Submodular Functions, Optimization,

and Applications to Machine Learning

— Spring Quarter, Lecture 14 —

http://wuw.ee.washington.edu/people/faculty/bilmes/classes/ee596b_spring 2016/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes

May 18th, 2016

M f(A) ()2(AUB)+f(AﬁB)
e 00 @ ®

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F1/59 (pg.1/69)

Logistics
{ N

Cumulative Outstanding Reading

@ Read chapters 2 and 3 from Fujishige's book.
@ Read chapter 1 from Fujishige's book.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F2/59 (pg.2/69)

http://www.ee.washington.edu/people/faculty/bilmes/classes/ee596b_spring_2016/
http://melodi.ee.washington.edu/~bilmes

Logistics
10

Announcements, Assignments, and Reminders

@ Homework 4, available now at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Wednesday (5/25) at 11:55pm.

Homework 3, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (5/2) at 11:55pm.

Homework 2, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (4/18) at 11:55pm.

@ Homework 1, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Friday (4/8) at 11:55pm.

Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google
hangout (set up meeting via our our discussion board (https:
//canvas.uw.edu/courses/1039754/discussion_topics)).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F3/59 (pg.3/69)

Logistics
(MN]

Class Road Map - IT-I

@ L1(3/28): Motivation, Applications, & @ L11(5/2): From Matroids to

Basic Definitions Polymatroids, Polymatroids

@ L2(3/30): Machine Learning Apps @ L12(5/4): Polymatroids, Polymatroids
(diversity, complexity, parameter, learning and Greedy
target, surrogate). @ L13(5/9): Polymatroids and Greedy;

@ L3(4/4): Info theory exs, more apps, Possible Polytopes; Extreme Points;
definitions, graph/combinatorial examples, Polymatroids, Greedy, and Cardinality
matrix rank example, visualization Constrained Maximization

@ L4(4/6): Graph and Combinatorial @ L14(5/11): Cardinality Constrained
Examples, matrix rank, Venn diagrams, Maximization; Curvature; Submodular

examples of proofs of submodularity, some Max w. Other Constraints

useful properties @ L15(5/16):
@ L5(4/11): Examples & Properties, Other o L16(5/18):
Defs., Independence o L17(5/23):
@ L6(4/13): Independence, Matroids, o L18(5/25):
Matroid Examples, matroid rank is ’
@ L19(6/1):
submodular
@ L20(6/6): Final Presentations

@ L7(4/18): Matroid Rank, More on
Partition Matroid, System of Distinct
Reps, Transversals, Transversal Matroid,

@ L8(4/20): Transversals, Matroid and
representation, Dual Matroids,

@ L9(4/25): Dual Matroids, Properties,
Combinatorial Geometries, Matroid and
Greedy

@ L10(4/27): Matroid and Greedy,
Polyhedra, Matroid Polytopes,

maximization.

Finals Week: June 6th-10th, 2016.
Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F4/59 (pg.4/69)

https://canvas.uw.edu/courses/1039754/assignments
https://canvas.uw.edu/courses/1039754/assignments
https://canvas.uw.edu/courses/1039754/assignments
https://canvas.uw.edu/courses/1039754/assignments
https://canvas.uw.edu/courses/1039754/discussion_topics
https://canvas.uw.edu/courses/1039754/discussion_topics

Review
e

Polymatroidal polyhedron and greedy

@ Thus, restating the above results into a single complete theorem, we
have a result very similar to what we saw for matroids (i.e.,
Theorem 77)

Theorem 14.2.1

If f:2% — R, is given, and P is a polytope in Rf of the form

P ={xzeRE:z(A) < f(A),YA C E}, then the greedy solution to the
problem max(wz : « € P) is Vw optimum Iff f is monotone
non-decreasing submodular (i.e., iff P is a polymatroid).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F5/59 (pg.5/69)

Review
IR

Multiple Polytopes associated with arbitrary f

e Given an arbitrary submodular function f : 2" — R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).

o If f(0) #£0, can set f'(A) = f(A) — f(0) without destroying
submodularity. This does not change any minima, (i.e.,
argmin 4 f(A) = argmin 4 f'(A)) so assume all functions are

normalized f(0) = 0.

Note that due to constraint x(0) < f(0), we must have f(0) > 0 since if not (i.e., if
f(@) <0), then P doesn’t exist.

