels: semi-supervised learning

Once given labels for L, how to complete the remaining labels?

We form a labeling ŷ 2 {0, 1}V such that ŷ
L

= y
L

(i.e., we agree with
the known labels).

�(T ) measures label smoothness, how much combinatorial
“information” between labels T and complement V \ T (e.g., in
graph-cut case, says label change should be across small cuts).

Hence, choose labels to minimize �(Y (ŷ)) such that ŷ
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= y
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.

This is submodular function minimization on function g : 2

V \L ! R+

where for A ✓ V \ L,

g(A) = �(A [ {v 2 L : y
L

(v) = 1}) (1.66)

In graph cut case, this is standard min-cut (Blum & Chawla 2001)
approach to semi-supervised learning.
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Generalized Error Bound

Theorem 1.8.1 (Guillory & B., ’11)

For any symmetric submodular �(S), assume ŷ minimizes �(Y (ŷ)) subject
to ŷ

L

= y
L

. Then

kŷ � yk1  2

�(Y (y))

 (L)
(1.67)

where y 2 {0, 1}V are the true labels.

All is defined in terms of the symmetric submodular function � (need
not be graph cut), where:

 (S) = min

T✓V \S:T 6=;
�(T )

|T | (1.68)

�(T ) = I
f

(T ;V \ T ) = f(S) + f(V \ S)� f(V ) determined by
arbitrary submodular function f , di↵erent error bound for each.
Joint algorithm is “parameterized” by a submodular function f .
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Discrete Submodular Divergences

A convex function parameterizes a Bregman divergence, useful for
clustering (Banerjee et al.), includes KL-divergence, squared l2, etc.

Given a (not nec. di↵erentiable) convex function � and a sub-gradient
map H

�

(the gradient when � is everywhere di↵erentiable), the
generalized Bregman divergence is defined as:

d
H�

�

(x, y) = �(x)� �(y)� hH
�

(y), x� yi, 8x, y 2 dom(�) (1.69)

A submodular function parameterizes a discrete submodular Bregman
divergence (Iyer & B., 2012).
Example, lower-bound form:

d
Hf

f

(X,Y ) = f(X)� f(Y )� hH
f

(Y ), 1
X

� 1

Y

i (1.70)

where H
f

(Y ) is a sub-gradient map.
Submodular Bregman divergences also definable in terms of
supergradients.
General: Hamming, Recall, Precision, Cond. MI, Sq. Hamming, etc.
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Discrete Submodular Divergences
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Learning Submodular Functions

Learning submodular functions is hard

Goemans et al. (2009): “can one make only polynomial number of
queries to an unknown submodular function f and constructs a ˆf such
that ˆf(S)  f(S)  g(n) ˆf(S) where g : N! R?”

Many results,
including that even with adaptive queries and monotone functions,
can’t do better than ⌦(

p
n/ log n).

Balcan & Harvey (2011): submodular function learning problem from a
learning theory perspective, given a distribution on subsets. Negative
result is that can’t approximate in this setting to within a constant
factor.

But can we learn a subclass, perhaps non-negative weighted mixtures
of submodular components?
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including that even with adaptive queries and monotone functions,
can’t do better than ⌦(

p
n/ log n).

Balcan & Harvey (2011): submodular function learning problem from a
learning theory perspective, given a distribution on subsets. Negative
result is that can’t approximate in this setting to within a constant
factor.

But can we learn a subclass, perhaps non-negative weighted mixtures
of submodular components?
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queries to an unknown submodular function f and constructs a ˆf such
that ˆf(S)  f(S)  g(n) ˆf(S) where g : N! R?” Many results,
including that even with adaptive queries and monotone functions,
can’t do better than ⌦(

p
n/ log n).

Balcan & Harvey (2011): submodular function learning problem from a
learning theory perspective, given a distribution on subsets. Negative
result is that can’t approximate in this setting to within a constant
factor.

But can we learn a subclass, perhaps non-negative weighted mixtures
of submodular components?
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Structured Learning of Submodular Mixtures

Constraints specified in inference form:

minimize
w,⇠t

1

T

X

t

⇠
t

+

�

2

kwk2 (1.71)

subject to w

>
f

t

(y

(t)
) � max

y2Yt

⇣
w

>
f

t

(y) + `
t

(y)

⌘
� ⇠

t

, 8t (1.72)

⇠
t

� 0, 8t. (1.73)

Exponential set of constraints reduced to an embedded optimization
problem, “loss-augmented inference.”

w

>
f

t

(y) is a mixture of submodular components.

