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Logistics Review

Cumulative Outstanding Reading

Read chapters 2 and 3 from Fujishige’s book.

Read chapter 1 from Fujishige’s book.
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Logistics Review

Announcements, Assignments, and Reminders

Homework 4, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Wednesday (5/25) at 11:55pm.

Homework 3, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (5/2) at 11:55pm.

Homework 2, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (4/18) at 11:55pm.

Homework 1, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Friday (4/8) at 11:55pm.

Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google
hangout (set up meeting via our our discussion board (https:
//canvas.uw.edu/courses/1039754/discussion_topics)).
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Logistics Review

Class Road Map - IT-I
L1(3/28): Motivation, Applications, &
Basic Definitions

L2(3/30): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).

L3(4/4): Info theory exs, more apps,
definitions, graph/combinatorial examples,
matrix rank example, visualization

L4(4/6): Graph and Combinatorial
Examples, matrix rank, Venn diagrams,
examples of proofs of submodularity, some
useful properties

L5(4/11): Examples & Properties, Other
Defs., Independence

L6(4/13): Independence, Matroids,
Matroid Examples, matroid rank is
submodular

L7(4/18): Matroid Rank, More on
Partition Matroid, System of Distinct
Reps, Transversals, Transversal Matroid,

L8(4/20): Transversals, Matroid and
representation, Dual Matroids,

L9(4/25): Dual Matroids, Properties,
Combinatorial Geometries, Matroid and
Greedy

L10(4/27): Matroid and Greedy,
Polyhedra, Matroid Polytopes,

L11(5/2): From Matroids to
Polymatroids, Polymatroids

L12(5/4): Polymatroids, Polymatroids
and Greedy

L13(5/9): Polymatroids and Greedy;
Possible Polytopes; Extreme Points;
Polymatroids, Greedy, and Cardinality
Constrained Maximization

L14(5/11): Cardinality Constrained
Maximization; Curvature; Submodular
Max w. Other Constraints

L15(5/16): Submodular Max w. Other
Constraints, Most Violated ≤, Matroids
cont., Closure/Sat,

L16(5/18): Closure/Sat, Fund.
Circuit/Dep,

L17(5/23): Min-Norm Point and SFM,
Min-Norm Point Algorithm, Proof that
min-norm gives optimal.

L18(5/25):

L19(6/1):

L20(6/6): Final Presentations
maximization.

Finals Week: June 6th-10th, 2016.
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Min-Norm Point Definitions Review & Support for Min-Norm Min-Norm Proof that min-norm gives optimal

Submodular Function Minimization (SFM) and Min-Norm

We saw that SFM can be used to solve most violated inequality
problems for a given x ∈ Pf and, in general, SFM can solve the
question “Is x ∈ Pf” by seeing if x violates any inequality (if the most
violated one is negative, solution to SFM, then x ∈ Pf ).

Unconstrained SFM, minA⊆V f(A) solves many other problems as well
in combinatorial optimization, machine learning, and other fields.

We next study an algorithm, the “Fujishige-Wolf Algorithm”, or what
is known as the “Minimum Norm Point” algorithm, which is an active
set method to do this, and one that in practice works about as well as
anything else people (so far) have tried for general purpose SFM.

Note special case SFM can be much faster.
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Min-Norm Point: Definition

Consider the optimization:

minimize ‖x‖22 (17.1a)

subject to x ∈ Bf (17.1b)

where Bf is the base polytope of submodular f , and
‖x‖22 =

∑
e∈E x(e)2 is the squared 2-norm. Let x∗ be the optimal

solution.

Note, x∗ is the unique optimal solution since we have a strictly convex
objective over a set of convex constraints.

x∗ is called the minimum norm point of the base polytope.
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Min-Norm Point: Examples

Pf Pf Pf

Pf

Pf

Pf
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Ex: 3D base Bf : permutahedron

Consider submodular
function f : 2V → R with
|V | = 4, and for X ⊆ V ,
concave g,

f(X) = g(|X|)

=

|X|∑
i=1

(4− i+ 1)

Then Bf is a 3D polytope,
and in this particular case
gives us a permutahedron
with 24 distinct extreme
points, on the right (from
wikipedia).
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Min-Norm Point and Submodular Function Minimization

Given optimal solution x∗ to the above, consider the quantities

y∗ = x∗ ∧ 0 = (min(x∗(e), 0)|e ∈ E) (17.2)

A− = {e : x∗(e) < 0} (17.3)

A0 = {e : x∗(e) ≤ 0} (17.4)

Thus, we immediately have that:

A− ⊆ A0 (17.5)

and that

x∗(A−) = x∗(A0) = y∗(A−) = y∗(A0) (17.6)

It turns out, these quantities will solve the submodular function
minimization problem, as we now show.

The proof is nice since it uses the tools we’ve been recently developing.
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More about the base Bf

Theorem 17.4.1

Let f be a polymatroid function and suppose that E can be partitioned
into (E1, E2, . . . , Ek) such that f(A) =

∑k
i=1 f(A∩Ei) for all A ⊆ E, and

k is maximum. Then the base polytope Bf = {x ∈ Pf : x(E) = f(E)}
(the E-tight subset of Pf ) has dimension |E| − k.

In fact, every x ∈ Pf is dominated by x ≤ y ∈ Bf .

Theorem 17.4.2

If x ∈ Pf and T is tight for x (meaning x(T ) = f(T )), then there exists
y ∈ Bf with x ≤ y and y(e) = x(e) for e ∈ T .

We will prove these after we describe min-norm algorithm.
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Review from Lecture 12

The follow slide repeates Theorem 12.5.2 from lecture 12 and which is also
essentially the same as Theorem 13.4.2 from lecture 13, and is one of the
most important theorems in submodular theory.
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A polymatroid function’s polyhedron is a polymatroid.