Another form of normalization can do is:

- {1 1z

This preserves submodularity due to f(A) + f(B)
AN B =0 then r.h.s. only gets smaller when f ()

@ We can define several polytopes:

> f(AUB)+ f(ANB), and if
>0

Pr={z eR¥ :2(S) < f(9),VS C E} (14.2)
Pt =P n{zeR”:z>0} (14.3)
Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity_- Lcture];4 - y 18th,_2016 F6/59 (pg.6/6‘.3) ,

f: X K T =

a P. ic what ic cametimec called +the evtended nolvitone (caometimec

Review
LIRLLnd

Multiple Polytopes in 2D associated with f

Pf=Pin{zeR’:z>0} (14.1)
Py ={z e R : 2(S) < f(S),VS C E} (14.2)
By =Pin{z eR¥ :z(E) = f(E)} (14.3)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F7/59 (pg.7/69)

Review
INEE RN

A polymatroid function’s polyhedron is a polymatroid.

Theorem 14.2.1

Let f be a submodular function defined on subsets of E. For any = € RF,
we have:

rank(z) = max (y(F) :y < z,y € Pf) =min(z(4) + f(E\A): ACE)
(14.1)

v

Essentially the same theorem as Theorem ??7, but note Py rather than PJT.
Taking x = 0 we get:

Corollary 14.2.2

Let f be a submodular function defined on subsets of E. We have:

rank(0) = max (y(E) :y <0,y € Pt) =min(f(A4): ACE) (14.2)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F8/59 (pg.8/69)

Review
INEEN AR

Polymatroid extreme points

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F9/59 (pg.9/69)

Review
LErrrnnd

Polymatroid extreme points

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F10/59 (pg.10/69)

Review
INEENEE N

Polymatroid with labeled edge lengths

ﬂe \\e 3) ff@

@ Recall
fe|A) = f(A+e)—f(A)
@ Notice how
submodularity,
F(e|B) < f(e|A) for
A C B, defines the P
shape of the polytope.

@ In fact, we have
strictness here

f(e|B) < f(e|4) for 7
'12 ﬂe\‘ ‘E
@ Also, consider how the S ;/ %) . -
greedy algorithm < N e
proceeds along the edges % {

of the polytope. —)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F11/59 (pg.11/69)

Review
Lerrernen

Intuition: why greedy works with polymatroids

Maximal pointin P}

@ Given w, the goal is . . .
s for w in this region.

to find

z = (z(e1), z(e2))
that maximizes

xTw = z(ep)w(er) +
x(e2)w(ez).

o If w(ez) > w(ey) the
upper extreme point
indicated maximizes
xTw over x € PJZF.

o If w(ez) < w(ey) the
lower extreme point
indicated maximizes
xTw over x € PJZF.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F12/59 (pg.12/69)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(ERRERERERERRRE

The Greedy Algorithm: 1 — 1/e intuition.

o At step ¢ < k, greedy chooses v; to maximize f(v|.S;).
@ Let S* be optimal solution (of size k) and OPT = f(S*). By
submodularity, we will show:

Jv e V\Si: f(v]Si) = f(Si +v[Si) > —(OPT — £(S5i)) (14.1)

e

0.95

1 — (1 1/FopthatGauasipr (14.1)
=

OPT — f(Si+1) |

< (1 —1/k)(OHT — f(5:))
= OPT — f(Sk) |
< (1-1/k)*OR

0.9

0.85

0.8

T

0.7

0.65

R 0 (R VO D

0.6

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 14 - May 18th, 2016 F13/59 (pg.13/69)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(HARNEREERERERN

Cardinality Constrained Polymatroid Max Theorem

Theorem 14.3.1 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R, define
{Si};>(to be the chain formed by the greedy algorithm (Eqn. (?7)). Then
for all k, ¢ € Z ,, we have:

f(Se) > (1—e %) nax, £(S) (14.2)

and in particular, for { = k, we have f(Sy) > (1 — 1/e) maxg. g<i f(5)-

@ k is size of optimal set, i.e., OPT = f(S*) with |S*| =k

@ (is size of set we are choosing (i.e., we choose Sy from greedy chain).

@ Bound is how well does Sy (of size £) do relative to S*, the optimal set of
size k.

@ Intuitively, bound should get worse when ¢ < k and get better when
> k.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F14/59 (pg.14/69)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(HEANEREERERERN

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 14.3.1.

@ Fix ¢ (number of items greedy will chose) and k (size of optimal set to
compare against).

Set S* € argmax {f(9) : |5 < k}
w.l.0.g. assume |S*| = k.

Order S* = (v}, v3,...,v}) arbitrarily.