If loss is also submodular, then loss-augmented inference is submodular
optimization.

If loss is supermodular, this is a di↵erence-of-submodular (DS)
function optimization.
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problem, “loss-augmented inference.”
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>
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(y) is a mixture of submodular components.

If loss is also submodular, then loss-augmented inference is submodular
optimization.

If loss is supermodular, this is a di↵erence-of-submodular (DS)
function optimization.
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Structured Learning of Submodular Mixtures

Constraints specified in inference form:
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Exponential set of constraints reduced to an embedded optimization
problem, “loss-augmented inference.”
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>
f
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(y) is a mixture of submodular components.

If loss is also submodular, then loss-augmented inference is submodular
optimization.

If loss is supermodular, this is a di↵erence-of-submodular (DS)
function optimization.
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Structured Learning of Submodular Mixtures

Constraints specified in inference form:
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Exponential set of constraints reduced to an embedded optimization
problem, “loss-augmented inference.”

w

>
f

t

(y) is a mixture of submodular components.

If loss is also submodular, then loss-augmented inference is submodular
optimization.

If loss is supermodular, this is a di↵erence-of-submodular (DS)
function optimization.
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Structured Learning of Submodular Mixtures

Constraints specified in inference form:

minimize
w,⇠t
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kwk2 (1.71)

subject to w
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⌘
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⇠
t

� 0, 8t. (1.73)

Exponential set of constraints reduced to an embedded optimization
problem, “loss-augmented inference.”

w

>
f

t

(y) is a mixture of submodular components.

If loss is also submodular, then loss-augmented inference is submodular
optimization.

If loss is supermodular, this is a di↵erence-of-submodular (DS)
function optimization.
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Structured Prediction: Subgradient Learning

Solvable with simple sub-gradient descent algorithm using structured
variant of hinge-loss (Taskar, 2004).

Loss-augmented inference is either submodular optimization (Lin & B.
2012) or DS optimization (Tschiatschek, Iyer, & B. 2014).

Algorithm 1: Subgradient descent learning

Input : S = {(x(t),y(t)
)}T

t=1 and a learning rate sequence {⌘
t

}T
t=1.

1 w0 = 0;
2 for t = 1, · · · , T do
3 Loss augmented inference: y⇤

t

2 argmaxy2Yt
w

>
t�1ft(y) + `

t

(y);

4 Compute the subgradient: g
t

= �w
t�1 + f

t

(y

⇤
)� f

t

(y

(t)
);

5 Update the weights: w
t

= w

t�1 � ⌘
t

g

t

;

Return : the averaged parameters 1
T

P
t

w

t

.
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Submodular Relaxation

We often are unable to optimize an objective. E.g., high tree-width
graphical models (as we saw).

If potentials are submodular, we can solve them.
When potentials are not, we might resort to factorization (e.g., the
marginal polytope in variational inference, were we optimize over a
tree-constrained polytope).
An alternative is submodular relaxation. I.e., given

Pr(x) =
1

Z
exp(�E(x)) (1.74)

where E(x) = E
f

(x)� E
g

(x) and both of E
f

(x) and E
g

(x) are
submodular.
Any function can be expressed as the di↵erence between two
submodular functions.
Hence, rather than minimize E(x) (hard), we can minimize
E

f

(x) � E(x) (relatively easy), which is an upper bound.
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marginal polytope in variational inference, were we optimize over a
tree-constrained polytope).

An alternative is submodular relaxation. I.e., given
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Submodular Relaxation

We often are unable to optimize an objective. E.g., high tree-width
graphical models (as we saw).
If potentials are submodular, we can solve them.
When potentials are not, we might resort to factorization (e.g., the
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Submodular Relaxation

We often are unable to optimize an objective. E.g., high tree-width
graphical models (as we saw).
If potentials are submodular, we can solve them.
When potentials are not, we might resort to factorization (e.g., the
marginal polytope in variational inference, were we optimize over a
tree-constrained polytope).
An alternative is submodular relaxation. I.e., given

Pr(x) =
1
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exp(�E(x)) (1.74)

where E(x) = E
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(x)� E
g

(x) and both of E
f

(x) and E
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(x) are
submodular.
Any function can be expressed as the di↵erence between two
submodular functions.
Hence, rather than minimize E(x) (hard), we can minimize
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(x) � E(x) (relatively easy), which is an upper bound.
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Submodular Analysis for Non-Submodular Problems

Sometimes the quality of solutions to non-submodular problems can be
analyzed via submodularity.

