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Logistics Review

Cumulative Outstanding Reading

Read chapters 2 and 3 from Fujishige’s book.

Read chapter 1 from Fujishige’s book.
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Logistics Review

Announcements, Assignments, and Reminders

Homework 4, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Wednesday (5/25) at 11:55pm.

Homework 3, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (5/2) at 11:55pm.

Homework 2, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (4/18) at 11:55pm.

Homework 1, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Friday (4/8) at 11:55pm.

Weekly O�ce Hours: Mondays, 3:30-4:30, or by skype or google
hangout (set up meeting via our our discussion board (https:
//canvas.uw.edu/courses/1039754/discussion_topics)).
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Logistics Review

Class Road Map - IT-I
L1(3/28): Motivation, Applications, &
Basic Definitions

L2(3/30): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).

L3(4/4): Info theory exs, more apps,
definitions, graph/combinatorial examples,
matrix rank example, visualization

L4(4/6): Graph and Combinatorial
Examples, matrix rank, Venn diagrams,
examples of proofs of submodularity, some
useful properties

L5(4/11): Examples & Properties, Other
Defs., Independence

L6(4/13): Independence, Matroids,
Matroid Examples, matroid rank is
submodular

L7(4/18): Matroid Rank, More on
Partition Matroid, System of Distinct
Reps, Transversals, Transversal Matroid,

L8(4/20): Transversals, Matroid and
representation, Dual Matroids,

L9(4/25): Dual Matroids, Properties,
Combinatorial Geometries, Matroid and
Greedy

L10(4/27): Matroid and Greedy,
Polyhedra, Matroid Polytopes,

L11(5/2): From Matroids to
Polymatroids, Polymatroids

L12(5/4): Polymatroids, Polymatroids
and Greedy

L13(5/9): Polymatroids and Greedy;
Possible Polytopes; Extreme Points;
Polymatroids, Greedy, and Cardinality
Constrained Maximization

L14(5/11): Cardinality Constrained
Maximization; Curvature; Submodular
Max w. Other Constraints

L15(5/16): Submodular Max w. Other
Constraints, Most Violated , Matroids
cont., Closure/Sat, Closure/Sat, Fund.
Circuit/Dep

L16(5/18):

L17(5/23):

L18(5/25):

L19(6/1):

L20(6/6): Final Presentations
maximization.

Finals Week: June 6th-10th, 2016.
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Logistics Review

The Greedy Algorithm: 1� 1/e intuition.
At step i < k, greedy chooses v

i

to maximize f(v|S
i

).
Let S⇤ be optimal solution (of size k) and OPT = f(S⇤). By
submodularity, we will show:

9v 2 V \ S
i

: f(v|S
i

) = f(S
i

+ v|S
i

) � 1

k
(OPT� f(S

i

)) (15.1)
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 (1� 1/k)(OPT� f(S
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) OPT� f(S
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Logistics Review

Priority Queue

Use a priority queue Q as a data structure: operations include:
Insert an item (v,↵) into queue, with v 2 V and ↵ 2 R.

insert(Q, (v,↵)) (15.14)

Pop the item (v,↵) with maximum value ↵ o↵ the queue.

(v,↵) pop(Q) (15.15)

Query the value of the max item in the queue

max(Q) 2 R (15.16)

On next slide, we call a popped item “fresh” if the value (v,↵) popped has
the correct value ↵ = f(v|S

i

). Use extra “bit” to store this info

If a popped item is fresh, it must be the maximum — this can happen if,
at given iteration, v was first popped and neither fresh nor maximum so
placed back in the queue, and it then percolates back to the top at which
point it is fresh — thereby avoid extra queue check.
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Logistics Review

Minoux’s Accelerated Greedy Algorithm Submodular Max

Algorithm 3: Minoux’s Accelerated Greedy Algorithm

1 Set S0  ; ; i 0 ; Initialize priority queue Q ;
2 for v 2 E do
3 INSERT(Q, f(v))

4 repeat
5 (v,↵) pop(Q) ;
6 if ↵ not “fresh” then
7 recompute ↵ f(v|S

i

)

8 if (popped ↵ in line 5 was “fresh”) OR (↵ � max(Q)) then
9 Set S

i+1  S
i

[ {v} ;
10 i i+ 1 ;

11 else
12 insert(Q, (v,↵))

13 until i = |E|;
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Logistics Review

(Minimum) Submodular Set Cover

Given polymatroid f , goal is to find a covering set of minimum cost:

S⇤ 2 argmin
S✓V

|S| such that f(S) � ↵ (15.14)

where ↵ is a “cover” requirement.

Normally take ↵ = f(V ) but defining f 0(A) = min {f(A),↵} we can
take any ↵. Hence, we have equivalent formulation:

S⇤ 2 argmin
S✓V

|S| such that f 0(S) � f 0(V ) (15.15)

Note that this immediately generalizes standard set cover, in which
case f(A) is the cardinality of the union of sets indexed by A.

Greedy Algorithm: Pick the first chain item S
i

chosen by
aforementioned greedy algorithm such that f(S

i

) � ↵ and output that
as solution.
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Logistics Review

(Minimum) Submodular Set Cover: Approximation
Analysis

For integer valued f , this greedy algorithm an O(log(max
s2V f({s})))

approximation. Let S⇤ be optimal, and SG be greedy solution, then

|SG|  |S⇤|H(max
s2V

f({s})) = |S⇤|O(log
e

(max
s2V

f({s}))) (15.14)

where H is the harmonic function, i.e., H(d) =
P

d

i=1(1/i).

If f is not integral value, then bounds we get are of the form:

|SG|  |S⇤|
⇣

1 + log
e

f(V )

f(V )� f(S
T�1)

⌘

(15.15)

wehre S
T

is the final greedy solution that occurs at step T .

Set cover is hard to approximate with a factor better than
(1� ✏) log↵, where ↵ is the desired cover constraint.
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Logistics Review

Curvature of a Submodular function

By submodularity, total curvature can be computed in either form:

c
�
= 1� min

S,j /2S:f(j|;) 6=0

f(j|S)
f(j|;) = 1� min

j:f(j|;) 6=0

f(j|V \ {j})
f(j|;) (15.17)

Note: Matroid rank is either modular c = 0 or maximally curved c = 1
— hence, matroid rank can have only the extreme points of curvature,
namely 0 or 1.

Polymatroid functions are, in this sense, more nuanced, in that they
allow non-extreme curvature, with c 2 [0, 1].

It will be remembered the notion of “partial dependence” within
polymatroid functions.
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Logistics Review

Curvature and approximation

Curvature limitation can help the greedy algorithm in terms of
approximation bounds.
Conforti & Cornuéjols showed that greedy gives a 1/(1 + c)
approximation to max {f(S) : S 2 I} when f has total curvature c.
Hence, greedy subject to matroid constraint is a max(1/(1 + c), 1/2)
approximation algorithm, and if c < 1 then it is better than 1/2 (e.g.,
with c = 1/4 then we have a 0.8 algorithm).

For k-uniform matroid
(i.e., k-cardinality con-
straints), then approxima-
tion factor becomes
1
c

(1� e�c)
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Logistics Review

Greedy over multiple matroids

Obvious heuristic is to use the greedy step but always stay feasible.
I.e., Starting with S0 = ;, we repeat the following greedy step

S
i+1 = S

i

[
(

argmax
v2V \Si : Si+v2

Tp
i=1 Ii

f(S
i

[ {v})
)

(15.17)

That is, we keep choosing next whatever feasible element looks best.
This algorithm is simple and also has a guarantee

Theorem 15.2.2

Given a polymatroid function f , and set of matroids {M
j

= (E, I
j

)}p
j=1,

the above greedy algorithm returns sets S
i

such that for each i we have
f(S

i

) � 1
p+1 max|S|i,S2

Tp
i=1 Ii f(S), assuming such sets exists.

For one matroid, we have a 1/2 approximation.
Very easy algorithm, Minoux trick still possible, while addresses
multiple matroid constraints — but the bound is not that good when
there are many matroids.
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Submodular Max w. Other Constraints Most Violated  Matroids cont. Closure/Sat Closure/Sat Fund. Circuit/Dep

Greedy over multiple matroids: Generalized Bipartite
Matching

Generalized bipartite matching (i.e., max bipartite matching with
submodular costs on the edges). Use two partition matroids (as
mentioned earlier in class)

Useful in natural language processing: Ex. Computer language
translation, find an alignment between two language strings.

Consider bipartite graph G = (E,F, V ) where E and F are the
left/right set of nodes, respectively, and V is the set of edges.

E corresponds to, say, an English language sentence and F
corresponds to a French language sentence — goal is to form a
matching (an alignment) between the two.
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Greedy over multiple matroids: Generalized Bipartite
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Submodular Max w. Other Constraints Most Violated  Matroids cont. Closure/Sat Closure/Sat Fund. Circuit/Dep

Greedy over > 1 matroids: Multiple Language Alignment

Consider English string and French string, set up as a bipartite graph.

I have ... as an example of public ownership

je le ai ... comme exemple de propriété publique

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 22nd, 2016 F14/77 (pg.17/305)



Submodular Max w. Other Constraints Most Violated  Matroids cont. Closure/Sat Closure/Sat Fund. Circuit/Dep

Greedy over > 1 matroids: Multiple Language Alignment

One possible alignment, a matching, with score as sum of edge
weights.

I have ... as an example of public ownership

je le ai ... comme exemple de propriété publique
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Greedy over > 1 matroids: Multiple Language Alignment

Edges incident to English words constitute an edge partition

I have ... as an example of public ownership

je le ai ... comme exemple de propriété publique
The two edge partitions can be used to set up two 1-partition matroids
on the edges.

For each matroid, a set of edges is independent only if the set
intersects each partition block no more than one time.

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 22nd, 2016 F14/77 (pg.19/305)



Submodular Max w. Other Constraints Most Violated  Matroids cont. Closure/Sat Closure/Sat Fund. Circuit/Dep

Greedy over > 1 matroids: Multiple Language Alignment

Edges incident to French words constitute an edge partition

I have ... as an example of public ownership

je le ai ... comme exemple de propriété publique
The two edge partitions can be used to set up two 1-partition matroids
on the edges.

For each matroid, a set of edges is independent only if the set
intersects each partition block no more than one time.
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Greedy over > 1 matroids: Multiple Language Alignment

Typical to use bipartite matching to find an alignment between the two
language strings.

As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.

We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:
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Greedy over > 1 matroids: Multiple Language Alignment

Typical to use bipartite matching to find an alignment between the two
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Greedy over > 1 matroids: Multiple Language Alignment

Typical to use bipartite matching to find an alignment between the two
language strings.

As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.

We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:
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Greedy over > 1 matroids: Multiple Language Alignment

Typical to use bipartite matching to find an alignment between the two
language strings.

As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.

We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:

Fertility at most 1
. . . the ... of public ownership

. . . le ... de propriété publique

. . . the ... of public ownership

. . . le ... de propriété publique
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Greedy over > 1 matroids: Multiple Language Alignment

Typical to use bipartite matching to find an alignment between the two
language strings.

As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.

We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:

Fertility at most 2
. . . the ... of public ownership

. . . le ... de propriété publique

. . . the ... of public ownership

. . . le ... de propriété publique

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 22nd, 2016 F15/77 (pg.25/305)

whiz



Submodular Max w. Other Constraints Most Violated  Matroids cont. Closure/Sat Closure/Sat Fund. Circuit/Dep

Greedy over > 1 matroids: Multiple Language Alignment

Generalizing further, each block of edges in each partition matroid can
have its own “fertility” limit:
I = {X ✓ V : |X \ V

i

|  k
i

for all i = 1, . . . , `}.

Maximizing submodular function subject to multiple matroid
constraints addresses this problem.

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 22nd, 2016 F16/77 (pg.26/305)



Submodular Max w. Other Constraints Most Violated  Matroids cont. Closure/Sat Closure/Sat Fund. Circuit/Dep

Greedy over > 1 matroids: Multiple Language Alignment

Generalizing further, each block of edges in each partition matroid can
have its own “fertility” limit:
I = {X ✓ V : |X \ V

i

|  k
i

for all i = 1, . . . , `}.
Maximizing submodular function subject to multiple matroid
constraints addresses this problem.
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Greedy over multiple matroids: Submodular Welfare

Submodular Welfare Maximization: Consider E a set of m goods to be
distributed/partitioned among n people (“players”).

Each players has a submodular “valuation” function, g
i

: 2E ! R+

that measures how “desirable” or “valuable” a given subset A ✓ E of
goods are to that player.

Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.

Goal of submodular welfare: Partition the goods
E = E1 [ E2 [ · · · [ E

n

into n blocks in order to maximize the
submodular social welfare, measured as:

submodular-social-welfare(E1, E2, . . . , En

) =
n

X

i=1

g
i

(E
i

). (15.1)

We can solve this via submodular maximization subject to multiple
matroid independence constraints as we next describe . . .
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Greedy over multiple matroids: Submodular Welfare

Submodular Welfare Maximization: Consider E a set of m goods to be
distributed/partitioned among n people (“players”).