® 6 o6 ¢

Let S; = (v1,v9,...,v;) be the greedy order chain chosen by the
algorithm, for i € {1,2,...,/¢}.

Then the following inequalities (on the next slide) follow:

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F15/59 (pg.15/69)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(NN NEREERERERN

Cardinality Constrained Polymatroid Max Theorem

.. proof of Theorem 14.3.1 cont.

@ For all i < ¢, we have

f(S%) <f(5*US')=f(i) + f(S7[5) (14.3)
+Zf |8y Ullwt w3, ooy 1) (14.4)
) + Z F(v|Sy) (14.5)
vES*

+ Y fwinlSi) = £(S) + Y f(Siv1]S:) (14.6)

vES* vES*
= f(Si) + kf(Si+1]S5:) (14.7)

@ Therefore, we have Equation 14.1, i.e.,:

f(S*) = f(Si) < kf(Siv1]Si) = k(f(Siv1) — f(S:)) (14.8)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F16/59 (pg.16/69)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(HENN AREERERERN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 14.3.1 cont.

o Define gap 6; = f(S*) — f(S;), s0 6; — 6ix1 = f(Six1) — £(S;), giving
0; <]{7(52 = 51‘_}_1) (14.9)
or
i1 < (1 - %)@' (14.10)

@ The relationship between dy and d; is then
Ly
o <(1- E) do (14.11)

e Now, dp = f(5*) — f(0) < f(S*) since f > 0.

@ Also, by variational bound 1 —z < e™* for x € R, we have

5y < (1— %)450 < etk f(S%) (14.12)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F17/59 (pg.17/69)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(HEENR FRERERERN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 14.3.1 cont.
@ When we identify §; = f(S*) — f(Sy), a bit of rearranging then gives:

F(Se) = (1 —e k) f(S%) (14.13)

[

e With ¢ = k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if S; is greedy solution of size k, and S* is an
optimal solution of size k, f(Si) > (1 — 1/e) f(S*) ~ 0.6321 f(S*).

e What if we want to guarantee a solution no worse than .95f(S*) where
|S*| = k? Set 0.95 = (1 — e~%/*), which gives
¢ =[—kln(l—0.95)] =4k. And [—1In(1 —0.999)] = 7.

@ So solution, in the worst case, quickly gets very good. Typical/practical
case is much better.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F18/59 (pg.18/69)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(HEENEN ARRERERN

Greedy running time

o Greedy computes a new maximum n = |V| times, and each maximum
computation requires O(n) comparisons, leading to O(n?)
computation for greedy.

@ This is the best we can do for arbitrary functions, but O(n?) is not
practical to some.

@ Greedy can be made much faster in practice by a simple strategy made
possible, once again, via the use of submodularity.

@ This is called Minoux's 1977 Accelerated Greedy strategy (and has
been rediscovered a few times, e.g., “Lazy greedy”), and runs much
faster while still producing same answer.

@ We describe it next:

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F19/59 (pg.19/69)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(HERNENE ARERERN

Minoux's Accelerated Greedy for Submodular Functions

@ At stage ¢ in the algorithm, we have a set of gains f(v|.S;) for all
v ¢ S;. Store these values o, < f(v|S;) in sorted priority queue.

Priority queue, O(1) to find max, O(logn) to insert in right place.
Once we choose a max v, then set S;+1 + S; + v.

For v ¢ S; 11 we have f(v|Si+1) < f(v|S;) by submodularity.
Therefore, if we find a v" such that f(v/|S;11) > a, for all v # v/, then
since

f'[Si41) 2 aw = f(0[Si) > f(v]Sit1) (14.14)

we have the true max, and we need not re-evaluate gains of other
elements again.

o Strategy is: find the argmax,/cyn\g,,, @, and then compute the real
f(v'|Sit1). If it is greater than all other «,'s then that’s the next
greedy step. Otherwise, replace o, with its real value, resort
(O(logn)), and repeat.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F20/59 (pg.20/69)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(HERNENEE RRRERN

Minoux's Accelerated Greedy for Submodular Functions

@ Minoux's algorithm is exact, in that it has the same guarantees as does
the O(n?) greedy Algorithm 2 (this means it will return either the
same answers, or answers that have the 1 — 1/e guarantee).

@ In practice: Minoux's trick has enormous speedups (= 700x) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).

@ When choosing a of size k, naive greedy algorithm is O(nk) but
accelerated variant at the very best does O(n + k), so this limits the
speedup.