For example, “deviation from submodularity” can be measured using
the submodularity ratio (Das & Kempe):

�
U,k

(f) = min

L✓U,S:|S|k,S\L=;

P
s2S f(x|L)
f(S|L) (1.75)

f is submodular if �
U,k

� 1 for all U and k.
For some variable selection problems, can get bounds of the form:

Solution � (1� 1

e�U⇤,k
)OPT (1.76)

where U⇤ is the solution set of a variable selection algorithm.
This gradually get worse as we move away from an objective being
submodular (see Das & Kempe, 2011).
Other analogous concepts: curvature of a submodular function, and
also the submodular degree.
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Submodular Analysis for Non-Submodular Problems

Sometimes the quality of solutions to non-submodular problems can be
analyzed via submodularity.
For example, “deviation from submodularity” can be measured using
the submodularity ratio (Das & Kempe):
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(f) = min
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For some variable selection problems, can get bounds of the form:

Solution � (1� 1

e�U⇤,k
)OPT (1.76)

where U⇤ is the solution set of a variable selection algorithm.
This gradually get worse as we move away from an objective being
submodular (see Das & Kempe, 2011).
Other analogous concepts: curvature of a submodular function, and
also the submodular degree.
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Submodular Analysis for Non-Submodular Problems

Sometimes the quality of solutions to non-submodular problems can be
analyzed via submodularity.
For example, “deviation from submodularity” can be measured using
the submodularity ratio (Das & Kempe):
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For some variable selection problems, can get bounds of the form:

Solution � (1� 1

e�U⇤,k
)OPT (1.76)

where U⇤ is the solution set of a variable selection algorithm.
This gradually get worse as we move away from an objective being
submodular (see Das & Kempe, 2011).
Other analogous concepts: curvature of a submodular function, and
also the submodular degree.
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Submodular Analysis for Non-Submodular Problems

Sometimes the quality of solutions to non-submodular problems can be
analyzed via submodularity.
For example, “deviation from submodularity” can be measured using
the submodularity ratio (Das & Kempe):

�
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(f) = min

L✓U,S:|S|k,S\L=;

P
s2S f(x|L)
f(S|L) (1.75)

f is submodular if �
U,k

� 1 for all U and k.
For some variable selection problems, can get bounds of the form:

Solution � (1� 1

e�U⇤,k
)OPT (1.76)

where U⇤ is the solution set of a variable selection algorithm.

This gradually get worse as we move away from an objective being
submodular (see Das & Kempe, 2011).
Other analogous concepts: curvature of a submodular function, and
also the submodular degree.
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Submodular Analysis for Non-Submodular Problems

Sometimes the quality of solutions to non-submodular problems can be
analyzed via submodularity.
For example, “deviation from submodularity” can be measured using
the submodularity ratio (Das & Kempe):

�
U,k

(f) = min

L✓U,S:|S|k,S\L=;

P
s2S f(x|L)
f(S|L) (1.75)

f is submodular if �
U,k

� 1 for all U and k.
For some variable selection problems, can get bounds of the form:

Solution � (1� 1

e�U⇤,k
)OPT (1.76)

where U⇤ is the solution set of a variable selection algorithm.
This gradually get worse as we move away from an objective being
submodular (see Das & Kempe, 2011).

Other analogous concepts: curvature of a submodular function, and
also the submodular degree.
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Submodular Analysis for Non-Submodular Problems

Sometimes the quality of solutions to non-submodular problems can be
analyzed via submodularity.
For example, “deviation from submodularity” can be measured using
the submodularity ratio (Das & Kempe):

�
U,k

(f) = min

L✓U,S:|S|k,S\L=;

P
s2S f(x|L)
f(S|L) (1.75)

f is submodular if �
U,k

� 1 for all U and k.
For some variable selection problems, can get bounds of the form:

Solution � (1� 1

e�U⇤,k
)OPT (1.76)

where U⇤ is the solution set of a variable selection algorithm.
This gradually get worse as we move away from an objective being
submodular (see Das & Kempe, 2011).
Other analogous concepts: curvature of a submodular function, and
also the submodular degree.
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