Submodular Functions, Optimization,

and Applications to Machine Learning

— Spring Quarter, Lecture 16 —

http://wuw.ee.washington.edu/people/faculty/bilmes/classes/ee596b_spring 2016/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes

May 25th, 2016

M f(A) ()2(AUB)+f(AﬁB)
e 00 @ ®

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F1/82 (pg.1/91)

Logistics
{ N

Cumulative Outstanding Reading

@ Read chapters 2 and 3 from Fujishige's book.
@ Read chapter 1 from Fujishige's book.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F2/82 (pg.2/91)

http://www.ee.washington.edu/people/faculty/bilmes/classes/ee596b_spring_2016/
http://melodi.ee.washington.edu/~bilmes

Logistics
10

Announcements, Assignments, and Reminders

@ Homework 4, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Wednesday (5/25) at 11:55pm.

Homework 3, available at our assignment dropbox

(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (5/2) at 11:55pm.

Homework 2, available at our assignment dropbox

(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (4/18) at 11:55pm.
@ Homework 1, available at our assignment dropbox

(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Friday (4/8) at 11:55pm.

Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google

hangout (set up meeting via our our discussion board (https:
//canvas.uw.edu/courses/1039754/discussion_topics)).

Prof. Jeff Bilmes

Logistics
(MN]

EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016

Class Road Map - IT-I

@ L1(3/28): Motivation, Applications, &
Basic Definitions

@ L2(3/30): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).

@ L3(4/4): Info theory exs, more apps,
definitions, graph/combinatorial examples,
matrix rank example, visualization

@ L4(4/6): Graph and Combinatorial
Examples, matrix rank, Venn diagrams,
examples of proofs of submodularity, some
useful properties

@ L5(4/11): Examples & Properties, Other
Defs., Independence

@ L6(4/13): Independence, Matroids,
Matroid Examples, matroid rank is
submodular

@ L7(4/18): Matroid Rank, More on
Partition Matroid, System of Distinct
Reps, Transversals, Transversal Matroid,

@ L8(4/20): Transversals, Matroid and
representation, Dual Matroids,

@ L9(4/25): Dual Matroids, Properties,
Combinatorial Geometries, Matroid and
Greedy

@ L10(4/27): Matroid and Greedy,
Polyhedra, Matroid Polytopes,

°

L11(5/2): From Matroids to
Polymatroids, Polymatroids

L12(5/4): Polymatroids, Polymatroids
and Greedy

L13(5/9): Polymatroids and Greedy;
Possible Polytopes; Extreme Points;
Polymatroids, Greedy, and Cardinality
Constrained Maximization

L14(5/11): Cardinality Constrained
Maximization; Curvature; Submodular
Max w. Other Constraints

L15(5/16): Submodular Max w. Other
Constraints, Most Violated <, Matroids
cont., Closure/Sat,

L16(5/18): Closure/Sat, Fund.
Circuit/Dep, Min-Norm Point and SFM,
Min-Norm Point Algorithm, Proof that
min-norm gives optimal.

L17(5/23):

L18(5/25):

L19(6/1):

L20(6/6): Final Presentations
maximization.

Finals Week: June 6th-10th, 2016.
EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016

Prof. Jeff Bilmes

F3/82 (pg.3/91)

F4/82 (pg.4/91)

https://canvas.uw.edu/courses/1039754/assignments
https://canvas.uw.edu/courses/1039754/assignments
https://canvas.uw.edu/courses/1039754/assignments
https://canvas.uw.edu/courses/1039754/assignments
https://canvas.uw.edu/courses/1039754/discussion_topics
https://canvas.uw.edu/courses/1039754/discussion_topics

Review
e

Most violated inequality problem in matroid polytope case

@ Consider
B = {LBGRE x> 0,2(A) <rpy(A),VAC E} (16.7)

@ Suppose we have any x € Rf such that z € P

@ Hence, there must be a set of W C 2V, each member of which
corresponds to a violated inequality, i.e., equations of the form
x(A) > ra(A) for AeW.

@ The most violated inequality when x is considered w.r.t. P corresponds
to the set A that maximizes z(A) — rps(A), i.e., the most violated
inequality is valuated as:

max {z(A) —ry(A): A e W} =max{z(A) —ry(A): ACE} (16.8)

@ Since x is modular and z(E \ A) = z(E) — z(A), we can express this via a
min as in;:

min {ry(4) +z(E\ A): AC E} (16.9)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F5/82 (pg.5/91)

Review
IR

Most violated inequality /polymatroid membership/SFM

e Consider
P ={zeR":2>0,2(4) < f(4),VAC E} (16.7)

@ Suppose we have any x € Rf such that = & PJT.

@ Hence, there must be a set of W C 2V, each member of which
corresponds to a violated inequality, i.e., equations of the form
xz(A) > rp(A) for A e W.

_\p 2 £ P 2—\P\
X |

W = {{1}{1,2}} W= {{2},{1,2}} W= {{1,2}}

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F6/82 (pg.6/91)

Review
LIRLLnd

Most violated inequality /polymatroid membership/SFM

@ The most violated inequality when z is considered w.r.t. P
corresponds to the set A that maximizes x(A) — f(A), i.e., the most
violated inequality is valuated as:

max {z(A) — f(A): Ae W} =max{z(A) — f(A): AC E} (16.7)

@ Since = is modular and z(F \ A) = z(F) — xz(A), we can express this
via a min as in;:

min {f(A) + 2(E\ A) : A C E} (16.8)

@ More importantly, min { f(A) +x(E\ A): A C E} is a form of
submodular function minimization, namely
min {f(A) — z(A) : A C E} for a submodular f and z € R,
consisting of a difference of polymatroid and modular function (so
f — = is no longer necessarily monotone, nor positive).

@ We will ultimatley answer how general this form of SFM is.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F7/82 (pg.7/91)

Review
INEE RN

Fundamental circuits in matroids

Let I € Z(M), and e € E, then I U {e} contains at most one circuit in M.

@ Suppose, to the contrary, that there are two distinct circuits Cy, Cy
such that C; U Cy C T U {e}.

@ Then e € C1 Ny, and by (C2), there is a circuit C5 of M s.t.
C3 C (01U02)\{6} -yl

@ This contradicts the independence of I.

In general, let C(I,e) be the unique circuit associated with I U {e}
(commonly called the fundamental circuit in M w.r.t. I and e).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F8/82 (pg.8/91)

Review
INEEN AR

Matroids: The Fundamental Circuit

@ Define C(I,e) be the unique circuit associated with I U {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).

o If e € span([]) \ I, then C(I,e) is well defined (I + e creates one
circuit).

@ If e € I, then I + e = I doesn't create a circuit. In such cases, C'(1,e)
is not really defined.

@ In such cases, we define C'(I,e) = {e}, and we will soon see why.

)
o If e ¢ span(I), then C(I,e) = (), since no circuit is created in this case.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F9/82 (pg.9/91)

Review
LErrrnnd

The sat function = Polymatroid Closure

@ Thus, in a matroid, closure (span) of a set A are all items that A
spans (eq. that depend on A).

@ We wish to generalize closure to polymatroids.
e Consider x € Py for polymatroid function f.

@ Again, recall, tight sets are closed under union and intersection, and
therefore form a distributive lattice.

@ That is, we saw in Lecture 7 that for any A, B € D(x), we have that
AUB € D(x) and AN B € D(x), which can constitute a join and
meet.

@ Recall, for a given x € P, we have defined this tight family as

D(z) = {A: AC E,z(A) = f(A)} (16.8)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F10/82 (pg.10/91)

Review
INEENEE N

Minimizers of a Submodular Function form a lattice

Theorem 16.2.6

For arbitrary submodular f, the minimizers are closed under union and
intersection. That is, let M = argminycp f(X) be the set of minimizers
of f. Let AABe M. Then AUB &€ M and ANB e M.

Proof.
Since A and B are minimizers, we have f(A) = f(B) < f(AN B) and
f(A) = f(B) < f(AU B).

By submodularity, we have

f(A)+ f(B)> f(AUB)+ f(ANn B) (16.10)

Hence, we must have f(A) = f(B) = f(AUB) = f(AN B). O

v

Thus, the minimizers of a submodular function form a lattice, and there is a
maximal and a minimal minimizer of every submodular function.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F11/82 (pg.11/91)

Review
Lerrernen

The sat function = Polymatroid Closure

@ Matroid closure is generalized by the unique maximal element in D(z),
also called the polymatroid closure or sat (saturation function).