@ Algorithm has been rediscovered (I think) independently (CELF -
cost-effective lazy forward selection, Leskovec et al., 2007)

@ Can be used used for "big data” sets (e.g., social networks, selecting
blogs of greatest influence, document summarization, etc.).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F21/59 (pg.21/69)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(HERNENEEE ERERN

Priority Queue

@ Use a priority queue) as a data structure: operations include:
o Insert an item (v,) into queue, with v € V and a € R.

INSERT(Q, (v, @)) (14.15)
e Pop the item (v, @) with maximum value « off the queue.

(v, @) < POP(Q) (14.16)
e Query the value of the max item in the queue

MAX(Q) € R (14.17)

@ On next slide, we call a popped item “fresh” if the value (v,) popped has
the correct value a = f(v|S;). Use extra "bit” to store this info

@ If a popped item is fresh, it must be the maximum — this can happen if,
at given iteration, v was first popped and neither fresh nor maximum so
placed back in the queue, and it then percolates back to the top at which
point it is fresh — thereby avoid extra queue check.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F22/59 (pg.22/69)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(HERNEREENE RRRN

Minoux's Accelerated Greedy Algorithm Submodular Max

Algorithm 2: Minoux’s Accelerated Greedy Algorithm

1 Set Sp <+ 0 ;¢ <+ 0 ; Initialize priority queue Q :
2 for v € F do
3 | INSERT(Q, f(v))

4 repeat

5 (v,) + POP(Q) ;

6 if a not “fresh” then

7 L recompute a < f(v|S5;)

8 if (popped a in line 5 was “fresh”) OR (o > MAX(Q)) then
9 Set Siy1 + S; U {U} X

4= 1 -

11 else

12 | INSERT(Q, (v,)

13 until i = |E)|;

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F23/59 (pg.23/69)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(HERNEREENER AN

Minimum Submodular Cover

@ Given polymatroid f, goal is to find a covering set of minimum cost:

S* € argmin |S| such that f(S5) > « (14.18)
SCv

where o is a “cover’ requirement.

o Normally take o = f(V') but defining f/(A) = min {f(A), a} we can
take any a. Hence, we have equivalent formulation:

S* € argmin | S| such that f/(S) > f'(V) (14.19)
SCV

@ Note that this immediately generalizes standard set cover, in which
case f(A) is the cardinality of the union of sets indexed by A.

@ Algorithm: Pick the first S; chosen by aforementioned greedy
algorithm such that f(.5;) > a.

@ For integer valued f, this greedy algorithm an O(log(maxscy f({s})))
approximation. Set cover is hard to approximate with a factor better
than (1 — €) log o, where « is the desired cover constraint.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F24/59 (pg.24/69)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(HERNEREERERE RN

Summary: Monotone Submodular Maximization

@ Only makes sense when there is a constraint.
@ We discussed cardinality constraint

@ Generalizes the max k-cover problem, and also similar to the set cover
problem.

o Simple greedy algorithm gets 1 — e %% approximation, where k is size
of optimal set we compare against, and / is size of set greedy
algorithm chooses.

@ Submodular cover: min. |S| s.t. f(S5) > a.

@ Minoux’'s accelerated greedy trick.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F25/59 (pg.25/69)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(HERNENEEREREE A

The Greedy Algorithm: 1 — 1/e intuition.

o At step ¢ < k, greedy chooses v; to maximize f(v|.S;).
@ Let S* be optimal solution (of size k) and OPT = f(S*). By
submodularity, we will show:

S0 € V\ it (0]S0) = f(Si+0]S) > T(OPT— f(S)) (14.1)

1 _,_,_,_Eq.u.a*'eﬁ%g) ”,i”
- =\ (1 — (1 — 1/Rfor<hptdgyaieT(;4-1)
] =

0.9

@

OPT — f(Siy1) |

< (1—1/k)(OFT — £(S:))

= OPT — f(Sk) |

N\ < (1—1/k)*ORT
~

7 o< 1/eOPT _

1-1/e = OPT(O—=T1/e) <[f(Sk)

0.85

0.8

0.7

0.6

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - M.ay 18th, 2016 F26/59 (pg.26/69)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(HEREAREERERERN |

Randomized greedy

@ How can we produce a randomized greedy strategy, one where each
greedy sweep produces a set that, on average, has a 1 — 1/e guarantee?

@ Suppose the following holds:

fOPT) — f(A)

- (14.20)

Elf(ai+1|4:)] >

where A; = (a1, a9, ...,a;) are the first i elements chosen by the
strategy.