Theorem 17.4.1

Let f be a submodular function defined on subsets of E. For any x ∈ RE ,
we have:

rank(x) = max (y(E) : y ≤ x, y ∈ Pf ) = min (x(A) + f(E \A) : A ⊆ E)
(17.1)

Essentially the same theorem as Theorem 11.4.1, but note Pf rather than
P+
f . Taking x = 0 we get:

Corollary 17.4.2

Let f be a submodular function defined on subsets of E. We have:

rank(0) = max (y(E) : y ≤ 0, y ∈ Pf ) = min (f(A) : A ⊆ E) (17.2)
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Modified max-min theorem

Min-max theorem (Thm 12.5.2) restated for x = 0.

max {y(E)|y ∈ Pf , y ≤ 0} = min {f(X)|X ⊆ V } (17.7)

Theorem 17.4.3 (Edmonds-1970)

min {f(X)|X ⊆ E} = max
{
x−(E)|x ∈ Bf

}
(17.8)

where x−(e) = min {x(e), 0} for e ∈ E.

Proof via the Lovász ext.

min {f(X)|X ⊆ E} = min
w∈[0,1]E

f̃(w) = min
w∈[0,1]E

max
x∈Pf

wᵀx (17.9)

= min
w∈[0,1]E

max
x∈Bf

wᵀx (17.10)

= max
x∈Bf

min
w∈[0,1]E

wᵀx (17.11)

= max
x∈Bf

x−(E) (17.12)
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Convexity, Strong duality, and min/max swap

The min/max switch follows from strong duality. I.e., consider
g(w, x) = wᵀx and we have domains w ∈ [0, 1]E and x ∈ Bf . then for any
(w, x) ∈ [0, 1]E ×Bf , we have

min
w′∈[0,1]E

g(w′, x) ≤ g(w, x) ≤ max
x′∈Bf

g(w, x′) (17.13)

which means that we have weak duality

max
x∈Bf

min
w′∈[0,1]E

g(w′, x) ≤ min
w∈[0,1]E

max
x′∈Bf

g(w, x′) (17.14)

but since g(w, x) is linear, we have strong duality, meaning

max
x∈Bf

min
w′∈[0,1]E

g(w′, x) = min
w∈[0,1]E

max
x′∈Bf

g(w, x′) (17.15)
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Alternate proof of modified max-min theorem

We start directly from Theorem 12.5.2.

max (y(E) : y ≤ 0, y ∈ Pf ) = min (f(A) : A ⊆ E) (17.16)

Given y ∈ RE , define y− ∈ RE with y−(e) = min {y(e), 0} for e ∈ E.

max (y(E) : y ≤ 0, y ∈ Pf ) = max
(
y−(E) : y ≤ 0, y ∈ Pf

)
(17.17)

= max
(
y−(E) : y ∈ Pf

)
(17.18)

= max
(
y−(E) : y ∈ Bf

)
(17.19)

The first equality follows since y ≤ 0. For the second equality will be shown
on the following slide. The third equality follows since for any x ∈ Pf there
exists a y ∈ Bf with x ≤ y (follows from Theorem 17.4.2).
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Alternate proof of modified max-min theorem
Consider the following two problems:

max
∑
e∈E

y(e)

s.t. y ≤ x
y ∈ P

(17.20a)

(17.20b)

(17.20c)

max
∑
e∈E

min(y(e), x(e))

s.t. y ∈ P

(17.21a)

(17.21b)

Solutions identical cost. Let y∗1 be l.h.s. OPT and y∗2 be r.h.s. OPT.
Consider y∗1 as r.h.s. solution and suppose it is worse than r.h.s. OPT:∑

e∈E
min(y∗1(e), x(e)) <

∑
e∈E

min(y∗2(e), x(e)) (17.22)

Hence, ∃e′ s.t. y∗1(e′) < min(y∗2(e′), x(e′)). Recall y∗1, y
∗
2 ∈ P .

This implies
∑

e 6=e′ y
∗
1(e) + y∗1(e′) <

∑
e 6=e′ y

∗
1(e) + min(y∗2(e′), x(e′)),

better feasible solution to l.h.s., contradicting y∗1’s optimality for l.h.s.
Similarly, consider y∗2 as l.h.s. solution, suppose worse than l.h.s. OPT∑

e∈E
y∗2(e) <

∑
e∈E

y∗1(e) (17.23)

Then ∃e′ such that y∗2(e′) < y∗1(e′) ≤ x(e′).
This implies that replacing y∗2(e′)’s value with y∗1(e′) is still feasible for
r.h.s. but better, contradicting y∗2’s optimality.
Hence, from previous slide, taking x = 0:

max
(
y−(E) : y ∈ Bf

)
= max (y(E) : y ≤ 0, y ∈ Pf ) (17.24)
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min {wᵀx : x ∈ Bf}

Recall that the greedy algorithm solves, for w ∈ RE+

max {wᵀx|x ∈ Pf} = max {wᵀx|x ∈ Bf} (17.25)

since for all x ∈ Pf , there exists y ≥ x with y ∈ Bf .

For arbitrary w ∈ RE , greedy algorithm will also solve:

max {wᵀx|x ∈ Bf} (17.26)

Also, since w ∈ RE is arbitrary, and since

min {wᵀx|x ∈ Bf} = −max {−wᵀx|x ∈ Bf} (17.27)

the greedy algorithm using ordering (e1, e2, . . . , em) such that

w(e1) ≤ w(e2) ≤ · · · ≤ w(em) (17.28)

will solve l.h.s. of Equation (17.27).