Each players has a submodular “valuation” function, g
i

: 2E ! R+

that measures how “desirable” or “valuable” a given subset A ✓ E of
goods are to that player.

Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.

Goal of submodular welfare: Partition the goods
E = E1 [ E2 [ · · · [ E

n

into n blocks in order to maximize the
submodular social welfare, measured as:

submodular-social-welfare(E1, E2, . . . , En

) =
n

X

i=1

g
i

(E
i

). (15.1)

We can solve this via submodular maximization subject to multiple
matroid independence constraints as we next describe . . .
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Greedy over multiple matroids: Submodular Welfare

Submodular Welfare Maximization: Consider E a set of m goods to be
distributed/partitioned among n people (“players”).

Each players has a submodular “valuation” function, g
i

: 2E ! R+

that measures how “desirable” or “valuable” a given subset A ✓ E of
goods are to that player.

Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.

Goal of submodular welfare: Partition the goods
E = E1 [ E2 [ · · · [ E

n

into n blocks in order to maximize the
submodular social welfare, measured as:

submodular-social-welfare(E1, E2, . . . , En

) =
n

X

i=1

g
i

(E
i

). (15.1)

We can solve this via submodular maximization subject to multiple
matroid independence constraints as we next describe . . .
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Greedy over multiple matroids: Submodular Welfare

Submodular Welfare Maximization: Consider E a set of m goods to be
distributed/partitioned among n people (“players”).

Each players has a submodular “valuation” function, g
i

: 2E ! R+

that measures how “desirable” or “valuable” a given subset A ✓ E of
goods are to that player.

Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.

Goal of submodular welfare: Partition the goods
E = E1 [ E2 [ · · · [ E

n

into n blocks in order to maximize the
submodular social welfare, measured as:

submodular-social-welfare(E1, E2, . . . , En

) =

n

X

i=1

g
i

(E
i

). (15.1)

We can solve this via submodular maximization subject to multiple
matroid independence constraints as we next describe . . .
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Submodular Welfare: Submodular Max over matroid
partition

Create new ground set E0 as disjoint union of n copies of the ground
set. I.e.,

E0 = E ] E ] · · · ] E
| {z }

n⇥
(15.2)

Let E(i) ⇢ E0 be the ith block of E0.

For any e 2 E, the corresponding element in E(i) is called (e, i) 2 E(i)

(each original element is tagged by integer).

For e 2 E, define E
e

= {(e0, i) 2 E0 : e0 = e}.
Hence, {E

e

}
e2E is a partition of E0, each block of the partition for

one of the original elements in E.

Create a 1-partition matroid M = (E0, I) where

I =
�

S ✓ E0 : 8e 2 E, |S \ E
e

|  1
 

(15.3)
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Submodular Welfare: Submodular Max over matroid
partition

Hence, S is independent in matroid M = (E0, I) if S uses each
original element no more than once.

Create submodular function f 0 : 2E
0 ! R+ with

f 0(S) =
P

n

i=1 gi(S \ E(i)).

Submodular welfare maximization becomes matroid constrained
submodular max max {f 0(S) : S 2 I}, so greedy algorithm gives a 1/2
approximation.
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Submodular Welfare: Submodular Max over matroid
partition

Hence, S is independent in matroid M = (E0, I) if S uses each
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f 0(S) =
P

n
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Submodular Social Welfare

Have n = 6 people (who don’t
like to share) and |E| = m = 7
pieces of sushi. E.g., e 2 E
might be e = ”salmon roll”.
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Submodular Social Welfare

Have n = 6 people (who don’t
like to share) and |E| = m = 7
pieces of sushi. E.g., e 2 E
might be e = ”salmon roll”.

Goal: distribute sushi to people
to maximize social welfare.
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Submodular Social Welfare

Have n = 6 people (who don’t
like to share) and |E| = m = 7
pieces of sushi. E.g., e 2 E
might be e = ”salmon roll”.

Goal: distribute sushi to people
to maximize social welfare.

Ground set disjoint union
E ] E ] E ] E ] E ] E.
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Submodular Social Welfare

Have n = 6 people (who don’t
like to share) and |E| = m = 7
pieces of sushi. E.g., e 2 E
might be e = ”salmon roll”.

Goal: distribute sushi to people
to maximize social welfare.

Ground set disjoint union
E ] E ] E ] E ] E ] E.

Partition matroid partitions:
E

e1 [ E
e2 [ E

e3 [ E
e4 [ E

e5 [
E

e6 [ E
e7 .
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Submodular Social Welfare

Have n = 6 people (who don’t
like to share) and |E| = m = 7
pieces of sushi. E.g., e 2 E
might be e = ”salmon roll”.

Goal: distribute sushi to people
to maximize social welfare.

Ground set disjoint union
E ] E ] E ] E ] E ] E.

Partition matroid partitions:
E

e1 [ E
e2 [ E

e3 [ E
e4 [ E

e5 [
E

e6 [ E
e7 .

independent allocation
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Submodular Social Welfare

Have n = 6 people (who don’t
like to share) and |E| = m = 7
pieces of sushi. E.g., e 2 E
might be e = ”salmon roll”.

Goal: distribute sushi to people
to maximize social welfare.

Ground set disjoint union
E ] E ] E ] E ] E ] E.

Partition matroid partitions:
E

e1 [ E
e2 [ E

e3 [ E
e4 [ E

e5 [
E

e6 [ E
e7 .

independent allocation

non-independent allocation
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Monotone Submodular over Knapsack Constraint

The constraint |A|  k is a simple cardinality constraint.

Consider a non-negative integral modular function c : E ! Z+.

A knapsack constraint would be of the form c(A)  b where B is some
integer budget that must not be exceeded. That is
max {f(A) : A ✓ V, c(A)  b}.
Important: A knapsack constraint yields an independence system
(down closed) but it is not a matroid!

c(e) may be seen as the cost of item e and if c(e) = 1 for all e, then
we recover the cardinality constraint we saw earlier.
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integer budget that must not be exceeded. That is
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Monotone Submodular over Knapsack Constraint

Greedy can be seen as choosing the best gain: Starting with S0 = ;,
we repeat the following greedy step

S
i+1 = S

i

[
(

argmax
v2V \Si

⇣

f(S
i

[ {v})� f(S
i

)
⌘

)

(15.4)

the gain is f({v}|S
i

) = f(S
i

+ v)� f(S
i

), so greedy just chooses next
the currently unselected element with greatest gain.

Core idea in knapsack case: Greedy can be extended to choose next
whatever looks cost-normalized best, i.e., Starting some initial set S0,
we repeat the following cost-normalized greedy step

S
i+1 = S

i

[
(

argmax
v2V \Si

f(S
i

[ {v})� f(S
i

)

c(v)

)

(15.5)

which we repeat until c(S
i+1) > b and then take S

i

as the solution.
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which we repeat until c(S
i+1) > b and then take S

i

as the solution.
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A Knapsack Constraint

There are a number of ways of getting approximation bounds using
this strategy.

If we run the normalized greedy procedure starting with S0 = ;, and
compare the solution found with the max of the singletons
max

v2V f({v}), choosing the max, then we get a (1� e�1/2) ⇡ 0.39
approximation, in O(n2) time (Minoux trick also possible for further
speed)

Partial enumeration: On the other hand, we can get a
(1� e�1) ⇡ 0.63 approximation in O(n5) time if we run the above
procedure starting from all sets of cardinality three (so restart for all
S0 such that |S0| = 3), and compare that with the best singleton and
pairwise solution.

Extending something similar to this to d simultaneous knapsack
constraints is possible as well.
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Local Search Algorithms

From J. Vondrak

Local search involves switching up to t elements, as long as it provides
a (non-trivial) improvement; can iterate in several phases. Some
examples follow:

1/3 approximation to unconstrained non-monotone maximization
[Feige, Mirrokni, Vondrak, 2007]

1/(k + 2 + 1
k

+ �
t

) approximation for non-monotone maximization
subject to k matroids [Lee, Mirrokni, Nagarajan, Sviridenko, 2009]

1/(k + �
t

) approximation for monotone submodular maximization
subject to k � 2 matroids [Lee, Sviridenko, Vondrak, 2010].
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What About Non-monotone

Alternatively, we may wish to maximize non-monotone submodular
functions. This includes of course graph cuts, and this problem is
APX-hard, so maximizing non-monotone functions, even
unconstrainedly, is hard.

If f is an arbitrary submodular function (so neither polymatroidal, nor
necessarily positive or negative), then verifying if the maximum of f is
positive or negative is already NP-hard.
Therefore, submodular function max in such case is inapproximable
unless P=NP (since any such procedure would give us the sign of the
max).
Thus, any approximation algorithm must be for unipolar submodular
functions. E.g., non-negative but otherwise arbitrary submodular
functions.
We may get a (13 �

✏

n

) approximation for maximizing non-monotone
non-negative submodular functions, with most O(1

✏

n3 log n) function
calls using approximate local maxima.
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functions.

We may get a (13 �
✏

n

) approximation for maximizing non-monotone
non-negative submodular functions, with most O(1

✏

n3 log n) function
calls using approximate local maxima.

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 22nd, 2016 F24/77 (pg.60/305)

15



Submodular Max w. Other Constraints Most Violated  Matroids cont. Closure/Sat Closure/Sat Fund. Circuit/Dep

What About Non-monotone
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Submodularity and local optima

Given any submodular function f , a set S ✓ V is a local maximum of f
if f(S � v)  f(S) for all v 2 S and f(S + v)  f(S) for all v 2 V \ S
(i.e., local in a Hamming ball of radius 1).

The following interesting result is true for any submodular function:

Lemma 15.3.1

Given a submodular function f , if S is a local maximum of f , and I ✓ S or
I ◆ S, then f(I)  f(S).
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Submodularity and local optima

Given any submodular function f , a set S ✓ V is a local maximum of f
if f(S � v)  f(S) for all v 2 S and f(S + v)  f(S) for all v 2 V \ S
(i.e., local in a Hamming ball of radius 1).

The following interesting result is true for any submodular function:

Lemma 15.3.1

Given a submodular function f , if S is a local maximum of f , and I ✓ S or
I ◆ S, then f(I)  f(S).

Idea of proof: Given v1, v2 2 S, suppose f(S � v1)  f(S) and
f(S � v2)  f(S). Submodularity requires
f(S � v1) + f(S � v2) � f(S) + f(S � v1 � v2) which would be
impossible unless f(S � v1 � v2)  f(S).

Similarly, given v1, v2 /2 S, and f(S + v1)  f(S) and f(S + v2)  f(S).
Submodularity requires f(S + v1) + f(S + v2) � f(S) + f(S + v1 + v2)
which requires f(S + v1 + v2)  f(S).
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Submodularity and local optima

Given any submodular function f , a set S ✓ V is a local maximum of f
if f(S � v)  f(S) for all v 2 S and f(S + v)  f(S) for all v 2 V \ S
(i.e., local in a Hamming ball of radius 1).

The following interesting result is true for any submodular function:

Lemma 15.3.1

Given a submodular function f , if S is a local maximum of f , and I ✓ S or
I ◆ S, then f(I)  f(S).

In other words, once we have identified a local maximum, the two
intervals in the Boolean lattice [;, S] and [S, V ] can be ruled out as a
possible improvement over S.

Finding a local maximum is already hard (PLS-complete), but it is
possible to find an approximate local maximum relatively e�ciently.

This is the approach that yields the (13 �
✏

n

) approximation algorithm.
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Submodularity and local optima
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(i.e., local in a Hamming ball of radius 1).
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intervals in the Boolean lattice [;, S] and [S, V ] can be ruled out as a
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Submodularity and local optima

Given any submodular function f , a set S ✓ V is a local maximum of f
if f(S � v)  f(S) for all v 2 S and f(S + v)  f(S) for all v 2 V \ S
(i.e., local in a Hamming ball of radius 1).

The following interesting result is true for any submodular function:

Lemma 15.3.1

Given a submodular function f , if S is a local maximum of f , and I ✓ S or
I ◆ S, then f(I)  f(S).

In other words, once we have identified a local maximum, the two
intervals in the Boolean lattice [;, S] and [S, V ] can be ruled out as a
possible improvement over S.

Finding a local maximum is already hard (PLS-complete), but it is
possible to find an approximate local maximum relatively e�ciently.

This is the approach that yields the (13 �
✏

n

) approximation algorithm.
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Linear time algorithm unconstrained non-monotone max

Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.

Buchbinder, Feldman, Naor, Schwartz 2012.

Recall [a]+ = max(a, 0).

Algorithm 4: Randomized Linear-time non-monotone submodular max

1 Set L ; ; U  V /* Lower L, upper U . Invariant: L ✓ U */ ;
2 Order elements of V = (v1, v2, . . . , vn) arbitrarily ;
3 for i 0 . . . |V | do
4 a [f(v

i

|L)]+; b [�f(U |U \ {v
i

})]+ ;
5 if a = b = 0 then p 1/2 ;
6 ;
7 else p a/(a+ b);
8 ;
9 if Flip of coin with Pr(heads) = p draws heads then

10 L L [ {v
i

} ;

11 Otherwise /* if the coin drew tails, an event with prob. 1� p */
12 U  U \ {v}

13 return L (which is the same as U at this point)
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Linear time algorithm unconstrained non-monotone max

Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.
Buchbinder, Feldman, Naor, Schwartz 2012.