@ See problem 5, homework 4.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F27/59 (pg.27/69)

Curvature
[RN

Curvature of a Submodular function

@ For any submodular function, we have f(j|S) < f(j]0) so that
f(318)/£(j10) < 1 whenever f(j|0) # 0.

e For f:2Y — R, (non-negative) functions, we also have
f(41S)/f(47]0) > 0 — and = 0 whenever j is “spanned” by S.
@ The total curvature of a submodular function is defined as follows:

s €I D (/AT) R

c=1

— min , ,
s.i¢S:FGlm#o f(510) fG#0 f(5)

@ c€[0,1]. When ¢ =0, f(j|S) = f(4]0) for all S,j, a sufficient
condition for modularity, and we saw in Theorem ?? that greedy is

optimal for max weight indep. set of a matroid.
e For f with curvature ¢, then VA C V, Vv ¢ a, V¢ > ¢

f(A4+v) = f(A) > (1 =) f(v) (14.22)

@ When ¢ = 1 then submodular function is “maximally curved”, i.e.,
there exists is a subset that fully spans some other element.
@ Matroid rank functions with some dependence is infinitely curved.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F28/59 (pg.28/69)

Curvature
1l

Curvature of a Submodular function

@ By submodularity, total curvature can be computed in either form:

s, w LGS FGIVAGD 0

C — min - = — B
s.jgs:f(jln£o f(j]0) ifGin#0 f(4]0)

@ Note: Matroid rank is either modular ¢ = 0 or infinitely curved ¢ =1
— hence, matroid rank can have only the extreme points of curvature,
namely O or 1.

@ Polymatroid functions are, in this sense, more nuanced, in that they
allow non-extreme curvature, with ¢ € [0, 1].

@ It will be remembered the notion of “partial dependence” within
polymatroid functions.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F29/59 (pg.29/69)

Curvature
11l

Curvature for f(S) = /|95

Curvature of f(S5) = /|S| as function of £(8) = /18] with [V| = n
el () = v/IST with |V

has curvature
1—(v/n—+vn-1).

@ Approximation gets worse
with bigger ground set.

y @ Functions of the form
057 : : : , 1 f(S) = /m(S) where
' ' ' ' 1 m:V — Ry, approximation
worse with n if
min; ; |m(i) —m(j)| has a
fixed lower bound with
0 20 m % 3 100 increasing n.

curvature of sqrt(JA|) as func. of |V|

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F30/59 (pg-30/69)

Curvature
(NN |

Curvature and approximation

@ Curvature limitation can help the greedy algorithm in terms of
approximation bounds.

e Conforti & Cornuéjols showed that greedy gives a 1/(1 + ¢)
approximation to max { f(S) : S € Z} when f has total curvature c.

@ Hence, greedy subject to matroid constraint is a max(1/(1 + ¢),1/2)
approximation algorithm, and if ¢ < 1 then it is better than 1/2 (e.g.,
with ¢ = 1/4 then we have a 0.8 algorithm).

1 T

0.95F

0.9

o

®

o
T

For k-uniform matroid

® (i.e., k-cardinality con-
straints), then approxima-
tion factor becomes

l(l _ e—c) 0.65[

C

approximation bound
o
'\‘ o
a1 =
T

1-1/e

o
3
T

0 0.2 0.4 0.6 0.8 1
Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F31/59 (pg.31/69)

Submodular Max w. Other Constraints
Rrrrrrerrrrrrrrrrerrrrerrrnd

Generalizations

e Consider a k-uniform matroid M = (V,Z) where
Z={SCV:|S| <k}, and consider problem max {f(A): A€ T}

@ Hence, the greedy algorithm is 1 — 1/e optimal for maximizing
polymatroidal f subject to a k-uniform matroid constraint.

@ Might be useful to allow an arbitrary matroid (e.g., partition matroid
IT={XCV:| XNV <kjforalli=1,...,¢}., or a transversal,
etc).

@ Knapsack constraint: if each item v € V has a cost ¢(v), we may ask
for ¢(S) < b where b is a budget, in units of costs. Q: Is
Z ={I:c(I) < b} the independent sets of a matroid?