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 17 - May 25th, 2016 F17/54 (pg.17/63)

Min-Norm Point Definitions Review & Support for Min-Norm Min-Norm Proof that min-norm gives optimal

max {wᵀx|x ∈ Bf} for arbitrary w ∈ RE

Let f(A) be arbitrary submodular function, and f(A) = f ′(A)−m(A)
where f ′ is polymatroidal, and w ∈ RE .

max {wᵀx|x ∈ Bf} = max {wᵀx|x(A) ≤ f(A) ∀A, x(E) = f(E)}
= max

{
wᵀx|x(A) ≤ f ′(A)−m(A) ∀A, x(E) = f ′(E)−m(E)

}
= max

{
wᵀx|x(A) +m(A) ≤ f ′(A) ∀A, x(E) +m(E) = f ′(E)

}
= max

{
wᵀx+ wᵀm|

x(A) +m(A) ≤ f ′(A) ∀A, x(E) +m(E) = f ′(E)
}
− wᵀm

= max
{
wᵀy|y ∈ Bf ′

}
− wᵀm

= wᵀy∗ − wᵀm = wᵀ(y∗ −m)

where y = x+m, so that x∗ = y∗ −m.
So y∗ uses greedy algorithm with positive orthant Bf ′ . To show, we use
Theorem 12.4.1 in Lecture 12, but we don’t require y ≥ 0, and don’t stop
when w goes negative to ensure y∗ ∈ Bf ′ . Then when we subtract off m
from y∗, we get solution to the original problem.
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Convex and affine hulls, affinely independent

Given points set P = {p1, p2, . . . , pk} with pi ∈ RV , let convP be the
convex hull of P , i.e.,

convP ,

{
k∑
i=1

λipi :
∑
i

λi = 1, λi ≥ 0, i ∈ [k]

}
. (17.29)

For a set of points Q = {q1, q2, . . . , qk}, with qi ∈ RV , we define aff Q
to be the affine hull of Q, i.e.:

aff Q ,

{
k∑
i∈1

λiqi :
k∑
i=1

λi = 1

}
⊇ convQ. (17.30)

A set of points Q is affinely independent if no point in Q belows to the
affine hull of the remaining points.
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H(x): Orthogonal x-containing hyperplane

Define H(x) as the hyperplane that is orthogonal to the line from 0 to x,
while also containing x, i.e.

H(x) ,
{
y ∈ RV |xᵀy = ‖x‖22

}
(17.31)

Any set
{
y ∈ RV |xᵀy = c

}
is orthogonal

to the line from 0 to x. This follows
since, for constant z, {y : (y − z)ᵀx = 0} =
{y : yᵀx = zᵀx} is hyperplane orthogonal to
x translated by z. Take c = zᵀx for result,
and z = x, giving c = ‖x‖2, to contain x.

x

y

H
(x)

−z

y −
z

Note, H(x) is translation of subspace of dimension |V | − 1 = n− 1 (i.e.,
H(x)− {x} is a subspace, H(x) is an affine set).
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Ex: H(x), polytopes, and supporting hyperplanes

H(x)=
{
y ∈ RV |xᵀy = ‖x‖22

}
,

any z ∈ H(x) has xᵀz = xᵀx.

Consider convP polytope for
points P = {p1, p2, . . .}, and
p̂ ∈ argminp∈P x

ᵀp. TL:
xᵀp < xᵀx; TR: xᵀp > xᵀx;
middle row: xᵀp = xᵀx.

Bottom Row: In Algo, x is
chosen so that if xᵀp̂ = xᵀx
then H(x) separates P from
the origin, and x is the min
2-norm point. Notice that
xᵀp ≥ xᵀx for all p ∈ P .

Middle/bottom row: H(x) is a
supporting hyperplane of
convP (contained, touching).

x

H
(x)

x

H
(x)

x

H
(x)

x

H
(x)

x

H
(x)

x

H
(x)
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Notation

The line between x and y: given two points x, y ∈ RV , let
[x, y] , {λx+ (1− λy) : λ ∈ [0, 1]}. Hence, [x, y] = conv {x, y}.
Note, if we wish to minimize the 2-norm of a vector ‖x‖2, we can
equivalently minimize its square ‖x‖22 =

∑
i x

2
i , and vice verse.
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Fujishige-Wolfe Min-Norm Algorithm

Wolfe-1976 (“Finding the Nearest Point in a Polytope”) developed an
algorithm to compute the minimum norm point of a polytope,
specified as a set of vertices.

Fujishige-1984 “Submodular Systems and Related Topics” realized this
algorithm can find the the min. norm point of Bf .

Seems to be (among) the fastest general purpose SFM algo.

Given set of points P = {p1, · · · , pm} where pi ∈ Rn: find the
minimum norm point in convex hull of P :

min
x∈convP

‖x‖2 (17.32)

Wolfe’s algorithm is guaranteed terminating, and explicitly uses a
representation of x as a convex combination of points in P

Algorithm maintains a set of points Q ⊆ P , which is always assuredly
affinely independent.
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Fujishige-Wolfe Min-Norm Algorithm

When Q are affinely independent, minimum norm point in the affine hull
of Q can easily be found, as a closed form solution for minx∈aff Q ‖x‖2 is
available (see below).

Algorithm repeatedly produces min. norm point x∗ for selected set Q.

If we find wi ≥ 0, i = 1, · · · ,m for the minimum norm point, then x∗

also belongs to convQ and also a minimum norm point over convQ.

If Q ⊆ P is suitably chosen, x∗ may even be the minimum norm point
over convP solving the original problem.

One of the most expensive parts of Wolfe’s algorithm is solving linear
optimization problem over the polytope, doable by examining all the
extreme points in the polytope.

If number of extreme points is exponential, hard to do in general.

