Submodular Functions, Optimization,

and Applications to Machine Learning
— Spring Quarter, Lecture 15 —

http://wuw.ee.washington.edu/people/faculty/bilmes/classes/ee596b_spring 2016/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes

May 23rd, 2016

M f(A) ()2(AUB)+f(AﬁB)
e 00 @ ®

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F1/77 (pg.1/87)

Logistics
{ N

Cumulative Outstanding Reading

@ Read chapters 2 and 3 from Fujishige's book.
@ Read chapter 1 from Fujishige's book.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F2/77 (pg.2/87)

http://www.ee.washington.edu/people/faculty/bilmes/classes/ee596b_spring_2016/
http://melodi.ee.washington.edu/~bilmes

Logistics
10

Announcements, Assignments, and Reminders

@ Homework 4, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Wednesday (5/25) at 11:55pm.

Homework 3, available at our assignment dropbox

(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (5/2) at 11:55pm.

Homework 2, available at our assignment dropbox

(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (4/18) at 11:55pm.
@ Homework 1, available at our assignment dropbox

(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Friday (4/8) at 11:55pm.

Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google

hangout (set up meeting via our our discussion board (https:
//canvas.uw.edu/courses/1039754/discussion_topics)).

Prof. Jeff Bilmes

Logistics
(MN]

EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016

Class Road Map - IT-I

@ L1(3/28): Motivation, Applications, &
Basic Definitions

@ L2(3/30): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).

@ L3(4/4): Info theory exs, more apps,
definitions, graph/combinatorial examples,
matrix rank example, visualization

@ L4(4/6): Graph and Combinatorial
Examples, matrix rank, Venn diagrams,
examples of proofs of submodularity, some
useful properties

@ L5(4/11): Examples & Properties, Other
Defs., Independence

@ L6(4/13): Independence, Matroids,
Matroid Examples, matroid rank is
submodular

@ L7(4/18): Matroid Rank, More on
Partition Matroid, System of Distinct
Reps, Transversals, Transversal Matroid,

@ L8(4/20): Transversals, Matroid and
representation, Dual Matroids,

@ L9(4/25): Dual Matroids, Properties,
Combinatorial Geometries, Matroid and
Greedy

@ L10(4/27): Matroid and Greedy,
Polyhedra, Matroid Polytopes,

°

L11(5/2): From Matroids to
Polymatroids, Polymatroids

L12(5/4): Polymatroids, Polymatroids
and Greedy

L13(5/9): Polymatroids and Greedy;
Possible Polytopes; Extreme Points;
Polymatroids, Greedy, and Cardinality
Constrained Maximization

L14(5/11): Cardinality Constrained
Maximization; Curvature; Submodular
Max w. Other Constraints

L15(5/16): Submodular Max w. Other
Constraints, Most Violated <, Matroids
cont., Closure/Sat,

L16(5/18): Closure/Sat, Fund.
Circuit/Dep, Min-Norm Point and SFM,
Min-Norm Point Algorithm, Proof that
min-norm gives optimal.

L17(5/23):

L18(5/25):

L19(6/1):

L20(6/6): Final Presentations
maximization.

Finals Week: June 6th-10th, 2016.
EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016

Prof. Jeff Bilmes

F3/77 (pg.3/87)

F4/77 (pg.4/87)

https://canvas.uw.edu/courses/1039754/assignments
https://canvas.uw.edu/courses/1039754/assignments
https://canvas.uw.edu/courses/1039754/assignments
https://canvas.uw.edu/courses/1039754/assignments
https://canvas.uw.edu/courses/1039754/discussion_topics
https://canvas.uw.edu/courses/1039754/discussion_topics

Review
e

The Greedy Algorithm: 1 — 1/e intuition.

o At step ¢ < k, greedy chooses v; to maximize f(v|.S;).
@ Let S* be optimal solution (of size k) and OPT = f(S*). By

submodularity, we will show:

S0 € V\ Si: (0lS0) = f(Si+0]S) > T(OPT— f(S)) (15.)
P — 1 | quation %) will show

— 7 ((1 1/ /‘f% at Eqlih @M@?I} e
N OPT — f(z+1)
< (1—-1/k)(OPT — £(5;))
o = OPT — f(Sk)
TN < (1-1/k)*ORT
~e__ <1/cOPT |

[ERRY = . OPTATZET={£(Sk)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016. F5/77 (pg.5/87)

Review
IR

Priority Queue

@ Use a priority queue) as a data structure: operations include:
o Insert an item (v,) into queue, with v € V and a € R.

INSERT(Q, (v, @)) (15.14)
e Pop the item (v, @) with maximum value « off the queue.

(v,) + POP(Q) (15.15)
e Query the value of the max item in the queue

MAX(Q) € R (15.16)

@ On next slide, we call a popped item “fresh” if the value (v,) popped has
the correct value a = f(v|S;). Use extra "bit” to store this info

@ If a popped item is fresh, it must be the maximum — this can happen if,
at given iteration, v was first popped and neither fresh nor maximum so
placed back in the queue, and it then percolates back to the top at which
point it is fresh — thereby avoid extra queue check.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F6/77 (pg.6/87)

Review
LIRLLnd

Minoux's Accelerated Greedy Algorithm Submodular Max

Algorithm 3: Minoux’s Accelerated Greedy Algorithm

1 Set Sp <+ 0 ;¢ <+ 0 ; Initialize priority queue Q :
2 for v € F do
3 | INSERT(Q, f(v))

4 repeat

5 (v,) + POP(Q) ;

6 if a not “fresh” then

7 L recompute a < f(v|S5;)

8 if (popped a in line 5 was “fresh”) OR (o > MAX(Q)) then
9 Set Siy1 + S; U {U} X

4= 1 -

11 else

12 | INSERT(Q, (v,)

13 until i = |E)|;

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F7/77 (pg.7/87)

Review
INEE RN

(Minimum) Submodular Set Cover

@ Given polymatroid f, goal is to find a covering set of minimum cost:

S* € argmin |S| such that f(S5) > « (15.14)
SCV

where « is a “cover”’ requirement.

@ Normally take o = f(V') but defining f/(A) = min {f(A), a} we can
take any . Hence, we have equivalent formulation:

S* € argmin | S| such that f/(S) > f'(V) (15.15)
Scv

@ Note that this immediately generalizes standard set cover, in which
case f(A) is the cardinality of the union of sets indexed by A.

@ Greedy Algorithm: Pick the first chain item S; chosen by
aforementioned greedy algorithm such that f(S;) > a and output that
as solution.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F8/77 (pg.8/87)

Review
INEEN RRN

(Minimum) Submodular Set Cover: Approximation

Analysis

@ For integer valued f, this greedy algorithm an O(log(maxscy f({s})))
approximation. Let S* be optimal, and S® be greedy solution, then

|5¢| < 57| H (max f({s})) = |57|O(log.(max f({s}))) ~ (15.14)

where H is the harmonic function, i.e., H(d) = Z?Zl(l/i).

e If f is not integral value, then bounds we get are of the form:

156 < |S |(1+1oge f(v)_f(ST_l)) (15.15)

wehre St is the final greedy solution that occurs at step T.

@ Set cover is hard to approximate with a factor better than
(1 — €) log o, where « is the desired cover constraint.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F9/77 (pg.9/87)

Review
LErrrnnd

Curvature of a Submodular function

@ By submodularity, total curvature can be computed in either form:
s.ig¢s:1(10)#0 f(j10) sfGloyzo f(510)

Note: Matroid rank is either modular ¢ = 0 or maximally curved ¢ =1
— hence, matroid rank can have only the extreme points of curvature,
namely 0 or 1.