@ We may wish to maximize f subject to multiple matroid constraints.
le., S€11,5 €1s,...,5 € L, where Z; are independent sets of the

ith matroid.

e Combinations of the above (e.g., knapsack & multiple matroid
constraints).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F32/59 (pg.32/69)

Submodular Max w. Other Constraints
Terrrerrerrrrrererrererrrrnd

Greedy over multiple matroids

Obvious heuristic is to use the greedy step but always stay feasible.
|.e., Starting with Sy = (), we repeat the following greedy step

Sit1=S;U argmax f(S; U{v}) (14.24)
UEV\SZ' 8 Sz'-i-UEﬂf:lL‘

That is, we keep choosing next whatever feasible element looks best.
This algorithm is simple and also has a guarantee

Theorem 14.5.1

Given a polymatroid function f, and set of matroids {M; = (E,Z;) _17'):11

the above greedy algorithm returns sets S; such that for each i we have
f(S;) > ﬁ Max|s|<; Se(F_, T; f(S), assuming such sets exists.

@ For one matroid, we have a 1/2 approximation.

@ Very easy algorithm, Minoux trick still possible, while addresses
multiple matroid constraints — but the bound is not that good when
there are many matroids.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F33/59 (pg.33/69)

Submodular Max w. Other Constraints
FERELErrerrrrrrrerrererrretd

Matroid Intersection and Bipartite Matching

@ Why might we want to do matroid intersection?
e Consider bipartite graph G = (V, F, E)). Define two partition matroids
MV = (E,Iv), and MF = (E,IF)
@ Independence in each matroid corresponds to:
Q@ IcT,iflIN(V,f)|<1lforall feF,
Q@and I eZpif|IN(v,F)|<1forallveV.

[
° \ e
~'
[
@ Therefore, a matching in G is simultaneously independent in both My,
and Mp and finding the maximum matching is finding the maximum
cardinality set independent in both matroids.

@ In bipartite graph case, therefore, can be solved in polynomial time.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F34/59 (pg.34/69)

Submodular Max w. Other Constraints
LErRrerrerrrrrererrererrrrtnd

Matroid Intersection and Network Communication

o Let Gy = (V1, E) and Gy = (V5, E) be two graphs on an isomorphic
set of edges (lets just give them same names E).

@ Consider two cycle matroids associated with these graphs
M, = (E,Z;) and My = (E,Z3). They might be very different (e.g.,
an edge might be between two distinct nodes in G but the same edge
is a loop in multi-graph G3.)

@ We may wish to find the maximum size edge-induced subgraph that is

still forest in both graphs (i.e., adding any edges will create a circuit in
either My, Ms, or both).

@ This is again a matroid intersection problem.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F35/59 (pg.35/69)

Submodular Max w. Other Constraints
LErrRerrerrrrrererrerrrrrrtd

Matroid Intersection and TSP

@ Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.

@ Given directed graph G, goal is to find such a Hamiltonian cycle.

@ From G with n nodes, create G’ with n + 1 nodes by duplicating
(w.l.o.g.) a particular node v; € V(G) to v{", vy, and have all
outgoing edges from v1 come instead from v; and all edges incoming
to vy go instead to vy .

@ Let M; be the cycle matroid on G’.

@ Let M5 be the partition matroid having as independent sets those that
have no more than one edge leaving any node — i.e., [€ Z(M>) if
IINd (v)| <1 forallveV(F).

@ Let Mj3 be the partition matroid having as independent sets those that
have no more than one edge entering any node — i.e., I € Z(M3) if
[INét(v)| <1forallveV(G).

@ Then a Hamiltonian cycle exists iff there is an n-element intersection
of Ml, MQ, and Mg.

EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016
AV — l v, U |J \J

Prof. Jeff Bilmes F36/59 (pg.36/69)
A WA, \J

1

given a directed graph, start at a node, visit all cities, and return to the

Submodular Max w. Other Constraints
TErrrmrrerrrrrererrerrrrrrtnd

Greedy over multiple matroids: Generalized Bipartite

Matching

o Generalized bipartite matching (i.e., max bipartite matching with
submodular costs on the edges). Use two partition matroids (as
mentioned earlier in class)

@ Useful in natural language processing: Ex. Computer language
translation, find an alignment between two language strings.

e Consider bipartite graph G = (E, F, V') where E and F are the
left /right set of nodes, respectively, and V' is the set of edges.

@ F corresponds to, say, an English language sentence and F
corresponds to a French language sentence — goal is to form a
matching (an alignment) between the two.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F37/59 (pg.37/69)

Submodular Max w. Other Constraints
LErrrrerererrrererrerrrrrrnd

Greedy over > 1 matroids: Multiple Language Alignment

o Consider English string and French string, set up as a bipartite graph.

| have ... as an example of public ownership

je le ai ... comme exemple de propriété publique

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F38/59 (pg.38/69)

Submodular Max w. Other Constraints
LErrrrerererrrererrerrrrrrnd

Greedy over > 1 matroids: Multiple Language Alignment

@ One possible alignment, a matching, with score as sum of edge
weights.

| have ... as an example of public ownership

VAL A

je le ai ... comme exemple de propriété publique

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F38/59 (pg.39/69)

Submodular Max w. Other Constraints
LErrrrerererrrererrerrrrrrnd

Greedy over > 1 matroids: Multiple Language Alignment

@ Edges incident to English words constitute an edge partition

| have ... as an example of public ownership

je le ai ...
@ The two edge partitions can be used to set up two 1-partition matroids
on the edges.