Number of extreme points of submodular base polytope is exponentially
large, but linear optimization over the base polytope Bf doable
O(n log n) time via Edmonds’s greedy algorithm.
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Pseudocode of Fujishige-Wolfe Min-Norm (MN) algorithm

Input : P = {p1, · · · , pm}, pi ∈ Rn, i = 1, · · · ,m.
Output: x∗: the minimum-norm-point in convP .

1 x∗ ←− pi∗ where pi∗ ∈ argminp∈P ‖p‖2 /* or choose it arbitrarily */ ;

2 Q←− {x∗};
3 while 1 do /* major loop */
4 if x∗ = 0 or H(x∗) separates P from origin then

return : x∗

5 else
6 Choose x̂ ∈ P on the near (closer to 0) side of H(x∗);
7 Q = Q ∪ {x̂};
8 while 1 do /* minor loop */
9 x0 ←− argminx∈aff Q ‖x‖2;

10 if x0 ∈ convQ then
11 x∗ ←− x0;

12 break;

13 else
14 y ←− argminx∈convQ∩[x∗,x0] ‖x− x0‖2;

15 Delete from Q points not on the face of convQ where y lies;
16 x∗ ←− y;

Min-Norm Point Definitions Review & Support for Min-Norm Min-Norm Proof that min-norm gives optimal

Fujishige-Wolfe Min-Norm algorithm: Geometric Example
It is advised that for the next set of slides, you have a print out of the
previous MN algorithm available on display/paper somewhere.
Algorithm maintains an invariant, namely that:

x∗ ∈ convQ ⊆ convP, (17.33)

must hold at every possible assignment of x∗ (Lines 1, 11, and 16):
1 True after Line 1 since Q = {x∗},
2 True after Line 11 since x0 ∈ convQ,
3 and true after Line 16 since y ∈ convQ even after deleting points.

Note also for any x∗ ∈ convQ ⊆ convP , we have

min
x∈aff Q

‖x‖2 ≤ min
x∈convQ

‖x‖2 ≤ ‖x∗‖2 (17.34)

Note, the input, P , consists of m points. In the case of the base
polytope, P = Bf could be exponential in n = |V |.
There are six places that might be seemingly tricky or expensive: Line
4, Line 6, Line 9, Line 10, Line 14, and Line 15.
We will consider each in turn, but first we do a geometric example.
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example

Polytope, and circles concentric at 0.

P1

P2

P3

0

Minimum Norm
Point
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example
P1

P2

P3

0

The initial polytope consisting of the convex hull of three points p1, p2, p3,
and the origin 0.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 17 - May 25th, 2016 F28/54 (pg.28/63)



Min-Norm Point Definitions Review & Support for Min-Norm Min-Norm Proof that min-norm gives optimal

Fujishige-Wolfe Min-Norm algorithm: Geometric Example
P1

P2

P3

0

H(p1)

(x∗)

p1 is the extreme point closest to 0 and so we choose it first, although we
can choose any arbitrary extreme point as the initial point. We set x∗ ← p1

in Line 1, and Q← {p1} in Line 2. H(x∗) = H(p1) (green dashed line) is
not a supporting hyperplane of conv(P ) in Line 4, so we move on to the
else condition in Line 5.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 17 - May 25th, 2016 F28/54 (pg.29/63)

Min-Norm Point Definitions Review & Support for Min-Norm Min-Norm Proof that min-norm gives optimal

Fujishige-Wolfe Min-Norm algorithm: Geometric Example
P1

P2

P3

0

H(p1)

(x̂)

(x∗)

We need to add some extreme point x̂ on the “near” side of H(p1) in Line
6, we choose x̂ = p2. In Line 7, we set Q← Q ∪ {p2}, so Q = {p1, p2}.
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example
P1

P2

P3

0

R
H(p1)

(x0)

(x̂)

(x∗)

x0 = R is the min-norm point in aff {p1, p2} computed in Line 9. Also,
with Q = {p1, p2}, since R ∈ convQ, we set x∗ ← x0 = R in Line 11, not
violating the invariant x∗ ∈ convQ. Note, after Line 11, we still have
x∗ ∈ P and ‖x∗‖2 = ‖x∗new‖2 < ‖x∗old‖2 strictly.
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example
P1

P2

P3

0

R
H(p1)

(x0)

(x̂)

(x∗)

x0 = R is the min-norm point in aff {p1, p2} computed in Line 9. Also,
with Q = {p1, p2}, since R ∈ convQ, we set x∗ ← x0 = R in Line 11, not
violating the invariant x∗ ∈ convQ. Note, after Line 11, we still have
x∗ ∈ P and ‖x∗‖2 = ‖x∗new‖2 < ‖x∗old‖2 strictly.
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example
P1

P2

P3

0

R
H(p1)

(x0)

(x̂)

(x∗)

H(
)R

R = x0 = x∗. We consider next H(R) = H(x∗) in Line 4. H(x∗) is not a
supporting hyperplane of convP . So we choose p3 on the “near” side of
H(x∗) in Line 6. Add Q← Q ∪ {p3} in Line 7. Now Q = P = {p1, p2, p3}.
The origin x0 = 0 is the min-norm point in aff Q (Line 9), and it is not in
the interior of convQ (condition in Line 10 is false).
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example
P1

P2

P3

0

R
H(p1)

(x0)
(x̂)

(x∗)

H(
)R

R = x0 = x∗. We consider next H(R) = H(x∗) in Line 4. H(x∗) is not a
supporting hyperplane of convP . So we choose p3 on the “near” side of
H(x∗) in Line 6. Add Q← Q ∪ {p3} in Line 7. Now Q = P = {p1, p2, p3}.
The origin x0 = 0 is the min-norm point in aff Q (Line 9), and it is not in
the interior of convQ (condition in Line 10 is false).
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example
P1