Polymatroid functions are, in this sense, more nuanced, in that they
allow non-extreme curvature, with ¢ € [0, 1].

It will be remembered the notion of “partial dependence” within
polymatroid functions.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F10/77 (pg.10/87)

Review
INEENEE N

Curvature and approximation

@ Curvature limitation can help the greedy algorithm in terms of
approximation bounds.

e Conforti & Cornuéjols showed that greedy gives a 1/(1 + ¢)
approximation to max { f(5) : S € Z} when f has total curvature c.

@ Hence, greedy subject to matroid constraint is a max(1/(1 4 ¢),1/2)
approximation algorithm, and if ¢ < 1 then it is better than 1/2 (e.g.,
with ¢ = 1/4 then we have a 0.8 algorithm).

1 T

0.95F

0.9

o

©

o
T

For k-uniform matroid

® (i.e., k-cardinality con-
straints), then approxima-
tion factor becomes
c(1—e)

C

approximation bound
o
'\‘ o
a1 [
T

1-1/e

o
3
T

o

o2}

@
T

0.2 0.4 0.6 0.8 1
rvature

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F11/77 (pg.11/87)

o

Review
Lerrernen

Greedy over multiple matroids

@ Obvious heuristic is to use the greedy step but always stay feasible.
@ l.e., Starting with Sy = (), we repeat the following greedy step

Sit1=S;U argmax f(S; U{v}) (15.17)
UEV\SZ' 8 Si—l—vEﬂ?:l Z;

@ That is, we keep choosing next whatever feasible element looks best.
@ This algorithm is simple and also has a guarantee

Theorem 15.2.2

Given a polymatroid function f, and set of matroids {M; = (E,Z;) ?:1!

the above greedy algorithm returns sets S; such that for each i we have

f(S;) >]ﬁ Max|s|<; Se(F_, T; f(S), assuming such sets exists.

@ For one matroid, we have a 1/2 approximation.

@ Very easy algorithm, Minoux trick still possible, while addresses
multiple matroid constraints — but the bound is not that good when
there are many matroids.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F12/77 (pg.12/87)

Submodular Max w. Other Constraints
[ERRERERERARRRAR RN RN

Greedy over multiple matroids: Generalized Bipartite

Matching

o Generalized bipartite matching (i.e., max bipartite matching with
submodular costs on the edges). Use two partition matroids (as
mentioned earlier in class)

@ Useful in natural language processing: Ex. Computer language
translation, find an alignment between two language strings.

e Consider bipartite graph G = (E, F, V') where E and F are the
left /right set of nodes, respectively, and V' is the set of edges.

@ F corresponds to, say, an English language sentence and F
corresponds to a French language sentence — goal is to form a
matching (an alignment) between the two.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F13/77 (pg.13/87)

Submodular Max w. Other Constraints
(HARRAREERERRE RN R

Greedy over > 1 matroids: Multiple Language Alignment

o Consider English string and French string, set up as a bipartite graph.

| have ... as an example of public ownership

je le ai ... comme exemple de propriété publique

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F14/77 (pg.14/87)

Submodular Max w. Other Constraints
(HARRAREERERRE RN R

Greedy over > 1 matroids: Multiple Language Alignment

@ One possible alignment, a matching, with score as sum of edge
weights.

| have ... as an example of public ownership

VAL A

je le ai ... comme exemple de propriété publique

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F14/77 (pg.15/87)

Submodular Max w. Other Constraints
(HARRAREERERRE RN R

Greedy over > 1 matroids: Multiple Language Alignment

@ Edges incident to English words constitute an edge partition

| have ... as an example of public ownership

je le ai ...
@ The two edge partitions can be used to set up two 1-partition matroids
on the edges.

@ For each matroid, a set of edges is independent only if the set
intersects each partition block no more than one time.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F14/77 (pg.16/87)

Submodular Max w. Other Constraints
(HARRAREERERRE RN R

Greedy over > 1 matroids: Multiple Language Alignment

o Edges incident to French words constitute an edge partition

je le ai ... comme exemple de propriété publique

@ The two edge partitions can be used to set up two 1-partition matroids
on the edges.

@ For each matroid, a set of edges is independent only if the set
intersects each partition block no more than one time.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F14/77 (pg.17/87)

Submodular Max w. Other Constraints
(NN AREREERERRRE RN R

Greedy over > 1 matroids: Multiple Language Alignment

@ Typical to use bipartite matching to find an alignment between the two
language strings.

@ As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.

@ We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:

Fertility at most 1
. the ... of public ownership . . . the ... of public ownership

.. le ... de propriété publique ... le ... de propriété publique

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F15/77 (pg.18/87)

Submodular Max w. Other Constraints
(NN AREREERERRRE RN R

Greedy over > 1 matroids: Multiple Language Alignment

@ Typical to use bipartite matching to find an alignment between the two
language strings.

@ As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.

@ We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:

Fertility at most 2
.. . the ... of public ownership . . . the ... of public ownership

.. le ... de propriété publique ... le ... de propriété publique

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F15/77 (pg.19/87)

Submodular Max w. Other Constraints
(R RRREERERRRE RN R

Greedy over > 1 matroids: Multiple Language Alignment

@ Generalizing further, each block of edges in each partition matroid can
have its own “fertility” limit:
I={XCV: | XNnVj|<kjforalli=1,... ¢}

@ Maximizing submodular function subject to multiple matroid
constraints addresses this problem.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F16/77 (pg.20/87)

Submodular Max w. Other Constraints
[HERE AR RERERE RN R

Greedy over multiple matroids: Submodular Welfare

@ Submodular Welfare Maximization: Consider E a set of m goods to be
distributed /partitioned among n people (“players”).

o Each players has a submodular “valuation” function, g; : 2 — R,
that measures how “desirable” or “valuable” a given subset A C E of
goods are to that player.

@ Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.

@ Goal of submodular welfare: Partition the goods
EF=Fi UFEy;U---UE, into n blocks in order to maximize the
submodular social welfare, measured as:

n
submodular-social-welfare(E1, Es, ..., E,) = ZgZ(EZ) (15.1)
i=1

@ We can solve this via submodular maximization subject to multiple
matroid independence constraints as we next describe . ..

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F17/77 (pg.21/87)

Submodular Max w. Other Constraints
[HEEEE RN RERE RN R

Submodular Welfare: Submodular Max over matroid
partition

o Create new ground set E’ as disjoint union of n copies of the ground
set. l.e.,

F'=FWEWY---WE (15.2)

nx

o Let E() C E’ be the ith block of E'.

@ For any e € E, the corresponding element in E() is called (e,i) € E®
(each original element is tagged by integer).

@ For e € F, define E, = {(¢/,i) € E' : ¢/ = ¢}.

@ Hence, {E.} .y is a partition of E’, each block of the partition for
one of the original elements in F.

@ Create a 1-partition matroid M = (E’,Z) where

I={SCFE :VeeFE,|SNE]|<1} (15.3)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F18/77 (pg.22/87)

Submodular Max w. Other Constraints
[HEREEE ARRERERE RN R

Submodular Welfare: Submodular Max over matroid

partition

@ Hence, S is independent in matroid M = (E’,I) if S uses each
original element no more than once.

o Create submodular function f’: 25" — R, with
F1(8) = Y, (SN EW),
@ Submodular welfare maximization becomes matroid constrained

submodular max max {f'(S) : S € I}, so greedy algorithm gives a 1/2
approximation.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F19/77 (pg.23/87)

Submodular Max w. Other Constraints
[HERNARE AR RN R

Submodular Social Welfare

Have n = 6 people (who don't
like to share) and |E| =m =7

pieces of sushi. E.g., e €

@ might be e = "salmon roll”.
= @ Goal: distribute sushi to people
Cﬁ.ﬂ\;‘-/j - . -

to maximize social welfare.
‘* @ Ground set disjoint union

FyFYEWEWEWE.