Recall [a]+ = max(a, 0).

Algorithm 5: Randomized Linear-time non-monotone submodular max

1 Set L ; ; U  V /* Lower L, upper U . Invariant: L ✓ U */ ;
2 Order elements of V = (v1, v2, . . . , vn) arbitrarily ;
3 for i 0 . . . |V | do
4 a [f(v

i

|L)]+; b [�f(U |U \ {v
i

})]+ ;
5 if a = b = 0 then p 1/2 ;
6 ;
7 else p a/(a+ b);
8 ;
9 if Flip of coin with Pr(heads) = p draws heads then

10 L L [ {v
i

} ;

11 Otherwise /* if the coin drew tails, an event with prob. 1� p */
12 U  U \ {v}

13 return L (which is the same as U at this point)
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Linear time algorithm unconstrained non-monotone max

Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.
Buchbinder, Feldman, Naor, Schwartz 2012. Recall [a]+ = max(a, 0).

Algorithm 6: Randomized Linear-time non-monotone submodular max

1 Set L ; ; U  V /* Lower L, upper U . Invariant: L ✓ U */ ;
2 Order elements of V = (v1, v2, . . . , vn) arbitrarily ;
3 for i 0 . . . |V | do
4 a [f(v

i

|L)]+; b [�f(U |U \ {v
i

})]+ ;
5 if a = b = 0 then p 1/2 ;
6 ;
7 else p a/(a+ b);
8 ;
9 if Flip of coin with Pr(heads) = p draws heads then

10 L L [ {v
i

} ;

11 Otherwise /* if the coin drew tails, an event with prob. 1� p */
12 U  U \ {v}

13 return L (which is the same as U at this point)
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Linear time algorithm unconstrained non-monotone max

Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.
Buchbinder, Feldman, Naor, Schwartz 2012. Recall [a]+ = max(a, 0).

Algorithm 7: Randomized Linear-time non-monotone submodular max

1 Set L ; ; U  V /* Lower L, upper U . Invariant: L ✓ U */ ;
2 Order elements of V = (v1, v2, . . . , vn) arbitrarily ;
3 for i 0 . . . |V | do
4 a [f(v

i

|L)]+; b [�f(U |U \ {v
i

})]+ ;
5 if a = b = 0 then p 1/2 ;
6 ;
7 else p a/(a+ b);
8 ;
9 if Flip of coin with Pr(heads) = p draws heads then

10 L L [ {v
i

} ;

11 Otherwise /* if the coin drew tails, an event with prob. 1� p */
12 U  U \ {v}

13 return L (which is the same as U at this point)
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Linear time algorithm unconstrained non-monotone max

Each “sweep” of the algorithm is O(n).

Running the algorithm 1⇥ (with an arbitrary variable order) results in
a 1/3 approximation.

The 1/2 guarantee is in expected value (the expected solution has the
1/2 guarantee).

In practice, run it multiple times, each with a di↵erent random
permutation of the elements, and then take the cumulative best.

It may be possible to choose the random order smartly to get better
results in practice.
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Each “sweep” of the algorithm is O(n).

Running the algorithm 1⇥ (with an arbitrary variable order) results in
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More general still: multiple constraints di↵erent types

In the past several years, there has been a plethora of papers on
maximizing both monotone and non-monotone submodular functions
under various combinations of one or more knapsack and/or matroid
constraints.

The approximation quality is usually some function of the number of
matroids, and is often not a function of the number of knapsacks.

Often the computational costs of the algorithms are prohibitive (e.g.,
exponential in k) with large constants, so these algorithms might not
scale.

On the other hand, these algorithms o↵er deep and interesting intuition
into submodular functions, beyond what we have covered here.
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Some results on submodular maximization

As we’ve seen, we can get 1� 1/e for non-negative monotone
submodular (polymatroid) functions with greedy algorithm under
cardinality constraints, and this is tight.

For general matroid, greedy reduces to 1/2 approximation (as we’ve
seen).

We can recover 1� 1/e approximation using the continuous greedy
algorithm on the multilinear extension and then using pipage rounding
to re-integerize the solution (see J. Vondrak’s publications).

More general constraints are possible too, as we see on the next table
(for references, see Jan Vondrak’s publications
http://theory.stanford.edu/

~

jvondrak/).
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As we’ve seen, we can get 1� 1/e for non-negative monotone
submodular (polymatroid) functions with greedy algorithm under
cardinality constraints, and this is tight.

For general matroid, greedy reduces to 1/2 approximation (as we’ve
seen).

We can recover 1� 1/e approximation using the continuous greedy
algorithm on the multilinear extension and then using pipage rounding
to re-integerize the solution (see J. Vondrak’s publications).
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Submodular Max Summary - 2012: From J. Vondrak

Monotone Maximization
Constraint Approximation Hardness Technique

|S|  k 1� 1/e 1� 1/e greedy
matroid 1� 1/e 1� 1/e multilinear ext.

O(1) knapsacks 1� 1/e 1� 1/e multilinear ext.
k matroids k + ✏ k/ log k local search

k matroids and O(1)
knapsacks

O(k) k/ log k multilinear ext.

Nonmonotone Maximization
Constraint Approximation Hardness Technique

Unconstrained 1/2 1/2 combinatorial
matroid 1/e 0.48 multilinear ext.

O(1) knapsacks 1/e 0.49 multilinear ext.
k matroids k +O(1) k/ log k local search

k matroids and O(1)
knapsacks

O(k) k/ log k multilinear ext.
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Submodular Max and polyhedral approaches

We’ve spent much time discussing SFM and the polymatroidal
polytope, and in general polyhedral approaches for SFM.

Most of the approaches for submodular max have not used such an
approach, probably due to the di�culty in computing the “concave
extension” of a submodular function (the convex extension is easy,
namely the Lovász extension).

A paper by Chekuri, Vondrak, and Zenklusen (2011) make some
progress on this front using multilinear extensions.
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Multilinear extension
Definition 15.3.2

For a set function f : 2V ! R, define its multilinear extension
F : [0, 1]V ! R by

F (x) =
X

S✓V

f(S)
Y

i2S
x
i

Y

j2V \S

(1� x
j

) (15.6)

Note that F (x) = Ef(x̂) where x̂ is a random binary vector over
{0, 1}V with elements independent w. probability x

i

for x̂
i

.
While this is defined for any set function, we have:

Lemma 15.3.3

Let F : [0, 1]V ! R be multilinear extension of set function f : 2V ! R,
then

If f is monotone non-decreasing, then @F

@xi
� 0 for all i 2 V , x 2 [0, 1]V .

If f is submodular, then @

2
F

@xi@xj
 0 for all i, j inV , x 2 [0, 1]V .
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Multilinear extension

Moreover, we have

Lemma 15.3.4

Let F : [0, 1]V ! R be multilinear extension of set function f : 2V ! R,
then

If f is monotone non-decreasing, then F is non-decreasing along any line of
direction d 2 RE with d � 0

If f is submodular, then F is concave along any line of direction d � 0, and is
convex along any line of direction 1

v

� 1
w

for any v, w 2 V .

Another connection between submodularity and convexity/concavity

but note, unlike the Lovász extension, this function is neither.
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Submodular Max and polyhedral approaches

Basic idea: Given a set of constraints I, we form a polytope PI such
that {1

I

: I 2 I} ✓ PI

We find max
x2PI F (x) where F (x) is the multi-linear extension of f ,

to find a fractional solution x⇤

We then round x⇤ to a point on the hypercube, thus giving us a
solution to the discrete problem.
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Submodular Max and polyhedral approaches

In the recent paper by Chekuri, Vondrak, and Zenklusen, they show:

1) constant factor approximation algorithm for max {F (x) : x 2 P} for
any down-monotone solvable polytope P and F multilinear extension
of any non-negative submodular function.

2) A randomized rounding (pipage rounding) scheme to obtain an
integer solution

3) An optimal (1� 1/e) instance of their rounding scheme that can be
used for a variety of interesting independence systems, including O(1)
knapsacks, k matroids and O(1) knapsacks, a k-matchoid and ` sparse
packing integer programs, and unsplittable flow in paths and trees.

Also, Vondrak showed that this scheme achieves the 1
c

(1� e�c)
curvature based bound for any matroid, which matches the bound we
had earlier for uniform matroids with standard greedy.

In general, one needs to do Monte-Carlo methods to estimate the
multilinear extension (so further approximations would apply).
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Review from lecture 11

The next slide comes from lecture 11.
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A polymatroid function’s polyhedron is a polymatroid.

Theorem 15.4.1

Let f be a polymatroid function defined on subsets of E. For any x 2 RE

+,
and any P+

f

-basis yx 2 RE

+ of x, the component sum of yx is

yx(E) = rank(x) = max
⇣

y(E) : y  x, y 2 P+
f

⌘

= min (x(A) + f(E \A) : A ✓ E) (15.10)

As a consequence, P+
f

is a polymatroid, since r.h.s. is constant w.r.t. yx.

Taking E \B = supp(x) (so elements B are all zeros in x), and for b /2 B
we make x(b) is big enough, the r.h.s. min has solution A⇤ = B. We recover
submodular function from the polymatroid polyhedron via the following:

rank

✓

1

✏
1
E\B

◆

= f(B) = max
n

y(B) : y 2 P+
f

o

(15.11)

In fact, we will ultimately see a number of important consequences of this
theorem (other than just that P+

f

is a polymatroid)
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Review from lecture 12

The next slide comes from lecture 12.
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Matroid instance of Theorem ??

Considering Theorem ??, the matroid case is now a special case, where
we have that:

Corollary 15.4.2

We have that:

max {y(E) : y 2 Pind. set(M), y  x} = min {r
M

(A) + x(E \A) : A ✓ E}
(15.30)

where r
M

is the matroid rank function of some matroid.
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Most violated inequality problem in matroid polytope case

Consider

P+
r

=
�

x 2 RE : x � 0, x(A)  r
M

(A), 8A ✓ E
 

(15.7)

Suppose we have any x 2 RE

+ such that x 62 P+
r

.
Hence, there must be a set of W ✓ 2V , each member of which
corresponds to a violated inequality, i.e., equations of the form
x(A) > r

M

(A) for A 2W.
The most violated inequality when x is considered w.r.t. P+

r

corresponds
to the set A that maximizes x(A)� r

M

(A), i.e., the most violated
inequality is valuated as:

max {x(A)� r
M

(A) : A 2W} = max {x(A)� r
M

(A) : A ✓ E} (15.8)

Since x is modular and x(E \A) = x(E)� x(A), we can express this via a
min as in;:

min {r
M

(A) + x(E \A) : A ✓ E} (15.9)
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Most violated inequality problem in matroid polytope case

Consider

P+
r

=
�

x 2 RE : x � 0, x(A)  r
M

(A), 8A ✓ E
 

(15.7)

Suppose we have any x 2 RE

+ such that x 62 P+
r

.
Hence, there must be a set of W ✓ 2V , each member of which
corresponds to a violated inequality, i.e., equations of the form
x(A) > r

M

(A) for A 2W.

The most violated inequality when x is considered w.r.t. P+
r

corresponds
to the set A that maximizes x(A)� r

M

(A), i.e., the most violated
inequality is valuated as:

max {x(A)� r
M

(A) : A 2W} = max {x(A)� r
M

(A) : A ✓ E} (15.8)

Since x is modular and x(E \A) = x(E)� x(A), we can express this via a
min as in;:

min {r
M

(A) + x(E \A) : A ✓ E} (15.9)
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Most violated inequality problem in matroid polytope case

Consider

P+
r

=
�

x 2 RE : x � 0, x(A)  r
M

(A), 8A ✓ E
 

(15.7)

Suppose we have any x 2 RE

+ such that x 62 P+
r

.
Hence, there must be a set of W ✓ 2V , each member of which
corresponds to a violated inequality, i.e., equations of the form
x(A) > r

M

(A) for A 2W.
The most violated inequality when x is considered w.r.t. P+

r

corresponds
to the set A that maximizes x(A)� r

M

(A), i.e., the most violated
inequality is valuated as:

max {x(A)� r
M

(A) : A 2W} = max {x(A)� r
M

(A) : A ✓ E} (15.8)

Since x is modular and x(E \A) = x(E)� x(A), we can express this via a
min as in;:

min {r
M

(A) + x(E \A) : A ✓ E} (15.9)

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 22nd, 2016 F40/77 (pg.117/305)



Submodular Max w. Other Constraints Most Violated  Matroids cont. Closure/Sat Closure/Sat Fund. Circuit/Dep

Most violated inequality problem in matroid polytope case

Consider

P+
r

=
�

x 2 RE : x � 0, x(A)  r
M

(A), 8A ✓ E
 

(15.7)

Suppose we have any x 2 RE

+ such that x 62 P+
r

.
Hence, there must be a set of W ✓ 2V , each member of which
corresponds to a violated inequality, i.e., equations of the form
x(A) > r

M

(A) for A 2W.
The most violated inequality when x is considered w.r.t. P+

r

corresponds
to the set A that maximizes x(A)� r

M

(A), i.e., the most violated
inequality is valuated as:

max {x(A)� r
M

(A) : A 2W} = max {x(A)� r
M

(A) : A ✓ E} (15.8)

Since x is modular and x(E \A) = x(E)� x(A), we can express this via a
min as in;:

min {r
M

(A) + x(E \A) : A ✓ E} (15.9)
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Most violated inequality/polymatroid membership/SFM

Consider

P+
f

=
�

x 2 RE : x � 0, x(A)  f(A), 8A ✓ E
 

(15.10)

Suppose we have any x 2 RE

+ such that x 62 P+
f

.

Hence, there must be a set of W ✓ 2V , each member of which
corresponds to a violated inequality, i.e., equations of the form
x(A) > r

M

(A) for A 2W.

Left: W = {{1}} Center: W = {{2}} Right: W = {{1, 2}}
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Most violated inequality/polymatroid membership/SFM

Consider

P+
f

=
�

x 2 RE : x � 0, x(A)  f(A), 8A ✓ E
 

(15.10)

Suppose we have any x 2 RE

+ such that x 62 P+
f

.

Hence, there must be a set of W ✓ 2V , each member of which
corresponds to a violated inequality, i.e., equations of the form
x(A) > r

M

(A) for A 2W.

Left: W = {{1}} Center: W = {{2}} Right: W = {{1, 2}}
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Most violated inequality/polymatroid membership/SFM

Consider

P+
f

=
�

x 2 RE : x � 0, x(A)  f(A), 8A ✓ E
 

(15.10)

Suppose we have any x 2 RE

+ such that x 62 P+
f

.

Hence, there must be a set of W ✓ 2V , each member of which
corresponds to a violated inequality, i.e., equations of the form
x(A) > r

M

(A) for A 2W.

1

2 P

x

1

2 P
x

1

2 P

Left: W = {{1}} Center: W = {{2}} Right: W = {{1, 2}}
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Most violated inequality/polymatroid membership/SFM

The most violated inequality when x is considered w.r.t. P+
f

corresponds to the set A that maximizes x(A)� f(A), i.e., the most
violated inequality is valuated as:

max {x(A)� f(A) : A 2W} = max {x(A)� f(A) : A ✓ E} (15.11)

Since x is modular and x(E \A) = x(E)� x(A), we can express this
via a min as in;:

min {f(A) + x(E \A) : A ✓ E} (15.12)

More importantly, min {f(A) + x(E \A) : A ✓ E} is a form of
submodular function minimization, namely
min {f(A)� x(A) : A ✓ E} for a submodular f and x 2 RE

+,
consisting of a di↵erence of polymatroid and modular function (so
f � x is no longer necessarily monotone, nor positive).

We will ultimatley answer how general this form of SFM is.
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Most violated inequality/polymatroid membership/SFM

The most violated inequality when x is considered w.r.t. P+
f

corresponds to the set A that maximizes x(A)� f(A), i.e., the most
violated inequality is valuated as:

max {x(A)� f(A) : A 2W} = max {x(A)� f(A) : A ✓ E} (15.11)

Since x is modular and x(E \A) = x(E)� x(A), we can express this
via a min as in;:

min {f(A) + x(E \A) : A ✓ E} (15.12)

More importantly, min {f(A) + x(E \A) : A ✓ E} is a form of
submodular function minimization, namely
min {f(A)� x(A) : A ✓ E} for a submodular f and x 2 RE

+,
consisting of a di↵erence of polymatroid and modular function (so
f � x is no longer necessarily monotone, nor positive).

We will ultimatley answer how general this form of SFM is.
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Most violated inequality/polymatroid membership/SFM

The most violated inequality when x is considered w.r.t. P+
f

corresponds to the set A that maximizes x(A)� f(A), i.e., the most
violated inequality is valuated as:

max {x(A)� f(A) : A 2W} = max {x(A)� f(A) : A ✓ E} (15.11)

Since x is modular and x(E \A) = x(E)� x(A), we can express this
via a min as in;:

min {f(A) + x(E \A) : A ✓ E} (15.12)

More importantly, min {f(A) + x(E \A) : A ✓ E} is a form of
submodular function minimization, namely
min {f(A)� x(A) : A ✓ E} for a submodular f and x 2 RE

+,
consisting of a di↵erence of polymatroid and modular function (so
f � x is no longer necessarily monotone, nor positive).

We will ultimatley answer how general this form of SFM is.
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Most violated inequality/polymatroid membership/SFM

The most violated inequality when x is considered w.r.t. P+
f

corresponds to the set A that maximizes x(A)� f(A), i.e., the most
violated inequality is valuated as:

max {x(A)� f(A) : A 2W} = max {x(A)� f(A) : A ✓ E} (15.11)

Since x is modular and x(E \A) = x(E)� x(A), we can express this
via a min as in;:

min {f(A) + x(E \A) : A ✓ E} (15.12)

More importantly, min {f(A) + x(E \A) : A ✓ E} is a form of
submodular function minimization, namely
min {f(A)� x(A) : A ✓ E} for a submodular f and x 2 RE

+,
consisting of a di↵erence of polymatroid and modular function (so
f � x is no longer necessarily monotone, nor positive).

We will ultimatley answer how general this form of SFM is.
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Review from Lecture 6

The following three slides are review from lecture 6.
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Matroids, other definitions using matroid rank r : 2V ! Z+

Definition 15.5.3 (closed/flat/subspace)

A subset A ✓ E is closed (equivalently, a flat or a subspace) of matroid M
if for all x 2 E \A, r(A [ {x}) = r(A) + 1.

Definition: A hyperplane is a flat of rank r(M)� 1.

Definition 15.5.4 (closure)

Given A ✓ E, the closure (or span) of A, is defined by
span(A) = {b 2 E : r(A [ {b}) = r(A)}.

Therefore, a closed set A has span(A) = A.

Definition 15.5.5 (circuit)

A subset A ✓ E is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if r(A) < |A| and for any a 2 A, r(A \ {a}) = |A|� 1).
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Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is not
surprising that circuits can also characterize a matroid.

Theorem 15.5.3 (Matroid by circuits)

Let E be a set and C be a collection of subsets of E that satisfy the
following three properties:

1 (C1): ; /2 C
2 (C2): if C1, C2 2 C and C1 ✓ C2, then C1 = C2.

3 (C3): if C1, C2 2 C with C1 6= C2, and e 2 C1 \ C2, then there exists
a C3 2 C such that C3 ✓ (C1 [ C2) \ {e}.

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 22nd, 2016 F45/77 (pg.128/305)

resided:



Submodular Max w. Other Constraints Most Violated  Matroids cont. Closure/Sat Closure/Sat Fund. Circuit/Dep

Matroids by circuits

Several circuit definitions for matroids.

Theorem 15.5.3 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such that
no two sets in C are contained in each other. Then the following are
equivalent.

1 C is the collection of circuits of a matroid;

2 if C,C 0 2 C, and x 2 C \ C 0, then (C [ C 0) \ {x} contains a set in C;
3 if C,C 0 2 C, and x 2 C \ C 0, and y 2 C \ C 0, then (C [ C 0) \ {x}

contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and
matrices, and spanning trees.
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Fundamental circuits in matroids

Lemma 15.5.1

Let I 2 I(M), and e 2 E, then I [ {e} contains at most one circuit in M .

Proof.

Suppose, to the contrary, that there are two distinct circuits C1, C2

such that C1 [ C2 ✓ I [ {e}.
Then e 2 C1 \ C2, and by (C2), there is a circuit C3 of M s.t.
C3 ✓ (C1 [ C2) \ {e} ✓ I

This contradicts the independence of I.

In general, let C(I, e) be the unique circuit associated with I [ {e}
(commonly called the fundamental circuit in M w.r.t. I and e).
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Fundamental circuits in matroids

Lemma 15.5.1

Let I 2 I(M), and e 2 E, then I [ {e} contains at most one circuit in M .

Proof.

Suppose, to the contrary, that there are two distinct circuits C1, C2

such that C1 [ C2 ✓ I [ {e}.

Then e 2 C1 \ C2, and by (C2), there is a circuit C3 of M s.t.
C3 ✓ (C1 [ C2) \ {e} ✓ I

This contradicts the independence of I.

In general, let C(I, e) be the unique circuit associated with I [ {e}
(commonly called the fundamental circuit in M w.r.t. I and e).
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Fundamental circuits in matroids

Lemma 15.5.1

Let I 2 I(M), and e 2 E, then I [ {e} contains at most one circuit in M .

Proof.

Suppose, to the contrary, that there are two distinct circuits C1, C2

such that C1 [ C2 ✓ I [ {e}.
Then e 2 C1 \ C2, and by (C2), there is a circuit C3 of M s.t.
C3 ✓ (C1 [ C2) \ {e} ✓ I

This contradicts the independence of I.

In general, let C(I, e) be the unique circuit associated with I [ {e}
(commonly called the fundamental circuit in M w.r.t. I and e).
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Fundamental circuits in matroids

Lemma 15.5.1

Let I 2 I(M), and e 2 E, then I [ {e} contains at most one circuit in M .

Proof.

Suppose, to the contrary, that there are two distinct circuits C1, C2

such that C1 [ C2 ✓ I [ {e}.
Then e 2 C1 \ C2, and by (C2), there is a circuit C3 of M s.t.
C3 ✓ (C1 [ C2) \ {e} ✓ I

This contradicts the independence of I.

In general, let C(I, e) be the unique circuit associated with I [ {e}
(commonly called the fundamental circuit in M w.r.t. I and e).
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Fundamental circuits in matroids

Lemma 15.5.1

Let I 2 I(M), and e 2 E, then I [ {e} contains at most one circuit in M .

Proof.

Suppose, to the contrary, that there are two distinct circuits C1, C2

such that C1 [ C2 ✓ I [ {e}.
Then e 2 C1 \ C2, and by (C2), there is a circuit C3 of M s.t.
C3 ✓ (C1 [ C2) \ {e} ✓ I

This contradicts the independence of I.

In general, let C(I, e) be the unique circuit associated with I [ {e}
(commonly called the fundamental circuit in M w.r.t. I and e).
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Matroids: The Fundamental Circuit

Define C(I, e) be the unique circuit associated with I [ {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).

If e 2 span(I) \ I, then C(I, e) is well defined (I + e creates one
circuit).

If e 2 I, then I + e = I doesn’t create a circuit. In such cases, C(I, e)
is not really defined.

In such cases, we define C(I, e) = {e}, and we will soon see why.

If e /2 span(I), then C(I, e) = ;, since no circuit is created in this case.
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Matroids: The Fundamental Circuit

Define C(I, e) be the unique circuit associated with I [ {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).

If e 2 span(I) \ I, then C(I, e) is well defined (I + e creates one
circuit).

If e 2 I, then I + e = I doesn’t create a circuit. In such cases, C(I, e)
is not really defined.

In such cases, we define C(I, e) = {e}, and we will soon see why.

If e /2 span(I), then C(I, e) = ;, since no circuit is created in this case.
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Matroids: The Fundamental Circuit

Define C(I, e) be the unique circuit associated with I [ {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).

If e 2 span(I) \ I, then C(I, e) is well defined (I + e creates one
circuit).

If e 2 I, then I + e = I doesn’t create a circuit. In such cases, C(I, e)
is not really defined.

In such cases, we define C(I, e) = {e}, and we will soon see why.

If e /2 span(I), then C(I, e) = ;, since no circuit is created in this case.
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Matroids: The Fundamental Circuit

Define C(I, e) be the unique circuit associated with I [ {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).

If e 2 span(I) \ I, then C(I, e) is well defined (I + e creates one
circuit).

If e 2 I, then I + e = I doesn’t create a circuit. In such cases, C(I, e)
is not really defined.

In such cases, we define C(I, e) = {e}, and we will soon see why.

If e /2 span(I), then C(I, e) = ;, since no circuit is created in this case.
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Matroids: The Fundamental Circuit

Define C(I, e) be the unique circuit associated with I [ {e} (the
fundamental circuit in M w.r.t. I and e, if it exists).

If e 2 span(I) \ I, then C(I, e) is well defined (I + e creates one
circuit).

If e 2 I, then I + e = I doesn’t create a circuit. In such cases, C(I, e)
is not really defined.

In such cases, we define C(I, e) = {e}, and we will soon see why.

If e /2 span(I), then C(I, e) = ;, since no circuit is created in this case.
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Union of matroid bases of a set

Lemma 15.5.2

Let B(C) be the set of bases of C. Then, given matroid M = (E, I), and
any loop-free (i.e., no dependent singleton elements) set C ✓ E, we have:

[

B2B(C)

B = C. (15.13)

Proof.

Define C 0 , S

B2B(C), and suppose 9c 2 C such that c /2 C 0.

Hence, 8B 2 B(C) we have c /2 B, and B + c must contain a single
circuit for any B, namely C(B, c).

Then choose c0 2 C(B, c) with c0 6= c.