P2

P3

0

R

S

H(p1)

(x0)
(x̂)

(x∗)
conv(Q)

∩[x∗, x0]

(y)

Q = P = {p1, p2, p3}. Line 14: S = y = argminx∈convQ∩[x∗,x0] ‖x− x0‖2
where x0 is 0 and x∗ is R here. Thus, y lies on the boundary of convQ.
Note, ‖y‖2 < ‖x∗‖2 since x∗ ∈ convQ, ‖x0‖2 < ‖x∗‖2. Line 15: Delete p1

from Q since not on face where y = S lies. Q = {p2, p3} after Line 15. We
still have y = S ∈ convQ for the updated Q. Line 16: x∗ ← y, retain
invariant x∗ ∈ convQ, and again have ‖x∗‖2 = ‖x∗new‖2 < ‖x∗old‖2 strictly.
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example
P1

P2

P3

0

R

S

T

H(p1)

H(
)R

H( )T

(x̂)

(x∗)

(y)
(x0)

Q = {p2, p3}, and so x0 = T computed in Line 9 is the min-norm point in
aff Q. We also have x0 ∈ convQ in Line 10 so we assign x∗ ← x0 in Line
11 and break.
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Fujishige-Wolfe Min-Norm algorithm: Geometric Example
P1

P2

P3

0

T

(x̂)

(x∗)
H( )T

H(T ) separates P from the origin in Line 4, and therefore is a supporting
hyperplane, and therefore x∗ is the min-norm point in convP , so we return
with x∗.
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Condition for Min-Norm Point
Theorem 17.5.1

P = {p1, p2, . . . , pm}, x∗ ∈ convP is the min. norm point in convP iff

pi
ᵀx∗ ≥ ‖x∗‖22 ∀i = 1, · · · ,m. (17.35)

Proof.

Assume x∗ is the min-norm point, let y ∈ convP , and 0 ≤ θ ≤ 1.

Then z , x∗ + θ(y − x∗) = (1− θ)x∗ + θy ∈ convP , and

‖z‖22 = ‖x∗ + θ(y − x∗)‖22 (17.36)

= ‖x∗‖22 + 2θ(x∗ᵀy − x∗ᵀx∗) + θ2 ‖y − x∗‖22 (17.37)

It is possible for ‖z‖22 < ‖x∗‖22 for small θ, unless x∗ᵀy ≥ x∗ᵀx∗ for all
y ∈ convP ⇒ Equation (17.35).

Conversely, given Eq (17.35), and given that y =
∑

i λipi ∈ convP ,

yᵀx∗ =
∑
i

λipi
ᵀx∗ ≥

∑
i

λix
∗ᵀx∗ = x∗ᵀx∗ (17.38)

implying that ‖z‖22 > ‖x∗‖22 in Equation 17.37 for arbitrary z ∈ convP .
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The set Q is always affinely independent

Lemma 17.5.2

The set Q in the MN Algorithm is always affinely independent.

Proof.

Q is of course affinely independent when there is at most one point in it
(e.g., after Line 2).

After the initialization, it changes only by deletion of points, or adding a
single point. Deletion does not change the independence.

Before adding x̂ at Line 7, we know x∗ is the minimum norm point in
aff Q (since we break only at Line 12).

Therefore, x∗ is normal to aff Q, which implies aff Q ⊆ H(x∗).

Since x̂ /∈ H(x∗) chosen at Line 6, we have x̂ /∈ aff Q.

∴ update Q ∪ {x̂} at Line 7 is affinely independent as long as Q is.

Thus, by Lemma 17.5.2, we have for any x ∈ aff Q such that x =
∑

iwiqi
with

∑
iwi = 1, the weights wi are uniquely determined.
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Minimum Norm in an affine set

Line 9 of the algorithm requires x0 ← minx∈aff Q ‖x‖2.
When Q is affinely independent, this is relatively easy.
Let Q also represent the n× k matrix with points as columns q ∈ Q. We
get the following, solvable with matrix inversion/linear solver:

minimize ‖x‖22 = wᵀQᵀQw (17.39)

subject to 1ᵀw = 1 (17.40)

Note, this also solves Line 10, since feasibility requires
∑

iwi = 1, we need
only check w ≥ 0 to ensure x0 =

∑
iwiqi ∈ convQ.

In fact, a feature of the algorithm (in Wolfe’s 1976 paper) is that we keep
the convex coefficients {wi}i where x∗ =

∑
iwipi of x∗ and from this

vector. We also keep v such that x0 =
∑

i viqi for points qi ∈ Q, from
Line 9.
Given w and v, we can also easily solve Lines 14 and 15 (see “Step 3” on
page 133 of Wolfe-1976, which also defines numerical tolerances).
We have yet to see how to efficiently solve Lines 4 and 6, however.
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MN Algorithm finds the MN point in finite time.

Theorem 17.5.3

The MN Algorithm finds the minimum norm point in convP after a finite
number of iterations of the major loop.

Proof.

In minor loop, we always have x∗ ∈ convQ, since whenever Q is
modified, x∗ is updated as well (Line 16) such that the updated x∗

remains in new convQ.

Hence, every time x∗ is updated (in minor loop), its norm never
increases, i.e., before Line 11, ‖x0‖2 ≤ ‖x∗‖2 since x∗ ∈ aff Q and
x0 = minx∈aff Q ‖x‖2. Similarly, before Line 16, ‖y‖2 ≤ ‖x∗‖2, since
invariant x∗ ∈ convQ but while x0 ∈ aff Q, we have x0 /∈ convQ, and
‖x0‖2 < ‖x∗‖2.