@ For each matroid, a set of edges is independent only if the set
intersects each partition block no more than one time.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F38/59 (pg.40/69)

Submodular Max w. Other Constraints
LErrrrerererrrererrerrrrrrnd

Greedy over > 1 matroids: Multiple Language Alignment

o Edges incident to French words constitute an edge partition

je le ai ... comme exemple de propriété publique

@ The two edge partitions can be used to set up two 1-partition matroids
on the edges.

@ For each matroid, a set of edges is independent only if the set
intersects each partition block no more than one time.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F38/59 (pg.41/69)

Submodular Max w. Other Constraints
LErrrrrerrerrrererrerrrrrrtnd

Greedy over > 1 matroids: Multiple Language Alignment

@ Typical to use bipartite matching to find an alignment between the two
language strings.

@ As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.

@ We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:

Fertility at most 1
. the ... of public ownership . . . the ... of public ownership

.. le ... de propriété publique ... le ... de propriété publique

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F39/59 (pg.42/69)

Submodular Max w. Other Constraints
LErrrrrerrerrrererrerrrrrrtnd

Greedy over > 1 matroids: Multiple Language Alignment

@ Typical to use bipartite matching to find an alignment between the two
language strings.

@ As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.

@ We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:

Fertility at most 2
.. . the ... of public ownership . . . the ... of public ownership

.. le ... de propriété publique ... le ... de propriété publique

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F39/59 (pg.43/69)

Submodular Max w. Other Constraints
LErrrrrrererrrererrererrrrtnd

Greedy over > 1 matroids: Multiple Language Alignment

@ Generalizing further, each block of edges in each partition matroid can
have its own “fertility” limit:
I={XCV: | XNnVj|<kjforalli=1,... ¢}

@ Maximizing submodular function subject to multiple matroid
constraints addresses this problem.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F40/59 (pg.44/69)

Submodular Max w. Other Constraints
LErrrrrrrmerrrererrerrrrrrnt

Greedy over multiple matroids: Submodular Welfare

@ Submodular Welfare Maximization: Consider E a set of m goods to be
distributed /partitioned among n people (“players”).

o Each players has a submodular “valuation” function, g; : 2 — R,
that measures how “desirable” or “valuable” a given subset A C E of
goods are to that player.

@ Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.

@ Goal of submodular welfare: Partition the goods
EF=Fi UFEy;U---UE, into n blocks in order to maximize the
submodular social welfare, measured as:

submodular-social-welfare(E1, Fo, ..., E,) = ZgZ(EZ) (14.25)
i=1

@ We can solve this via submodular maximization subject to multiple
matroid independence constraints as we next describe . ..

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F41/59 (pg.45/69)

Submodular Max w. Other Constraints
LErrrrrrrrerrrererrererrrrted

Submodular Welfare: Submodular Max over matroid
partition

o Create new ground set E’ as disjoint union of n copies of the ground
set. l.e.,

F'=FWEWY---WE (14.26)

nx

o Let E() C E’ be the ith block of E'.

@ For any e € E, the corresponding element in E() is called (e,i) € E®
(each original element is tagged by integer).

@ For e € F, define E, = {(¢/,i) € E' : ¢/ = ¢}.

@ Hence, {E.} .y is a partition of E’, each block of the partition for
one of the original elements in F.

@ Create a 1-partition matroid M = (E’,Z) where

I={SCFE :VeeFE,|SNE]|<1} (14.27)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F42/59 (pg.46/69)

Submodular Max w. Other Constraints
Lerrrrrrrrrerrrrerrerrrrrrtet

Submodular Welfare: Submodular Max over matroid

partition

@ Hence, S is independent in matroid M = (E’,I) if S uses each
original element no more than once.

o Create submodular function f’: 25" — R, with
F1(8) = Y, (SN EW),
@ Submodular welfare maximization becomes matroid constrained

submodular max max {f'(S) : S € I}, so greedy algorithm gives a 1/2
approximation.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F43/59 (pg.47/69)

Submodular Max w. Other Constraints
Lrrrrrrrrrrrerererrerrrrrrtnd

Submodular Social Welfare

Have n = 6 people (who don't
like to share) and |E| =m =7

pieces of sushi. E.g., e €

@ might be e = "salmon roll”.
= @ Goal: distribute sushi to people
Cﬁ.ﬂ\;‘-/j - . -

to maximize social welfare.
‘* @ Ground set disjoint union

FyFYEWEWEWE.