@ Partition matroid partitions:
& E., UE,UE.,,UE.,, UE, U
%ﬁg @ independent allocation
€55 @ non-independent allocation

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F20/77 (pg.24/87)

Submodular Max w. Other Constraints
[HERNARE AR RN R

Submodular Social Welfare

LALEEA

C— o
&\
£ °

Prof. Jeff Bilmes

Submodular Max w. Other Constraints
[HERNARE AR RN R

Submodular Social Welfare

Have n = 6 people (who don't
like to share) and |E| =m =7
pieces of sushi. E.g., e € F
might be e = "salmon roll”.

Goal: distribute sushi to people
to maximize social welfare.

Ground set disjoint union
FFYEWEWEWE.

Partition matroid partitions:
E, UE,UE_ UE,UE, U
8y L) 5z

independent allocation

non-independent allocation

EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F20/77 (pg.25/87)

Have n = 6 people (who don't
like to share) and |E| =m =7
pieces of sushi. E.g., e €
might be e = "salmon roll”.

Goal: distribute sushi to people
to maximize social welfare.

Ground set disjoint union
FEFYJEWEWEWE.

Partition matroid partitions:
E,UE,UE_ UE.,UE,_ U
8 L) 55

independent allocation

non-independent allocation

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F20/77 (pg.26/87)

Submodular Max w. Other Constraints
[HERNARE AR RN R

Submodular Social Welfare

LALLEA

Prof. Jeff Bilmes

Submodular Max w. Other Constraints
[HERNARE AR RN R

Submodular Social Welfare

Have n = 6 people (who don't
like to share) and |E| =m =7
pieces of sushi. E.g., e € F
might be e = "salmon roll”.

Goal: distribute sushi to people
to maximize social welfare.

Ground set disjoint union
FFYEWEWEWE.

Partition matroid partitions:
E, UE,UE_ UE,UE, U
8y L) 5z

independent allocation

non-independent allocation

EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F20/77 (pg.27/87)

Have n = 6 people (who don't
like to share) and |E| =m =7
pieces of sushi. E.g., e €
might be e = "salmon roll”.

Goal: distribute sushi to people
to maximize social welfare.

Ground set disjoint union
FEFYJEWEWEWE.

Partition matroid partitions:
E,UE,UE_ UE.,UE,_ U
I8t | 15

independent allocation

non-independent allocation

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F20/77 (pg.28/87)

Submodular Max w. Other Constraints
[HEREERNE RN R R

Monotone Submodular over Knapsack Constraint

@ The constraint |A| < k is a simple cardinality constraint.
@ Consider a non-negative integral modular function c: £ — Z. .

@ A knapsack constraint would be of the form ¢(A) < b where B is some
integer budget that must not be exceeded. That is
max {f(A) : A C V,c(A) < b}.

@ Important: A knapsack constraint yields an independence system
(down closed) but it is not a matroid!

@ c(e) may be seen as the cost of item e and if ¢(e) = 1 for all e, then
we recover the cardinality constraint we saw earlier.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F21/77 (pg.29/87)

Submodular Max w. Other Constraints
[HEREERNE RN R R

Monotone Submodular over Knapsack Constraint

@ Greedy can be seen as choosing the best gain: Starting with So = 0,
we repeat the following greedy step

Sit1 = Si U< argmax(f(S;U {v}) = £(Si) (15.4)
veV\S;

the gain is f({v}|S;) = f(Si +v) — f(S;), so greedy just chooses next

the currently unselected element with greatest gain.

@ Core idea in knapsack case: Greedy can be extended to choose next
whatever looks cost-normalized best, i.e., Starting some initial set Sy,
we repeat the following cost-normalized greedy step

Sl = 5, U {argmax F(5i U iv}) = £(50) } (15.5)

veV\S; C(Q})

which we repeat until ¢(S;+1) > b and then take \S; as the solution.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F21/77 (pg.30/87)

Submodular Max w. Other Constraints
[HERNEREER AR RRR R

A Knapsack Constraint

There are a number of ways of getting approximation bounds using
this strategy.

If we run the normalized greedy procedure starting with Sy = (), and
compare the solution found with the max of the singletons

max,cy f({v}), choosing the max, then we get a (1 — e~1/2) = 0.39
approximation, in O(n?) time (Minoux trick also possible for further
speed)

Partial enumeration: On the other hand, we can get a

(1 — e~ 1) ~ 0.63 approximation in O(n®) time if we run the above
procedure starting from all sets of cardinality three (so restart for all
So such that |Sp| = 3), and compare that with the best singleton and
pairwise solution.

Extending something similar to this to d simultaneous knapsack
constraints is possible as well.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F22/77 (pg.31/87)

Submodular Max w. Other Constraints
[HERNEREERY SRR RERERRRE

Local Search Algorithms

From J. Vondrak

Local search involves switching up to ¢ elements, as long as it provides
a (non-trivial) improvement; can iterate in several phases. Some
examples follow:

1/3 approximation to unconstrained non-monotone maximization
[Feige, Mirrokni, Vondrak, 2007]

1/(k +2+ % + &) approximation for non-monotone maximization
subject to k matroids [Lee, Mirrokni, Nagarajan, Sviridenko, 2009]

1/(k + d;) approximation for monotone submodular maximization
subject to k£ > 2 matroids [Lee, Sviridenko, Vondrak, 2010].

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F23/77 (pg.32/87)

Submodular Max w. Other Constraints
[HEREAREEREE AR R R

What About Non-monotone

@ Alternatively, we may wish to maximize non-monotone submodular
functions. This includes of course graph cuts, and this problem is
APX-hard, so maximizing non-monotone functions, even
unconstrainedly, is hard.

e If f is an arbitrary submodular function (so neither polymatroidal, nor
necessarily positive or negative), then verifying if the maximum of f is
positive or negative is already NP-hard.

@ Therefore, submodular function max in such case is inapproximable
unless P=NP (since any such procedure would give us the sign of the
max).

@ Thus, any approximation algorithm must be for unipolar submodular
functions. E.g., non-negative but otherwise arbitrary submodular
functions.

@ We may get a (% — <) approximation for maximizing non-monotone
non-negative submodular functions, with most O(%n3 logn) function
calls using approximate local maxima.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F24/77 (pg.33/87)

Submodular Max w. Other Constraints
[HERRAREERER RN RRR R

Submodularity and local optima

@ Given any submodular function f, a set S C V is a local maximum of f
if f(S—v)<f(S)forallveSand f(S+wv)<f(S)forallveV\S

(i.e., local in a Hamming ball of radius 1).

@ The following interesting result is true for any submodular function:

Given a submodular function f, if S is a local maximum of f, and I C S or
I2 S, then f(I) < f(9).