. . .
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MN Algorithm finds the MN point in finite time.

. . . proof of Theorem 17.5.3 continued.

Moreover, there can be no more iterations within a minor loop than
the dimension of convQ for the initial Q given to the minor loop
initially at Line 8 (dimension of convQ is |Q| − 1 since Q is affinely
independent).

Each iteration of the minor loop removes at least one point from Q in
Line 15.

When Q reduces to a singleton, the minor loop always terminates.

Thus, the minor loop terminates in finite number of iterations, at most
dimension of Q.

In fact, total number of iterations of minor loop in entire algorithm is
at most number of points in P since we never add back in points to Q
that have been removed.

. . .
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MN Algorithm finds the MN point in finite time.

. . . proof of Theorem 17.5.3 continued.

Each time Q is augmented with x̂ at Line 7, followed by updating x∗

with x0 at Line 11, (i.e., when the minor loop returns with only one
iteration), ‖x∗‖2 strictly decreases from what it was before.

To see this, consider x∗ + θ(x̂− x∗) where 0 ≤ θ ≤ 1. Since both
x̂, x∗ ∈ convQ, we have x∗ + θ(x̂− x∗) ∈ convQ.

Therefore, we have ‖x∗ + θ(x̂− x∗)‖2 ≥ ‖x0‖2, which implies

‖x∗ + θ(x̂− x∗)‖22 = ‖x∗‖22 + 2θ
(

(x∗)>x̂− ‖x∗‖22
)

+ θ2 ‖x̂− x∗‖22
≥ ‖x0‖22 (17.41)

and from Line 6, x̂ is on the same side of H(x∗) as the origin, i.e.
(x∗)>x̂ < ‖x∗‖22, so middle term of r.h.s. of equality is negative.

. . .

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 17 - May 25th, 2016 F34/54 (pg.43/63)

Min-Norm Point Definitions Review & Support for Min-Norm Min-Norm Proof that min-norm gives optimal

MN Algorithm finds the MN point in finite time.

. . . proof of Theorem 17.5.3 continued.

Therefore, for sufficiently small θ, specifically for

θ <
2
(
‖x∗‖22 − (x∗)>x̂

)
‖x̂− x∗‖22

(17.42)

we have that ‖x∗‖22 > ‖x0‖22.

For a similar reason, we have ‖x∗‖2 strictly decreases each time Q is
updated at Line 7 and followed by updating x∗ with y at Line 16.

Therefore, in each iteration of major loop, ‖x∗‖2 strictly decreases,
and the MN Algorithm must terminate and it can only do so when the
optimal is found.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 17 - May 25th, 2016 F35/54 (pg.44/63)



Min-Norm Point Definitions Review & Support for Min-Norm Min-Norm Proof that min-norm gives optimal

Line: 6: Finding x̂ ∈ P on the near side of H(x∗)

The “near” side means the side that contains the origin.

Ideally, find x̂ such that the reduction of ‖x∗‖2 is maximized to reduce
number of major iterations.

From Eqn. 17.41, reduction on norm is lower-bounded:

∆ = ‖x∗‖22 − ‖x0‖22 ≥ 2θ
(
‖x∗‖22 − (x∗)>x̂

)
− θ2 ‖x̂− x∗‖22 , ∆

(17.43)

When 0 ≤ θ < 2(‖x∗‖22−(x∗)>x̂)
‖x̂−x∗‖22

, we can get the maximal value of the

lower bound, over θ, as follows:

max

0≤θ<
2(‖x∗‖22−(x∗)>x̂)

‖x̂−x∗‖22

∆ =

(
‖x∗‖22 − (x∗)>x̂

‖x̂− x∗‖2

)2

(17.44)
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Line: 6: Finding x̂ ∈ P on the near side of H(x∗)

To maximize lower bound of norm reduction at each major iteration,
want to find an x̂ such that the above lower bound (Equation 17.44) is
maximized.

That is, we want to find

x̂ ∈ argmax
x∈P

(
‖x∗‖22 − (x∗)>x

‖x− x∗‖2

)2

(17.45)

to ensure that a large norm reduction is assured.

This problem, however, is at least as hard as the MN problem itself as
we have a quadratic term in the denominator.
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Line: 6: Finding x̂ ∈ P on the near side of H(x∗)

As a surrogate, we maximize numerator in Eqn. 17.45, i.e., find

x̂ ∈ argmax
x∈P

‖x∗‖22 − (x∗)>x = argmin
x∈P

(x∗)>x, (17.46)

Intuitively, by solving the above, we find x̂ such that it has the largest
“distance” to the hyperplane H(x∗), and this is exactly the strategy
used in the Wolfe-1976 algorithm.

Also, solution x̂ in Line 6 can be used to determine if hyperplane
H(x∗) separates convP from the origin (Line 4): if the point in P
having greatest distance to H(x∗) is not on the side where origin lies,
then H(x∗) separates convP from the origin.

Mathematically and theoretically, we terminate the algorithm if

(x∗)>x̂ ≥ ‖x∗‖22 , (17.47)

where x̂ is the solution of Eq. 17.46.
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Line: 6: Finding x̂ ∈ P on the near side of H(x∗)

In practice,the above optimality test might never hold numerically.
Hence, as suggested by Wolfe, we introduce a tolerance parameter
ε > 0, and terminates the algorithm if

(x∗)>x̂ > ‖x∗‖22 − εmax
x∈Q
‖x‖22 (17.48)

When convP is a submodular base polytope (i.e., convP = Bf for a
submodular function f), then the problem in Eqn 17.46 can be solved
efficiently by Edmonds’s greedy algorithm (even though there may be
an exponential number of extreme points).

Edmond’s greedy algorithm, therefore, solves both Line 4 and Line 6
simultaneously.