Then B + c� c0 is independent size |B| subset of C and hence spans
C, and thus is a c-containing member of B(C), contradicting c /2 C 0.
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Union of matroid bases of a set

Lemma 15.5.2

Let B(C) be the set of bases of C. Then, given matroid M = (E, I), and
any loop-free (i.e., no dependent singleton elements) set C ✓ E, we have:

[

B2B(C)

B = C. (15.13)

Proof.

Define C 0 , S

B2B(C), and suppose 9c 2 C such that c /2 C 0.

Hence, 8B 2 B(C) we have c /2 B, and B + c must contain a single
circuit for any B, namely C(B, c).

Then choose c0 2 C(B, c) with c0 6= c.

Then B + c� c0 is independent size |B| subset of C and hence spans
C, and thus is a c-containing member of B(C), contradicting c /2 C 0.
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Union of matroid bases of a set

Lemma 15.5.2

Let B(C) be the set of bases of C. Then, given matroid M = (E, I), and
any loop-free (i.e., no dependent singleton elements) set C ✓ E, we have:

[

B2B(C)

B = C. (15.13)

Proof.

Define C 0 , S

B2B(C), and suppose 9c 2 C such that c /2 C 0.

Hence, 8B 2 B(C) we have c /2 B, and B + c must contain a single
circuit for any B, namely C(B, c).

Then choose c0 2 C(B, c) with c0 6= c.

Then B + c� c0 is independent size |B| subset of C and hence spans
C, and thus is a c-containing member of B(C), contradicting c /2 C 0.
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Union of matroid bases of a set

Lemma 15.5.2

Let B(C) be the set of bases of C. Then, given matroid M = (E, I), and
any loop-free (i.e., no dependent singleton elements) set C ✓ E, we have:

[

B2B(C)

B = C. (15.13)

Proof.

Define C 0 , S

B2B(C), and suppose 9c 2 C such that c /2 C 0.

Hence, 8B 2 B(C) we have c /2 B, and B + c must contain a single
circuit for any B, namely C(B, c).

Then choose c0 2 C(B, c) with c0 6= c.

Then B + c� c0 is independent size |B| subset of C and hence spans
C, and thus is a c-containing member of B(C), contradicting c /2 C 0.
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The sat function = Polymatroid Closure

Thus, in a matroid, closure (span) of a set A are all items that A
spans (eq. that depend on A).

We wish to generalize closure to polymatroids.

Consider x 2 P
f

for polymatroid function f .

Again, recall, tight sets are closed under union and intersection, and
therefore form a distributive lattice.

That is, we saw in Lecture 7 that for any A,B 2 D(x), we have that
A [B 2 D(x) and A \B 2 D(x), which can constitute a join and
meet.

Recall, for a given x 2 P
f

, we have defined this tight family as

D(x) = {A : A ✓ E, x(A) = f(A)} (15.14)
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The sat function = Polymatroid Closure
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That is, we saw in Lecture 7 that for any A,B 2 D(x), we have that
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The sat function = Polymatroid Closure

Now given x 2 P+
f

:

D(x) = {A : A ✓ E, x(A) = f(A)} (15.15)

= {A : f(A)� x(A) = 0} (15.16)

Since x 2 P+
f

and f is presumed to be polymatroid function, we see
f 0(A) = f(A)� x(A) is a non-negative submodular function, and
D(x) are the zero-valued minimizers (if any) of f 0(A).

The zero-valued minimizers of f 0 are thus closed under union and
intersection.

In fact, this is true for all minimizers of a submodular function as
stated in the next theorem.
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The sat function = Polymatroid Closure

Now given x 2 P+
f

:

D(x) = {A : A ✓ E, x(A) = f(A)} (15.15)
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and f is presumed to be polymatroid function, we see
f 0(A) = f(A)� x(A) is a non-negative submodular function, and
D(x) are the zero-valued minimizers (if any) of f 0(A).
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The sat function = Polymatroid Closure

Now given x 2 P+
f

:

D(x) = {A : A ✓ E, x(A) = f(A)} (15.15)
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The zero-valued minimizers of f 0 are thus closed under union and
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In fact, this is true for all minimizers of a submodular function as
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The sat function = Polymatroid Closure
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= {A : f(A)� x(A) = 0} (15.16)

Since x 2 P+
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and f is presumed to be polymatroid function, we see
f 0(A) = f(A)� x(A) is a non-negative submodular function, and
D(x) are the zero-valued minimizers (if any) of f 0(A).

The zero-valued minimizers of f 0 are thus closed under union and
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Minimizers of a Submodular Function form a lattice

Theorem 15.6.1

For arbitrary submodular f , the minimizers are closed under union and
intersection. That is, let M = argmin

X✓E

f(X) be the set of minimizers
of f . Let A,B 2M. Then A [B 2M and A \B 2M.

Proof.

Since A and B are minimizers, we have f(A) = f(B)  f(A \B) and
f(A) = f(B)  f(A [B).
By submodularity, we have

f(A) + f(B) � f(A [B) + f(A \B) (15.17)

Hence, we must have f(A) = f(B) = f(A [B) = f(A \B).

Thus, the minimizers of a submodular function form a lattice, and there is a
maximal and a minimal minimizer of every submodular function.
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The sat function = Polymatroid Closure

Matroid closure is generalized by the unique maximal element in D(x),
also called the polymatroid closure or sat (saturation function).

For some x 2 P
f

, we have defined:

cl(x)
def
= sat(x)

def
=

[

{A : A 2 D(x)} (15.18)

=
[

{A : A ✓ E, x(A) = f(A)} (15.19)

= {e : e 2 E, 8↵ > 0, x+ ↵1
e

/2 P
f

} (15.20)

Hence, sat(x) is the maximal (zero-valued) minimizer of the
submodular function f

x

(A) , f(A)� x(A).

Eq. (15.20) says that sat consists of any point x that is P
f

saturated
(any additional positive movement, in that dimension, leaves P

f

).
We’ll revisit this in a few slides.

First, we see how sat generalizes matroid closure.
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The sat function = Polymatroid Closure

Consider matroid (E, I) = (E, r), some I 2 I. Then 1
I

2 P
r

and

D(1
I

) = {A : 1
I

(A) = r(A)} (15.21)

and

sat(1
I

)

=
[

{A : A ✓ E,A 2 D(1
I

)} (15.22)

=
[

{A : A ✓ E,1
I

(A) = r(A)} (15.23)

=
[

{A : A ✓ E, |I \A| = r(A)} (15.24)

Notice that 1
I

(A) = |I \A|  |I|.
Intuitively, consider an A � I 2 I that doesn’t increase rank, meaning
r(A) = r(I). If r(A) = |I \A| = r(I \A), as in Eqn. (15.24), then A
is in I’s span, so should get sat(1

I

) = span(I).

We formalize this next.
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The sat function = Polymatroid Closure

Consider matroid (E, I) = (E, r), some I 2 I. Then 1
I

2 P
r

and

D(1
I

) = {A : 1
I

(A) = r(A)} (15.21)

and

sat(1
I

)

=
[

{A : A ✓ E,A 2 D(1
I

)} (15.22)

=
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{A : A ✓ E,1
I

(A) = r(A)} (15.23)

=
[

{A : A ✓ E, |I \A| = r(A)} (15.24)

Notice that 1
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(A) = |I \A|  |I|.
Intuitively, consider an A � I 2 I that doesn’t increase rank, meaning
r(A) = r(I). If r(A) = |I \A| = r(I \A), as in Eqn. (15.24), then A
is in I’s span, so should get sat(1

I

) = span(I).

We formalize this next.
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=
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(A) = r(A)} (15.23)

=
[

{A : A ✓ E, |I \A| = r(A)} (15.24)

Notice that 1
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(A) = |I \A|  |I|.
Intuitively, consider an A � I 2 I that doesn’t increase rank, meaning
r(A) = r(I). If r(A) = |I \A| = r(I \A), as in Eqn. (15.24), then A
is in I’s span, so should get sat(1

I

) = span(I).

We formalize this next.
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and
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and
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) =
[

{A : A ✓ E,A 2 D(1
I

)} (15.22)

=
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{A : A ✓ E,1
I

(A) = r(A)} (15.23)

=
[

{A : A ✓ E, |I \A| = r(A)} (15.24)

Notice that 1
I

(A) = |I \A|  |I|.
Intuitively, consider an A � I 2 I that doesn’t increase rank, meaning
r(A) = r(I). If r(A) = |I \A| = r(I \A), as in Eqn. (15.24), then A
is in I’s span, so should get sat(1

I

) = span(I).

We formalize this next.
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The sat function = Polymatroid Closure

Consider matroid (E, I) = (E, r), some I 2 I. Then 1
I

2 P
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and
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(A) = r(A)} (15.21)

and

sat(1
I

) =
[

{A : A ✓ E,A 2 D(1
I

)} (15.22)

=
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{A : A ✓ E,1
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(A) = r(A)} (15.23)

=
[

{A : A ✓ E, |I \A| = r(A)} (15.24)

Notice that 1
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I
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We formalize this next.
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The sat function = Polymatroid Closure

Consider matroid (E, I) = (E, r), some I 2 I. Then 1
I

2 P
r

and

D(1
I

) = {A : 1
I

(A) = r(A)} (15.21)

and

sat(1
I

) =
[

{A : A ✓ E,A 2 D(1
I

)} (15.22)

=
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{A : A ✓ E,1
I

(A) = r(A)} (15.23)

=
[

{A : A ✓ E, |I \A| = r(A)} (15.24)

Notice that 1
I

(A) = |I \A|  |I|.

Intuitively, consider an A � I 2 I that doesn’t increase rank, meaning
r(A) = r(I). If r(A) = |I \A| = r(I \A), as in Eqn. (15.24), then A
is in I’s span, so should get sat(1

I

) = span(I).

We formalize this next.
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The sat function = Polymatroid Closure

Consider matroid (E, I) = (E, r), some I 2 I. Then 1
I

2 P
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and
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) = {A : 1
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(A) = r(A)} (15.21)

and

sat(1
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) =
[

{A : A ✓ E,A 2 D(1
I

)} (15.22)

=
[

{A : A ✓ E,1
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(A) = r(A)} (15.23)

=
[

{A : A ✓ E, |I \A| = r(A)} (15.24)

Notice that 1
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(A) = |I \A|  |I|.
Intuitively, consider an A � I 2 I that doesn’t increase rank, meaning
r(A) = r(I). If r(A) = |I \A| = r(I \A), as in Eqn. (15.24), then A
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The sat function = Polymatroid Closure

Consider matroid (E, I) = (E, r), some I 2 I. Then 1
I

2 P
r

and

D(1
I

) = {A : 1
I

(A) = r(A)} (15.21)

and

sat(1
I

) =
[

{A : A ✓ E,A 2 D(1
I

)} (15.22)

=
[

{A : A ✓ E,1
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(A) = r(A)} (15.23)

=
[

{A : A ✓ E, |I \A| = r(A)} (15.24)

Notice that 1
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(A) = |I \A|  |I|.
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I
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We formalize this next.
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The sat function = Polymatroid Closure

Lemma 15.7.1 (Matroid sat : RE

+ ! 2E is the same as closure.)

For I 2 I, we have sat(1
I

) = span(I) (15.25)

Proof.

For 1
I

(I) = |I| = r(I), so I 2 D(1
I

) and I ✓ sat(1
I

). Also,
I ✓ span(I).

Consider some b 2 span(I) \ I.
Then I [ {b} 2 D(1

I

) since 1
I

(I [ {b}) = |I| = r(I [ {b}) = r(I).

Thus, b 2 sat(1
I

).

Therefore, sat(1
I

) ◆ span(I) .

. . .
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The sat function = Polymatroid Closure

Lemma 15.7.1 (Matroid sat : RE

+ ! 2E is the same as closure.)

For I 2 I, we have sat(1
I

) = span(I) (15.25)

Proof.

For 1
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(I) = |I| = r(I), so I 2 D(1
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) and I ✓ sat(1
I

). Also,
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Consider some b 2 span(I) \ I.
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I

) since 1
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Thus, b 2 sat(1
I
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Therefore, sat(1
I

) ◆ span(I) .

. . .
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Therefore, sat(1
I
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. . .
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Proof.
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). Also,
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Consider some b 2 span(I) \ I.
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) since 1
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Therefore, sat(1
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+ ! 2E is the same as closure.)

For I 2 I, we have sat(1
I
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Proof.

For 1
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) and I ✓ sat(1
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). Also,
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Consider some b 2 span(I) \ I.
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) since 1
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(I [ {b}) = |I| = r(I [ {b}) = r(I).
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Therefore, sat(1
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The sat function = Polymatroid Closure

Lemma 15.7.1 (Matroid sat : RE

+ ! 2E is the same as closure.)

For I 2 I, we have sat(1
I

) = span(I) (15.25)

Proof.

For 1
I

(I) = |I| = r(I), so I 2 D(1
I

) and I ✓ sat(1
I

). Also,
I ✓ span(I).

Consider some b 2 span(I) \ I.
Then I [ {b} 2 D(1

I

) since 1
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(I [ {b}) = |I| = r(I [ {b}) = r(I).
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Therefore, sat(1
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The sat function = Polymatroid Closure

. . . proof continued.

Now, consider b 2 sat(1
I

) \ I.