@ ldea of proof: Given vy, vy € S, suppose f(S —v1) < f(5) and
f(S —wv2) < f(S). Submodularity requires
f(S —wvi)+ f(S —wv2) > f(S) + f(S — v1 — v2) which would be
impossible unless f(S —v; —v9) < f(.5).

e Similarly, given vi,vy ¢ S, and f(S +wv1) < f(S) and f(S + v2) < f(S).
Submodularity requires f(S +v1) + f(S +v2) > f(S) + f(S +v1 + v2)
which requires f(S + v1 + v2) < f(9).

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F25/77 (pg.34/87)

Submodular Max w. Other Constraints
[HERRAREERER RN RRR R

Submodularity and local optima

@ Given any submodular function f, a set S C V is a local maximum of f
if f(S—v)<f(S)forallveSand f(S+wv)<f(S)forallveV\S

(i.e., local in a Hamming ball of radius 1).

@ The following interesting result is true for any submodular function:

Given a submodular function f, if S is a local maximum of f, and I C S or
128, then f(I) < f(9).

@ In other words, once we have identified a local maximum, the two
intervals in the Boolean lattice [(}, S] and [S, V] can be ruled out as a
possible improvement over S.

@ Finding a local maximum is already hard (PLS-complete), but it is
possible to find an approximate local maximum relatively efficiently.

@ This is the approach that yields the (% — £) approximation algorithm.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F25/77 (pg.35/87)

Submodular Max w. Other Constraints
[HERNAREEREENE RN E

Linear time algorithm unconstrained non-monotone max

(]

Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.
Buchbinder, Feldman, Naor, Schwartz 2012. Recall [a]+ = max(a,0).

(]

Algorithm 4: Randomized Linear-time non-monotone submodular max

1Set L+ 0;U+V /* Lower L, upper U. Invariant: L C U */ ;
2 Order elements of V' = (v1,v9,...,v,) arbitrarily ;

3 fori« 0...|V|do

4 | a [f(oilD)]s; b [=fUIU\A{vi})]+

5 if a=b=0then p<+ 1/2;

6 ;

7 else p + a/(a+b);

8 :

9 if Flip of coin with Pr(heads) = p draws heads then

10 L L+ Lu{v};

11 Otherwise /* if the coin drew tails, an event with prob. 1 —p */
12 | U« U\{v}

13 return L (which is the same as U at this point)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F26/77 (pg.36/87)

Submodular Max w. Other Constraints
[HERNAREEREEERE FRRERRRE

Linear time algorithm unconstrained non-monotone max

@ Each “sweep” of the algorithm is O(n).

@ Running the algorithm 1x (with an arbitrary variable order) results in
a 1/3 approximation.

@ The 1/2 guarantee is in expected value (the expected solution has the
1/2 guarantee).

@ In practice, run it multiple times, each with a different random
permutation of the elements, and then take the cumulative best.

@ |t may be possible to choose the random order smartly to get better
results in practice.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F27/77 (pg.37/87)

Submodular Max w. Other Constraints
[HERNAREEREEERAEE RN E

More general still: multiple constraints different types

@ In the past several years, there has been a plethora of papers on
maximizing both monotone and non-monotone submodular functions
under various combinations of one or more knapsack and/or matroid
constraints.

@ The approximation quality is usually some function of the number of
matroids, and is often not a function of the number of knapsacks.

@ Often the computational costs of the algorithms are prohibitive (e.g.,
exponential in k) with large constants, so these algorithms might not
scale.

@ On the other hand, these algorithms offer deep and interesting intuition
into submodular functions, beyond what we have covered here.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F28/77 (pg.38/87)

Submodular Max w. Other Constraints
[HEREAREERERRRERE R RN E

Some results on submodular maximization

@ As we've seen, we can get 1 — 1/e for non-negative monotone
submodular (polymatroid) functions with greedy algorithm under
cardinality constraints, and this is tight.

@ For general matroid, greedy reduces to 1/2 approximation (as we've
seen).

@ We can recover 1 — 1/e approximation using the continuous greedy
algorithm on the multilinear extension and then using pipage rounding
to re-integerize the solution (see J. Vondrak's publications).

@ More general constraints are possible too, as we see on the next table
(for references, see Jan Vondrak’s publications
http://theory.stanford.edu/~jvondrak/).

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016

F29/77 (pg.39/87)

Submodular Max w. Other Constraints
[HERNAREERERERE RN AR E

Submodular Max Summary - 2012: From J. Vondrak

Monotone Maximization

knapsacks

Constraint Approximation | Hardness Technique
S| <k 1—1/e 1—-1/e greedy
matroid 1—-1/e 1 —1/e | multilinear ext.
O(1) knapsacks 1-1/e 1 —1/e | multilinear ext.
k matroids k+e k/logk local search
k matroids and O(1) .
knapsacks O(k) k/logk | multilinear ext.
Nonmonotone Maximization
Constraint Approximation | Hardness Technique
Unconstrained 1/2 1/2 combinatorial
matroid 1/e 0.48 multilinear ext.
O(1) knapsacks 1/e 0.49 multilinear ext.
k matroids k+O(1) k/logk local search
7 MRS el O10) O(k) k/logk | multilinear ext.

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016

F30/77 (pg.40/87)

http://theory.stanford.edu/~jvondrak/

Submodular Max w. Other Constraints
[HERNAREERERERE RN RRRE

Submodular Max and polyhedral approaches

@ We've spent much time discussing SFM and the polymatroidal
polytope, and in general polyhedral approaches for SFM.

@ Most of the approaches for submodular max have not used such an
approach, probably due to the difficulty in computing the “concave
extension” of a submodular function (the convex extension is easy,
namely the Lovdsz extension).

@ A paper by Chekuri, Vondrak, and Zenklusen (2011) make some
progress on this front using multilinear extensions.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F31/77 (pg.41/87)

Submodular Max w. Other Constraints
[HERNAREEREEERE RN RRE

Multilinear extension
Definition 15.3.2

For a set function f : 2V — R, define its multilinear extension
F:[0,1]V = R by

Pa)=Y £8) Lo T (- 2y) (156)

SCV i€S jeV\S

@ Note that F'(z) = Ef(Z) where & is a random binary vector over
{0, 1}V with elements independent w. probability x; for Z;.
@ While this is defined for any set function, we have:

Lemma 15.3.3

Let F:[0,1]V — R be multilinear extension of set function f : 2" — R,
then

e If f is monotone non-decreasing, then g—fi >0 forallicV,zc[0,1]V.

e If f is submodular, then af;ij <0 foralli,jinV, z €10,1]".

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F32/77 (pg.42/87)

Submodular Max w. Other Constraints
[HEREAREERERERERERENE AR

Multilinear extension

@ Moreover, we have

Lemma 15.3.4

Let F:[0,1]Y — R be multilinear extension of set function f : 2"V — R,
then

e If f is monotone non-decreasing, then F' is non-decreasing along any line of
direction d € RE¥ with d > 0

o If f is submodular, then F' is concave along any line of direction d > 0, and is
convex along any line of direction 1, — 1,, for any v,w € V.

v

@ Another connection between submodularity and convexity/concavity

@ but note, unlike the Lovasz extension, this function is neither.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F33/77 (pg.43/87)

Submodular Max w. Other Constraints
[HERNAREERERERE RN, B

Submodular Max and polyhedral approaches

@ Basic idea: Given a set of constraints Z, we form a polytope Pr such
that {1;: T € Z} C Py

e We find max,ecp, F'(x) where F(x) is the multi-linear extension of f,
to find a fractional solution x*

@ We then round x* to a point on the hypercube, thus giving us a
solution to the discrete problem.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F34/77 (pg.44/87)

Submodular Max w. Other Constraints
[HERRAREERERERERERARRES |

Submodular Max and polyhedral approaches

@ In the recent paper by Chekuri, Vondrak, and Zenklusen, they show:

@ 1) constant factor approximation algorithm for max { F'(x) : = € P} for
any down-monotone solvable polytope P and F' multilinear extension
of any non-negative submodular function.