@ Partition matroid partitions:
& E., UE,UE.,,UE.,, UE, U
%ﬁg @ independent allocation
€55 @ non-independent allocation

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F44/59 (pg.48/69)

Submodular Social Welfare

Submodular Max w. Other Constraints
Lrrrrrrrrrrrerererrerrrrrrtnd

LALEEA

¥ e

7~
o)

(&%C

Prof. Jeff Bilmes

Submodular Social Welfare

EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

Have n = 6 people (who don't
like to share) and |E| =m =7
pieces of sushi. E.g., e € F
might be e = "salmon roll”.
Goal: distribute sushi to people
to maximize social welfare.
Ground set disjoint union
FFYEWEWEWE.
Partition matroid partitions:
E,UE, ,UE, ,UE, UE., U
E., UE,,.

independent allocation

non-independent allocation

F44/59 (pg.49/69)

Submodular Max w. Other Constraints

i

Prof. Jeff Bilmes

EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

Have n = 6 people (who don't
like to share) and |E| =m =7
pieces of sushi. E.g., e €
might be e = "salmon roll”.

Goal: distribute sushi to people
to maximize social welfare.

Ground set disjoint union
FEFYJEWEWEWE.

Partition matroid partitions:
E,UE,UE_ UE.,UE,_ U
8 L) 55

independent allocation

non-independent allocation

F44/59 (pg.50/69)

Submodular Social Welfare

Submodular Max w. Other Constraints
Lrrrrrrrrrrrerererrerrrrrrtnd

LALLEA

Prof. Jeff Bilmes

Submodular Social Welfare

Have n = 6 people (who don't
like to share) and |E| =m =7
pieces of sushi. E.g., e € F
might be e = "salmon roll”.

Goal: distribute sushi to people
to maximize social welfare.

Ground set disjoint union
FFYEWEWEWE.

Partition matroid partitions:
E, UE,UE_ UE,UE, U
8y L) 5z

independent allocation

non-independent allocation

EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F44/59 (pg.51/69)

Submodular Max w. Other Constraints
Lrrrrrrrrrrrerererrerrrrrrtnd

ALY

Prof. Jeff Bilmes

Have n = 6 people (who don't
like to share) and |E| =m =7
pieces of sushi. E.g., e €
might be e = "salmon roll”.

Goal: distribute sushi to people
to maximize social welfare.

Ground set disjoint union
FEFYJEWEWEWE.

Partition matroid partitions:
E,UE,UE_ UE.,UE,_ U
I8t | 15

independent allocation

non-independent allocation

EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F44/59 (pg.52/69)

Submodular Max w. Other Constraints
Lrrrrerrerrrrmererrererrrrtnt

Monotone Submodular over Knapsack Constraint

@ The constraint |A| < k is a simple cardinality constraint.
@ Consider a non-negative integral modular function c: £ — Z. .

@ A knapsack constraint would be of the form ¢(A) < b where B is some
integer budget that must not be exceeded. That is
max {f(A) : A C V,c(A) < b}.

@ Important: A knapsack constraint yields an independence system
(down closed) but it is not a matroid!

@ c(e) may be seen as the cost of item e and if ¢(e) = 1 for all e, then
we recover the cardinality constraint we saw earlier.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F45/59 (pg.53/69)

Submodular Max w. Other Constraints
Lrrrrerrerrrrmererrererrrrtnt

Monotone Submodular over Knapsack Constraint

@ Greedy can be seen as choosing the best gain: Starting with So = 0,
we repeat the following greedy step

St = S; U < argmax(f(S;U {v}) — £(Si) (14.28)
’UEV\SZ'

the gain is f({v}|S;) = f(Si +v) — f(S;), so greedy just chooses next

the currently unselected element with greatest gain.

@ Core idea in knapsack case: Greedy can be extended to choose next
whatever looks cost-normalized best, i.e., Starting some initial set Sy,
we repeat the following cost-normalized greedy step

Sit1 = 8; U {argmax 1(8: U {v}) — f(5) } (14.29)

vEV\S; c(v)

which we repeat until ