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Logistics Review

Cumulative Outstanding Reading

Read chapters 2 and 3, 4, and 5 from Fujishige’s book.

Read chapter 1 from Fujishige’s book.
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Logistics Review

Announcements, Assignments, and Reminders

Final Project description, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Wednesday (6/8) at 1:00pm.
Homework 4, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Wednesday (5/25) at 11:55pm.
Homework 3, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (5/2) at 11:55pm.
Homework 2, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (4/18) at 11:55pm.
Homework 1, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Friday (4/8) at 11:55pm.
Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google
hangout (set up meeting via our our discussion board (https:
//canvas.uw.edu/courses/1039754/discussion_topics)).
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Logistics Review

Class Road Map - IT-I
L1(3/28): Motivation, Applications, &
Basic Definitions

L2(3/30): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).

L3(4/4): Info theory exs, more apps,
definitions, graph/combinatorial examples,
matrix rank example, visualization

L4(4/6): Graph and Combinatorial
Examples, matrix rank, Venn diagrams,
examples of proofs of submodularity, some
useful properties

L5(4/11): Examples & Properties, Other
Defs., Independence

L6(4/13): Independence, Matroids,
Matroid Examples, matroid rank is
submodular

L7(4/18): Matroid Rank, More on
Partition Matroid, System of Distinct
Reps, Transversals, Transversal Matroid,

L8(4/20): Transversals, Matroid and
representation, Dual Matroids,

L9(4/25): Dual Matroids, Properties,
Combinatorial Geometries, Matroid and
Greedy

L10(4/27): Matroid and Greedy,
Polyhedra, Matroid Polytopes,

L11(5/2): From Matroids to
Polymatroids, Polymatroids

L12(5/4): Polymatroids, Polymatroids
and Greedy

L13(5/9): Polymatroids and Greedy;
Possible Polytopes; Extreme Points;
Polymatroids, Greedy, and Cardinality
Constrained Maximization

L14(5/11): Cardinality Constrained
Maximization; Curvature; Submodular
Max w. Other Constraints

L15(5/16): Submodular Max w. Other
Constraints, Most Violated ≤, Matroids
cont., Closure/Sat,

L16(5/18): Closure/Sat, Fund.
Circuit/Dep,

L17(5/23): Min-Norm Point and SFM,
Min-Norm Point Algorithm,

L18(5/25): Proof that min-norm gives
optimal, Lovász extension.

L19(6/1):

L20(6/6): Final Presentations
maximization.

Finals Week: June 6th-10th, 2016.
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Logistics Review

Min-Norm Point: Definition

Consider the optimization:

minimize ‖x‖22 (18.1a)

subject to x ∈ Bf (18.1b)

where Bf is the base polytope of submodular f , and
‖x‖22 =

∑
e∈E x(e)2 is the squared 2-norm. Let x∗ be the optimal

solution.

Note, x∗ is the unique optimal solution since we have a strictly convex
objective over a set of convex constraints.

x∗ is called the minimum norm point of the base polytope.
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Logistics Review

Min-Norm Point: Examples

Pf Pf Pf

Pf

Pf

Pf
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Logistics Review

Min-Norm Point and Submodular Function Minimization

Given optimal solution x∗ to the above, consider the quantities

y∗ = x∗ ∧ 0 = (min(x∗(e), 0)|e ∈ E) (18.1)

A− = {e : x∗(e) < 0} (18.2)

A0 = {e : x∗(e) ≤ 0} (18.3)

Thus, we immediately have that:

A− ⊆ A0 (18.4)

and that

x∗(A−) = x∗(A0) = y∗(A−) = y∗(A0) (18.5)

It turns out, these quantities will solve the submodular function
minimization problem, as we now show.

The proof is nice since it uses the tools we’ve been recently developing.
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Logistics Review

A polymatroid function’s polyhedron is a polymatroid.

Theorem 18.2.1

Let f be a submodular function defined on subsets of E. For any x ∈ RE ,
we have:

rank(x) = max (y(E) : y ≤ x, y ∈ Pf ) = min (x(A) + f(E \A) : A ⊆ E)
(18.1)

Essentially the same theorem as Theorem ??, but note Pf rather than P+
f .

Taking x = 0 we get:

Corollary 18.2.2

Let f be a submodular function defined on subsets of E. We have:

rank(0) = max (y(E) : y ≤ 0, y ∈ Pf ) = min (f(A) : A ⊆ E) (18.2)
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Logistics Review

Summary of supp, sat, and dep

For x ∈ Pf , supp(x) = {e : x(e) 6= 0} ⊆ sat(x)

For x ∈ Pf , sat(x) (span, closure) is the maximal saturated (x-tight) set
w.r.t. x. I.e., sat(x) = {e : e ∈ E,∀α > 0, x+ α1e /∈ Pf}. That is,

cl(x)
def
= sat(x) ,

⋃
{A : A ∈ D(x)} (18.25)

=
⋃
{A : A ⊆ E, x(A) = f(A)} (18.26)

= {e : e ∈ E,∀α > 0, x+ α1e /∈ Pf} (18.27)

For e ∈ sat(x), we have dep(x, e) ⊆ sat(x) (fundamental circuit) is the
minimal (common) saturated (x-tight) set w.r.t. x containing e. I.e.,

dep(x, e) =

{⋂ {A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else

=
{
e′ : ∃α > 0, s.t. x+ α(1e − 1e′) ∈ Pf

}
(18.28)

Note, if x+ α(1e − 1e′) ∈ Pf , then x+ α′(1e − 1e′) ∈ Pf for any
0 ≤ α′ < α.
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Logistics Review

Summary important definitions so far: tight, dep, & sat

x-tight sets: For x ∈ Pf , D(x) , {A ⊆ E : x(A) = f(A)}.
Polymatroid closure/maximal x-tight set: For x ∈ Pf ,
sat(x) , ∪{A : A ∈ D(x)} = {e : e ∈ E,∀α > 0, x+ α1e /∈ Pf}.
Saturation capacity: for x ∈ Pf , 0 ≤ ĉ(x; e) ,
min {f(A)− x(A)|∀A 3 e} = max {α : α ∈ R, x+ α1e ∈ Pf}
Recall: sat(x) = {e : ĉ(x; e) = 0} and E \ sat(x) = {e : ĉ(x; e) > 0}.
e-containing x-tight sets: For x ∈ Pf ,
D(x, e) = {A : e ∈ A ⊆ E, x(A) = f(A)} ⊆ D(x).

Minimal e-containing x-tight set/polymatroidal fundamental circuit/:
For x ∈ Pf ,

dep(x, e) =

{⋂ {A : e ∈ A ⊆ E, x(A) = f(A)} if e ∈ sat(x)

∅ else

=
{
e′ : ∃α > 0, s.t. x+ α(1e − 1e′) ∈ Pf

}
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Min-Norm Point and SFM

Theorem 18.3.1

Let y∗, A−, and A0 be as given. Then y∗ is a maximizer of the l.h.s. of
Eqn. (17.7). Moreover, A− is the unique minimal minimizer of f and A0 is
the unique maximal minimizer of f .

Proof.

First note, since x∗ ∈ Bf , we have x∗(E) = f(E), meaning sat(x∗) = E.
Thus, we can consider any e ∈ E within dep(x∗, e).

Consider any pair (e, e′) with e′ ∈ dep(x∗, e) and e ∈ A−. Then
x∗(e) < 0, and ∃α > 0 s.t. x∗ + α1e − α1e′ ∈ Pf .

We have x∗(E) = f(E) and x∗ is minimum in l2 sense. We have
(x∗ + α1e − α1e′) ∈ Pf , and in fact

(x∗ + α1e − α1e′)(E) = x∗(E) + α− α = f(E) (18.1)

so x∗ + α1e − α1e′ ∈ Bf also.

. . .
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Min-Norm Point and SFM

. . . proof of Thm. 18.3.1 cont.

Then (x∗ + α1e − α1e′)(E)
= x∗(E \ {e, e′}) + (x∗(e) + α)︸ ︷︷ ︸

x∗new(e)

+ (x∗(e′)− α)︸ ︷︷ ︸
x∗new(e

′)

= f(E).

Minimality of x∗ ∈ Bf in l2 sense requires that, with such an α > 0,(
x∗(e)

)2
+
(
x∗(e′)

)2
<
(
x∗new(e)

)2
+
(
x∗new(e′)

)2
Given that e ∈ A−, x∗(e) < 0. Thus, if x∗(e′) > 0, we could have
(x∗(e) + α)2 + (x∗(e′)− α)2 < (x∗(e))2 + (x∗(e′))2, contradicting the
optimality of x∗.

If x∗(e′) = 0, we would have (x∗(e) + α)2 + (α)2 < (x∗(e))2, for any
0 < α < |x∗(e)| (Exercise:), again contradicting the optimality of x∗.

Thus, we must have x∗(e′) < 0 (strict negativity).

. . .
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Min-Norm Point and SFM

. . . proof of Thm. 18.3.1 cont.

Thus, for a pair (e, e′) with e′ ∈ dep(x∗, e) and e ∈ A−, we have
x(e′) < 0 and hence e′ ∈ A−.

Hence, ∀e ∈ A−, we have dep(x∗, e) ⊆ A−.

A very similar argument can show that, ∀e ∈ A0, we have
dep(x∗, e) ⊆ A0.

Also, recall that e ∈ dep(x∗, e).

. . .

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 18 - June 3rd, 2016 F13/51 (pg.19/184)



Proof that min-norm gives optimal Lovász extension Choquet Integration

Min-Norm Point and SFM

. . . proof of Thm. 18.3.1 cont.

Thus, for a pair (e, e′) with e′ ∈ dep(x∗, e) and e ∈ A−, we have
x(e′) < 0 and hence e′ ∈ A−.

Hence, ∀e ∈ A−, we have dep(x∗, e) ⊆ A−.

A very similar argument can show that, ∀e ∈ A0, we have
dep(x∗, e) ⊆ A0.

Also, recall that e ∈ dep(x∗, e).

. . .

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 18 - June 3rd, 2016 F13/51 (pg.20/184)



Proof that min-norm gives optimal Lovász extension Choquet Integration

Min-Norm Point and SFM

. . . proof of Thm. 18.3.1 cont.

Thus, for a pair (e, e′) with e′ ∈ dep(x∗, e) and e ∈ A−, we have
x(e′) < 0 and hence e′ ∈ A−.

Hence, ∀e ∈ A−, we have dep(x∗, e) ⊆ A−.

A very similar argument can show that, ∀e ∈ A0, we have
dep(x∗, e) ⊆ A0.

Also, recall that e ∈ dep(x∗, e).

. . .

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 18 - June 3rd, 2016 F13/51 (pg.21/184)



Proof that min-norm gives optimal Lovász extension Choquet Integration

Min-Norm Point and SFM

. . . proof of Thm. 18.3.1 cont.

Thus, for a pair (e, e′) with e′ ∈ dep(x∗, e) and e ∈ A−, we have
x(e′) < 0 and hence e′ ∈ A−.

Hence, ∀e ∈ A−, we have dep(x∗, e) ⊆ A−.

A very similar argument can show that, ∀e ∈ A0, we have
dep(x∗, e) ⊆ A0.

Also, recall that e ∈ dep(x∗, e).

. . .

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 18 - June 3rd, 2016 F13/51 (pg.22/184)



Proof that min-norm gives optimal Lovász extension Choquet Integration

Min-Norm Point and SFM

. . . proof of Thm. 18.3.1 cont.

Therefore, we have ∪e∈A− dep(x∗, e) = A− and ∪e∈A0 dep(x∗, e) = A0

Ie., {dep(x∗, e)}e∈A− is cover for A−, as is {dep(x∗, e)}e∈A0
for A0.

dep(x∗, e) is minimal tight set containing e, meaning
x∗(dep(x∗, e)) = f(dep(x∗, e)), and since tight sets are closed under
union, we have that A− and A0 are also tight, meaning:

x∗(A−) = f(A−) (18.2)

x∗(A0) = f(A0) (18.3)

x∗(A−) = x∗(A0) = y∗(E) = y∗(A0) + y∗(E \A0)︸ ︷︷ ︸
=0

(18.4)

and therefore, all together we have

f(A−) = f(A0) = x∗(A−) = x∗(A0) = y∗(E) (18.5)

. . .
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Now, y∗ is feasible for the l.h.s. of Eqn. (17.7) (recall, which is
max {y(E)|y ∈ Pf , y ≤ 0} = min {f(X)|X ⊆ V }).

This follows since,
we have y∗ = x∗ ∧ 0 ≤ 0, and since x∗ ∈ Bf ⊂ Pf , and y∗ ≤ x∗ and
Pf is down-closed, we have that y∗ ∈ Pf .

Also, for any y ∈ Pf with y ≤ 0 and for any X ⊆ E, we have
y(E) ≤ y(X) ≤ f(X).

Hence, we have found a feasible for l.h.s. of Eqn. (17.7), y∗ ≤ 0,
y∗ ∈ Pf , so y∗(E) ≤ f(X) for all X.

So y∗(E) ≤ min {f(X)|X ⊆ V }.
Considering Eqn. (18.2), we have found sets A− and A0 with tightness
in Eqn. (17.7), meaning y∗(E) = f(A−) = f(A0).

Hence, y∗ is a maximizer of l.h.s. of Eqn. (17.7), and A− and A0 are
minimizers of f .
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Now, for any X ⊂ A−, we have

f(X) ≥ x∗(X) > x∗(A−) = f(A−) (18.6)

And for any X ⊃ A0, we have

f(X) ≥ x∗(X) > x∗(A0) = f(A0) (18.7)

Hence, A− must be the unique minimal minimizer of f , and A0 is the
unique maximal minimizer of f .
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Min-Norm Point and SFM

So, if we have a procedure to compute the min-norm point
computation, we can solve SFM.

Nice thing about previous proof is that it uses both expressions for dep
for different purposes.

This was discovered by Fujishige (in fact the proof above is an
expanded version of the one found in the book).

As we saw last time, the algorithm (by F. Wolfe) can find this
min-norm point, essentially an active-set procedure for quadratic
programming. It uses Edmonds’s greedy algorithm to make it efficient.

This is currently the best practical algorithm for general purpose
submodular function minimization.

But recall, its underlying lower-bound complexity is unknown.
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Min-norm point and other minimizers of f

Recall, that the set of minimizers of f forms a lattice.

In fact, with x∗ the min-norm point, and A− and A0 as defined above,
we have the following theorem:

Theorem 18.3.2

Let A ⊆ E be any minimizer of submodular f , and let x∗ be the
minimum-norm point. Then A can be expressed in the form:

A = A− ∪
⋃

a∈Am

dep(x∗, a) (18.8)

for some set Am ⊆ A0 \A−. Conversely, for any set Am ⊆ A0 \A−, then
A , A− ∪

⋃
a∈Am

dep(x∗, a) is a minimizer.
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Min-norm point and other minimizers of f

proof of Thm. 18.3.2.

If A is a minimizer, then A− ⊆ A ⊆ A0, and f(A) = y∗(E) is the
minimum valuation of f .

But x∗ ∈ Pf , so x∗(A) ≤ f(A) and f(A) = x∗(A−) ≤ x∗(A) (or
alternatively, just note that x∗(A0 \A) = 0).

Hence, x∗(A) = x∗(A−) = f(A) so that A is also a tight set for x∗.

For any a ∈ A, A is a tight set containing a, and dep(x∗, a) is the
minimal tight containing a.

Hence, for any a ∈ A, dep(x∗, a) ⊆ A.

This means that
⋃
a∈A dep(x∗, a) = A.

Since A− ⊆ A ⊆ A0, then ∃Am ⊆ A \A− such that

A =
⋃
a∈A−

dep(x∗, a) ∪
⋃

a∈Am

dep(x∗, a) = A− ∪
⋃

a∈Am

dep(x∗, a)

. . .
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Min-norm point and other minimizers of f

proof of Thm. 18.3.2.

Conversely, consider any set Am ⊆ A0 \A−, and define A as

A = A− ∪
⋃

a∈Am

dep(x∗, a) =
⋃
a∈A−

dep(x∗, a) ∪
⋃

a∈Am

dep(x∗, a)

(18.9)

Then since A is a union of tight sets, A is also a tight set, and we
have f(A) = x∗(A).

But x∗(A \A−) = 0, so f(A) = x∗(A) = x∗(A−) = f(A−) meaning
A is also a minimizer of f .

Therefore, we can generate the entire lattice of minimizers of f starting
from A− and A0 given access to dep(x∗, e).

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 18 - June 3rd, 2016 F20/51 (pg.57/184)



Proof that min-norm gives optimal Lovász extension Choquet Integration

Min-norm point and other minimizers of f

proof of Thm. 18.3.2.

Conversely, consider any set Am ⊆ A0 \A−, and define A as

A = A− ∪
⋃

a∈Am

dep(x∗, a) =
⋃
a∈A−

dep(x∗, a) ∪
⋃

a∈Am

dep(x∗, a)

(18.9)

Then since A is a union of tight sets, A is also a tight set, and we
have f(A) = x∗(A).

But x∗(A \A−) = 0, so f(A) = x∗(A) = x∗(A−) = f(A−) meaning
A is also a minimizer of f .

Therefore, we can generate the entire lattice of minimizers of f starting
from A− and A0 given access to dep(x∗, e).

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 18 - June 3rd, 2016 F20/51 (pg.58/184)



Proof that min-norm gives optimal Lovász extension Choquet Integration

Min-norm point and other minimizers of f

proof of Thm. 18.3.2.

Conversely, consider any set Am ⊆ A0 \A−, and define A as

A = A− ∪
⋃

a∈Am

dep(x∗, a) =
⋃
a∈A−

dep(x∗, a) ∪
⋃

a∈Am

dep(x∗, a)

(18.9)

Then since A is a union of tight sets, A is also a tight set, and we
have f(A) = x∗(A).