@ For some x € Py, we have defined:

cl(z) = sat(x) € | J{4: A € D(z)} (16.10)
=|J{A: AC E,2(4) = f(4)} (16.11)
={e:e€ E,Va> 0,2+ al. ¢ Py} (16.12)

@ Hence, sat(z) is the maximal (zero-valued) minimizer of the

submodular function f,(A4) = f(A) — z(A).

e Eq. (16.12) says that sat consists of any point x that is P saturated
(any additional positive movement, in that dimension, leaves Py).
We'll revisit this in a few slides.

@ First, we see how sat generalizes matroid closure.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F12/82 (pg.12/91)

Closure/Sat
[AARERRRA

The sat function = Polymatroid Closure

Lemma 16.3.1 (Matroid sat : RE — 2% is the same as closure.)

For I € T, we have sat(17) = span([) (16.1)
@ For1;(I) = |I|=r(l),so I € D(1y) and I Csat(1;). Also,
I C span([).

@ Consider some b € span(/) \ I.

@ Then I U{b} € D(1;) since 1;(1U{b}) = |I| =r(LU{b}) =r().
@ Thus, b € sat(1y).

@ Therefore, sat(1;) 2 span([) .

A

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F13/82 (pg.13/91)

Closure/Sat
(A ERNRERN]

The sat function = Polymatroid Closure

... proof continued.

@ Now, consider b € sat(1y) \ I.

@ Choose any A € D(1;) with b€ A, thusb e A\ 1.
@ Then 1;(A) =|ANI|=r(A).

e Now r(A) = |ANI| < |I| =r(I).

°

°

Also, r(ANI)=|ANI|since ANIeZ.
Hence, r(ANI)=r(A)=r((ANI)U(A\I)) meaning
(A\I) Cspan(ANIT) C span([).

@ Since be A\ I, we get b € span(]).

@ Thus, sat(1;) C span([]) .

@ Hence [sat(1;) = span(/)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F14/82 (pg.14/91)

Closure/Sat
[NE ANNENN]

The sat function = Polymatroid Closure

@ Now, consider a matroid (E,r) and some C' C E with C' ¢ Z, and
consider 1. Is 1o € P.?7 No, it might not be a vertex, or even a
member, of P,.

@ span(-) operates on more than just independent sets, so span(C') is
perfectly sensible.

@ Note span(C') = span(B) where Z 3 B € B(C) is a base of C.

@ Then we have 15 <1, < Lspan(o)s and that 13 € P.. We can then
make the definition:

sat(1¢) £ sat(1p) for B € B(C) (16.2)

In which case, we also get sat(1¢) = span(C') (in general, could define
sat(y) = sat(P-basis(y))).
@ However, consider the following form

sat(lg) = J{A: AC E,|AnC| =r(A)} (16.3)

Exercise: is span(C) = sat(1¢)? Prove or disprove it.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F15/82 (pg.15/91)

Closure/Sat
(NN RRERN]

The sat function, span, and submodular function
minimization

@ Thus, for a matroid, sat(1;) is exactly the closure (or span) of I in the
matroid. l.e., for matroid (£, r), we have span(/) = sat(1p).

@ Recall, for x € Py and polymatroidal f, sat(z) is the maximal (by
inclusion) minimizer of f(A) — x(A), and thus in a matroid, span([) is
the maximal minimizer of the submodular function formed by
r(A4) —1,(4).

@ Submodular function minimization can solve “span” queries in a
matroid or “sat” queries in a polymatroid.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F16/82 (pg.16/91)

Closure/Sat
[NENN RERN

sat, as tight polymatroidal elements

@ We are given an € P for submodular function f.
g f

@ Recall that for such an x, sat(z) is defined as

sat(z) = {4 : 2(4) = f(A)} (16.4)

@ We also have stated that sat(x) can be defined as:
sat(z) = {e :Va > 0,2+ al, ¢ PJT} (16.5)

@ We next show more formally that these are the same.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F17/82 (pg.17/91)

Closure/Sat
[NERNN RN

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.
sat(x) e {e Va >0,z +al. ¢ ij} (16.6)
={e:Va>0,3Ast. (z+al.)(A) > f(A)} (16.7)
={e:Va>0,d4A5es.t. (x+al.)(4) > f(A)} (16.8)
e this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) = {e:Va>0,dA3est. 2(A)+a> f(A)} (16.9)

e given that x € P, meaning z(A) < f(A) for all A, we must have

sat(z) = {e:Va > 0,dJA > est. x(A) = f(A)} (16.10)
={e:dA>est z(4) = f(A)} (16.11)

@ So now, if A is any set such that z(A) = f(A), then we clearly have
Ve € A, e € sat(z), and therefore that sat(z) O A (16.12)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F18/82 (pg.18/91)

Closure/Sat
[NERNNN RN

sat, as tight polymatroidal elements

@ ...and therefore, with sat as defined in Eq. (?7),

sat(z) 2 | J{4: 2(4) = f(A)} (16.13)

@ On the other hand, for any e € sat(z) defined as in Eq. (16.11), since
e is itself a member of a tight set, there is a set A 3 e such that

z(A) = f(A), giving
sat(z) € | J{A4: z(4) = f(A)} (16.14)

@ Therefore, the two definitions of sat are identical.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F19/82 (pg.19/91)

Closure/Sat
[NERNENR N

Saturation Capacity

Another useful concept is saturation capacity which we develop next.
For x € P, and e € I, consider finding

max {a:a € R,z + al, € Py} (16.15)

@ This is identical to:
max {a: (x + ale)(A) < f(A),VA D {e}} (16.16)

since any B C FE such that e ¢ B does not change in a 1. adjustment,
meaning (z + al.)(B) = z(B).
@ Again, this is identical to:

max {a: x(A) + a < f(A),VA D {e}} (16.17)

max {a: a < f(A) —x(A),YA D {e}} (16.18)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F20/82 (pg.20/91)

Closure/Sat
Lerrrrnn

Saturation Capacity

@ The max is achieved when
a = ¢(z;e) ¥ min {f(A) — 2(4),YA D {e}} (16.19)

@ ¢(x;e) is known as the saturation capacity associated with € Py and
€.

@ Thus we have for x € Py,

é(ze) & min {£(A) — 2(A),VA > e} (16.20)

=max{a:a e Rz +al, € P} (16.21)
We immediately see that for e € E \ sat(z), we have that é(z;e) > 0.

Also, for e € sat(x), we have that ¢(x;e) = 0.
Note that any a with 0 < o < ¢(x;e) we have x + al, € Py.

We also see that computing ¢(z;e) is a form of submodular function
minimization.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F21/82 (pg.21/91)

Fund. Circuit/Dep
[EERERERERARRN

Dependence Function

@ Tight sets can be restricted to contain a particular element.
e Given x € Py, and e € sat(x), define

D(z,e)={A:ec AC E,z(A) = f(4)} (16.22)
=D(x)N{A: ACE,ec A} (16.23)
@ Thus, D(x,e) C D(x), and D(x,e) is a sublattice of D(z).
@ Therefore, we can define a unique minimal element of D(x, e) denoted
as follows:

N{A:ec ACE,x(A) = f(A)} ifeesat(x)

0 else

dep(z,e) = {
(16.24)

l.e., dep(x, e) is the minimal element in D(x) that contains e (the
minimal z-tight set containing e).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F22/82 (pg.22/91)

Fund. Circuit/Dep
(R ARERARENEREN]

dep and sat in a lattice

e Given some x € Py,

@ The picture on the
right summarizes
the relationships
between the lattices
and sublattices.

@ Note,
N, dep(x,e) =
dep(x).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F23/82 (pg.23/91)

Fund. Circuit/Dep
(R RERAREREREN]

dep and sat in a lattice

o Given z € Py, recall distributive lattice of tight sets
D(z) ={A:z(4) = f(4)}

@ We had that sat(z) = |J{A: A € D(x)} is the “1" element of this
lattice.

o Consider the “0" element of D(x), i.e., dry(z) = & N{A: AeD(z)}
@ We can see dry(z) as the elements that are necessary for tightness.
@ That is, we can equivalently define dry(:L') as

dry(z) = {€' : = f(A),VAZ €'} (16.25)

@ This can be read as, for any €' € dry(x), any set that does not contain
¢’ is not tight for = (any set A that is missing any element of dry(x) is
not tight).

@ Perhaps, then, a better name for dry is ntight(z), for the necessary for
tightness (but we'll actually use neither name).