Hence, Edmonds’s discovery is one of the main reasons that the MN
algorithm is applicable to submodular function minimization.
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SFM Summary (modified from S. Iwata’s slides)

General Submodular Function Minimization 

 

Iwata, Fleischer, Fujishige (2000) Schrijver (2000) 

Iwata (2003) 

Fleischer, Iwata (2000) 

Orlin (2007) 

Iwata (2002) 

Fully Combinatorial 

Grötschel, Lovász, Schrijver (1981, 1988)

Ellipsoid Method 

minimum norm point
algorithm

Cunningham (1985) 

Fujishige (1980/1991)

Bixby,Cunningham,Topkis (1984) 

Edmonds (1965/1970) 

Bach (2012/13) 

Iwata, Orlin (2009) 

Wolfe (1976)/von Hohenbalken (1975)
gen. convex methods
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MN Algorithm Complexity

The currently fastest strongly polynomial combinatorial algorithm for
SFM achieves a running time of O(n5T + n6) (Orlin’09) where T is
the time for function evaluation, far from practical for large problem
instances.
Fujishige & Isotani report that MN algorithm is fast in practice, but
they use only a limited set of submodular functions.
Complexity of MN Algorithm is still an unsolved problem.
Obvious facts:

each major iteration requires O(n) function oracle calls
complexity of each major iteration could be at least O(n3) due to the
affine projection step (solving a linear system).
Therefore, the complexity of each major iteration is

O(n3 + n1+p)

where each function oracle call requires O(np) time.

Since the number of major iterations required is unknown, the
complexity of MN is also unknown.
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MN Algorithm Empirical Complexity
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(a) α = 0.1
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(b) α = 0.2
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(c) α = 0.3
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(d) α = 0.4
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(e) α = 0.5
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(f) α = 0.6
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(g) α = 0.7
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(h) α = 0.8
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(i) α = 0.9

Figure: The number of major iteration for f(S) = −m1(S) + 100 · (w1(N (S)))
α. The red lines are the linear interpolations of the worst case points, and the black

lines are the linear interpolations of the average case points. From Lin&Bilmes 2014 (unpublished)
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MN Algorithm Complexity

A lower bound complexity of the min-norm has not been established.

In 2014, Chakrabarty, Jain, and Kothari in their NIPS 2014 paper
“Provable Submodular Minimization using Wolfe’s Algorithm” showed
a pseudo-polynomial time bound of O(n7g2

f ) where n = |V | is the
ground set, and gf is the maximum gain of a particular function f .

This is pseudo-polynomial since it depends on the function values.

Therecurrently is no known polynomial time complexity analysis for
this algorithm.
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Min-Norm Point and SFM

Theorem 17.6.1

Let y∗, A−, and A0 be as given. Then y∗ is a maximizer of the l.h.s. of
Eqn. (17.7). Moreover, A− is the unique minimal minimizer of f and A0 is
the unique maximal minimizer of f .

Proof.

First note, since x∗ ∈ Bf , we have x∗(E) = f(E), meaning sat(x∗) = E.
Thus, we can consider any e ∈ E within dep(x∗, e).

Consider any pair (e, e′) with e′ ∈ dep(x∗, e) and e ∈ A−. Then
x∗(e) < 0, and ∃α > 0 s.t. x∗ + α1e − α1e′ ∈ Pf .

We have x∗(E) = f(E) and x∗ is minimum in l2 sense. We have
(x∗ + α1e − α1e′) ∈ Pf , and in fact

(x∗ + α1e − α1e′)(E) = x∗(E) + α− α = f(E) (17.49)

so x∗ + α1e − α1e′ ∈ Bf also.
. . .
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Min-Norm Point and SFM

. . . proof of Thm. 17.6.1 cont.

Then (x∗ + α1e − α1e′)(E)
= x∗(E \ {e, e′}) + (x∗(e) + α)︸ ︷︷ ︸

x∗new(e)

+ (x∗(e′)− α)︸ ︷︷ ︸
x∗new(e′)

= f(E).

Minimality of x∗ ∈ Bf in l2 sense requires that, with such an α > 0,(
x∗(e)

)2
+
(
x∗(e′)

)2
<
(
x∗new(e)

)2
+
(
x∗new(e′)

)2

Given that e ∈ A−, x∗(e) < 0. Thus, if x∗(e′) > 0, we could have
(x∗(e) + α)2 + (x∗(e′)− α)2 < (x∗(e))2 + (x∗(e′))2, contradicting the
optimality of x∗.

If x∗(e′) = 0, we would have (x∗(e) + α)2 + (α)2 < (x∗(e))2, for any
0 < α < |x∗(e)| (Exercise:), again contradicting the optimality of x∗.

Thus, we must have x∗(e′) < 0 (strict negativity).

. . .
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Min-Norm Point and SFM

. . . proof of Thm. 17.6.1 cont.

Thus, for a pair (e, e′) with e′ ∈ dep(x∗, e) and e ∈ A−, we have
x(e′) < 0 and hence e′ ∈ A−.

Hence, ∀e ∈ A−, we have dep(x∗, e) ⊆ A−.

A very similar argument can show that, ∀e ∈ A0, we have
dep(x∗, e) ⊆ A0.

. . .
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Min-Norm Point and SFM

. . . proof of Thm. 17.6.1 cont.