Choose any A 2 D(1
I

) with b 2 A, thus b 2 A \ I.
Then 1

I

(A) = |A \ I| = r(A).

Now r(A) = |A \ I|  |I| = r(I).

Also, r(A \ I) = |A \ I| since A \ I 2 I.
Hence, r(A \ I) = r(A) = r((A \ I) [ (A \ I)) meaning
(A \ I) ✓ span(A \ I) ✓ span(I).

Since b 2 A \ I, we get b 2 span(I).

Thus, sat(1
I

) ✓ span(I) .

Hence sat(1
I

) = span(I)
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The sat function = Polymatroid Closure

. . . proof continued.

Now, consider b 2 sat(1
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(A \ I) ✓ span(A \ I) ✓ span(I).
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I
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Hence sat(1
I
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The sat function = Polymatroid Closure

. . . proof continued.
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Choose any A 2 D(1
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Then 1
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The sat function = Polymatroid Closure

. . . proof continued.
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The sat function = Polymatroid Closure

. . . proof continued.
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Hence sat(1
I

) = span(I)
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The sat function = Polymatroid Closure

. . . proof continued.
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) \ I.
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Hence, r(A \ I) = r(A) = r((A \ I) [ (A \ I)) meaning
(A \ I) ✓ span(A \ I) ✓ span(I).

Since b 2 A \ I, we get b 2 span(I).
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Hence sat(1
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) = span(I)
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The sat function = Polymatroid Closure
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. . . proof continued.
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The sat function = Polymatroid Closure

Now, consider a matroid (E, r) and some C ✓ E with C /2 I, and
consider 1

C

.

Is 1
C

2 P
r

? No, it might not be a vertex, or even a
member, of P

r

.
span(·) operates on more than just independent sets, so span(C) is
perfectly sensible.
Note span(C) = span(B) where I 3 B 2 B(C) is a base of C.
Then we have 1

B

 1
C

 1span(C), and that 1
B

2 P
r

. We can then
make the definition:

sat(1
C

) , sat(1
B

) for B 2 B(C) (15.26)

In which case, we also get sat(1
C

) = span(C) (in general, could define
sat(y) = sat(P-basis(y))).
However, consider the following form

sat(1
C

) =
[

{A : A ✓ E, |A \ C| = r(A)} (15.27)

Exercise: is span(C) = sat(1
C

)? Prove or disprove it.
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The sat function = Polymatroid Closure

Now, consider a matroid (E, r) and some C ✓ E with C /2 I, and
consider 1
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. Is 1
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?

No, it might not be a vertex, or even a
member, of P
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.
span(·) operates on more than just independent sets, so span(C) is
perfectly sensible.
Note span(C) = span(B) where I 3 B 2 B(C) is a base of C.
Then we have 1

B

 1
C

 1span(C), and that 1
B

2 P
r

. We can then
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In which case, we also get sat(1
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) = span(C) (in general, could define
sat(y) = sat(P-basis(y))).
However, consider the following form

sat(1
C

) =
[

{A : A ✓ E, |A \ C| = r(A)} (15.27)

Exercise: is span(C) = sat(1
C

)? Prove or disprove it.
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The sat function, span, and submodular function
minimization

Thus, for a matroid, sat(1
I

) is exactly the closure (or span) of I in the
matroid. I.e., for matroid (E, r), we have span(I) = sat(1

B

).

Recall, for x 2 P
f

and polymatroidal f , sat(x) is the maximal (by
inclusion) minimizer of f(A)� x(A), and thus in a matroid, span(I) is
the maximal minimizer of the submodular function formed by
r(A)� 1

I

(A).

Submodular function minimization can solve “span” queries in a
matroid or “sat” queries in a polymatroid.
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sat, as tight polymatroidal elements

We are given an x 2 P+
f

for submodular function f .

Recall that for such an x, sat(x) is defined as

sat(x) =
[

{A : x(A) = f(A)} (15.28)

We also have stated that sat(x) can be defined as:

sat(x) =
n

e : 8↵ > 0, x+ ↵1
e

/2 P+
f

o

(15.29)

We next show more formally that these are the same.
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sat, as tight polymatroidal elements

Lets start with one definition and derive the other.

sat(x)

def
=

n

e : 8↵ > 0, x+ ↵1
e

/2 P+
f

o

(15.30)

= {e : 8↵ > 0, 9A s.t. (x+ ↵1
e

)(A) > f(A)} (15.31)

= {e : 8↵ > 0, 9A 3 e s.t. (x+ ↵1
e

)(A) > f(A)} (15.32)

this last bit follows since 1
e

(A) = 1 () e 2 A.

Continuing, we get

sat(x) = {e : 8↵ > 0, 9A 3 e s.t. x(A) + ↵ > f(A)} (15.33)

given that x 2 P+
f

, meaning x(A)  f(A) for all A, we must have

sat(x)

= {e : 8↵ > 0, 9A 3 e s.t. x(A) = f(A)} (15.34)

= {e : 9A 3 e s.t. x(A) = f(A)} (15.35)

So now, if A is any set such that x(A) = f(A), then we clearly have

8e 2 A, e 2 sat(x), and therefore that sat(x) ◆ A

(15.36)
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Lets start with one definition and derive the other.

sat(x)
def
=

n

e : 8↵ > 0, x+ ↵1
e

/2 P+
f

o

(15.30)

= {e : 8↵ > 0, 9A s.t. (x+ ↵1
e

)(A) > f(A)} (15.31)

= {e : 8↵ > 0, 9A 3 e s.t. (x+ ↵1
e

)(A) > f(A)} (15.32)

this last bit follows since 1
e

(A) = 1 () e 2 A. Continuing, we get

sat(x) = {e : 8↵ > 0, 9A 3 e s.t. x(A) + ↵ > f(A)} (15.33)

given that x 2 P+
f

, meaning x(A)  f(A) for all A, we must have

sat(x) = {e : 8↵ > 0, 9A 3 e s.t. x(A) = f(A)} (15.34)

= {e : 9A 3 e s.t. x(A) = f(A)} (15.35)

So now, if A is any set such that x(A) = f(A), then we clearly have

8e 2 A, e 2 sat(x), and therefore that sat(x) ◆ A

(15.36)
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sat, as tight polymatroidal elements

. . . and therefore, with sat as defined in Eq. (??),

sat(x) ◆
[

{A : x(A) = f(A)} (15.37)

On the other hand, for any e 2 sat(x) defined as in Eq. (15.35), since
e is itself a member of a tight set, there is a set A 3 e such that
x(A) = f(A), giving

sat(x) ✓
[

{A : x(A) = f(A)} (15.38)

Therefore, the two definitions of sat are identical.
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Saturation Capacity

Another useful concept is saturation capacity which we develop next.

For x 2 P
f

, and e 2 E, consider finding

max {↵ : ↵ 2 R, x+ ↵1
e

2 P
f

} (15.39)

This is identical to:

max {↵ : (x+ ↵1
e

)(A)  f(A), 8A ◆ {e}} (15.40)

since any B ✓ E such that e /2 B does not change in a 1
e

adjustment,
meaning (x+ ↵1

e

)(B) = x(B).
Again, this is identical to:

max {↵ : x(A) + ↵  f(A), 8A ◆ {e}} (15.41)

or

max {↵ : ↵  f(A)� x(A), 8A ◆ {e}} (15.42)
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Saturation Capacity

The max is achieved when

↵ = ĉ(x; e)
def
= min {f(A)� x(A), 8A ◆ {e}} (15.43)

ĉ(x; e) is known as the saturation capacity associated with x 2 P
f

and
e.

Thus we have for x 2 P
f

,

ĉ(x; e)
def
= min {f(A)� x(A), 8A 3 e} (15.44)

= max {↵ : ↵ 2 R, x+ ↵1
e

2 P
f

} (15.45)

We immediately see that for e 2 E \ sat(x), we have that ĉ(x; e) > 0.

Also, for e 2 sat(x), we have that ĉ(x; e) = 0.

Note that any ↵ with 0  ↵  ĉ(x; e) we have x+ ↵1
e

2 P
f

.

We also see that computing ĉ(x; e) is a form of submodular function
minimization.
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e

2 P
f

.
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ĉ(x; e) is known as the saturation capacity associated with x 2 P
f

and
e.

Thus we have for x 2 P
f

,
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↵ = ĉ(x; e)
def
= min {f(A)� x(A), 8A ◆ {e}} (15.43)
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Note that any ↵ with 0  ↵  ĉ(x; e) we have x+ ↵1
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Also, for e 2 sat(x), we have that ĉ(x; e) = 0.
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We also see that computing ĉ(x; e) is a form of submodular function
minimization.

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 22nd, 2016 F63/77 (pg.232/305)



Submodular Max w. Other Constraints Most Violated  Matroids cont. Closure/Sat Closure/Sat Fund. Circuit/Dep

Dependence Function

Tight sets can be restricted to contain a particular element.

Given x 2 P
f

, and e 2 sat(x), define

D(x, e) = {A : e 2 A ✓ E, x(A) = f(A)} (15.46)

= D(x) \ {A : A ✓ E, e 2 A} (15.47)

Thus, D(x, e) ✓ D(x), and D(x, e) is a sublattice of D(x).

Therefore, we can define a unique minimal element of D(x, e) denoted
as follows:

dep(x, e) =

(

T

{A : e 2 A ✓ E, x(A) = f(A)} if e 2 sat(x)

; else

(15.48)

I.e., dep(x, e) is the minimal element in D(x) that contains e (the
minimal x-tight set containing e).
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Therefore, we can define a unique minimal element of D(x, e) denoted
as follows:

dep(x, e) =

(

T

{A : e 2 A ✓ E, x(A) = f(A)} if e 2 sat(x)

; else

(15.48)

I.e., dep(x, e) is the minimal element in D(x) that contains e (the
minimal x-tight set containing e).
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dep and sat in a lattice

Given some x 2 P
f

,

The picture on the
right summarizes
the relationships
between the lattices
and sublattices.

Note,
T

e

dep(x, e) =
dep(x).

sat(x)

dep(x , e)

all of 2 E (or at least all of the lattice)

lattice of x-tight sets

lattice of x-tight

 sets containing e

dry(x )

sat(x,e)

=dry(x , e)

=dep(x )
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dep and sat in a lattice

Given x 2 P
f

, recall distributive lattice of tight sets
D(x) = {A : x(A) = f(A)}

We had that sat(x) =
S

{A : A 2 D(x)} is the “1” element of this
lattice.

Consider the “0” element of D(x), i.e., dry(x)
def
=

T

{A : A 2 D(x)}
We can see dry(x) as the elements that are necessary for tightness.

That is, we can equivalently define dry(x) as

dry(x) =
�

e0 : x(A) < f(A), 8A 63 e0
 

(15.49)

This can be read as, for any e0 2 dry(x), any set that does not contain
e0 is not tight for x (any set A that is missing any element of dry(x) is
not tight).

Perhaps, then, a better name for dry is ntight(x), for the necessary for
tightness (but we’ll actually use neither name).

Note that dry need not be the empty set. Exercise: give example.
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dep and sat in a lattice

Given x 2 P
f

, recall distributive lattice of tight sets
D(x) = {A : x(A) = f(A)}
We had that sat(x) =

S

{A : A 2 D(x)} is the “1” element of this
lattice.

Consider the “0” element of D(x), i.e., dry(x)
def
=

T

{A : A 2 D(x)}
We can see dry(x) as the elements that are necessary for tightness.

That is, we can equivalently define dry(x) as

dry(x) =
�

e0 : x(A) < f(A), 8A 63 e0
 

(15.49)

This can be read as, for any e0 2 dry(x), any set that does not contain
e0 is not tight for x (any set A that is missing any element of dry(x) is
not tight).

Perhaps, then, a better name for dry is ntight(x), for the necessary for
tightness (but we’ll actually use neither name).

Note that dry need not be the empty set. Exercise: give example.
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dep and sat in a lattice

Given x 2 P
f

, recall distributive lattice of tight sets
D(x) = {A : x(A) = f(A)}
We had that sat(x) =

S

{A : A 2 D(x)} is the “1” element of this
lattice.

Consider the “0” element of D(x), i.e., dry(x)
def
=

T

{A : A 2 D(x)}

We can see dry(x) as the elements that are necessary for tightness.

That is, we can equivalently define dry(x) as

dry(x) =
�

e0 : x(A) < f(A), 8A 63 e0
 

(15.49)

This can be read as, for any e0 2 dry(x), any set that does not contain
e0 is not tight for x (any set A that is missing any element of dry(x) is
not tight).

Perhaps, then, a better name for dry is ntight(x), for the necessary for
tightness (but we’ll actually use neither name).

Note that dry need not be the empty set. Exercise: give example.
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dep and sat in a lattice

Given x 2 P
f

, recall distributive lattice of tight sets
D(x) = {A : x(A) = f(A)}
We had that sat(x) =

S

{A : A 2 D(x)} is the “1” element of this
lattice.

Consider the “0” element of D(x), i.e., dry(x)
def
=

T

{A : A 2 D(x)}
We can see dry(x) as the elements that are necessary for tightness.