@ Note that dry need not be the empty set. Exercise: give example.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F24/82 (pg.24/91)

Fund. Circuit/Dep
(R RRREERRREN

An alternate expression for dep = dry

e Now, given x € Py, and e € sat(x), recall distributive sub-lattice of
e-containing tight sets D(z,e) = {A:e € A, z(A) = f(A)}

@ We can define the “1" element of this sub-lattice as
sat(z,e) & J{A: A € D(z,e)}.

@ Analogously, we can define the “0" element of this sub-lattice as
dry(z,e) = N{A:AeD(z,e)}.

@ We can see dry(x, e) as the elements that are necessary for
e-containing tightness, with e € sat(x).

@ That is, we can view dry(x e) as

dry(z,e) = {€' : x (A),VAF € e € A} (16.26)

@ This can be read as, for any ¢’ € dry(az, e), any e-containing set that
does not contain ¢’ is not tight for x.

@ But actually, dry(x, e) = dep(x, e), so we have derived another
expression for dep(z, e) in Eq. (16.26).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F25/82 (pg.25/91)

Fund. Circuit/Dep
(HEAN AREERRRNN

Dependence Function and Fundamental Matroid Circuit

e Now, let (F,Z) = (E,r) be a matroid, and let I € Z giving 17 € P,.
We have sat(17) = span(I) = closure([).

@ Given e € sat(17) \ I and then consider an A > e with [I N A| = r(A).

@ Then I N A serves as a base for A (i.e., I N A spans A) and any such
A contains a circuit (i.e., wecanadde € A\ I to IN A w/o
increasing rank).

@ Given e € sat(17) \ I, and consider dep(1y,e), with

dep(1,e) =(|{A:e€ AC E,1;(A) =r(A)} (16.27)
=({A:ec ACE,|INA|=r(A)} (16.28)
=({A:e€c ACE,r(A)—[INA|=0} (16.29)

e By SFM lattice, 3 a unique minimal A 5 e with |[I N A| =r(A).
@ Thus, dep(1y,e) must be a circuit since if it included more than a
circuit, it would not be minimal in this sense.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F26/82 (pg.26/91)

Fund. Circuit/Dep
(HEARE RRERRREN

Dependence Function and Fundamental Matroid Circuit

@ Therefore, when e € sat(1;) \ I, then dep(17,e) = C(I,e) where
C(I,e) is the unique circuit contained in I + e in a matroid (the
fundamental circuit of e and I that we encountered before).

e Now, if e € sat(17) NI with I € Z, we said that C'(/, e) was undefined
(since no circuit is created in this case) and so we defined it as
C(Ie) = {e}

@ In this case, for such an e, we have dep(1;,e) = {e} since all such sets
A > e with [N A| =r(A) contain e, but in this case no cycle is
created, i.e.,, [INA| > |IN{e}| =r(e) = 1.

@ We are thus free to take subsets of I as A, all of which must contain
e, but all of which have rank equal to size, and min size is 1.

@ Also note: in general for € P; and e € sat(z), we have dep(z, e) is
tight by definition.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F27/82 (pg.27/91)

Fund. Circuit/Dep
(HEAREN ARRRRRN

Summary of sat, and dep

o For x € Py, sat(z) (span, closure) is the maximal saturated (z-tight) set
w.rt. z. lLe, sat(x) = {e:e€ E,Va > 0,z + al. ¢ Pr}. That is,

cl(z) € sat(z) 2 | J{4: A € D(z)} (16.30)
= J{4: ACE x(4) = f(A)} (16.31)
={e:ec E,Va>0,x+ al. ¢ Py} (16.32)

@ For e € sat(x), we have dep(z,e) C sat(x) (fundamental circuit) is the
minimal (common) saturated (z-tight) set w.r.t. = containing e. l.e.,

N{A:ec ACE z(A) = f(A)} if ee€sat(x)
0 else

e :3a>0, st. x+a(le— 1) € Pf} (16.33)

N—r

dep(z,e) =
= {

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F28/82 (pg.28/91)

Fund. Circuit/Dep
(HEARERN ERRRRN

Dependence Function and exchange

@ For e € span([/) \ I, we have that I +e ¢ Z. This is a set addition
restriction property.

@ Analogously, for e € sat(x), any = + al. ¢ Py for o > 0. This is a
vector increase restriction property.

@ Recall, we have C(I,e)\ e € T for e’ € C(1,e). le., C(I,e) consists
of elements that when removed recover independence.

@ In other words, for e € span(I) \ I, we have that

C(l,e)={ac€E:I+e—acT} (16.34)

@ l.e., an addition of e to I stays within Z only if we simultaneously
remove one of the elements of C(/,e).

@ But, analogous to the circuit case, is there an exchange property for
dep(z, e) in the form of vector movement restriction?

@ We might expect the vector dep(z, e) property to take the form:
a positive move in the e-direction stays within P; only if we
simultaneously take a negative move in one of the dep(z, e) directions.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F29/82 (pg.29/91)

Fund. Circuit/Dep
(HEARERNE RN

Dependence Function and exchange in 2D

@ dep(x,e) is set of neg. directions we must move if we want to move in
pos. e direction, starting at x and staying within P;.
@ Viewable in 2D, we have for A,B C E, AN B = 0:

A x._(i) A Lo—>

Left: e € B and ANdep(x,e) = Right: A C dep(z,e). \B/Ve can't
(), and we can't move further in move further in the (e) direction,
(e) direction, and moving in any but we can move further in (e) di-
negative a € A direction doesn't rection by moving in some negative
change that. No dependence be- a € A direction. Dependence be-
tween (e) and any element in A. tween (e) and elements in A.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F30/82 (pg.30/91)

Fund. Circuit/Dep

Dependence Function and exchange in 3D
@ We can move neither in the (e) nor the (a) direction, but we can move in
the (e) direction if we simultaneously move in the -(a) direction.
@ In 3D, we have:

o le, for e € sat(x), a € sat(z), a € dep(zx,e), e ¢ dep(x,a), and
dep(z,e) ={a:a € E,Ja > 0: 2+ a(l. — 1,) € Py} (16.35)

- Alo oo & Sucioo o
Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F31/82 (pg.31/91)

Fund. Circuit/Dep
(HEAREREEEN ARN

dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable a:

dep(z, e) = ntight(z,e) =
= {1 z(A) < f(A),VAF €, e € A}
={e':3a>0, st.a < f(A) —z(4),VAZ ' ec A}
={€':3a >0, st. al.(A) < f(A) —z(A),VA F €, e € A}
={€':3a >0, st. a(1lc(A) —1(4)) < f(A) —z(A),VAF ', e € A}
(16.40)
={€': Ja >0, st. 2(A) + a(1(A) — 14(A)) < f(A),VAF ', e € A}
(16.41)
@ Now, 1.(A) — 1. (A) =0 if either {e,e'} C A, or {e, e/} N A =0.
@ Also, if ¢ € A but e ¢ A, then
z(A) + a(1e(A) = 10(A)) = 2(A) — a < f(A) since z € Py.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F32/82 (pg.32/91)

Fund. Circuit/Dep
(HEAREREEREN AN

dep and exchange derived

@ thus, we get the same in the above if we remove the constraint
A Fe,ee A, that is we get

dep(z,e) = {¢' : Ja >0, s.t. 2(A) + a(1.(4) — 1(A)) < f(A4),VA}
(16.42)

@ This is then identical to
dep(z,e) = {¢' : Ja >0, st. z + (1. — 1) € Py} (16.43)

e Compare with original, the minimal element of D(z, e), with
e € sat(x):

N{A:ec ACE xz(A) = f(A)} ifecesat(x)

0 else

dep(z,e) = {
(16.44)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F33/82 (pg.33/91)

Fund. Circuit/Dep
(HEAREREERREN N

Summary of Concepts

@ Most violated inequality max {z(A) — f(A) : A C E}
Matroid by circuits, and the fundamental circuit C(I,e) C I + e.

Minimizers of submodular functions form a lattice.
Minimal and maximal element of a lattice.

x-tight sets, maximal and minimal tight set.

sat function & Closure

Saturation Capacity

e-containing tight sets

dep function & fundamental circuit of a matroid

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F34/82 (pg.34/91)

Fund. Circuit/Dep
Lrerrrrrerenrnn

Summary important definitions so far: tight, dep, & sat

o z-tight sets: For x € P, D(z) £ {AC E: z(A) = f(A)}.
@ Polymatroid closure/maximal z-tight set: For x € Py,
sat(z) 2U{A: A€ D(x)} ={e:e€ E,Va >0,z +al. & Ps}.
e Saturation capacity: for z € Py, 0 < é(z;e) =
min { f(A) — z(A)|VA 3 e} =max{a:a e R,z + al. € Pt}
@ Recall: sat(z) = {e: é(x;e) =0} and E \ sat(x) = {e: ¢(z;e) > 0},
@ e-containing z-tight sets: For x € Py,
D(z,e) ={A:ec ACE,z(A) = f(A)} C D(z).