But x∗(A \A−) = 0, so f(A) = x∗(A) = x∗(A−) = f(A−) meaning
A is also a minimizer of f .

Therefore, we can generate the entire lattice of minimizers of f starting
from A− and A0 given access to dep(x∗, e).

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 18 - June 3rd, 2016 F20/51 (pg.59/184)



Proof that min-norm gives optimal Lovász extension Choquet Integration

On a unique minimizer f

Note that if f(e|A) > 0, ∀A ⊆ E and e ∈ E \A, then we have
A− = A0 (there is one unique minimizer).

On the other hand, if A− = A0, it does not imply f(e|A) > 0 for all
A ⊆ E \ {e}.
If A− = A0 then certainly f(e|A0) > 0 for e ∈ E \A0 and
−f(e|A0 \ {e}) > 0 for all e ∈ A0.
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Duality: convex minimization of L.E. and min-norm alg.

Let f be a submodular function with f̃ it’s Lovász extension. Then the
following two problems are duals (Bach-2013):

minimize
w∈RV

f̃(w) +
1

2
‖w‖22 (18.10)

maximize − ‖x‖22
subject to x ∈ Bf

(18.11a)

(18.11b)

where Bf = Pf ∩
{
x ∈ RV : x(V ) = f(V )

}
is the base polytope of

submodular function f , and ‖x‖22 =
∑

e∈V x(e)2 is squared 2-norm.

Equation (18.10) is related to proximal methods to minimize the Lovász
extension (see Parikh&Boyd, “Proximal Algorithms” 2013).

Equation (18.11b) is solved by the minimum-norm point algorithm
(Wolfe-1976, Fujishige-1984, Fujishige-2005, Fujishige-2011) is (as we
will see) essentially an active-set procedure for quadratic programming,
and uses Edmonds’s greedy algorithm to make it efficient.

Unknown worst-case running time, although in practice it usually
performs quite well (see below).
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Review

The next slide comes from lecture 13.
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Polymatroidal polyhedron and greedy

Thus, restating the above results into a single complete theorem, we
have a result very similar to what we saw for matroids (i.e.,
Theorem ??)

Theorem 18.4.1

If f : 2E → R+ is given, and P is a polytope in RE+ of the form
P =

{
x ∈ RE+ : x(A) ≤ f(A), ∀A ⊆ E

}
, then the greedy solution to the

problem max(wx : x ∈ P ) is ∀w optimum iff f is monotone
non-decreasing submodular (i.e., iff P is a polymatroid).
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Optimization over Pf

Consider the following optimization. Given w ∈ RE ,

maximize wᵀx (18.12a)
subject to x ∈ Pf (18.12b)

Since Pf is down closed, if ∃e ∈ E with w(e) < 0 then the solution
above is unboundedly large.

Hence, assume w ∈ RE+.

The greedy algorithm will solve this, and the proof almost identical.

Due to Theorem ??, any x ∈ Pf with x /∈ Bf is dominated by
x ≤ y ∈ Bf which can only increase wᵀx ≤ wᵀy.

Hence, the problem is equivalent to: given w ∈ RE+,

maximize wᵀx (18.13a)
subject to x ∈ Bf (18.13b)

Moreover, we can have w ∈ RE if we insist on x ∈ Bf .

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 18 - June 3rd, 2016 F25/51 (pg.66/184)



Proof that min-norm gives optimal Lovász extension Choquet Integration

Optimization over Pf

Consider the following optimization. Given w ∈ RE ,

maximize wᵀx (18.12a)
subject to x ∈ Pf (18.12b)

Since Pf is down closed, if ∃e ∈ E with w(e) < 0 then the solution
above is unboundedly large.

Hence, assume w ∈ RE+.

The greedy algorithm will solve this, and the proof almost identical.

Due to Theorem ??, any x ∈ Pf with x /∈ Bf is dominated by
x ≤ y ∈ Bf which can only increase wᵀx ≤ wᵀy.

Hence, the problem is equivalent to: given w ∈ RE+,

maximize wᵀx (18.13a)
subject to x ∈ Bf (18.13b)

Moreover, we can have w ∈ RE if we insist on x ∈ Bf .

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 18 - June 3rd, 2016 F25/51 (pg.67/184)



Proof that min-norm gives optimal Lovász extension Choquet Integration

Optimization over Pf

Consider the following optimization. Given w ∈ RE ,

maximize wᵀx (18.12a)
subject to x ∈ Pf (18.12b)

Since Pf is down closed, if ∃e ∈ E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w ∈ RE+.

The greedy algorithm will solve this, and the proof almost identical.

Due to Theorem ??, any x ∈ Pf with x /∈ Bf is dominated by
x ≤ y ∈ Bf which can only increase wᵀx ≤ wᵀy.

Hence, the problem is equivalent to: given w ∈ RE+,

maximize wᵀx (18.13a)
subject to x ∈ Bf (18.13b)

Moreover, we can have w ∈ RE if we insist on x ∈ Bf .

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 18 - June 3rd, 2016 F25/51 (pg.68/184)



Proof that min-norm gives optimal Lovász extension Choquet Integration

Optimization over Pf

Consider the following optimization. Given w ∈ RE ,

maximize wᵀx (18.12a)
subject to x ∈ Pf (18.12b)

Since Pf is down closed, if ∃e ∈ E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w ∈ RE+.

The greedy algorithm will solve this, and the proof almost identical.

Due to Theorem ??, any x ∈ Pf with x /∈ Bf is dominated by
x ≤ y ∈ Bf which can only increase wᵀx ≤ wᵀy.

Hence, the problem is equivalent to: given w ∈ RE+,

maximize wᵀx (18.13a)
subject to x ∈ Bf (18.13b)

Moreover, we can have w ∈ RE if we insist on x ∈ Bf .

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 18 - June 3rd, 2016 F25/51 (pg.69/184)



Proof that min-norm gives optimal Lovász extension Choquet Integration

Optimization over Pf

Consider the following optimization. Given w ∈ RE ,

maximize wᵀx (18.12a)
subject to x ∈ Pf (18.12b)

Since Pf is down closed, if ∃e ∈ E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w ∈ RE+.

The greedy algorithm will solve this, and the proof almost identical.

Due to Theorem ??, any x ∈ Pf with x /∈ Bf is dominated by
x ≤ y ∈ Bf which can only increase wᵀx ≤ wᵀy.

Hence, the problem is equivalent to: given w ∈ RE+,

maximize wᵀx (18.13a)
subject to x ∈ Bf (18.13b)

Moreover, we can have w ∈ RE if we insist on x ∈ Bf .

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 18 - June 3rd, 2016 F25/51 (pg.70/184)



Proof that min-norm gives optimal Lovász extension Choquet Integration

Optimization over Pf

Consider the following optimization. Given w ∈ RE ,

maximize wᵀx (18.12a)
subject to x ∈ Pf (18.12b)

Since Pf is down closed, if ∃e ∈ E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w ∈ RE+.

The greedy algorithm will solve this, and the proof almost identical.

Due to Theorem ??, any x ∈ Pf with x /∈ Bf is dominated by
x ≤ y ∈ Bf which can only increase wᵀx ≤ wᵀy.

Hence, the problem is equivalent to: given w ∈ RE+,

maximize wᵀx (18.13a)
subject to x ∈ Bf (18.13b)

Moreover, we can have w ∈ RE if we insist on x ∈ Bf .

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 18 - June 3rd, 2016 F25/51 (pg.71/184)



Proof that min-norm gives optimal Lovász extension Choquet Integration

Optimization over Pf

Consider the following optimization. Given w ∈ RE ,

maximize wᵀx (18.12a)
subject to x ∈ Pf (18.12b)

Since Pf is down closed, if ∃e ∈ E with w(e) < 0 then the solution
above is unboundedly large. Hence, assume w ∈ RE+.

The greedy algorithm will solve this, and the proof almost identical.

Due to Theorem ??, any x ∈ Pf with x /∈ Bf is dominated by
x ≤ y ∈ Bf which can only increase wᵀx ≤ wᵀy.

Hence, the problem is equivalent to: given w ∈ RE+,

maximize wᵀx (18.13a)
subject to x ∈ Bf (18.13b)

Moreover, we can have w ∈ RE if we insist on x ∈ Bf .