That is, we can equivalently define dry(x) as

dry(x) =
�

e0 : x(A) < f(A), 8A 63 e0
 

(15.49)

This can be read as, for any e0 2 dry(x), any set that does not contain
e0 is not tight for x (any set A that is missing any element of dry(x) is
not tight).

Perhaps, then, a better name for dry is ntight(x), for the necessary for
tightness (but we’ll actually use neither name).

Note that dry need not be the empty set. Exercise: give example.
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dep and sat in a lattice

Given x 2 P
f

, recall distributive lattice of tight sets
D(x) = {A : x(A) = f(A)}
We had that sat(x) =

S

{A : A 2 D(x)} is the “1” element of this
lattice.

Consider the “0” element of D(x), i.e., dry(x)
def
=

T

{A : A 2 D(x)}
We can see dry(x) as the elements that are necessary for tightness.

That is, we can equivalently define dry(x) as

dry(x) =
�

e0 : x(A) < f(A), 8A 63 e0
 

(15.49)

This can be read as, for any e0 2 dry(x), any set that does not contain
e0 is not tight for x (any set A that is missing any element of dry(x) is
not tight).

Perhaps, then, a better name for dry is ntight(x), for the necessary for
tightness (but we’ll actually use neither name).

Note that dry need not be the empty set. Exercise: give example.
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dep and sat in a lattice

Given x 2 P
f

, recall distributive lattice of tight sets
D(x) = {A : x(A) = f(A)}
We had that sat(x) =

S

{A : A 2 D(x)} is the “1” element of this
lattice.

Consider the “0” element of D(x), i.e., dry(x)
def
=

T

{A : A 2 D(x)}
We can see dry(x) as the elements that are necessary for tightness.

That is, we can equivalently define dry(x) as

dry(x) =
�

e0 : x(A) < f(A), 8A 63 e0
 

(15.49)

This can be read as, for any e0 2 dry(x), any set that does not contain
e0 is not tight for x (any set A that is missing any element of dry(x) is
not tight).

Perhaps, then, a better name for dry is ntight(x), for the necessary for
tightness (but we’ll actually use neither name).

Note that dry need not be the empty set. Exercise: give example.
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dep and sat in a lattice

Given x 2 P
f

, recall distributive lattice of tight sets
D(x) = {A : x(A) = f(A)}
We had that sat(x) =

S

{A : A 2 D(x)} is the “1” element of this
lattice.

Consider the “0” element of D(x), i.e., dry(x)
def
=

T

{A : A 2 D(x)}
We can see dry(x) as the elements that are necessary for tightness.

That is, we can equivalently define dry(x) as

dry(x) =
�

e0 : x(A) < f(A), 8A 63 e0
 

(15.49)

This can be read as, for any e0 2 dry(x), any set that does not contain
e0 is not tight for x (any set A that is missing any element of dry(x) is
not tight).

Perhaps, then, a better name for dry is ntight(x), for the necessary for
tightness (but we’ll actually use neither name).

Note that dry need not be the empty set. Exercise: give example.
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dep and sat in a lattice

Given x 2 P
f

, recall distributive lattice of tight sets
D(x) = {A : x(A) = f(A)}
We had that sat(x) =

S

{A : A 2 D(x)} is the “1” element of this
lattice.

Consider the “0” element of D(x), i.e., dry(x)
def
=

T

{A : A 2 D(x)}
We can see dry(x) as the elements that are necessary for tightness.

That is, we can equivalently define dry(x) as

dry(x) =
�

e0 : x(A) < f(A), 8A 63 e0
 

(15.49)

This can be read as, for any e0 2 dry(x), any set that does not contain
e0 is not tight for x (any set A that is missing any element of dry(x) is
not tight).

Perhaps, then, a better name for dry is ntight(x), for the necessary for
tightness (but we’ll actually use neither name).

Note that dry need not be the empty set. Exercise: give example.
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An alternate expression for dep = dry

Now, given x 2 P
f

, and e 2 sat(x), recall distributive sub-lattice of
e-containing tight sets D(x, e) = {A : e 2 A, x(A) = f(A)}

We can define the “1” element of this sub-lattice as
sat(x, e)

def
=

S

{A : A 2 D(x, e)}.
Analogously, we can define the “0” element of this sub-lattice as

dry(x, e)
def
=

T

{A : A 2 D(x, e)}.
We can see dry(x, e) as the elements that are necessary for
e-containing tightness, with e 2 sat(x).
That is, we can view dry(x, e) as

dry(x, e) =
�

e0 : x(A) < f(A), 8A 63 e0, e 2 A
 

(15.50)

This can be read as, for any e0 2 dry(x, e), any e-containing set that
does not contain e0 is not tight for x.
But actually, dry(x, e) = dep(x, e), so we have derived another
expression for dep(x, e) in Eq. (15.50).
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An alternate expression for dep = dry

Now, given x 2 P
f

, and e 2 sat(x), recall distributive sub-lattice of
e-containing tight sets D(x, e) = {A : e 2 A, x(A) = f(A)}
We can define the “1” element of this sub-lattice as
sat(x, e)

def
=

S

{A : A 2 D(x, e)}.

Analogously, we can define the “0” element of this sub-lattice as

dry(x, e)
def
=

T

{A : A 2 D(x, e)}.
We can see dry(x, e) as the elements that are necessary for
e-containing tightness, with e 2 sat(x).
That is, we can view dry(x, e) as

dry(x, e) =
�

e0 : x(A) < f(A), 8A 63 e0, e 2 A
 

(15.50)

This can be read as, for any e0 2 dry(x, e), any e-containing set that
does not contain e0 is not tight for x.
But actually, dry(x, e) = dep(x, e), so we have derived another
expression for dep(x, e) in Eq. (15.50).
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An alternate expression for dep = dry

Now, given x 2 P
f

, and e 2 sat(x), recall distributive sub-lattice of
e-containing tight sets D(x, e) = {A : e 2 A, x(A) = f(A)}
We can define the “1” element of this sub-lattice as
sat(x, e)

def
=

S

{A : A 2 D(x, e)}.
Analogously, we can define the “0” element of this sub-lattice as

dry(x, e)
def
=

T

{A : A 2 D(x, e)}.

We can see dry(x, e) as the elements that are necessary for
e-containing tightness, with e 2 sat(x).
That is, we can view dry(x, e) as

dry(x, e) =
�

e0 : x(A) < f(A), 8A 63 e0, e 2 A
 

(15.50)

This can be read as, for any e0 2 dry(x, e), any e-containing set that
does not contain e0 is not tight for x.
But actually, dry(x, e) = dep(x, e), so we have derived another
expression for dep(x, e) in Eq. (15.50).
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An alternate expression for dep = dry

Now, given x 2 P
f

, and e 2 sat(x), recall distributive sub-lattice of
e-containing tight sets D(x, e) = {A : e 2 A, x(A) = f(A)}
We can define the “1” element of this sub-lattice as
sat(x, e)

def
=

S

{A : A 2 D(x, e)}.
Analogously, we can define the “0” element of this sub-lattice as

dry(x, e)
def
=

T

{A : A 2 D(x, e)}.
We can see dry(x, e) as the elements that are necessary for
e-containing tightness, with e 2 sat(x).

That is, we can view dry(x, e) as

dry(x, e) =
�

e0 : x(A) < f(A), 8A 63 e0, e 2 A
 

(15.50)

This can be read as, for any e0 2 dry(x, e), any e-containing set that
does not contain e0 is not tight for x.
But actually, dry(x, e) = dep(x, e), so we have derived another
expression for dep(x, e) in Eq. (15.50).
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An alternate expression for dep = dry

Now, given x 2 P
f

, and e 2 sat(x), recall distributive sub-lattice of
e-containing tight sets D(x, e) = {A : e 2 A, x(A) = f(A)}
We can define the “1” element of this sub-lattice as
sat(x, e)

def
=

S

{A : A 2 D(x, e)}.
Analogously, we can define the “0” element of this sub-lattice as

dry(x, e)
def
=

T

{A : A 2 D(x, e)}.
We can see dry(x, e) as the elements that are necessary for
e-containing tightness, with e 2 sat(x).
That is, we can view dry(x, e) as

dry(x, e) =
�

e0 : x(A) < f(A), 8A 63 e0, e 2 A
 

(15.50)

This can be read as, for any e0 2 dry(x, e), any e-containing set that
does not contain e0 is not tight for x.
But actually, dry(x, e) = dep(x, e), so we have derived another
expression for dep(x, e) in Eq. (15.50).
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An alternate expression for dep = dry

Now, given x 2 P
f

, and e 2 sat(x), recall distributive sub-lattice of
e-containing tight sets D(x, e) = {A : e 2 A, x(A) = f(A)}
We can define the “1” element of this sub-lattice as
sat(x, e)

def
=

S

{A : A 2 D(x, e)}.
Analogously, we can define the “0” element of this sub-lattice as

dry(x, e)
def
=

T

{A : A 2 D(x, e)}.
We can see dry(x, e) as the elements that are necessary for
e-containing tightness, with e 2 sat(x).
That is, we can view dry(x, e) as

dry(x, e) =
�

e0 : x(A) < f(A), 8A 63 e0, e 2 A
 

(15.50)

This can be read as, for any e0 2 dry(x, e), any e-containing set that
does not contain e0 is not tight for x.

But actually, dry(x, e) = dep(x, e), so we have derived another
expression for dep(x, e) in Eq. (15.50).
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An alternate expression for dep = dry

Now, given x 2 P
f

, and e 2 sat(x), recall distributive sub-lattice of
e-containing tight sets D(x, e) = {A : e 2 A, x(A) = f(A)}
We can define the “1” element of this sub-lattice as
sat(x, e)

def
=

S

{A : A 2 D(x, e)}.
Analogously, we can define the “0” element of this sub-lattice as

dry(x, e)
def
=

T

{A : A 2 D(x, e)}.
We can see dry(x, e) as the elements that are necessary for
e-containing tightness, with e 2 sat(x).
That is, we can view dry(x, e) as

dry(x, e) =
�

e0 : x(A) < f(A), 8A 63 e0, e 2 A
 

(15.50)

This can be read as, for any e0 2 dry(x, e), any e-containing set that
does not contain e0 is not tight for x.
But actually, dry(x, e) = dep(x, e), so we have derived another
expression for dep(x, e) in Eq. (15.50).

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 22nd, 2016 F67/77 (pg.253/305)



Submodular Max w. Other Constraints Most Violated  Matroids cont. Closure/Sat Closure/Sat Fund. Circuit/Dep

Dependence Function and Fundamental Matroid Circuit

Now, let (E, I) = (E, r) be a matroid, and let I 2 I giving 1
I

2 P
r

.
We have sat(1

I

) = span(I) = closure(I).

Given e 2 sat(1
I

) \ I and then consider an A 3 e with |I \A| = r(A).
Then I \A serves as a base for A (i.e., I \A spans A) and any such
A contains a circuit (i.e., we can add e 2 A \ I to I \A w/o
increasing rank).
Given e 2 sat(1

I

) \ I, and consider dep(1
I

, e), with

dep(1
I

, e) =
\

{A : e 2 A ✓ E,1
I

(A) = r(A)} (15.51)

=
\

{A : e 2 A ✓ E, |I \A| = r(A)} (15.52)

=
\

{A : e 2 A ✓ E, r(A)� |I \A| = 0} (15.53)

By SFM lattice, 9 a unique minimal A 3 e with |I \A| = r(A).
Thus, dep(1

I

, e) must be a circuit since if it included more than a
circuit, it would not be minimal in this sense.
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Dependence Function and Fundamental Matroid Circuit

Now, let (E, I) = (E, r) be a matroid, and let I 2 I giving 1
I

2 P
r

.
We have sat(1

I

) = span(I) = closure(I).
Given e 2 sat(1

I

) \ I and then consider an A 3 e with |I \A| = r(A).

Then I \A serves as a base for A (i.e., I \A spans A) and any such
A contains a circuit (i.e., we can add e 2 A \ I to I \A w/o
increasing rank).
Given e 2 sat(1

I

) \ I, and consider dep(1
I

, e), with

dep(1
I

, e) =
\

{A : e 2 A ✓ E,1
I

(A) = r(A)} (15.51)

=
\

{A : e 2 A ✓ E, |I \A| = r(A)} (15.52)

=
\

{A : e 2 A ✓ E, r(A)� |I \A| = 0} (15.53)

By SFM lattice, 9 a unique minimal A 3 e with |I \A| = r(A).
Thus, dep(1

I

, e) must be a circuit since if it included more than a
circuit, it would not be minimal in this sense.
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Dependence Function and Fundamental Matroid Circuit

Now, let (E, I) = (E, r) be a matroid, and let I 2 I giving 1
I

2 P
r

.
We have sat(1

I

) = span(I) = closure(I).
Given e 2 sat(1

I

) \ I and then consider an A 3 e with |I \A| = r(A).
Then I \A serves as a base for A (i.e., I \A spans A) and any such
A contains a circuit (i.e., we can add e 2 A \ I to I \A w/o
increasing rank).