@ Minimal e-containing z-tight set/polymatroidal fundamental circuit/:

For x € P, |
dep(z, e) = {ﬂ{A ec ACE,z(A)=f(A)} if e€sat(z)
={¢

else

:3a >0, st.z+a(le— 1) € Py}

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F35/82 (pg.35/91)

Min-Norm Point and SFM
RN

A polymatroid function’s polyhedron is a polymatroid.

Theorem 16.5.1

Let f be a submodular function defined on subsets of E. For any = € RF,
we have:

rank(z) = max (y(F) :y < z,y € Pf) =min(z(4) + f(E\A): ACE)
(16.1)

v

Essentially the same theorem as Theorem ??7, but note Py rather than PJT.
Taking x = 0 we get:
Corollary 16.5.2

Let f be a submodular function defined on subsets of E. We have:

rank(0) = max (y(E) :y <0,y € Pt) =min(f(A4): ACE) (16.2)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F36/82 (pg.36/91)

Min-Norm Point and SFM
1n11

Min-Norm Point: Definition

@ Restating what we saw before, we have:
max {y(E)|ly € P,y <0} =min{f(X)| X CV} (16.45)
@ Consider the optimization:
minimize ||2||2 (16.46a)

subject to r € By (16.46b)

where By is the base polytope of submodular f, and
|z]|3 = > .cp x(e)? is the squared 2-norm. Let z* be the optimal
solution.

@ Note, z* is the unique optimal solution since we have a strictly convex
objective over a set of convex constraints.

@ z* is called the minimum norm point of the base polytope.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F37/82 (pg.37/91)

Min-Norm Point and SFM
1R

Min-Norm Point: Examples

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F38/82 (pg.38/91)

Min-Norm Point and SFM
1

Min-Norm Point and Submodular Function Minimization

@ Given optimal solution z* to the above, consider the quantities

y* =2 A0 = (min(z*(e),0)|e € E) (16.47)
A_ ={e:z"(e) <0} (16.48)
Ag ={e:z"(e) <0} (16.49)

@ Thus, we immediately have that:
A_C Ay (16.50)
and that
7*(A) = *(Ao) = (A=) = y*(Ao) (16.51)

@ It turns out, these quantities will solve the submodular function
minimization problem, as we now show.

@ The proof is nice since it uses the tools we've been recently developing.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F39/82 (pg.39/91)

Min-Norm Point Algorithm
Uit rennd

Review

The following three slides are review, and are from Lectures 13, and 16.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F40/82 (pg.40/91)

Min-Norm Point Algorithm
TRLLLrrrr e rerrennd

A polymatroid function’s polyhedron is a polymatroid.

Theorem 16.6.1
Let f be a submodular function defined on subsets of E. For any = € RF,

we have:

rank(z) = max (y(F) :y < z,y € Py) =min(z(4) + f(E\A): ACE)
(16.1)

v

Essentially the same theorem as Theorem ??7, but note Py rather than PJZF.
Taking x = 0 we get:

Corollary 16.6.2

Let f be a submodular function defined on subsets of E. We have:

rank(0) = max (y(E) :y <0,y € Pt) =min(f(A): ACE) (16.2)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F41/82 (pg.41/91)

Min-Norm Point Algorithm
LIRLLL e rrerrennd

Min-Norm Point: Definition

@ Restating what we saw before, we have:
max {y(E)|y € Pr,y <0} =min {f(X)|X C V} (16.45)
@ Consider the optimization:

minimize ||2||2 (16.46a)

subject to r € By (16.46b)

where By is the base polytope of submodular f, and
|z||3 = Y. z(e)? is the squared 2-norm. Let z* be the optimal
solution.

@ Note, z* is the unique optimal solution since we have a strictly convex
objective over a set of convex constraints.

@ z* is called the minimum norm point of the base polytope.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F42/82 (pg.42/91)

Min-Norm Point Algorithm
FEIRELLEEr e rrerrennd

Min-Norm Point and Submodular Function Minimization

@ Given optimal solution z* to the above, consider the quantities

y* =2 A0 = (min(z*(e),0)|e € E) (16.47)
A_ ={e:z"(e) <0} (16.48)
Ag ={e:z"(e) <0} (16.49)

@ Thus, we immediately have that:
A_C Ay (16.50)
and that
7*(A) = *(Ao) = (A=) = y*(Ao) (16.51)

@ It turns out, these quantities will solve the submodular function
minimization problem, as we now show.

@ The proof is nice since it uses the tools we've been recently developing.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F43/82 (pg.43/91)

Min-Norm Point Algorithm
FELIRELEEr e rrerrennd

Duality: convex minimization of L.E. and min-norm alg.

@ Let f be a submodular function with f it's Lovdsz extension. Then the
following two problems are duals (Bach-2013):

maximize — ||z||3 (16.53a)
subject to r € By (16.53b)

where By = Py N {z € RY : 2(V) = f(V)} is the base polytope of
submodular function f, and ||z[|3 = > .oy (e)? is squared 2-norm.

. 1
minimize f(w) + §||wH§ (16.52)

weRY

@ Equation (16.52) is related to proximal methods to minimize the Lovasz
extension (see Parikh&Boyd, “Proximal Algorithms” 2013).

e Equation (16.53b) is solved by the minimum-norm point algorithm
(Wolfe-1976, Fujishige-1984, Fujishige-2005, Fujishige-2011) is (as we
will see) essentially an active-set procedure for quadratic programming,
and uses Edmonds's greedy algorithm to make it efficient.

@ Unknown worst-case running time, although in practice it usually
performs quite well (see below).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F44/82 (pg.44/91)

Min-Norm Point Algorithm
LELLIRL e rrerrennd

Ex: 3D base By: permutahedron

@ Consider submodular
function f: 2" — R with
V| =4, and for X C V,
concave g, s 2431

f(X) = g(|X]) —

|X| i / # ke
= 2(4—2+1) 3]“%
=1 3%13\ ‘ /13?3
2313 \/

@ Then By is a 3D polytope,

1%%3
: : . ¢ 1342
and in this particular case
gives us a permutahedron 2183
with 24 distinct extreme / TN~

points, on the right (from 213 / 3

wikipedia).
Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F45/82 (pg.45/91)

Min-Norm Point Algorithm
FELLLIREEr e rerrennd

Modified max-min theorem

@ We have a variant of Theorem 12.5.2, the min-max theorem, namely
that:

Theorem 16.6.1 (Edmonds-1970)

min {f(X)|X C E} = max {z™ (E)|z € By} (16.54)

where x~ (e) = min {z(e),0} fore € E.

Proof.

min {f(X)|X C E} = wﬁ)i,?]E f(w) = wéﬂ)i,rll]E inez}%wTa: (16.55)

= min maxw'z (16.56)
wel0,1]€ z€By

= max min w'x (16.57)
z€Byf wel0,1]F

— ~(E 16.58
max e (E) (16.58)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F46/82 (pg.46/91) i

Min-Norm Point Algorithm
FELLEEIREr e rerrennd

Convexity, Strong duality, and min/max swap

The min/max switch follows from strong duality. l.e., consider
g(w,z) = wTz and we have domains w € [0,1]¥ and = € By. then for any
(w,z) € [0,1]¥ x By, we have

min _g(w',x) < g(w,z) < max g(w,z’) (16.59)
w’€[0,1]F x'€By

which means that we have weak duality

< 16.60
mHéaB},waE%I}] g(w',) r%lgl]Efleag g(w,) (16.60)

but since g(w, x) is linear, we have strong duality, meaning

max min w', min max g(w, T 16.61
xEBfw’e[O,l]Eg() wel0,1]F 2'€By () ()

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F47/82 (pg.47/91)

Min-Norm Point Algorithm
[NAREEEN AR AR R AR AR R AR RN

Alternate proof of modified max-min theorem

We start directly from Theorem 12.5.2.