@ 2) A randomized rounding (pipage rounding) scheme to obtain an
integer solution

@ 3) An optimal (1 — 1/e) instance of their rounding scheme that can be
used for a variety of interesting independence systems, including O(1)
knapsacks, & matroids and O(1) knapsacks, a k-matchoid and ¢ sparse
packing integer programs, and unsplittable flow in paths and trees.

o Also, Vondrak showed that this scheme achieves the (1 —e™¢)
curvature based bound for any matroid, which matches the bound we
had earlier for uniform matroids with standard greedy.

@ In general, one needs to do Monte-Carlo methods to estimate the
multilinear extension (so further approximations would apply).

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F35/77 (pg.45/87)

Most Violated <
[ARERNN]

Review from lecture 11

The next slide comes from lecture 11.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F36/77 (pg.46/87)

Most Violated <
(L ERERN

A polymatroid function’'s polyhedron is a polymatroid.

Theorem 15.4.1

Let f be a polymatroid function defined on subsets of E. For any x € RZ,
and any P}F—basis y* €]sz of x, the component sum of y* is

y*(F) = rank(x) = max (y(E) cy < z,y € P}k)
= min (z(A) + f(E\A) : ACE) (15.10)

As a consequence, Pj‘f is a polymatroid, since r.h.s. is constant w.r.t. y*.

v

Taking £\ B = supp(x) (so elements B are all zeros in x), and for b ¢ B
we make z(b) is big enough, the r.h.s. min has solution A* = B. We recover
submodular function from the polymatroid polyhedron via the following:

rank l1E\B = f(B) = max y(B):y € P/ (15.11)
(cme) { }

In fact, we will ultimately see a number of important consequences of this

theorem (other than just that P; is a polymatroid
Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F37/77 (pg.47/87)

Most Violated <
(NN RERN

Review from lecture 12

The next slide comes from lecture 12.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F38/77 (pg.48/87)

Most Violated <
[HER ERN

Matroid instance of Theorem ?7?

@ Considering Theorem 7?7, the matroid case is now a special case, where
we have that:

Corollary 15.4.2

We have that:

max {y(E) : y € Pind. set(M),y < z} = min{ry(A)+z(E\ A): AC E}
(15.30)

where r,s is the matroid rank function of some matroid.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F39/77 (pg.49/87)

Most Violated <
[HERE RN

Most violated inequality problem in matroid polytope case

o Consider
Pr={zeRF:5>0,2(A) <ryu(A),YAC E} (15.7)

@ Suppose we have any x € Rf such that z € P

@ Hence, there must be a set of W C 2V, each member of which
corresponds to a violated inequality, i.e., equations of the form
x(A) > ra(A) for AeW.

@ The most violated inequality when z is considered w.r.t. P." corresponds
to the set A that maximizes z(A) — rps(A), i.e., the most violated
inequality is valuated as:

max {z(A) —ry(A): A e W} =max{z(A) —ry(A): AC E} (15.8)

@ Since x is modular and z(E \ A) = z(E) — x(A), we can express this via a
min as in;:

min {ry(4) +z(E\ A): AC E} (15.9)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F40/77 (pg.50/87)

Most Violated <
[HERER N

Most violated inequality /polymatroid membership/SFM

@ Consider

={zeR¥ : 2 >0,2(4) < f(A),YAC E} (15.10)

@ Suppose we have any z € RE such that = & PJZF.

@ Hence, there must be a set of W C 2V, each member of which
corresponds to a violated inequality, i.e., equations of the form

xz(A) > rp(A) for A e W.
oX

_\P 2 P 2

P
o\

N

1 1

W = {{1}{1,2}} W= {{2},{1,2}}

1

W= {{1,2}}

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F41/77 (pg.51/87)

Most Violated <
Lrrrrnn

Most violated inequality /polymatroid membership/SFM

@ The most violated inequality when z is considered w.r.t. P
corresponds to the set A that maximizes x(A) — f(A), i.e., the most

violated inequality is valuated as:

max {z(A) — f(A) : Ae W} =max{z(A) — f(A): AC E} (15.11)

@ Since = is modular and z(F \ A) = z(F) — xz(A), we can express this

via a min as in;:

min {f(A) + 2(E\ A) : A C E} (15.12)

@ More importantly, min { f(A) +x(E\ A) : A C E} is a form of

submodular function minimization, namely

min { f(A) — 2(A) : A C E} for a submodular f and z € RY,
consisting of a difference of polymatroid and modular function (so
f — = is no longer necessarily monotone, nor positive).

@ We will ultimatley answer how general this form of SFM is.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F42/77 (pg.52/87)

Matroids cont.
[RRREAN!

Review from Lecture 6

The following three slides are review from lecture 6.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F43/77 (pg.53/87)

Matroids cont.
(L ARERN

Matroids, other definitions using matroid rank 7 : 2" — 7

Definition 15.5.3 (closed/flat/subspace)

A subset A C E is closed (equivalently, a flat or a subspace) of matroid M
if forallz € B\ A, r(AU{z}) =r(4) + 1.

Definition: A hyperplane is a flat of rank (M) — 1.

Definition 15.5.4 (closure)

Given A C F, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(A4)}.

Therefore, a closed set A has span(A) = A.

Definition 15.5.5 (circuit)

A subset A C FE is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if 7(A) < |A| and forany a € A, r(A\ {a}) = |A] - 1).

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F44/77 (pg.54/87)

Matroids cont.
(NN AR

Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is not
surprising that circuits can also characterize a matroid.

Theorem 15.5.3 (Matroid by circuits)

Let E be a set and C be a collection of subsets of E that satisfy the
following three properties:

@ (Cl):-DécC
Q (CQ) if C1,Cy € C and C7 C Cy, then C1 = Cs.

@ (C3): if C1,Cy € C with C1 # Cs, and e € Cy N Cy, then there exists
a Cs € C such that C3 C (C1 UCy) \ {e}.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F45/77 (pg.55/87)

Matroids cont.
(NEN RRN

Matroids by circuits

Several circuit definitions for matroids.

Theorem 15.5.3 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such that
no two sets in C are contained in each other. Then the following are
equivalent.

@ C is the collection of circuits of a matroid;
Q@ ifC,C"eC,andx e CNC’, then (CUC")\ {z} contains a set in C;
Q@ ifC,C"eC,andx e CNC’, andy € C\ C’, then (CUC")\ {z}

contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and
matrices, and spanning trees.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F46/77 (pg.56/87)

Matroids cont.
(NN RN

Fundamental circuits in matroids

Let I € Z(M), and e € E, then I U {e} contains at most one circuit in M.

@ Suppose, to the contrary, that there are two distinct circuits Cy, Cy
such that C; U Cy C T U {e}.

@ Then e € C1 Ny, and by (C2), there is a circuit C5 of M s.t.
C3 C(C1UCy) \{e} CI

@ This contradicts the independence of I.

In general, let C'(I,e) be the unique circuit associated with I U {e}
(commonly called the fundamental circuit in M w.r.t. I and e).

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F47/77 (pg.57/87)

Matroids cont.
(INRENE N

Matroids: The Fundamental Circuit

@ Define C'(1,e) be the unique circuit associated with I U {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).

o If e € span([/) \ I, then C(I,e) is well defined (I + e creates one
circuit).

o If eI, then I + e =1 doesn't create a circuit. In such cases, C'(1,e)
is not really defined.

@ In such cases, we define C'(I,e) = {e}, and we will soon see why.

o If e ¢ span(I), then C(I,e) = (), since no circuit is created in this case.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F48/77 (pg.58/87)

Matroids cont.
Lrrrenn

Union of matroid bases of a set

Lemma 15.5.2

Let B(D) be the set of bases of any set D. Then, given matroid
M = (E,I), and any loop-free (i.e., no dependent singleton elements) set
D C E, we have:

|J B=D. (15.13)
BeB(D)

| \

Proof.
o Define D' £ Upes(p). and suppose 3d € D such that d ¢ D".

@ Hence, VB € B(D) we have d ¢ B, and B + ¢ must contain a single
circuit for any B, namely C(B,d).

@ Then choose d’' € C(B,d) with d' # d.

@ Then B+ d — d' is independent size | B| subset of D and hence spans
D, and thus is a d-containing member of B(D), contradicting d ¢ D’.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F49/77 (pg.59/87)
—

Closure/Sat
Bl

The sat function = Polymatroid Closure

@ Thus, in a matroid, closure (span) of a set A are all items that A
spans (eq. that depend on A).

@ We wish to generalize closure to polymatroids.
o Consider x € Py for polymatroid function f.

@ Again, recall, tight sets are closed under union and intersection, and
therefore form a distributive lattice.

@ That is, we saw in Lecture 7 that for any A, B € D(x), we have that
AUB € D(x) and AN B € D(x), which can constitute a join and
meet.

@ Recall, for a given x € P, we have defined this tight family as

D(z) = {A: AC E,z(A) = f(A)} (15.14)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F50/77 (pg.60/87)

Closure/Sat
1l

The sat function = Polymatroid Closure

@ Now given x € P]?L:

D(z) = {A: AC E,z(A) = f(A)} (15.15)
= {A: f(A) — 2(A) =0} (15.16)

@ Since x € P]T and f is presumed to be polymatroid function, we see
f'(A) = f(A) — z(A) is a non-negative submodular function, and
D(x) are the zero-valued minimizers (if any) of f'(A).

@ The zero-valued minimizers of f’ are thus closed under union and
intersection.

@ In fact, this is true for all minimizers of a submodular function as
stated in the next theorem.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F51/77 (pg.61/87)

Closure/Sat
1Inl

Minimizers of a Submodular Function form a lattice

Theorem 15.6.1

For arbitrary submodular f, the minimizers are closed under union and
intersection. That is, let M = argminycp f(X) be the set of minimizers
of f. Let AABe M. Then AUB € M and ANB e M.

Proof.
Since A and B are minimizers, we have f(A) = f(B) < f(AN B) and
f(A) = f(B) < f(AUB).

By submodularity, we have

| \

f(A)+ f(B)> f(AUB)+ f(AN B) (15.17)

Hence, we must have f(A) = f(B) = f(AUB) = f(AN B). O

v

Thus, the minimizers of a submodular function form a lattice, and there is a
maximal and a minimal minimizer of every submodular function.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F52/77 (pg.62/87)

Closure/Sat
(NN]

The sat function = Polymatroid Closure

@ Matroid closure is generalized by the unique maximal element in D(z),
also called the polymatroid closure or sat (saturation function).

e For some x € Py, we have defined:

cl(z) € sat(z) < | J{A: A € D(z)} (15.18)
=|J{4: ACE,z(4) = f(A)} (15.19)
={e:e€ E,Va> 0,2+ al. ¢ Py} (15.20)

@ Hence, sat(z) is the maximal (zero-valued) minimizer of the
submodular function f,(A) = f(A) — z(A).

e Eq. (15.20) says that sat consists of any point x that is P saturated
(any additional positive movement, in that dimension, leaves Pf).
We'll revisit this in a few slides.

@ First, we see how sat generalizes matroid closure.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F53/77 (pg.63/87)

Closure/Sat
Bt

The sat function = Polymatroid Closure

o Consider matroid (F,Z) = (E,r), some I € Z. Then 1; € P, and

D(1r) ={A:1;(A) =r(A)} (15.21)
and
sat(17) = | J{A: AC E,AeD(1)} (15.22)
= J{4: AC E,1,(4) =r(A)} (15.23)
= J{4:ACE, |InA|=rA)} (15.24)

@ Notice that 17(A) = |[I N A| < |1].

@ Intuitively, consider an A D I € 7 that doesn't increase rank, meaning
r(A)=r(I). If r(A) =|INAl=r(INA), asin Eqn. (15.24), then A
is in I's span, so should get sat(1;) = span([).

@ We formalize this next.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F54/77 (pg.64/87)

Closure/Sat
IRrrrrrret

The sat function = Polymatroid Closure

Lemma 15.7.1 (Matroid sat : RE — 2% is the same as closure.)

For I € T, we have sat(17) = span([) (15.25)

v

@ For1;(I) = |I|=r(l),so I € D(1y) and I Csat(1;). Also,
I C span([).
@ Consider some b € span(/) \ I.
@ Then TU{b} € D(1;) since 1; (I U{b}) = |I| =r(IU{b}) =r(I).
@ Thus, b € sat(1y).
@ Therefore, sat(1;) 2 span([) .

A

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F55/77 (pg.65/87)

Closure/Sat
LIRELLrnnt

The sat function = Polymatroid Closure

... proof continued.

@ Now, consider b € sat(1y) \ I.

@ Choose any A € D(1;) with b€ A, thusb e A\ 1.
@ Then 1;(A) =|ANI|=r(A).

e Now r(A) = |ANI| < |I| =r(I).

°

°

Also, r(ANI)=|ANI|since ANIeZ.
Hence, r(ANI)=r(A)=r((ANI)U(A\I)) meaning
(A\I) Cspan(ANIT) C span([).

@ Since be A\ I, we get b € span(]).

@ Thus, sat(1;) C span([]) .

@ Hence [sat(1;) = span(/)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F56/77 (pg.66/87)

Closure/Sat
[NEE RRRARE

The sat function = Polymatroid Closure

@ Now, consider a matroid (E,r) and some C' C E with C' ¢ Z, and
consider 1. Is 1o € P.?7 No, it might not be a vertex, or even a
member, of P,.

@ span(-) operates on more than just independent sets, so span(C') is
perfectly sensible.

@ Note span(C') = span(B) where Z 3 B € B(C) is a base of C.

@ Then we have 15 <1, < Lspan(o)s and that 13 € P.. We can then
make the definition:

sat(1¢) £ sat(1p) for B € B(C) (15.26)

In which case, we also get sat(1¢) = span(C') (in general, could define
sat(y) = sat(P-basis(y))).
@ However, consider the following form

sat(lc) = | J{A: AC E,|ANC| =r(A)} (15.27)

Exercise: is span(C) = sat(1¢)? Prove or disprove it.
Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F57/77 (pg.67/87)

Closure/Sat
[NEEN RRERE

The sat function, span, and submodular function
minimization

@ Thus, for a matroid, sat(1;) is exactly the closure (or span) of I in the
matroid. l.e., for matroid (£, r), we have span(/) = sat(1p).

@ Recall, for x € Py and polymatroidal f, sat(z) is the maximal (by
inclusion) minimizer of f(A) — x(A), and thus in a matroid, span([) is
the maximal minimizer of the submodular function formed by
r(A4) —1,(4).