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 18 - June 3rd, 2016 F25/51 (pg.72/184)



Proof that min-norm gives optimal Lovász extension Choquet Integration

A continuous extension of f

Consider again optimization problem. Given w ∈ RE ,

maximize wᵀx (18.14a)
subject to x ∈ Bf (18.14b)

We may consider this optimization problem a function f̆ : RE → R of
w ∈ RE , defined as:

f̆(w) = max(wx : x ∈ Bf ) (18.15)

Hence, for any w, from the solution to the above theorem (as we have
seen), we can compute the value of this function using Edmond’s
greedy algorithm.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 18 - June 3rd, 2016 F26/51 (pg.73/184)



Proof that min-norm gives optimal Lovász extension Choquet Integration

A continuous extension of f

Consider again optimization problem. Given w ∈ RE ,

maximize wᵀx (18.14a)
subject to x ∈ Bf (18.14b)

We may consider this optimization problem a function f̆ : RE → R of
w ∈ RE , defined as:

f̆(w) = max(wx : x ∈ Bf ) (18.15)

Hence, for any w, from the solution to the above theorem (as we have
seen), we can compute the value of this function using Edmond’s
greedy algorithm.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 18 - June 3rd, 2016 F26/51 (pg.74/184)



Proof that min-norm gives optimal Lovász extension Choquet Integration

A continuous extension of f

Consider again optimization problem. Given w ∈ RE ,

maximize wᵀx (18.14a)
subject to x ∈ Bf (18.14b)

We may consider this optimization problem a function f̆ : RE → R of
w ∈ RE , defined as:

f̆(w) = max(wx : x ∈ Bf ) (18.15)

Hence, for any w, from the solution to the above theorem (as we have
seen), we can compute the value of this function using Edmond’s
greedy algorithm.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 18 - June 3rd, 2016 F26/51 (pg.75/184)



Proof that min-norm gives optimal Lovász extension Choquet Integration

A continuous extension of submodular f

That is, given a submodular function f , a w ∈ RE , choose element
order (e1, e2, . . . , em) based on decreasing w,so that
w(e1) ≥ w(e2) ≥ · · · ≥ w(em).

Define the chain with ith element Ei = {e1, e2, . . . , ei} , we have

f̆(w)

= max(wx : x ∈ Pf ) (18.16)

=
m∑
i=1

w(ei)f(ei|Ei−1) (18.17)

=

m∑
i=1

w(ei)(f(Ei)− f(Ei−1)) (18.18)

= w(em)f(Em) +
m−1∑
i=1

(w(ei)− w(ei+1))f(Ei) (18.19)

We say that ∅ , E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Em = E forms a chain based
on w.
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m∑
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w(ei)f(ei|Ei−1) (18.17)

=
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(w(ei)− w(ei+1))f(Ei) (18.19)

We say that ∅ , E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Em = E forms a chain based
on w.
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Proof that min-norm gives optimal Lovász extension Choquet Integration

A continuous extension of submodular f

Definition of the continuous extension, once again, for reference:

f̆(w) = max(wx : x ∈ Bf ) (18.20)

Therefore, if f is a submodular function, we can write

f̆(w)

= w(em)f(Em) +

m−1∑
i=1

(w(ei)− w(ei+1))f(Ei) (18.21)

=

m∑
i=1

λif(Ei) (18.22)

where λm = w(em) and otherwise λi = w(ei)− w(ei+1), where the
elements are sorted descending according to w as before.

From convex analysis, we know f̆(w) = max(wx : x ∈ P ) is always
convex in w for any set P ⊆ RE , since it is the maximum of a set of
linear functions (true even when f is not submodular or P is not a
convex set).
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Proof that min-norm gives optimal Lovász extension Choquet Integration

An extension of f

Recall, for any such w ∈ RE , we have


w1

w2

...
wn

 =
(
w1 − w2

)︸ ︷︷ ︸
λ1


1
0
...
0

+
(
w2 − w3

)︸ ︷︷ ︸
λ2


1
1
0
...
0

+

· · ·+
(
wn−1 − wn

)︸ ︷︷ ︸
λm−1


1
1
...
1
0

+
(
wm
)︸ ︷︷ ︸

λm


1
1
...
1
1

 (18.23)

If we take w in decreasing order, then each coefficient of the vectors is
non-negative (except possibly the last one, λm = wm).
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)︸ ︷︷ ︸
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Proof that min-norm gives optimal Lovász extension Choquet Integration

An extension of f

Define sets Ei based on this decreasing order of w as follows, for
i = 0, . . . , n

Ei
def
= {e1, e2, . . . , ei} (18.24)

Note that

1E0 =


0
0
...
0

 ,1E1 =


1
0
0
...
0

 , . . . ,1E`
=



1
`×

1
...
1
0
(n− `)×0

...
0


, etc.

Hence, from the previous and current slide, we have w =
∑m

i=1 λi1Ei
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Proof that min-norm gives optimal Lovász extension Choquet Integration

From f̆ back to f , even when f is not submodular
From the continuous f̆ , we can recover f(A) for any A ⊆ V .

Take w = 1A for some A ⊆ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) ≥ w(e2) ≥ w(e3) ≥ · · · ≥ w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
|A| times

, 0, 0, . . . , 0︸ ︷︷ ︸
m−|A| times

) (18.25)

so that 1A(i) = 1 if i ≤ |A|, and 1A(i) = 0 otherwise.
For any f : 2E → R, w = 1A, since E|A| =

{
e1, e2, . . . , e|A|

}
= A:

f̆(w)

=

m∑
i=1

λif(Ei) = w(em)f(Em) +

m−1∑
i=1

(w(ei)− w(ei+1)f(Ei)

= 1A(m)f(Em) +

m−1∑
i=1

(1A(i)− 1A(i+ 1))f(Ei) (18.26)

= (1A(|A|)− 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (18.27)
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i=1

(1A(i)− 1A(i+ 1))f(Ei) (18.26)

= (1A(|A|)− 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (18.27)
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Proof that min-norm gives optimal Lovász extension Choquet Integration

From f̆ back to f , even when f is not submodular
From the continuous f̆ , we can recover f(A) for any A ⊆ V .
Take w = 1A for some A ⊆ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) ≥ w(e2) ≥ w(e3) ≥ · · · ≥ w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
|A| times

, 0, 0, . . . , 0︸ ︷︷ ︸
m−|A| times

) (18.25)

so that 1A(i) = 1 if i ≤ |A|, and 1A(i) = 0 otherwise.
For any f : 2E → R, w = 1A, since E|A| =

{
e1, e2, . . . , e|A|

}
= A:

f̆(w) =

m∑
i=1

λif(Ei)

= w(em)f(Em) +

m−1∑
i=1

(w(ei)− w(ei+1)f(Ei)

= 1A(m)f(Em) +

m−1∑
i=1

(1A(i)− 1A(i+ 1))f(Ei) (18.26)

= (1A(|A|)− 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (18.27)
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Proof that min-norm gives optimal Lovász extension Choquet Integration

From f̆ back to f , even when f is not submodular
From the continuous f̆ , we can recover f(A) for any A ⊆ V .
Take w = 1A for some A ⊆ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) ≥ w(e2) ≥ w(e3) ≥ · · · ≥ w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
|A| times

, 0, 0, . . . , 0︸ ︷︷ ︸
m−|A| times

) (18.25)

so that 1A(i) = 1 if i ≤ |A|, and 1A(i) = 0 otherwise.
For any f : 2E → R, w = 1A, since E|A| =

{
e1, e2, . . . , e|A|

}
= A:

f̆(w) =

m∑
i=1

λif(Ei) = w(em)f(Em) +

m−1∑
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(w(ei)− w(ei+1)f(Ei)

= 1A(m)f(Em) +

m−1∑
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(1A(i)− 1A(i+ 1))f(Ei) (18.26)

= (1A(|A|)− 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (18.27)
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Proof that min-norm gives optimal Lovász extension Choquet Integration

From f̆ back to f , even when f is not submodular
From the continuous f̆ , we can recover f(A) for any A ⊆ V .
Take w = 1A for some A ⊆ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) ≥ w(e2) ≥ w(e3) ≥ · · · ≥ w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
|A| times

, 0, 0, . . . , 0︸ ︷︷ ︸
m−|A| times

) (18.25)

so that 1A(i) = 1 if i ≤ |A|, and 1A(i) = 0 otherwise.
For any f : 2E → R, w = 1A, since E|A| =

{
e1, e2, . . . , e|A|

}
= A:

f̆(w) =

m∑
i=1

λif(Ei) = w(em)f(Em) +

m−1∑
i=1

(w(ei)− w(ei+1)f(Ei)

= 1A(m)f(Em) +

m−1∑
i=1

(1A(i)− 1A(i+ 1))f(Ei) (18.26)

= (1A(|A|)− 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (18.27)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 18 - June 3rd, 2016 F31/51 (pg.101/184)



Proof that min-norm gives optimal Lovász extension Choquet Integration

From f̆ back to f , even when f is not submodular
From the continuous f̆ , we can recover f(A) for any A ⊆ V .
Take w = 1A for some A ⊆ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) ≥ w(e2) ≥ w(e3) ≥ · · · ≥ w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
|A| times

, 0, 0, . . . , 0︸ ︷︷ ︸
m−|A| times

) (18.25)

so that 1A(i) = 1 if i ≤ |A|, and 1A(i) = 0 otherwise.
For any f : 2E → R, w = 1A, since E|A| =

{
e1, e2, . . . , e|A|

}
= A:

f̆(w) =

m∑
i=1

λif(Ei) = w(em)f(Em) +

m−1∑
i=1

(w(ei)− w(ei+1)f(Ei)

= 1A(m)f(Em) +

m−1∑
i=1

(1A(i)− 1A(i+ 1))f(Ei) (18.26)

= (1A(|A|)− 1A(|A|+ 1))f(E|A|) = f(E|A|)

= f(A) (18.27)
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Proof that min-norm gives optimal Lovász extension Choquet Integration

From f̆ back to f , even when f is not submodular
From the continuous f̆ , we can recover f(A) for any A ⊆ V .
Take w = 1A for some A ⊆ E, so w is vertex of the hypercube.
Order the elements of E in decreasing order of w so that
w(e1) ≥ w(e2) ≥ w(e3) ≥ · · · ≥ w(em).
This means

w = (w(e1), w(e2), . . . , w(em)) = (1, 1, 1, . . . , 1︸ ︷︷ ︸
|A| times

, 0, 0, . . . , 0︸ ︷︷ ︸
m−|A| times

) (18.25)

so that 1A(i) = 1 if i ≤ |A|, and 1A(i) = 0 otherwise.
For any f : 2E → R, w = 1A, since E|A| =

{
e1, e2, . . . , e|A|

}
= A:

f̆(w) =

m∑
i=1

λif(Ei) = w(em)f(Em) +

m−1∑
i=1

(w(ei)− w(ei+1)f(Ei)

= 1A(m)f(Em) +

m−1∑
i=1

(1A(i)− 1A(i+ 1))f(Ei) (18.26)

= (1A(|A|)− 1A(|A|+ 1))f(E|A|) = f(E|A|) = f(A) (18.27)
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Proof that min-norm gives optimal Lovász extension Choquet Integration

From f̆ back to f

We can view f̆ : [0, 1]E → R defined on the hypercube, with f defined
as f̆ evaluated on the hypercube extreme points (vertices).

To summarize, with f̆(A) =
∑m

i=1 λif(Ei), we have

f̆(1A) = f(A), (18.28)

. . . and when f is submodular, we also have have

f̆(1A) = max {1Aᵀx : x ∈ Bf} (18.29)

= max {1Aᵀx : x(B) ≤ f(B),∀B ⊆ E} (18.30)

(18.31)

Note when considering only f̆ : [0, 1]E → R, then any w ∈ [0, 1]E is in
positive orthant, adn we have

f̆(w) = max {wᵀx : x ∈ Pf} (18.32)
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Proof that min-norm gives optimal Lovász extension Choquet Integration

From f̆ back to f

We can view f̆ : [0, 1]E → R defined on the hypercube, with f defined
as f̆ evaluated on the hypercube extreme points (vertices).

To summarize, with f̆(A) =
∑m

i=1 λif(Ei), we have

f̆(1A) = f(A), (18.28)

. . . and when f is submodular, we also have have

f̆(1A) = max {1Aᵀx : x ∈ Bf} (18.29)

= max {1Aᵀx : x(B) ≤ f(B),∀B ⊆ E} (18.30)

(18.31)

Note when considering only f̆ : [0, 1]E → R, then any w ∈ [0, 1]E is in
positive orthant, adn we have

f̆(w) = max {wᵀx : x ∈ Pf} (18.32)
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Proof that min-norm gives optimal Lovász extension Choquet Integration

From f̆ back to f

We can view f̆ : [0, 1]E → R defined on the hypercube, with f defined
as f̆ evaluated on the hypercube extreme points (vertices).

To summarize, with f̆(A) =
∑m

i=1 λif(Ei), we have

f̆(1A) = f(A), (18.28)

. . . and when f is submodular, we also have have

f̆(1A) = max {1Aᵀx : x ∈ Bf} (18.29)

= max {1Aᵀx : x(B) ≤ f(B),∀B ⊆ E} (18.30)

(18.31)

Note when considering only f̆ : [0, 1]E → R, then any w ∈ [0, 1]E is in
positive orthant, adn we have

f̆(w) = max {wᵀx : x ∈ Pf} (18.32)
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Proof that min-norm gives optimal Lovász extension Choquet Integration

From f̆ back to f

We can view f̆ : [0, 1]E → R defined on the hypercube, with f defined
as f̆ evaluated on the hypercube extreme points (vertices).

To summarize, with f̆(A) =
∑m

i=1 λif(Ei), we have

f̆(1A) = f(A), (18.28)

. . . and when f is submodular, we also have have

f̆(1A) = max {1Aᵀx : x ∈ Bf} (18.29)

= max {1Aᵀx : x(B) ≤ f(B),∀B ⊆ E} (18.30)

(18.31)

Note when considering only f̆ : [0, 1]E → R, then any w ∈ [0, 1]E is in
positive orthant, adn we have

f̆(w) = max {wᵀx : x ∈ Pf} (18.32)
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Proof that min-norm gives optimal Lovász extension Choquet Integration

An extension of an arbitrary f : 2V → R

Thus, for any f : 2E → R, even non-submodular f , we can define an
extension, having f̆(1A) = f(A), ∀A, in this way where

f̆(w) =

m∑
i=1

λif(Ei) (18.33)

with the Ei = {e1, . . . , ei}’s defined based on sorted descending order
of w as in w(e1) ≥ w(e2) ≥ · · · ≥ w(em), and where

for i ∈ {1, . . . ,m}, λi =

{
w(ei)− w(ei+1) if i < m

w(em) if i = m
(18.34)

so that w =
∑m

i=1 λi1Ei .

w =
∑m

i=1 λi1Ei is an interpolation of certain hypercube vertices.

f̆(w) =
∑m

i=1 λif(Ei) is the associated interpolation of the values of f
at sets corresponding to each hypercube vertex.
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Proof that min-norm gives optimal Lovász extension Choquet Integration

An extension of an arbitrary f : 2V → R

Thus, for any f : 2E → R, even non-submodular f , we can define an
extension, having f̆(1A) = f(A), ∀A, in this way where

f̆(w) =

m∑
i=1

λif(Ei) (18.33)

with the Ei = {e1, . . . , ei}’s defined based on sorted descending order
of w as in w(e1) ≥ w(e2) ≥ · · · ≥ w(em), and where

for i ∈ {1, . . . ,m}, λi =

{
w(ei)− w(ei+1) if i < m

w(em) if i = m
(18.34)

so that w =
∑m

i=1 λi1Ei .

w =
∑m

i=1 λi1Ei is an interpolation of certain hypercube vertices.

f̆(w) =
∑m

i=1 λif(Ei) is the associated interpolation of the values of f
at sets corresponding to each hypercube vertex.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 18 - June 3rd, 2016 F33/51 (pg.109/184)



Proof that min-norm gives optimal Lovász extension Choquet Integration

An extension of an arbitrary f : 2V → R

Thus, for any f : 2E → R, even non-submodular f , we can define an
extension, having f̆(1A) = f(A), ∀A, in this way where

f̆(w) =

m∑
i=1

λif(Ei) (18.33)

with the Ei = {e1, . . . , ei}’s defined based on sorted descending order
of w as in w(e1) ≥ w(e2) ≥ · · · ≥ w(em), and where

for i ∈ {1, . . . ,m}, λi =

{
w(ei)− w(ei+1) if i < m

w(em) if i = m
(18.34)

so that w =
∑m

i=1 λi1Ei .

w =
∑m

i=1 λi1Ei is an interpolation of certain hypercube vertices.

f̆(w) =
∑m

i=1 λif(Ei) is the associated interpolation of the values of f
at sets corresponding to each hypercube vertex.
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Weighted gains vs. weighted functions

Again sorting E descending in w, the extension summarized:

f̆(w) =

m∑
i=1

w(ei)f(ei|Ei−1) (18.35)

=

m∑
i=1

w(ei)(f(Ei)− f(Ei−1)) (18.36)

= w(em)f(Em) +

m−1∑
i=1

(w(ei)− w(ei+1))f(Ei) (18.37)

=

m∑
i=1

λif(Ei) (18.38)

So f̆(w) seen either as sum of weighted gain evaluatiosn (Eqn. (18.35),
or as sum of weighted function evaluations (Eqn. (18.38)).
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Weighted gains vs. weighted functions

Again sorting E descending in w, the extension summarized:

f̆(w) =

m∑
i=1

w(ei)f(ei|Ei−1) (18.35)

=

m∑
i=1

w(ei)(f(Ei)− f(Ei−1)) (18.36)

= w(em)f(Em) +

m−1∑
i=1

(w(ei)− w(ei+1))f(Ei) (18.37)

=

m∑
i=1

λif(Ei) (18.38)

So f̆(w) seen either as sum of weighted gain evaluatiosn (Eqn. (18.35),
or as sum of weighted function evaluations (Eqn. (18.38)).

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 18 - June 3rd, 2016 F34/51 (pg.112/184)



Proof that min-norm gives optimal Lovász extension Choquet Integration

Summary: comparison of the two extension forms
So if f is submodular, then we can write f̆(w) = max(wx : x ∈ Pf )
(which is clearly convex) in the form:

f̆(w) = max(wx : x ∈ Pf ) =

m∑
i=1

λif(Ei) (18.39)

where w =
∑m

i=1 λi1Ei and Ei = {e1, . . . , ei} defined based on sorted
descending order w(e1) ≥ w(e2) ≥ · · · ≥ w(em).

On the other hand, for any f (even non-submodular), we can produce
an extension f̆ having the form

f̆(w) =
m∑
i=1

λif(Ei) (18.40)

where w =
∑m

i=1 λi1Ei and Ei = {e1, . . . , ei} defined based on sorted
descending order w(e1) ≥ w(e2) ≥ · · · ≥ w(em).
In both Eq. (18.39) and Eq. (18.40), we have f̆(1A) = f(A), ∀A, but
Eq. (18.40), might not be convex.
Submodularity is sufficient for convexity, but is it necessary?
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Summary: comparison of the two extension forms
So if f is submodular, then we can write f̆(w) = max(wx : x ∈ Pf )
(which is clearly convex) in the form:

f̆(w) = max(wx : x ∈ Pf ) =

m∑
i=1

λif(Ei) (18.39)

where w =
∑m

i=1 λi1Ei and Ei = {e1, . . . , ei} defined based on sorted
descending order w(e1) ≥ w(e2) ≥ · · · ≥ w(em).
On the other hand, for any f (even non-submodular), we can produce
an extension f̆ having the form

f̆(w) =

m∑
i=1

λif(Ei) (18.40)

where w =
∑m

i=1 λi1Ei and Ei = {e1, . . . , ei} defined based on sorted
descending order w(e1) ≥ w(e2) ≥ · · · ≥ w(em).

In both Eq. (18.39) and Eq. (18.40), we have f̆(1A) = f(A), ∀A, but
Eq. (18.40), might not be convex.
Submodularity is sufficient for convexity, but is it necessary?
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Summary: comparison of the two extension forms
So if f is submodular, then we can write f̆(w) = max(wx : x ∈ Pf )
(which is clearly convex) in the form:

f̆(w) = max(wx : x ∈ Pf ) =

m∑
i=1

λif(Ei) (18.39)

where w =
∑m

i=1 λi1Ei and Ei = {e1, . . . , ei} defined based on sorted
descending order w(e1) ≥ w(e2) ≥ · · · ≥ w(em).
On the other hand, for any f (even non-submodular), we can produce
an extension f̆ having the form

f̆(w) =

m∑
i=1

λif(Ei) (18.40)

where w =
∑m

i=1 λi1Ei and Ei = {e1, . . . , ei} defined based on sorted
descending order w(e1) ≥ w(e2) ≥ · · · ≥ w(em).
In both Eq. (18.39) and Eq. (18.40), we have f̆(1A) = f(A), ∀A, but
Eq. (18.40), might not be convex.

Submodularity is sufficient for convexity, but is it necessary?
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Summary: comparison of the two extension forms
So if f is submodular, then we can write f̆(w) = max(wx : x ∈ Pf )
(which is clearly convex) in the form:

f̆(w) = max(wx : x ∈ Pf ) =

m∑
i=1

λif(Ei) (18.39)

where w =
∑m

i=1 λi1Ei and Ei = {e1, . . . , ei} defined based on sorted
descending order w(e1) ≥ w(e2) ≥ · · · ≥ w(em).
On the other hand, for any f (even non-submodular), we can produce
an extension f̆ having the form

f̆(w) =

m∑
i=1

λif(Ei) (18.40)

where w =
∑m

i=1 λi1Ei and Ei = {e1, . . . , ei} defined based on sorted
descending order w(e1) ≥ w(e2) ≥ · · · ≥ w(em).
In both Eq. (18.39) and Eq. (18.40), we have f̆(1A) = f(A), ∀A, but
Eq. (18.40), might not be convex.
Submodularity is sufficient for convexity, but is it necessary?
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Proof that min-norm gives optimal Lovász extension Choquet Integration

The Lovász extension of f : 2E → R

Lovász showed that if a function f̆(w) defined as in Eqn. (18.33) is
convex, then f must be submodular.

This continuous extension f̆ of f , in any case (f being submodular or
not), is called the Lovász extension of f .

Note, also possible to define this when f(∅) 6= 0 (but doesn’t really
add any generality).
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Proof that min-norm gives optimal Lovász extension Choquet Integration

The Lovász extension of f : 2E → R

Lovász showed that if a function f̆(w) defined as in Eqn. (18.33) is
convex, then f must be submodular.

This continuous extension f̆ of f , in any case (f being submodular or
not), is called the Lovász extension of f .

Note, also possible to define this when f(∅) 6= 0 (but doesn’t really
add any generality).
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Proof that min-norm gives optimal Lovász extension Choquet Integration

The Lovász extension of f : 2E → R

Lovász showed that if a function f̆(w) defined as in Eqn. (18.33) is
convex, then f must be submodular.

This continuous extension f̆ of f , in any case (f being submodular or
not), is called the Lovász extension of f .

Note, also possible to define this when f(∅) 6= 0 (but doesn’t really
add any generality).

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 18 - June 3rd, 2016 F36/51 (pg.119/184)



Proof that min-norm gives optimal Lovász extension Choquet Integration

Lovász Extension, Submodularity and Convexity

Theorem 18.4.1

A function f : 2E → R is submodular iff its Lovász extension f̆ of f is
convex.

Proof.

We’ve already seen that if f is submodular, its extension can be
written via Eqn.(18.33) due to the greedy algorithm, and therefore is
also equivalent to f̆(w) = max {wx : x ∈ Pf}, and thus is convex.

Conversely, suppose the Lovász extension f̆(w) =
∑

i λif(Ei) of some
function f : 2E → R is a convex function.

We note that, based on the extension definition, in particular the
definition of the {λi}i, we have that f̆(αw) = αf̆(w) for any α ∈ R+.
I.e., f is a positively homogeneous convex function.

. . .
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Lovász Extension, Submodularity and Convexity

Theorem 18.4.1

A function f : 2E → R is submodular iff its Lovász extension f̆ of f is
convex.

Proof.

We’ve already seen that if f is submodular, its extension can be
written via Eqn.(18.33) due to the greedy algorithm, and therefore is
also equivalent to f̆(w) = max {wx : x ∈ Pf}, and thus is convex.

Conversely, suppose the Lovász extension f̆(w) =
∑

i λif(Ei) of some
function f : 2E → R is a convex function.

We note that, based on the extension definition, in particular the
definition of the {λi}i, we have that f̆(αw) = αf̆(w) for any α ∈ R+.
I.e., f is a positively homogeneous convex function.

. . .
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i λif(Ei) of some
function f : 2E → R is a convex function.

We note that, based on the extension definition, in particular the
definition of the {λi}i, we have that f̆(αw) = αf̆(w) for any α ∈ R+.
I.e., f is a positively homogeneous convex function.
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 18.4.1 cont.

Earlier, we saw that f̆(1A) = f(A) for all A ⊆ E.

Now, given A,B ⊆ E, we will show that

f̆(1A + 1B) = f̆(1A∪B + 1A∩B) (18.41)

= f(A ∪B) + f(A ∩B). (18.42)

Let C = A ∩B, order E based on decreasing w = 1A + 1B so that

w = (w(e1), w(e2), . . . , w(em)) (18.43)

= (2, 2, . . . , 2︸ ︷︷ ︸
i∈C

, 1, 1, . . . , 1︸ ︷︷ ︸
i∈A4B

, 0, 0, . . . , 0︸ ︷︷ ︸
i∈E\(A∪B)

) (18.44)

Then, considering f̆(w) =
∑

i λif(Ei), we have λ|C| = 1, λ|A∪B| = 1,
and λi = 0 for i /∈ {|C|, |A ∪B|}.
But then E|C| = A ∩B and E|A∪B| = A ∪B. Therefore,

f̆(w) = f̆(1A + 1B) = f(A ∩B) + f(A ∪B).

. . .
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. . . proof of Thm. 18.4.1 cont.
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Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 18.4.1 cont.

Earlier, we saw that f̆(1A) = f(A) for all A ⊆ E.

Now, given A,B ⊆ E, we will show that

f̆(1A + 1B) = f̆(1A∪B + 1A∩B) (18.41)

= f(A ∪B) + f(A ∩B). (18.42)

Let C = A ∩B, order E based on decreasing w = 1A + 1B so that

w = (w(e1), w(e2), . . . , w(em)) (18.43)
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Then, considering f̆(w) =
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i λif(Ei), we have λ|C| = 1, λ|A∪B| = 1,
and λi = 0 for i /∈ {|C|, |A ∪B|}.
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 18.4.1 cont.

Also, since f̆ is convex (by assumption) and positively homogeneous,
we have for any A,B ⊆ E,

0.5[f(A ∩B) + f(A ∪B)]

= 0.5[f̆(1A + 1B)] (18.45)

= f̆(0.51A + 0.51B) (18.46)

≤ 0.5f̆(1A) + 0.5f̆(1B) (18.47)

= 0.5(f(A) + f(B))

(18.48)

Thus, we have shown that for any A,B ⊆ E,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) (18.49)

so f must be submodular.
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Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 18.4.1 cont.

Also, since f̆ is convex (by assumption) and positively homogeneous,
we have for any A,B ⊆ E,

0.5[f(A ∩B) + f(A ∪B)] = 0.5[f̆(1A + 1B)] (18.45)
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(18.48)

Thus, we have shown that for any A,B ⊆ E,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) (18.49)

so f must be submodular.
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Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 18.4.1 cont.

Also, since f̆ is convex (by assumption) and positively homogeneous,
we have for any A,B ⊆ E,

0.5[f(A ∩B) + f(A ∪B)] = 0.5[f̆(1A + 1B)] (18.45)

= f̆(0.51A + 0.51B) (18.46)
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= 0.5(f(A) + f(B))

(18.48)

Thus, we have shown that for any A,B ⊆ E,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) (18.49)

so f must be submodular.
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Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 18.4.1 cont.

Also, since f̆ is convex (by assumption) and positively homogeneous,
we have for any A,B ⊆ E,

0.5[f(A ∩B) + f(A ∪B)] = 0.5[f̆(1A + 1B)] (18.45)

= f̆(0.51A + 0.51B) (18.46)

≤ 0.5f̆(1A) + 0.5f̆(1B) (18.47)

= 0.5(f(A) + f(B))

(18.48)

Thus, we have shown that for any A,B ⊆ E,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) (18.49)

so f must be submodular.
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Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 18.4.1 cont.

Also, since f̆ is convex (by assumption) and positively homogeneous,
we have for any A,B ⊆ E,

0.5[f(A ∩B) + f(A ∪B)] = 0.5[f̆(1A + 1B)] (18.45)

= f̆(0.51A + 0.51B) (18.46)

≤ 0.5f̆(1A) + 0.5f̆(1B) (18.47)

= 0.5(f(A) + f(B)) (18.48)

Thus, we have shown that for any A,B ⊆ E,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) (18.49)

so f must be submodular.
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Lovász Extension, Submodularity and Convexity

. . . proof of Thm. 18.4.1 cont.

Also, since f̆ is convex (by assumption) and positively homogeneous,
we have for any A,B ⊆ E,

0.5[f(A ∩B) + f(A ∪B)] = 0.5[f̆(1A + 1B)] (18.45)

= f̆(0.51A + 0.51B) (18.46)

≤ 0.5f̆(1A) + 0.5f̆(1B) (18.47)

= 0.5(f(A) + f(B)) (18.48)

Thus, we have shown that for any A,B ⊆ E,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) (18.49)

so f must be submodular.
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Edmonds - Submodularity - 1969
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Lovász - Submodularity - 1983
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Integration and Aggregation

Integration is just summation (e.g., the
∫

symbol has as its origins a
sum).

Lebesgue integration allows integration w.r.t. an underlying measure µ
of sets. E.g., given measurable function f , we can define∫

X
fdu = sup IX(s) (18.50)

where IX(s) =
∑n

i=1 ciµ(X ∩Xi), and where we take the sup over all
measurable functions s such that 0 ≤ s ≤ f and s(x) =

∑n
i=1 ciIXi(x)

and where IXi(x) is indicator of membership of set Xi, with ci > 0.
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Integration and Aggregation

Integration is just summation (e.g., the
∫

symbol has as its origins a
sum).

Lebesgue integration allows integration w.r.t. an underlying measure µ
of sets. E.g., given measurable function f , we can define∫

X
fdu = sup IX(s) (18.50)

where IX(s) =
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i=1 ciµ(X ∩Xi), and where we take the sup over all
measurable functions s such that 0 ≤ s ≤ f and s(x) =

∑n
i=1 ciIXi(x)

and where IXi(x) is indicator of membership of set Xi, with ci > 0.
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Integration, Aggregation, and Weighted Averages

In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.

I.e., given a weight vector w ∈ [0, 1]E for some finite ground set E,
then for any x ∈ RE we have the weighted average of x as:

WAVG(x) =
∑
e∈E

x(e)w(e) (18.51)

Consider 1e for e ∈ E, we have

WAVG(1e) = w(e) (18.52)

so seen as a function on the hypercube vertices, the entire WAVG
function is given based on values on a size m = |E| subset of the
vertices of this hypercube, i.e., {1e : e ∈ E}. Moreover, we are
interpolating as in

WAVG(x) =
∑
e∈E

x(e)w(e) =
∑
e∈E

x(e)WAVG(1e) (18.53)
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Integration, Aggregation, and Weighted Averages

In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.
I.e., given a weight vector w ∈ [0, 1]E for some finite ground set E,
then for any x ∈ RE we have the weighted average of x as:

WAVG(x) =
∑
e∈E

x(e)w(e) (18.51)

Consider 1e for e ∈ E, we have

WAVG(1e) = w(e) (18.52)

so seen as a function on the hypercube vertices, the entire WAVG
function is given based on values on a size m = |E| subset of the
vertices of this hypercube, i.e., {1e : e ∈ E}. Moreover, we are
interpolating as in

WAVG(x) =
∑
e∈E

x(e)w(e) =
∑
e∈E

x(e)WAVG(1e) (18.53)
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Integration, Aggregation, and Weighted Averages

In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.
I.e., given a weight vector w ∈ [0, 1]E for some finite ground set E,
then for any x ∈ RE we have the weighted average of x as:

WAVG(x) =
∑
e∈E

x(e)w(e) (18.51)

Consider 1e for e ∈ E, we have

WAVG(1e) = w(e) (18.52)

so seen as a function on the hypercube vertices, the entire WAVG
function is given based on values on a size m = |E| subset of the
vertices of this hypercube, i.e., {1e : e ∈ E}. Moreover, we are
interpolating as in

WAVG(x) =
∑
e∈E

x(e)w(e) =
∑
e∈E

x(e)WAVG(1e) (18.53)
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Integration, Aggregation, and Weighted Averages

In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.
I.e., given a weight vector w ∈ [0, 1]E for some finite ground set E,
then for any x ∈ RE we have the weighted average of x as:

WAVG(x) =
∑
e∈E

x(e)w(e) (18.51)

Consider 1e for e ∈ E, we have

WAVG(1e) = w(e) (18.52)

so seen as a function on the hypercube vertices, the entire WAVG
function is given based on values on a size m = |E| subset of the
vertices of this hypercube, i.e., {1e : e ∈ E}.

Moreover, we are
interpolating as in

WAVG(x) =
∑
e∈E

x(e)w(e) =
∑
e∈E

x(e)WAVG(1e) (18.53)
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Integration, Aggregation, and Weighted Averages

In finite discrete spaces, Lebesgue integration is just a weighted
average, and can be seen as an aggregation function.
I.e., given a weight vector w ∈ [0, 1]E for some finite ground set E,
then for any x ∈ RE we have the weighted average of x as:

WAVG(x) =
∑
e∈E

x(e)w(e) (18.51)

Consider 1e for e ∈ E, we have

WAVG(1e) = w(e) (18.52)

so seen as a function on the hypercube vertices, the entire WAVG
function is given based on values on a size m = |E| subset of the
vertices of this hypercube, i.e., {1e : e ∈ E}. Moreover, we are
interpolating as in

WAVG(x) =
∑
e∈E

x(e)w(e) =
∑
e∈E

x(e)WAVG(1e) (18.53)
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Integration, Aggregation, and Weighted Averages

WAVG(x) =
∑
e∈E

x(e)w(e) (18.54)

Clearly, WAVG function is linear in weights w, in the argument x, and
is homogeneous. That is, for all w,w1, w2, x, x1, x2 ∈ RE and α ∈ R,

WAVGw1+w2(x) = WAVGw1(x) + WAVGw2(x), (18.55)

WAVGw(x1 + x2) = WAVGw(x1) + WAVGw(x2), (18.56)

and,

WAVG(αx) = αWAVG(x). (18.57)

We will see: The Lovász extension is still be linear in “weights” (i.e.,
the submodular function f), but will not be linear in x and will only be
positively homogeneous (for α ≥ 0).
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Integration, Aggregation, and Weighted Averages

More complex “nonlinear” aggregation functions can be constructed by
defining the aggregation function on all vertices of the hypercube. I.e.,
for each 1A : A ⊆ E we might have (for all A ⊆ E):

AG(1A) = wA (18.58)

What then might AG(x) be for some x ∈ RE? Our weighted average
functions might look something more like the r.h.s. in:

AG(x) =
∑
A⊆E

x(A)wA =
∑
A⊆E

x(A)AG(1A) (18.59)

Note, we can define w(e) = w′(e) and w(A) = 0,∀A : |A| > 1 and get
back previous (normal) weighted average, in that

WAVGw′(x) = AGw(x) (18.60)

Set function f : 2E → R is a game if f is normalized f(∅) = 0.
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Integration, Aggregation, and Weighted Averages

More complex “nonlinear” aggregation functions can be constructed by
defining the aggregation function on all vertices of the hypercube. I.e.,
for each 1A : A ⊆ E we might have (for all A ⊆ E):

AG(1A) = wA (18.58)

What then might AG(x) be for some x ∈ RE? Our weighted average
functions might look something more like the r.h.s. in:
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back previous (normal) weighted average, in that

WAVGw′(x) = AGw(x) (18.60)

Set function f : 2E → R is a game if f is normalized f(∅) = 0.
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Integration, Aggregation, and Weighted Averages

Set function f : 2E → R is called a capacity if it is monotone
non-decreasing, i.e., f(A) ≤ f(B) whenever A ⊆ B.

A Boolean function f is any function f : {0, 1}m → {0, 1} and is a
pseudo-Boolean function if f : {0, 1}m → R.

Any set function corresponds to a pseudo-Boolean function. I.e., given
f : 2E → R, form fb : {0, 1}m → R as fb(x) = f(Ax) where the A, x
bijection is A = {e ∈ E : xe = 1} and x = 1A.

Also, if we have an expression for fb we can construct a set function f
as f(A) = fb(1A). We can also often relax fb to any x ∈ [0, 1]m.

We saw this for Lovász extension.

It turns out that a concept essentially identical to the Lovász extension
was derived much earlier, in 1954, and using this derivation (via
integration) leads to deeper intuition.
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Choquet integral

Definition 18.5.1

Let f be any capacity on E and w ∈ RE+. The Choquet integral (1954) of
w w.r.t. f is defined by

Cf (w) =

m∑
i=1

(wei − wei+1)f(Ei) (18.61)

where in the sum, we have sorted and renamed the elements of E so that
we1 ≥ we2 ≥ · · · ≥ wem ≥ wem+1 , 0, and where Ei = {e1, e2, . . . , ei}.

We immediately see that an equivalent formula is as follows:

Cf (w) =

m∑
i=1

w(ei)(f(Ei)− f(Ei−1)) (18.62)

where E0
def
= ∅.
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Choquet integral

Definition 18.5.1

Let f be any capacity on E and w ∈ RE+. The Choquet integral (1954) of
w w.r.t. f is defined by

Cf (w) =

m∑
i=1

(wei − wei+1)f(Ei) (18.61)

where in the sum, we have sorted and renamed the elements of E so that
we1 ≥ we2 ≥ · · · ≥ wem ≥ wem+1 , 0, and where Ei = {e1, e2, . . . , ei}.

BTW: this again essentially Abel’s partial summation formula: Given
two arbitrary sequences {an} and {bn} with An =

∑n
k=1 ak, we have

n∑
k=m

akbk =
n∑

k=m

Ak(bk − bk+1) +Anbn+1 −Am−1bm (18.63)
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Proof that min-norm gives optimal Lovász extension Choquet Integration

The “integral” in the Choquet integral

Thought of as an integral over R of a piece-wise constant function.

First note, assuming E is ordered according to descending w, so that
w(e1) ≥ w(e2) ≥ · · · ≥ w(em−1) ≥ w(em), then
Ei = {e1, e2, . . . , ei} = {e ∈ E : we ≥ wei}.
For any wei > α ≥ wei+1 we also have
Ei = {e1, e2, . . . , ei} = {e ∈ E : we > α}.
Consider segmenting the real-axis at boundary points wei , right most is
we1 .

... w(e1)w(e2)w(e3)w(e4)w(e5)w(em) w(em−1)

A function can be defined on a segment of R, namely
wei > α ≥ wei+1 . This function Fi : [wei+1 , wei)→ R is defined as

Fi(α) = f({e ∈ E : we > α}) = f(Ei) (18.64)
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Proof that min-norm gives optimal Lovász extension Choquet Integration

The “integral” in the Choquet integral

We can generalize this to multiple segments of R (for now, take w ∈ RE+).
The piecewise-constant function is defined as:

F (α) =


f(E) if 0 ≤ α < wm

f({e ∈ E : we > α}) if wei+1 ≤ α < wei , i ∈ {1, . . . ,m− 1}
0 (= f(∅)) if w1 < α

Visualizing a piecewise constant function, where the constant values are
given by f evaluated on Ei for each i

...
...

0

f({e1})
f({e1,e2})

f({e1,e2,e3})

f({e1,e2,e3,e4})

f({e1,e2,e3,e4,e5})f(E)
f(E\{em})

w(e1)w(e2)w(e3)w(e4)w(e5)w(em)w(em−1)

f(E\{em,em-1})

F (α)

α

Note, what is depicted may be a game but not a capacity. Why?
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Proof that min-norm gives optimal Lovász extension Choquet Integration

The “integral” in the Choquet integral

Now consider the integral, with w ∈ RE+, and normalized f so that

f(∅) = 0. Recall wm+1
def
= 0.

f̃(w)
def
=

∫ ∞
0

F (α)dα (18.65)

=

∫ ∞
0

f({e ∈ E : we > α})dα (18.66)

=

∫ ∞
wm+1

f({e ∈ E : we > α})dα (18.67)

=
m∑
i=1

∫ wi

wi+1

f({e ∈ E : we > α})dα (18.68)

=
m∑
i=1

∫ wi

wi+1

f(Ei)dα =

m∑
i=1

f(Ei)(wi − wi+1) (18.69)
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Proof that min-norm gives optimal Lovász extension Choquet Integration

The “integral” in the Choquet integral
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Proof that min-norm gives optimal Lovász extension Choquet Integration

The “integral” in the Choquet integral

But we saw before that
∑m

i=1 f(Ei)(wi − wi+1) is just the Lovász
extension of a function f .

Thus, we have the following definition:

Definition 18.5.2

Given w ∈ RE+, the Lovász extension (equivalently Choquet integral) may
be defined as follows:

f̃(w)
def
=

∫ ∞
0

F (α)dα (18.70)

where the function F is defined as before.

Note that it is not necessary in general to require w ∈ RE+ (i.e., we can
take w ∈ RE) nor that f be non-negative, but it is a bit more
involved. Above is the simple case.

The above integral will be further generalized a bit later.
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Proof that min-norm gives optimal Lovász extension Choquet Integration

The “integral” in the Choquet integral

But we saw before that
∑m
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extension of a function f .

Thus, we have the following definition:

Definition 18.5.2

Given w ∈ RE+, the Lovász extension (equivalently Choquet integral) may
be defined as follows:

f̃(w)
def
=

∫ ∞
0

F (α)dα (18.70)

where the function F is defined as before.

Note that it is not necessary in general to require w ∈ RE+ (i.e., we can
take w ∈ RE) nor that f be non-negative, but it is a bit more
involved. Above is the simple case.

The above integral will be further generalized a bit later.
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Choquet integral and aggregation

Recall, we want to produce some notion of generalized aggregation
function having the flavor of:

AG(x) =
∑
A⊆E

x(A)wA =
∑
A⊆E

x(A)AG(1A) (18.71)

how does this correspond to Lovász extension?

Let us partition the hypercube [0, 1]m into q polytopes, each defined
by a set of vertices V1,V2, . . . ,Vq.
E.g., for each i, Vi = {1A1 ,1A2 , . . . ,1Ak

} (k vertices) and the convex
hull of Vi defines the ith polytope.

This forms a “triangulation” of the hypercube.

For any x ∈ [0, 1]m there is a (not necessarily unique) V(x) = Vj for
some j such that x ∈ conv(V(x)).
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Choquet integral and aggregation

Most generally, for x ∈ [0, 1]m, let us define the (unique) coefficients
αx0(A) and αxi (A) that define the affine transformation of the
coefficients of x to be used with the particular hypercube vertex
1A ∈ conv(V(x)). The affine transformation is as follows:

αx0(A) +

m∑
j=1

αxj (A)xj ∈ R (18.72)

Note that many of these coefficient are often zero.

From this, we can define an aggregation function of the form

AG(x)
def
=

∑
A:1A∈V(x)

(
αx0(A) +

m∑
j=1

αxj (A)xj

)
AG(1A) (18.73)
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Proof that min-norm gives optimal Lovász extension Choquet Integration

Choquet integral and aggregation

We can define a canonical triangulation of the hypercube in terms of
permutations of the coordinates. I.e., given some permutation σ, define

conv(Vσ) =
{
x ∈ [0, 1]n|xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(m)

}
(18.74)

Then these m! blocks of the partition are called the canonical
partitions of the hypercube.

With this, we can define {Vi}i as the vertices of conv(Vσ) for each
permutation σ.

In this case, we have:

Proposition 18.5.3

The above linear interpolation in Eqn. (18.73) using the canonical partition
yields the Lovász extension with αx0(A) +

∑m
j=1 α

x
j (A)xj = xσi − xσi−1 for

A = Ei = {eσ1 , . . . , eσi} for appropriate order σ.

Hence, Lovász extension is a generalized aggregation function.
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