max (y(E) :y <0,y € Pr) =min(f(4) : ACE) (16.62)
Given y € R¥, define y~ € R with y~(e) = min {y(e),0} for e € E.
max (y(F) : y <0,y € Py) = max (y 1y <0,y € Py) (16.63)
= max (y~ :y € Py) (16.64)
= max (y~ (E) :y € By) (16.65)

The first equality follows since y < 0. For the second equality, clearly I.h.s.
< r.h:s. Also, l.h.s. > r.h.s. since the positive parts don't matter.

max (y~(E) : y € Py) =max (y~ (E) : y(A) < f(A)VA) (16.66)
=max (y (E) 1y~ (4) +y"(4) < f(A)VA)

The third equality follows since for any x € P; there exists a y € B with
x < y (follows from Theorem ?77).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F48/82 (pg.48/91)

Min-Norm Point Algorithm
PEELEr e rerrrnnd

min {wTz : © € By}

@ Recall that the greedy algorithm solves, for w € Rf
max {w'z|zr € Py} = max{w'z|x € By} (16.67)

since for all x € Py, there exists y > x with y € By.
o For arbitrary w € R”, greedy algorithm will also solve:

max {w'z|x € By} (16.68)
@ Also, since
min {w'z|z € By} = —max {—w'z|x € By} (16.69)
the greedy algorithm using ordering (e1, e, ..., e,) such that
w(er) <w(ez) < -+ <wley) (16.70)

will solve Equation (16.69).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F49/82 (pg.49/91)

Min-Norm Point Algorithm
(NAREEEEERE R R AR R AR RN N

max {wTz|x € By} for arbitrary w € R¥

Let f(A) be arbitrary submodular function, and f(A) = f'(A) — m(A)
where f’ is polymatroidal, and w € R¥.
max {w'z|r € By} = max{w'z|z(A) < f(A) VA, z(F) = f(E)}
= max {w'z|z(A4) < f'(A) — m(A) VA, z(E) = f(E) — m(E)}
= max {w'z|z(A4) + m(A) < f'(A)VA,z(E) + m(E) = f(
= max{wTz + wTm)|
2(4) +m(A) < f'(A) VA, 5(E) + m(E) = f(E)} — wTm
= max {wTyly € By} —w'm
= wly* —wim = wT(y* —m)
where y = x + m, so that 2* = y* — m.
So y* uses greedy algorithm with positive orthant By. To show, we use
Theorem 12.4.1 in Lecture 12, but we don't require y > 0, and don’t stop

when w goes negative to ensure y* € By. Then when we subtract off m
from y*, we get solution to the original problem.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F50/82 (pg.50/91)

Min-Norm Point Algorithm
(AR RN AR R AR AR R AR N

Orthogonal z-containing hyperplane & convex/affine hulls

@ Define H(x) as the hyperplane that is orthogonal to the line from 0 to
x, while also containing z, i.e.

H(z) 2 {y e RV |aTy = |lz/}3} (16.71)

Any set {y € RY|2zTy = c} is orthogonal to the line from 0 to z. To
also contain , we need ||z||, |||, cos 0 = ¢ giving ¢ = ||z||5.

e Given a set of points P = {p1,pa,...,pr} with p; € RV, let conv P be
the convex hull of P, i.e.,

k
conv P = {Z)\ipi o Z)\Z = 1,)\z > O,i € [k’]} . (1672)
1=1

and for Q = {q1,q2,...,qx}, with ¢; € RV, let aff Q be the affine hull
of Q, i.e.,

k k
aff Q & {Z AiQi Z)‘i = 1} D conv Q. (16.73)
i€l i=1

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F51/82 (pg.51/91)

Min-Norm Point Algorithm
[NAREEER R RN R AR AR RN AR RN N

Notation

@ The line between x and y: given two points z,y € RV, let
[z,y] = {\z + (1 — \y) : A €]0,1]}. Hence, [z,y] = conv {z, y}.
e Note, if we wish to minimize the 2-norm of a vector ||z||,, we can
equivalently minimize its square ||z||3 = 3_, 22, and vice verse.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F52/82 (pg.52/91)

Min-Norm Point Algorithm
(AR RN AR AR AR AR RN

Fujishige-Wolfe Min-Norm Algorithm

@ Wolfe-1976 developed an algorithm to compute the minimum norm
point of a polytope, specified as a set of vertices.

@ Fujishige-1984 “Submodular Systems and Related Topics” realized this
algorithm can find the the min. norm point of By.

@ Seems to be (among) the fastest general purpose SFM algo.

@ Given set of points P = {p;, -+ ,pm} where p; € R™: find the
minimum norm point in convex hull of P:

min _||z|], (16.74)

rEconv P
@ Wolfe's algorithm is guaranteed terminating, and explicitly uses a
representation of x as a convex combination of points in P

@ Algorithm maintains a set of points () C P, which is always assuredly
affinely independent.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F53/82 (pg.53/91)

Min-Norm Point Algorithm
(AR AR AR AR AR R AR R RN

Fujishige-Wolfe Min-Norm Algorithm

@ When (@) are affinely independent, minimum norm point in the affine hull
of @) can easily be found, as a closed form solution for mingcg g ||z, is
available (see below).

@ Algorithm repeatedly produces min. norm point x* for selected set ().

o If we find w; > 0,2 =1,---,m for the minimum norm point, then z*
also belongs to conv () and also a minimum norm point over conv ().

o If) C P is suitably chosen, z* may even be the minimum norm point
over conv P solving the original problem.

@ One of the most expensive parts of Wolfe's algorithm is solving linear
optimization problem over the polytope, doable by examining all the
extreme points in the polytope.

@ If number of extreme points is exponential, hard to do in general.

@ Number of extreme points of submodular base polytope is exponentially
large, but linear optimization over the base polytope B doable
O(nlogn) time via Edmonds's greedy algorithm.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F54/82 (pg.54/91)

Pseudocode of Fujishige-Wolfe Min-Norm (MN) algorithm

S N -

S O

10
11

12
13
14
15
16

Input : P = {p1,--- 7pm}7pi eR"i=1,---,m.

Output: z*: the minimum-norm-point in conv P.

T* <— pi= where p;x € argming,cp [|p|, /* or choose it arbitrarily */ ;
Q«— {z"}

while 1 do /* major loop */

if x* =0 or H(z*) separates P from origin then

*

| return : z

else

Choose & € P on the near (closer to 0) side of H(x*);

| Q=QuU{Z};

while 1 do /* minor loop */

T <— Mingeag g |25

if 29 € conv @ then

¥ <— x0;

break;

else

y < minmecoanﬁ[a:*,wo] HLE - 330”2;

Delete from @ points not on the face of conv) where y lies;
¥ +—y;

Min-Norm Point Algorithm
(AR RN AR R AR RN N

Fujishige-Wolfe Min-Norm algorithm: Geometric Example

Prof.

It is advised that for the next set of slides, you have a print out of the
previous MN algorithm available on display/paper somewhere.
Algorithm maintains an invariant, namely that:

x* € conv @ C conv P, (16.75)

must hold at every possible assignment of x* (Lines 1, 11, and 16):
© True after Line 1 since Q = {z*},
@ True after Line 11 since zg € conv @,
© and true after Line 16 since y € conv () even after deleting points.

Note also for any z* € conv @) C conv P, we have

min_|[zf], < iz < flz"l, (16.76)

min
z€aff Q xEconv Q
Note, the input, P, consists of m points. In the case of the base
polytope, P = By could be exponential in n = |V|.
There are six places that might be seemingly tricky or expensive: Line
4, Line 6, Line 9, Line 10, Line 14, and Line 15.
We will consider each in turn, but first we do a geometric example.

Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F56/82 (pg.56/91)

Min-Norm Point Algorithm
(AR AR AR RN AR AR R AR RN

Fujishige-Wolfe Min-Norm algorithm: Geometric Example

Polytope, and circles concentric at 0.

l Minimum Norm
Point ‘

(&7

EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016

v

Min-Norm Point Algorithm
(HAREERE AR RN AR R R AR RN N

Prof. Jeff Bilmes F57/82 (pg.57/91)

Fujishige-Wolfe Min-Norm algorithm: Geometric Example

P1

P3
°0
P2

The initial polytope consisting of the convex hull of three points p1, p2, p3,
and the origin 0.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F58/82 (pg.58/91)

Min-Norm Point Algorithm
(HAREERE AR RN AR R R AR RN N

Fujishige-Wolfe Min-Norm algorithm: Geometric Example

p1 is the extreme point closest to 0 and so we choose it first, although we
can choose any arbitrary extreme point as the initial point. We set z* < p;
in Line 1, and @ < {p1} in Line 2. H(z*) = H(p1) (green dashed line) is

not a supporting hyperplane of conv(P) in Line 4, so we move on to the
else condition in Line 5.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F58/82 (pg.59/91)

Min-Norm Point Algorithm
(HAREERE AR RN AR R R AR RN N

Fujishige-Wolfe Min-Norm algorithm: Geometric Example

°0

() P2

We need to add some extreme point & on the “near” side of H(pp) in Line
6, we choose & = po. In Line 7, we set Q +— Q U {p2}, so Q = {p1,p2}.

Prof. Jeff Bilmes

EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016

F58/82 (pg.60/91)

Min-Norm Point Algorithm
(HAREERE AR RN AR R R AR RN N

Fujishige-Wolfe Min-Norm algorithm: Geometric Example

(z)P2

xo = R is the min-norm point in aff {p1, p2} computed in Line 9. Also,
with @ = {p1,p2}, since R € conv), we set z* <— 9 = R in Line 11.
Note, after Line 11, we still have z* € P and ||2*||;, = [|Zfewlla < |54l
strictly.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F58/82 (pg.61/91)

Min-Norm Point Algorithm
(HAREERE AR RN AR R R AR RN N

Fujishige-Wolfe Min-Norm algorithm: Geometric Example

(Z)P2

xo = R is the min-norm point in aff {p;, p2} computed in Line 9. Also,
with @ = {p1,p2}, since R € conv @, we set z* <— 9 = R in Line 11.
Note, after Line 11, we still have * € P and ||z*||y = [|2fenlls < 25415
strictly.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F58/82 (pg.62/91)

Min-Norm Point Algorithm
(HAREERE AR RN AR R R AR RN N

Fujishige-Wolfe Min-Norm algorithm: Geometric Example

R = x9 = z*. We consider next H(R) = H(z*) in Line 4. H(x*) is not a
supporting hyperplane of conv P. So we choose p3 on the “near” side of
H(z*) in Line 6. Add @ < Q U {ps} in Line 7. Now Q = P = {p1,p2,ps}.
The origin g = 0 is the min-norm point in aff @ (Line 9), and it is not in
the interior of conv () (condition in Line 10 is false).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F58/82 (pg.63/91)

Min-Norm Point Algorithm
(HAREERE AR RN AR R R AR RN N

Fujishige-Wolfe Min-Norm algorithm: Geometric Example

R = xy = x2*. We consider next H(R) = H(z*) in Line 4. H(z*) is not a
supporting hyperplane of conv P. So we choose p3 on the “near” side of
H(z*) in Line 6. Add @ < Q U {ps} in Line 7. Now Q = P = {p1,p2,ps}.
The origin z¢p = 0 is the min-norm point in aff @ (Line 9), and it is not in
the interior of conv () (condition in Line 10 is false).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F58/82 (pg.64/91)

Min-Norm Point Algorithm
(HAREERE AR RN AR R R AR RN N

Fujishige-Wolfe Min-Norm algorithm: Geometric Example

¢ 0 (x0)

(Z)P2

Q=P= {pl,pg,pg}- Line 14: S =y = minwéconv@ﬂ[m*,xo] Hx - I'OHZ
where zg is 0 and x* is R here. Thus, y lies on the boundary of conv Q).
Note, ||ly|ly < [|z*||, since z* € conv @, ||zo|ly < [|z*]|,. Line 15: Delete p;
from @ since it is not on the face where S lies. QQ = {p2,p3} after Line 15.
Note, we still have y = S € conv () for the updated). Line 16: x* + y,
hence we again have |z*[|;, = [[Zhewlls < [[254ll5 strictly.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F58/82 (pg.65/91)

Min-Norm Point Algorithm
(HAREERE AR RN AR R R AR RN N

Fujishige-Wolfe Min-Norm algorithm: Geometric Example

Q) = {p2,p3}, and so xg = T computed in Line 9 is the min-norm point in
aff). We also have zg € conv @) in Line 10 so we assign z* < zq in Line
11 and break.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F58/82 (pg.66,/91)

Min-Norm Point Algorithm
(HAREERE AR RN AR R R AR RN N

Fujishige-Wolfe Min-Norm algorithm: Geometric Example

(z)P2

H(T) separates P from the origin in Line 4, and therefore is a supporting
hyperplane, and therefore x* is the min-norm point in conv P, so we return
with x*.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F58/82 (pg.67/91)

Min-Norm Point Algorithm
(AR AR RN AR R RR RN N

Condition for Min-Norm Point

Theorem 16.6.2

P =A{p1,p2,....,pm}, x* € conv P is the min. norm point in conv P iff
piTa* > ||z*|3 Vi=1,---,m. (16.77)

|

Proof
@ Assume x* is the min-norm point, let y € conv P, and 0 < 0 < 1.
e Then z £ 2* + 0(y — 2*) = (1 — §)2* + Hy € conv P, and
I2115 = ll=* + 6(y — =*)I13 (16.78)
= |l&* |3 + 20(z* Ty — 2*T2*) + 6% ||ly — |3 (16.79)

o It is possible for ||z]|3 < [|z*||5 for small 6, unless z*Ty > z*Tz* for all
y € conv P = Equation (16.77).

e Conversely, given Eq (16.77), and given that y = Z)\ipi € conv P,

2:&mur>§:kx Ty* (16.80)

implying that ||z||3 > ||x I3 in Equatlon 16.79 for arbitrary z € conv P.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F59/82 (pg.68/91)

Min-Norm Point Algorithm
(AR RN AR AR RN

The set () is always affinely independent

Lemma 16.6.3

The set () in the MN Algorithm is always affinely independent.

Proof.
@ (Q is of course affinely independent when there is at most one point in it
(e.g., after Line 2).

@ After the initialization, it changes only by deletion of points, or adding a
single point. Deletion does not change the independence.

|

@ Before adding z at Line 7, we know z* is the minimum norm point in
aff @) (since we break only at Line 11).

@ Therefore, z* is normal to aff @), which implies aff @ C H(z*).
@ Since & ¢ H(x*) chosen at Line 6, we have & ¢ aff).
e .. update QU {z} at Line 7 is affinely independent as long as @ is. O

v

Thus, by Lemma 16.6.3, we have for any = € aff @ such that z =), w;g;
with > w; = 1, the weights w; are uniquely determined.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F60/82 (pg.69/91)

Min-Norm Point Algorithm
(AR AR RN R R AR RN

Minimum Norm in an affine set

@ Line 9 of the algorithm requires g < mingcaf g |||,

@ When (@ is affinely independent, this is relatively easy.

@ Let () also represent the n x £ matrix with points as columns ¢ €). We
get the following, solvable with matrix inversion/linear solver:

minimize |z]5 = wTQTQuw (16.81)
subject to 1Tw =1 (16.82)

@ Note, this also solves Line 10, since feasibility requires) . w; = 1, we need
only check w > 0 to ensure zp =), w;q; € conv Q).

@ In fact, a feature of the algorithm (in Wolfe's 1976 paper) is that we keep
the convex coefficients {w;}, where x* =" \;p; of * and from this
vector. We also keep v such that g =), v;¢; for points ¢; € @, from
Line 9.

Given w and v, we can also easily solve Lines 14 and 15 (see “Step 3" on
page 133 of Wolfe-1976, which also defines numerical tolerances).

@ We have yet to see how to efficiently solve Lines 4 and 6, however.
Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F61/82 (pg.70/91)

Min-Norm Point Algorithm
(AR AR R ARRAE AR R AR RN

MN Algorithm finds the MN point in finite time.

Theorem 16.6.4

The MN Algorithm finds the minimum norm point in conv P after a finite
number of iterations of the major loop.

Proof.
@ In minor loop, we always have z* € conv), since whenever @ is
modified, x* is updated as well (Line 16) such that the updated z*
remains in new conv ().

@ Hence, every time x* is updated (in minor loop), its norm never
increases i.e., before Line 11, ||zo||y < ||*||, since z* € aff @ and
xo = Mingeag g ||z]|5. Similarly, before Line 16, ||y||, < ||z*||5, since
invariant z* € conv) but while zy € aff @, we have zy ¢ conv @), and
I2olly < ll2* I

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F62/82 (pg.71/91)

Min-Norm Point Algorithm
(AR AR R ARRA R RN AR RN

MN Algorithm finds the MN point in finite time.

... proof of Theorem 16.6.4 continued.

@ Moreover, there can be no more iterations within a minor loop than
the dimension of conv) for the initial () given to the minor loop
initially at Line 8 (dimension of conv @ is |Q| — 1 since @ is affinely
independent).

@ Each iteration of the minor loop removes at least one point from @ in
Line 15.

@ When @ reduces to a singleton, the minor loop always terminates.

@ Thus, the minor loop terminates in finite number of iterations, at most
dimension of Q).

@ In fact, total number of iterations of minor loop in entire algorithm is
at most number of points in P since we never add back in points to ()
that have been removed.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F63/82 (pg.72/91)

Min-Norm Point Algorithm
(AR AR AR AR R RN N

MN Algorithm finds the MN point in finite time.

... proof of Theorem 16.6.4 continued.

@ Each time @ is augmented with Z at Line 7, followed by updating x*
with xo at Line 11, (i.e., when the minor loop returns with only one
iteration), ||«*||, strictly decreases from what it was before.

@ To see this, consider x* + (& — 2*) where 0 < § < 1. Since both
Z,z* € conv @, we have z* + 0(Z — x*) € conv Q.

@ Therefore, we have ||z* + §(z — x*)||, > ||xol|5, which implies

o + 0z — ")} = 10”13 +20 (22 = [l0"[3) + 62 2 —
> ||zoll3 (16.83)

% is on the same side of H(x*) as the origin, i.e. (z*)'& < ||z*||3.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F64/82 (pg.73/91)

Min-Norm Point Algorithm
(AR AR R AR RRRE RRRR RN

MN Algorithm finds the MN point in finite time.

... proof of Theorem 16.6.4 continued.

@ Therefore, for sufficiently small 6, specifically for

2 (Jla*13 - =*)T2)

. 2
ch—w*llz

0 <

(16.84)

we have that ||z*[|3 > ||zol|3.

@ For a similar reason, we have ||z*||, strictly decreases each time @ is
updated at Line 7 and followed by updating z* with y at Line 16.

@ Therefore, in each iteration of major loop, ||z*||, strictly decreases,
and the MN Algorithm must terminate and it can only do so when the
optimal is found.

[l

v

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F65/82 (pg.74/91)

Min-Norm Point Algorithm
(AR AR R AR RRR R R RRRR N

Line: 6: Finding € P on the near side of H(z")

@ The “near” side means the side that contains the origin.

o Ideally, find & such that the reduction of ||z*||, is maximized to reduce
number of major iterations.

@ From Eqn. 16.83, reduction on norm is lower-bounded:
* * |2 * A~ A * |2
A = |23 — lzoll3 = 26 (llo*[5 — () T2) — 6?1z — 2|3 2 A
(16.85)

|2 —(z*)T &
@ When 0< 0 < 201 |||J2 (*”2))
r—x 2

lower bound, over 6, as follows:

, We can get the maximal value of the

2 ~
=[5 — (=*) "3

max A = - "
2(ll2* 13— (=*) T 2) & — z*|l;

l&—2* 13

(16.86)
0<6<

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F66/82 (pg.75/91)

Min-Norm Point Algorithm
(AR AR RN AR AR ARRR N

Line: 6: Finding £ € P on the near side of H(z")

@ To maximize lower bound of norm reduction at each major iteration,
want to find an Z such that the above lower bound (Equation 16.86) is
maximized.

@ That is, we want to find

*|[2 *\ T
T € argmax |z H2 &) e

- (16.87)
zeP H.T—.QS H2

to ensure that a large norm reduction is assured.

@ This problem, however, is at least as hard as the MN problem itself as
we have a quadratic term in the denominator.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F67/82 (pg.76/91)

Min-Norm Point Algorithm
(AR AR AR RN AR

Line: 6: Finding € P on the near side of H(z")

@ As a surrogate, we maximize numerator in Eqn. 16.87, i.e., find

& € argmax ||z*||3 — (z*) " & = argmin(z*) "z, (16.88)
zeP zeP

@ Intuitively, by solving the above, we find & such that it has the largest
distance to the hyperplane H(z*), and this is exactly the strategy used
in the Wolfe-1976 algorithm.

@ Also, solution & can be used to determine if hyperplane H(z*)
separates conv P from the origin (Line 4): if the point in P having
greatest distance to H(z*) is not on the side where origin lies, then
H (z*) separates conv P from the origin.

@ Mathematically, we terminate the algorithm if
(x*) "2 > [|l2*]3, (16.89)

where Z is the solution of Eq. 16.88.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F68/82 (pg.77/91)

Min-Norm Point Algorithm
(AR AR RN AR RRRRE RN

Line: 6: Finding £ € P on the near side of H(z")

@ In practice,the above optimality test might never hold numerically.
Hence, as suggested by Wolfe, we introduce a tolerance parameter
e > 0, and terminates the algorithm if

@)7é > [lo*; — emax o]} (16.90)

@ When conv P is a submodular base polytope (i.e., conv P = By for a
submodular function f), then the problem in Eqn 16.88 can be solved
efficiently by Edmonds’s greedy algorithm (even though there may be
an exponential number of extreme points).

@ Hence, Edmonds’s discovery is one of the main reasons that the MN
algorithm is applicable to submodular function minimization.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F69/82 (pg.78/91)

Min-Norm Point Algorithm
LErrrrrerrrrrrerrerrrrrrrrrrrimnd

SFM Summary (modified from S. lwata's slides)
General Submodular Function Minimization

:

Wolfe (1976)ivon Hohenbalken (1975) — | Fuiishige (1980/1991) Bach (2012/13)

minimum norm point gen. convex methods
algorithm

. Edmonds (1965/1970)
Grotschel, Lovasz, Schrijver (1981, 1988) ya

Bixby,Cunningham, Topkis (1984)

Ellipsoid Method

e
O(n’y log M) Cunningham (1985)
O(n’y logn) ~ AW O(n’y +n®)
Iwata, Fleischer, Fujishige (2000) Schrijver (2000)

/ !
Fleischer, Iwata (2000)
Iwata (2002) l

Fully Combinatorial
Iwata (2003) Orlin (2007)

O((n'y +n’)log M) \ /O(n5y+n6)

Iwata, Orlin (2009)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F70/82 (pg.79/91)

Min-Norm Point Algorithm
(AR AR R AR AR R RREY B

MN Algorithm Complexity

@ The currently fastest strongly polynomial combinatorial algorithm for
SFM achieves a running time of O(n°T + n%) (Orlin’09) where T is
the time for function evaluation, far from practical for large problem
instances.

@ Fujishige & Isotani report that MN algorithm is fast in practice, but
they use only a limited set of submodular functions.

@ Complexity of MN Algorithm is still an unsolved problem.
@ Obvious facts:
e each major iteration requires O(n) function oracle calls
o complexity of each major iteration could be at least O(n?) due to the
affine projection step (solving a linear system).
e Therefore, the complexity of each major iteration is

O(n® +n't?)
where each function oracle call requires O(n?) time.

@ Since the number of major iterations required is unknown, the
complexity of MN is also unknown.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F71/82 (pg.80/91)

Min-Norm Point Algorithm
Lerrrrrerrerrrrrrerrerrrrrerrernen

MN Algorithm Empirical Complexity

22

iteration
N
N

o o
3 3
) o
g g
¢ ¢
a10 S8 g
5 5 10 |
o T 14 T 14
£ £ g
o 8 o 12 : o 12
) o O(N"O) > 10 | b(N“) % > 10 O(Nza) %
g O(Nw.n A " ON33 —o 2 ' ! O(Nzn A
2 M - E M - 2 Lt M -
g 6 7 8 9 10 1 o} 6 7 8 9 10 11 & 6 7 8 9 10 11
= Log ground set size = Log ground set size = Log ground set size
(a) a=0.1 (b) a =02 (c)a=03
-
5
22 20 T 20
©
20 18 518
5

Log num. of major iteration
IS

Log num. of major iteration
IS

Log num. of major
®

10 10 10 &Nzg)]
8 ON'"®) —+—|
8 T
6 6 7 8 9 10 11 6 7 8 9 10 11
Log ground set size Log ground set size Log ground set size
(d)a=04 (&) a=05 () a=06
c « c
3 20 3 20 3
T 5 G 18
g 18 g 18 i
@ g 3 16
=T =T 4
3 14 414 u 14
g2 ! T 12 ¥ 12
“6‘ 10 2.6, “5 1o 2.5, % \8 10 2.1 %
g QN>) g N : 8 QN5 o)
g 8 O(N*") —+— g 8 O(N1) —+— £ omel —]
I M - EJ M - g g M -
2 6 7 8 9 10 11 2 6 7 8 9 10 11 g 6 7 8 9 10 11
- Log ground set size - Log ground set size = Log ground set size
(g) @=0.7 (h) a=0.8 () a=09

Figure: The number of major iteration for f(S) = —my(S) + 100 - (w; (N'(S)))*. The red lines are the linear interpolations of the worst case points, and the black
lines are the linear interpolations of the average case points. From Lin&Bilmes 2014 (unpublished)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F72/82 (pg.81/91)

Proof that min-norm gives optimal
Birrrrrnnn

Min-Norm Point and SFM

Theorem 16.7.1

Let y*, A_, and Ay be as given. Then y* is a maximizer of the |.h.s. of
Eqn. (??). Moreover, A_ is the unique minimal minimizer of f and Ay is
the unique maximal minimizer of f.

Proof.

o First note, since z* € By, we have 2*(E) = f(E), meaning sat(z*) = E.
Thus, we can consider any e € E within dep(z*, e).

|

@ Consider any pair (e, €’) with ¢’ € dep(z*,¢) and e € A_. Then
z*(e) <0, and Ja > 0 s.t. " +al. —aly € Py.

@ We have z*(E) = f(F) and z* is minimum in |12 sense. We have
(* + ale —ale) € Py, and in fact

(2" 4+ ale —aly)(E)=2"(E)+a—a= f(F) (16.91)

so z* + al, — aly € By also.

A

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F73/82 (pg.82/91)

Proof that min-norm gives optimal
TR

Min-Norm Point and SFM

... proof of Thm. 16.7.1 cont.
@ Then (z* + al. — aly)(E)
=z"(E\{e,e'}) + (a"(e) + a) + (27 (¢') — &) = f(E).

N g N g
-~

Thew(€) Thew(€)

@ Minimality of 2™ € By in |12 sense requires that, with such an o > 0,
2 2 2 2
(#7@) + ()" < (wrewl©)) + (Trewl))

e Given that e € A_, z*(e) < 0. Thus, if 2*(¢/) > 0, we could have
(z*(e) + a)? + (z* (/) — a)? < (2*(e))? + (z*(¢'))?, contradicting the
optimality of x*.

o If z*(¢/) = 0, we would have (z*(e) + a)? + (a)? < (z*(e))?, for any
0 < a < |z*(e)| (Exercise:), again contradicting the optimality of z*.

@ Thus, we must have x*(e’) < 0 (strict negativity).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F74/82 (pg.83/91)

Proof that min-norm gives optimal
LIRLLrrnn

Min-Norm Point and SFM

... proof of Thm. 16.7.1 cont.

@ Thus, for a pair (e, €') with ¢’ € dep(z*,e) and e € A_, we have
z(e’) < 0 and hence ¢’ € A_.

@ Hence, Ve € A_, we have dep(z*,e) C A_.

@ A very similar argument can show that, Ve € Ay, we have
dep(z*,e) C Ap.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F75/82 (pg.84/91)

Proof that min-norm gives optimal
Lererrrned

Min-Norm Point and SFM

... proof of Thm. 16.7.1 cont.

@ dep(z*,e) is minimal tight set containing e, meaning

Therefore, we have Ucc 4 dep(z*,e) = A_ and Ueec g, dep(z*,e) = Ay
le., {dep(z*,e)} c4_is cover for A_, asis {dep(z*,e)}, 4, for Ao.

x*(dep(z*,e)) = f(dep(z*,e)), and since tight sets are closed under
union, we have that A_ and Ay are also tight, meaning:

2*(A_) = f(A) (16.92)

2*(Ao) = f(Ao) (16.93)

z*(A-) =z (Ao) = y"(E) = y*(Ao) + y*(E \ Ao) (16.94)
T

and therefore, all together we have

F(AZ) = f(Ao) = a*(A-) = 2*(4o) = y*(E) (16.95)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F76/82 (pg.85/91)

Proof that min-norm gives optimal
(NENE RN

Min-Norm Point and SFM

... proof of Thm. 16.7.1 cont.

Now, y* is feasible for the I.h.s. of Eqn. (??). This follows since, we
have y* = 2* A0 <0, and since * € By C P, and y* < z* and Py is
down-closed, we have that y* € P.

Also, for any y € Py with y < 0 and for any X C FE, we have

y(B) <y(X) < f(X).

Hence, we have found a feasible for I.h.s. of Eqn. (??), y* <0,

y* € Pt, so y*(E) < f(X) for all X.

So y*(F) < min {f(X)|X C V}.

Considering Eqn. (16.96), we have found sets A_ and Ay with
tightness in Eqn. (??), meaning y*(F) = f(A_-) = f(Ap).

Hence, y* is a maximizer of I.h.s. of Eqn. (??), and A_ and Ay are
minimizers of f.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F77/82 (pg.86/91)

Proof that min-norm gives optimal

Min-Norm Point and SFM

... proof of Thm. 16.7.1 cont.

o Now, for any X C A_, we have

F(X) = 2*(X) > a*(A-) = f(A-) (16.96)
o And for any X O A, we have

F(X) = 2*(X) > 2*(Ap) = f(Ao) (16.97)

@ Hence, A_ must be the unique minimal minimizer of f, and Ay is the
unique maximal minimizer of f.

[

v

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F78/82 (pg.87/91)

Proof that min-norm gives optimal
LErrrimnnd

Min-Norm Point and SFM

@ So, if we have a procedure to compute the min-norm point
computation, we can solve SFM.

@ Nice thing about previous proof is that it uses both expressions for dep
for different purposes.

@ This was discovered by Fujishige (in fact the proof above is an
expanded version of the one found in the book).

@ An algorithm (by F. Wolfe) can find this min-norm point, essentially
an active-set procedure for quadratic programming. It uses Edmonds'’s
greedy algorithm to make it efficient.

@ This is currently the best practical algorithm for general purpose
submodular function minimization.

@ But its underlying lower-bound complexity is unknown, although in
practice its estimated empirical complexity runs anywhere from O(n?)
to O(n*?) or so (see Jegelka, Lin, Bilmes (NIPS 2011)).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F79/82 (pg.88/91)

Proof that min-norm gives optimal
LErrrrrmed

Min-norm point and other minimizers of f

@ Recall, that the set of minimizers of f forms a lattice.
@ In fact, with * the min-norm point, and A_ and A as defined above,
we have the following theorem:
Theorem 16.7.2

Let A C E be any minimizer of submodular f, and let x* be the
minimum-norm point. Then A has the form:

A=A_uU | J dep(z*,a) (16.98)
a€Am

for some set A, C Ao\ A_.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F80/82 (pg.89/91)

Proof that min-norm gives optimal
Lerrrrrnn

Min-norm point and other minimizers of f

proof of Thm. 16.7.2.

@ If A is a minimizer, then A_ C A C Ay, and f(A) = y*(E) is the
minimum valuation of f.

e But z* € P, so 2*(A) < f(A) and f(A) = 2*(A-) < x*(A) (or
alternatively, just note that *(A4p \ 4) = 0).

@ Hence, 2*(A) = z*(A_) = f(A) so that A is also a tight set for z*.

@ Forany a € A, Ais a tight set containing a, and dep(z*, a) is the
minimal tight containing a.

@ Hence, for any a € A, dep(z*,a) C A.
@ This means that | J,. 4 dep(z*,a) = A.
Since A_ C A C Ay, then JA,, C A\ A_ such that
A= U dep(z*,a) U U dep(z*,a) = A_ U U dep(z*, a)

a€A_ a€Am a€Am,

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F81/82 (pg.90/91)

Proof that min-norm gives optimal
Lerrerreen

On a unique minimizer f

o Note that if f(e|]A) >0,VAC FE and e € E '\ A, then we have

A_ = Ap (there is one unique minimizer).
@ On the other hand, if A_ = Ay, it does not imply f(e|A) > 0 for all
ACE\{e}.

o If A_ = Ay then certainly f(e|Ag) >0 fore e E\ Ap and
—f(elAo \ {e}) > 0 for all e € Ay.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 16 - May 25th, 2016 F82/82 (pg.91/91)

	Logistics & Review
	Logistics
	Review

	Current Lecture
	Closure/Sat
	Fund. Circuit/Dep
	Min-Norm Point and SFM
	Min-Norm Point Algorithm
	Proof that min-norm gives optimal