@ Submodular function minimization can solve “span” queries in a
matroid or “sat” queries in a polymatroid.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F58/77 (pg.68/87)

Closure/Sat
[NERRE RERE

sat, as tight polymatroidal elements

@ We are given an € P for submodular function f.
g f

@ Recall that for such an x, sat(z) is defined as
sat(z) = {4 : 2(4) = f(A)} (15.28)
@ We also have stated that sat(x) can be defined as:
sat(z) = {e :Va > 0,2+ al, ¢ PJT} (15.29)

@ We next show more formally that these are the same.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F59/77 (pg.69/87)

Closure/Sat
[NEEREE RN

sat, as tight polymatroidal elements

@ Lets start with one definition and derive the other.

sat(z) & {e :Va >0,z + al,. ¢ PJT} (15.30)

={e:Va>0,3Ast. (z+al.)(A) > f(A)} (15.31)
={e:Va>0,3A>es.t. (r+al.)(A) > f(A)} (15.32)

e this last bit follows since 1.(A) =1 <= e € A. Continuing, we get
sat(z) = {e:Va>0,dA>est. z(A)+a> f(A)} (15.33)

e given that x € P, meaning z(A) < f(A) for all A, we must have

sat(z) ={e:Va >0,d4A 3 es.t. z(A) = f(A)} (15.34)
={e:JdA>est z(A) = f(A)} (15.35)

@ So now, if A is any set such that z(A) = f(A), then we clearly have
Ve € A, e € sat(x), and therefore that sat(z) 2 A (15.36)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F60/77 (pg.70/87)

Closure/Sat
[NEERENE AR

sat, as tight polymatroidal elements

@ ...and therefore, with sat as defined in Eq. (?7),

sat(z) 2 | J{4: 2(4) = f(A)} (15.37)

@ On the other hand, for any e € sat(z) defined as in Eq. (15.35), since
e is itself a member of a tight set, there is a set A 3 e such that

z(A) = f(A), giving
sat(z) € | J{A4: z(4) = f(A)} (15.38)

@ Therefore, the two definitions of sat are identical.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F61/77 (pg.71/87)

Closure/Sat
Lrrrrrrrmd

Saturation Capacity

@ Another useful concept is saturation capacity which we develop next.
@ For x € P, and e € E, consider finding

max {a:a € R,z + al, € Py} (15.39)
@ This is identical to:
max {a: (x + ale)(A) < f(A),VA D {e}} (15.40)
since any B C FE such that e ¢ B does not change in a 1. adjustment,
meaning (z + al.)(B) = z(B).
@ Again, this is identical to:
max {a: x(A) + a < f(A),VA D {e}} (15.41)
or

max {a: a < f(A) —x(A),YA D {e}} (15.42)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F62/77 (pg.72/87)

Closure/Sat
trrrrreren

Saturation Capacity

@ The max is achieved when
a = ¢(z;e) ¥ min {f(A) — 2(4),YA D {e}} (15.43)

@ ¢(x;e) is known as the saturation capacity associated with € Py and
€.

@ Thus we have for x € Py,

é(ze) & min {£(A) — 2(A),VA > e} (15.44)

=max{a:a e Rz +al, € P} (15.45)

We immediately see that for e € E \ sat(z), we have that é(z;e) > 0.
Also, for e € sat(x), we have that ¢(x;e) = 0.
Note that any a with 0 < o < ¢(x;e) we have x + al, € Py.

We also see that computing ¢(z;e) is a form of submodular function
minimization.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F63/77 (pg.73/87)

Fund. Circuit/Dep
prrrrrererenend

Dependence Function

@ Tight sets can be restricted to contain a particular element.
e Given x € Py, and e € sat(x), define

D(z,e)={A:e€ ACFE,z(A) = f(A)} (15.46)
=Dx)N{A: ACFE,ec A} (15.47)
@ Thus, D(x,e) C D(x), and D(x,e) is a sublattice of D(z).
@ Therefore, we can define a unique minimal element of D(x, e) denoted
as follows:

N{A:ec ACE,x(A) = f(A)} ifeesat(x)

0 else

dep(z,e) = {
(15.48)

l.e., dep(x, e) is the minimal element in D(x) that contains e (the
minimal z-tight set containing e).

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F64/77 (pg.74/87)

Fund. Circuit/Dep
Ierrrrererrent

dep and sat in a lattice

e Given some x € Py,

@ The picture on the
right summarizes
the relationships
between the lattices
and sublattices.

@ Note,
N, dep(x,e) =
dep(x).

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F65/77 (pg.75/87)

Fund. Circuit/Dep
trerrrrrerrent

dep and sat in a lattice

o Given z € Py, recall distributive lattice of tight sets
D(z) ={A:z(4) = f(4)}

@ We had that sat(z) = |J{A: A € D(x)} is the “1" element of this
lattice.

o Consider the “0" element of D(x), i.e., dry(z) = & N{A: AeD(z)}
@ We can see dry(z) as the elements that are necessary for tightness.
@ That is, we can equivalently define dry(:L') as

dry(z) = {€' : = f(A),VAZ €'} (15.49)

@ This can be read as, for any €' € dry(x), any set that does not contain
¢’ is not tight for = (any set A that is missing any element of dry(x) is
not tight).

@ Perhaps, then, a better name for dry is ntight(z), for the necessary for
tightness (but we'll actually use neither name).

@ Note that dry need not be the empty set. Exercise: give example.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F66/77 (pg.76/87)

Fund. Circuit/Dep
Trrerrrrrrennt

An alternate expression for dep = dry

e Now, given x € Py, and e € sat(x), recall distributive sub-lattice of
e-containing tight sets D(z,e) = {A:e € A, z(A) = f(A)}

@ We can define the “1" element of this sub-lattice as
sat(z,e) & J{A: A € D(z,e)}.

@ Analogously, we can define the “0" element of this sub-lattice as
dry(z,e) = N{A:AeD(z,e)}.

@ We can see dry(x, e) as the elements that are necessary for
e-containing tightness, with e € sat(x).

@ That is, we can view dry(x e) as

dry(z,e) = {€' : x (A),VAF € e € A} (15.50)

@ This can be read as, for any ¢’ € dry(az, e), any e-containing set that
does not contain ¢’ is not tight for x.

@ But actually, dry(x, e) = dep(x, e), so we have derived another
expression for dep(z, e) in Eq. (15.50).

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F67/77 (pg.77/87)

Fund. Circuit/Dep
INENN AR R R

Dependence Function and Fundamental Matroid Circuit

e Now, let (F,Z) = (E,r) be a matroid, and let I € Z giving 17 € P,.
We have sat(17) = span(I) = closure([).

@ Given e € sat(17) \ I and then consider an A > e with [I N A| = r(A).

@ Then I N A serves as a base for A (i.e., I N A spans A) and any such
A contains a circuit (i.e., wecanadde € A\ I to IN A w/o
increasing rank).