Given e 2 sat(1
I

) \ I, and consider dep(1
I

, e), with

dep(1
I

, e) =
\

{A : e 2 A ✓ E,1
I

(A) = r(A)} (15.51)

=
\

{A : e 2 A ✓ E, |I \A| = r(A)} (15.52)

=
\

{A : e 2 A ✓ E, r(A)� |I \A| = 0} (15.53)

By SFM lattice, 9 a unique minimal A 3 e with |I \A| = r(A).
Thus, dep(1

I

, e) must be a circuit since if it included more than a
circuit, it would not be minimal in this sense.
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Dependence Function and Fundamental Matroid Circuit

Now, let (E, I) = (E, r) be a matroid, and let I 2 I giving 1
I

2 P
r

.
We have sat(1

I

) = span(I) = closure(I).
Given e 2 sat(1

I

) \ I and then consider an A 3 e with |I \A| = r(A).
Then I \A serves as a base for A (i.e., I \A spans A) and any such
A contains a circuit (i.e., we can add e 2 A \ I to I \A w/o
increasing rank).
Given e 2 sat(1

I

) \ I, and consider dep(1
I

, e), with

dep(1
I

, e) =
\

{A : e 2 A ✓ E,1
I

(A) = r(A)} (15.51)

=
\

{A : e 2 A ✓ E, |I \A| = r(A)} (15.52)

=
\

{A : e 2 A ✓ E, r(A)� |I \A| = 0} (15.53)

By SFM lattice, 9 a unique minimal A 3 e with |I \A| = r(A).
Thus, dep(1

I

, e) must be a circuit since if it included more than a
circuit, it would not be minimal in this sense.
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Dependence Function and Fundamental Matroid Circuit

Now, let (E, I) = (E, r) be a matroid, and let I 2 I giving 1
I

2 P
r

.
We have sat(1

I

) = span(I) = closure(I).
Given e 2 sat(1

I

) \ I and then consider an A 3 e with |I \A| = r(A).
Then I \A serves as a base for A (i.e., I \A spans A) and any such
A contains a circuit (i.e., we can add e 2 A \ I to I \A w/o
increasing rank).
Given e 2 sat(1

I

) \ I, and consider dep(1
I

, e), with

dep(1
I

, e) =
\

{A : e 2 A ✓ E,1
I

(A) = r(A)} (15.51)

=
\

{A : e 2 A ✓ E, |I \A| = r(A)} (15.52)

=
\

{A : e 2 A ✓ E, r(A)� |I \A| = 0} (15.53)

By SFM lattice, 9 a unique minimal A 3 e with |I \A| = r(A).

Thus, dep(1
I

, e) must be a circuit since if it included more than a
circuit, it would not be minimal in this sense.

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 22nd, 2016 F68/77 (pg.258/305)



Submodular Max w. Other Constraints Most Violated  Matroids cont. Closure/Sat Closure/Sat Fund. Circuit/Dep

Dependence Function and Fundamental Matroid Circuit

Now, let (E, I) = (E, r) be a matroid, and let I 2 I giving 1
I

2 P
r

.
We have sat(1

I

) = span(I) = closure(I).
Given e 2 sat(1

I

) \ I and then consider an A 3 e with |I \A| = r(A).
Then I \A serves as a base for A (i.e., I \A spans A) and any such
A contains a circuit (i.e., we can add e 2 A \ I to I \A w/o
increasing rank).
Given e 2 sat(1

I

) \ I, and consider dep(1
I

, e), with

dep(1
I

, e) =
\

{A : e 2 A ✓ E,1
I

(A) = r(A)} (15.51)

=
\

{A : e 2 A ✓ E, |I \A| = r(A)} (15.52)

=
\

{A : e 2 A ✓ E, r(A)� |I \A| = 0} (15.53)

By SFM lattice, 9 a unique minimal A 3 e with |I \A| = r(A).
Thus, dep(1

I

, e) must be a circuit since if it included more than a
circuit, it would not be minimal in this sense.

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 22nd, 2016 F68/77 (pg.259/305)



Submodular Max w. Other Constraints Most Violated  Matroids cont. Closure/Sat Closure/Sat Fund. Circuit/Dep

Dependence Function and Fundamental Matroid Circuit

Therefore, when e 2 sat(1
I

) \ I, then dep(1
I

, e) = C(I, e) where
C(I, e) is the unique circuit contained in I + e in a matroid (the
fundamental circuit of e and I that we encountered before).

Now, if e 2 sat(1
I

) \ I with I 2 I, we said that C(I, e) was undefined
(since no circuit is created in this case) and so we defined it as
C(I, e) = {e}
In this case, for such an e, we have dep(1

I

, e) = {e} since all such sets
A 3 e with |I \A| = r(A) contain e, but in this case no cycle is
created, i.e., |I \A| � |I \ {e}| = r(e) = 1.

We are thus free to take subsets of I as A, all of which must contain
e, but all of which have rank equal to size.

Also note: in general for x 2 P
f

and e 2 sat(x), we have dep(x, e) is
tight by definition.
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Summary of sat, and dep

For x 2 P
f

, sat(x) (span, closure) is the maximal saturated (x-tight) set
w.r.t. x. I.e., sat(x) = {e : e 2 E, 8↵ > 0, x+ ↵1

e

/2 P
f

}. That is,

cl(x)
def
= sat(x) ,

[

{A : A 2 D(x)} (15.54)

=
[

{A : A ✓ E, x(A) = f(A)} (15.55)

= {e : e 2 E, 8↵ > 0, x+ ↵1
e

/2 P
f

} (15.56)

For e 2 sat(x), we have dep(x, e) ✓ sat(x) (fundamental circuit) is the
minimal (common) saturated (x-tight) set w.r.t. x containing e. I.e.,

dep(x, e) =

(

T

{A : e 2 A ✓ E, x(A) = f(A)} if e 2 sat(x)

; else

=
�

e0 : 9↵ > 0, s.t. x+ ↵(1
e

� 1
e

0) 2 P
f

 

(15.57)
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Dependence Function and exchange

For e 2 span(I) \ I, we have that I + e /2 I. This is a set addition
restriction property.

Analogously, for e 2 sat(x), any x+ ↵1
e

/2 P
f

for ↵ > 0. This is a
vector increase restriction property.
Recall, we have C(I, e) \ e0 2 I for e0 2 C(I, e). I.e., C(I, e) consists
of elements that when removed recover independence.
In other words, for e 2 span(I) \ I, we have that

C(I, e) = {a 2 E : I + e� a 2 I} (15.58)

I.e., an addition of e to I stays within I only if we simultaneously
remove one of the elements of C(I, e).
But, analogous to the circuit case, is there an exchange property for
dep(x, e) in the form of vector movement restriction?
We might expect the vector dep(x, e) property to take the form:
a positive move in the e-direction stays within P+

f

only if we
simultaneously take a negative move in one of the dep(x, e) directions.
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Dependence Function and exchange in 2D

dep(x, e) is set of neg. directions we must move if we want to move in
pos. e direction, starting at x and staying within P

f

.

Viewable in 2D, we have for A,B ✓ E, A \B = ;:

Left: A \ dep(x, e) = ;, and we
can’t move further in (e) direction,
and moving in any negative a 2
A direction doesn’t change that.
Notice no dependence between (e)
and any element in A.

Right: A ✓ dep(x, e), and we
can’t move further in the (e) di-
rection, but we can move further
in (e) direction by moving in some
a 2 A negative direction. Notice
dependence between (e) and ele-
ments in A.
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B
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dependence between (e) and ele-
ments in A.

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 22nd, 2016 F72/77 (pg.274/305)



Submodular Max w. Other Constraints Most Violated  Matroids cont. Closure/Sat Closure/Sat Fund. Circuit/Dep

Dependence Function and exchange in 3D
We can move neither in the (e) nor the (a) direction, but we can move in
the (e) direction if we simultaneously move in the -(a) direction.
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We can move neither in the (e) nor the (a) direction, but we can move in
the (e) direction if we simultaneously move in the -(a) direction.
In 3D, we have:
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We can move neither in the (e) nor the (a) direction, but we can move in
the (e) direction if we simultaneously move in the -(a) direction.
In 3D, we have:
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I.e., for e 2 sat(x), a 2 sat(x), a 2 dep(x, e), e /2 dep(x, a),
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We can move neither in the (e) nor the (a) direction, but we can move in
the (e) direction if we simultaneously move in the -(a) direction.
In 3D, we have:
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I.e., for e 2 sat(x), a 2 sat(x), a 2 dep(x, e), e /2 dep(x, a), and

dep(x, e) = {a : a 2 E, 9↵ > 0 : x+ ↵(1
e

� 1
a

) 2 P
f

} (15.59)
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I.e., for e 2 sat(x), a 2 sat(x), a 2 dep(x, e), e /2 dep(x, a), and
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� 1
a

) 2 P
f

} (15.59)

We next show this formally . . .
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dep and exchange derived

The derivation for dep(x, e) involves turning a strict inequality into a
non-strict one with a strict explicit slack variable ↵:

dep(x, e) = ntight(x, e) = (15.60)

=
�

e0 : x(A) < f(A), 8A 63 e0, e 2 A
 

(15.61)

=
�

e0 : 9↵ > 0, s.t. ↵  f(A)� x(A), 8A 63 e0, e 2 A
 

(15.62)

=
�

e0 : 9↵ > 0, s.t. ↵1
e

(A)  f(A)� x(A), 8A 63 e0, e 2 A
 

(15.63)

=
�

e0 : 9↵ > 0, s.t. ↵(1
e

(A)� 1
e

0(A))  f(A)� x(A), 8A 63 e0, e 2 A
 

(15.64)

=
�

e0 : 9↵ > 0, s.t. x(A) + ↵(1
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dep and exchange derived

thus, we get the same in the above if we remove the constraint
A 63 e0, e 2 A, that is we get

dep(x, e) =
�

e0 : 9↵ > 0, s.t. x(A) + ↵(1
e

(A)� 1
e

0(A))  f(A), 8A
 

(15.66)

This is then identical to

dep(x, e) =
�

e0 : 9↵ > 0, s.t. x+ ↵(1
e

� 1
e

0) 2 P
f

 

(15.67)

Compare with original, the minimal element of D(x, e), with
e 2 sat(x):

dep(x, e) =

(

T

{A : e 2 A ✓ E, x(A) = f(A)} if e 2 sat(x)

; else

(15.68)
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Summary of Concepts

Most violated inequality max {x(A)� f(A) : A ✓ E}

Matroid by circuits, and the fundamental circuit C(I, e) ✓ I + e.

Minimizers of submodular functions form a lattice.

Minimal and maximal element of a lattice.

x-tight sets, maximal and minimal tight set.

sat function & Closure

Saturation Capacity

e-containing tight sets

dep function & fundamental circuit of a matroid
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Summary important definitions so far: tight, dep, & sat

x-tight sets: For x 2 P
f

, D(x) = {A ✓ E : x(A) = f(A)}.

Polymatroid closure/maximal x-tight set: For x 2 P
f

,
sat(x) = [{A : A 2 D(x)} = {e : e 2 E, 8↵ > 0, x+ ↵1

e

/2 P
f

}.
Saturation capacity: for x 2 P

f

, 0  ĉ(x; e) =
min {f(A)� x(A)|8A 3 e} = max {↵ : ↵ 2 R, x+ ↵1

e

2 P
f

}
Recall: sat(x) = {e : ĉ(x; e) = 0} and E \ sat(x) = {e : ĉ(x; e) > 0}.
e-containing x-tight sets: For x 2 P

f

,
D(x, e) = {A : e 2 A ✓ E, x(A) = f(A)} ✓ D(x).

Minimal e-containing x-tight set/polymatroidal fundamental circuit/:
For x 2 P

f

,

dep(x, e) =

(

T

{A : e 2 A ✓ E, x(A) = f(A)} if e 2 sat(x)

; else

=
�

e0 : 9↵ > 0, s.t. x+ ↵(1
e

� 1
e

0) 2 P
f
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Recall: sat(x) = {e : ĉ(x; e) = 0} and E \ sat(x) = {e : ĉ(x; e) > 0}.
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e-containing x-tight sets: For x 2 P
f

,
D(x, e) = {A : e 2 A ✓ E, x(A) = f(A)} ✓ D(x).

Minimal e-containing x-tight set/polymatroidal fundamental circuit/:
For x 2 P

f

,

dep(x, e) =

(

T

{A : e 2 A ✓ E, x(A) = f(A)} if e 2 sat(x)

; else

=
�

e0 : 9↵ > 0, s.t. x+ ↵(1
e

� 1
e

0) 2 P
f

 

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 15 - May 22nd, 2016 F77/77 (pg.303/305)



Submodular Max w. Other Constraints Most Violated  Matroids cont. Closure/Sat Closure/Sat Fund. Circuit/Dep

Summary important definitions so far: tight, dep, & sat

x-tight sets: For x 2 P
f

, D(x) = {A ✓ E : x(A) = f(A)}.
Polymatroid closure/maximal x-tight set: For x 2 P

f

,
sat(x) = [{A : A 2 D(x)} = {e : e 2 E, 8↵ > 0, x+ ↵1

e

/2 P
f

}.
Saturation capacity: for x 2 P

f
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