Therefore, we have ∪e∈A− dep(x∗, e) = A− and ∪e∈A0 dep(x∗, e) = A0

Ie., {dep(x∗, e)}e∈A− is cover for A−, as is {dep(x∗, e)}e∈A0
for A0.

dep(x∗, e) is minimal tight set containing e, meaning
x∗(dep(x∗, e)) = f(dep(x∗, e)), and since tight sets are closed under
union, we have that A− and A0 are also tight, meaning:

x∗(A−) = f(A−) (17.50)

x∗(A0) = f(A0) (17.51)

x∗(A−) = x∗(A0) = y∗(E) = y∗(A0) + y∗(E \A0)︸ ︷︷ ︸
=0

(17.52)

and therefore, all together we have

f(A−) = f(A0) = x∗(A−) = x∗(A0) = y∗(E) (17.53)

. . .
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Min-Norm Point and SFM

. . . proof of Thm. 17.6.1 cont.

Now, y∗ is feasible for the l.h.s. of Eqn. (17.7). This follows since, we
have y∗ = x∗ ∧ 0 ≤ 0, and since x∗ ∈ Bf ⊂ Pf , and y∗ ≤ x∗ and Pf is
down-closed, we have that y∗ ∈ Pf .

Also, for any y ∈ Pf with y ≤ 0 and for any X ⊆ E, we have
y(E) ≤ y(X) ≤ f(X).

Hence, we have found a feasible for l.h.s. of Eqn. (17.7), y∗ ≤ 0,
y∗ ∈ Pf , so y∗(E) ≤ f(X) for all X.

So y∗(E) ≤ min {f(X)|X ⊆ V }.
Considering Eqn. (17.54), we have found sets A− and A0 with
tightness in Eqn. (17.7), meaning y∗(E) = f(A−) = f(A0).

Hence, y∗ is a maximizer of l.h.s. of Eqn. (17.7), and A− and A0 are
minimizers of f .

. . .
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Min-Norm Point and SFM

. . . proof of Thm. 17.6.1 cont.

Now, for any X ⊂ A−, we have

f(X) ≥ x∗(X) > x∗(A−) = f(A−) (17.54)

And for any X ⊃ A0, we have

f(X) ≥ x∗(X) > x∗(A0) = f(A0) (17.55)

Hence, A− must be the unique minimal minimizer of f , and A0 is the
unique maximal minimizer of f .
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Min-Norm Point and SFM

So, if we have a procedure to compute the min-norm point
computation, we can solve SFM.

Nice thing about previous proof is that it uses both expressions for dep
for different purposes.

This was discovered by Fujishige (in fact the proof above is an
expanded version of the one found in the book).

An algorithm (by F. Wolfe) can find this min-norm point, essentially
an active-set procedure for quadratic programming. It uses Edmonds’s
greedy algorithm to make it efficient.

This is currently the best practical algorithm for general purpose
submodular function minimization.

But its underlying lower-bound complexity is unknown, although in
practice its estimated empirical complexity runs anywhere from O(n3)
to O(n4.5) or so (see Jegelka, Lin, Bilmes (NIPS 2011)).
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Min-norm point and other minimizers of f

Recall, that the set of minimizers of f forms a lattice.

In fact, with x∗ the min-norm point, and A− and A0 as defined above,
we have the following theorem:

Theorem 17.6.2

Let A ⊆ E be any minimizer of submodular f , and let x∗ be the
minimum-norm point. Then A has the form:

A = A− ∪
⋃

a∈Am

dep(x∗, a) (17.56)

for some set Am ⊆ A0 \A−.
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Min-norm point and other minimizers of f

proof of Thm. 17.6.2.

If A is a minimizer, then A− ⊆ A ⊆ A0, and f(A) = y∗(E) is the
minimum valuation of f .

But x∗ ∈ Pf , so x∗(A) ≤ f(A) and f(A) = x∗(A−) ≤ x∗(A) (or
alternatively, just note that x∗(A0 \A) = 0).

Hence, x∗(A) = x∗(A−) = f(A) so that A is also a tight set for x∗.

For any a ∈ A, A is a tight set containing a, and dep(x∗, a) is the
minimal tight containing a.

Hence, for any a ∈ A, dep(x∗, a) ⊆ A.

This means that
⋃
a∈A dep(x∗, a) = A.

Since A− ⊆ A ⊆ A0, then ∃Am ⊆ A \A− such that

A =
⋃
a∈A−

dep(x∗, a) ∪
⋃

a∈Am

dep(x∗, a) = A− ∪
⋃

a∈Am

dep(x∗, a)
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On a unique minimizer f

Note that if f(e|A) > 0, ∀A ⊆ E and e ∈ E \A, then we have
A− = A0 (there is one unique minimizer).

On the other hand, if A− = A0, it does not imply f(e|A) > 0 for all
A ⊆ E \ {e}.
If A− = A0 then certainly f(e|A0) > 0 for e ∈ E \A0 and
−f(e|A0 \ {e}) > 0 for all e ∈ A0.
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Duality: convex minimization of L.E. and min-norm alg.

Let f be a submodular function with f̃ it’s Lovász extension. Then the
following two problems are duals (Bach-2013):

minimize
w∈RV

f̃(w) +
1

2
‖w‖22 (17.57)

maximize − ‖x‖22
subject to x ∈ Bf

(17.58a)

(17.58b)

where Bf = Pf ∩
{
x ∈ RV : x(V ) = f(V )

}
is the base polytope of

submodular function f , and ‖x‖22 =
∑

e∈V x(e)2 is squared 2-norm.

Equation (17.57) is related to proximal methods to minimize the Lovász
extension (see Parikh&Boyd, “Proximal Algorithms” 2013).

Equation (17.58b) is solved by the minimum-norm point algorithm
(Wolfe-1976, Fujishige-1984, Fujishige-2005, Fujishige-2011) is (as we
will see) essentially an active-set procedure for quadratic programming,
and uses Edmonds’s greedy algorithm to make it efficient.

Unknown worst-case running time, although in practice it usually
performs quite well (see below).
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