@ Given e € sat(17) \ I, and consider dep(1y,e), with

dep(1,e) =(|{A:e€ AC E,1;(A) =r(A)} (15.51)
:m{A:eeAgE, IINA|=r(A)} (15.52)
=({A:e€c ACE,r(A)—[INA|=0} (15.53)

e By SFM lattice, 3 a unique minimal A 5 e with |[I N A| =r(A).
@ Thus, dep(1y,e) must be a circuit since if it included more than a
circuit, it would not be minimal in this sense.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F68/77 (pg.78/87)

Fund. Circuit/Dep
INEEEE FRRE R

Dependence Function and Fundamental Matroid Circuit

@ Therefore, when e € sat(1;) \ I, then dep(17,e) = C(I,e) where
C(I,e) is the unique circuit contained in I + e in a matroid (the
fundamental circuit of e and I that we encountered before).

e Now, if e € sat(17) NI with I € Z, we said that C'(/, e) was undefined
(since no circuit is created in this case) and so we defined it as
C(Ie) = {e}

@ In this case, for such an e, we have dep(1;,e) = {e} since all such sets
A > e with [N A| =r(A) contain e, but in this case no cycle is
created, i.e.,, [INA| > |IN{e}| =r(e) = 1.

@ We are thus free to take subsets of I as A, all of which must contain
e, but all of which have rank equal to size.

@ Also note: in general for € P; and e € sat(z), we have dep(z, e) is
tight by definition.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F69/77 (pg.79/87)

Fund. Circuit/Dep
INEREEE ARRR R

Summary of sat, and dep

o For x € Py, sat(z) (span, closure) is the maximal saturated (z-tight) set
w.rt. z. lLe, sat(x) = {e:e€ E,Va > 0,z + al. ¢ Pr}. That is,

cl(z) € sat(z) 2 | J{4: A € D(z)} (15.54)
= J{4: ACE x(4) = f(A)} (15.55)
={e:ec E,Va>0,x+ al. ¢ Py} (15.56)

@ For e € sat(x), we have dep(z,e) C sat(x) (fundamental circuit) is the
minimal (common) saturated (z-tight) set w.r.t. = containing e. l.e.,

N{A:ec ACE z(A) = f(A)} if ee€sat(x)
0 else

e :3a>0, st. x+a(le— 1) € Pf} (15.57)

N—r

dep(z,e) =
= {

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F70/77 (pg.80/87)

Fund. Circuit/Dep
Frrrrrrerrennt

Dependence Function and exchange

@ For e € span([/) \ I, we have that I +e ¢ Z. This is a set addition
restriction property.

@ Analogously, for e € sat(x), any = + al. ¢ Py for o > 0. This is a
vector increase restriction property.

@ Recall, we have C(I,e)\ e € T for e’ € C(1,e). le., C(I,e) consists
of elements that when removed recover independence.

@ In other words, for e € span(I) \ I, we have that

C(l,e)={ac€E:I+e—acT} (15.58)

@ l.e., an addition of e to I stays within Z only if we simultaneously
remove one of the elements of C(/,e).

@ But, analogous to the circuit case, is there an exchange property for
dep(z, e) in the form of vector movement restriction?

@ We might expect the vector dep(z, e) property to take the form:
a positive move in the e-direction stays within P; only if we
simultaneously take a negative move in one of the dep(z, e) directions.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F71/77 (pg.81/87)

Fund. Circuit/Dep
Frrrrrrrnrentnt

Dependence Function and exchange in 2D

dep(z, e) is set of neg. directions we must move if we want to move in
pos. e direction, starting at x and staying within P;.
Viewable in 2D, we have for A, B C E, AN B = (:

(e)
B @» B O

A A

Right: A C dep(z,e), and we
can't move further in the (e) di-
rection, but we can move further
in (e) direction by moving in some
a € A negative direction. Notice
dependence between (e) and ele-

Left: A Ndep(x,e) = 0, and we
can't move further in (e) direction,
and moving in any negative a €
A direction doesn't change that.
Notice no dependence between (e)

and any element in A.
n_A
Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F72/77 (pg.82/87)

Fund. Circuit/Dep

Dependence Function and exchange in 3D
@ We can move neither in the (e) nor the (a) direction, but we can move in
the (e) direction if we simultaneously move in the -(a) direction.
@ In 3D, we have:

o le, for e € sat(x), a € sat(z), a € dep(zx,e), e ¢ dep(x,a), and
dep(z,e) ={a:a € E,Ja > 0: 2+ a(l. — 1,) € Py} (15.59)

- Alo oo o Sucioo o
Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F73/77 (pg.83/87)

Fund. Circuit/Dep
Frrrrrrrrirnntd

dep and exchange derived

@ The derivation for dep(z, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable a:

dep(z, e) = ntight(z,e) = ()
= {1 z(A) < f(A),VAF €, e € A} (15.61)
={e':3a>0, st.a < f(A) —z(4),VAZ ' ec A} ()
={€':3a >0, st. al.(A) < f(A) —z(A),VA F €, e € A} ()
={€':3a >0, st. a(1lc(A) —1(4)) < f(A) —z(A),VAF ', e € A}
(15.64)
={€': Ja >0, st. 2(A) + a(1(A) — 14(A)) < f(A),VAF ', e € A}
(15.65)
@ Now, 1.(A) — 1. (A) =0 if either {e,e'} C A, or {e, e/} N A =0.
@ Also, if ¢ € A but e ¢ A, then
z(A) + a(1e(A) = 10(A)) = 2(A) — a < f(A) since z € Py.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F74/77 (pg.84/87)

Fund. Circuit/Dep
Frrrrrrrrrinnt

dep and exchange derived

@ thus, we get the same in the above if we remove the constraint
A Fe,ee A, that is we get

dep(z,e) = {¢' : Ja >0, s.t. 2(A) + a(1.(4) — 1(A)) < f(A4),VA}
(15.66)

@ This is then identical to
dep(z,e) = {¢' : Ja >0, st. z + (1. — 1) € Py} (15.67)

e Compare with original, the minimal element of D(z, e), with
e € sat(x):

N{A:ec ACE xz(A) = f(A)} ifecesat(x)

0 else

dep(z,e) = {
(15.68)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F75/77 (pg.85/87)

Fund. Circuit/Dep
Lrrrrrrrrrrnrn

Summary of Concepts

@ Most violated inequality max {z(A) — f(A) : A C E}
Matroid by circuits, and the fundamental circuit C(I,e) C I + e.

Minimizers of submodular functions form a lattice.
Minimal and maximal element of a lattice.

x-tight sets, maximal and minimal tight set.

sat function & Closure

Saturation Capacity

e-containing tight sets

dep function & fundamental circuit of a matroid

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F76/77 (pg.86/87)

Fund. Circuit/Dep
trrrrerrrrrren

Summary important definitions so far: tight, dep, & sat

o z-tight sets: For z € P, D(x) ={AC E:2(A) = f(A)}.
@ Polymatroid closure/maximal z-tight set: For x € Py,
sat(r) =U{A: A€ D(zx)} ={e:ec€ E,Va >0,z + al. ¢ Pr}.
e Saturation capacity: for v € Py, 0 < ¢(z;5e) =
min { f(A) — z(A)|VA 3 e} =max{a:a e R,z + al. € Pt}
@ Recall: sat(z) = {e: é(x;e) =0} and E \ sat(x) = {e: ¢(z;e) > 0},
@ e-containing z-tight sets: For x € Py,
D(z,e) ={A:ec ACE,z(A) = f(A)} C D(z).

@ Minimal e-containing z-tight set/polymatroidal fundamental circuit/:

For x € P, |
dep(z, e) = {ﬂ{A ec ACE,z(A)=f(A)} if e€sat(z)
={¢

else

:3a >0, st.z+a(le— 1) € Py}

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 23rd, 2016 F77/77 (pg.87/87)

	Logistics & Review
	Logistics
	Review

	Current Lecture
	Submodular Max w. Other Constraints
	Most Violated
	Matroids cont.
	Closure/Sat
	Closure/Sat
	Fund. Circuit/Dep

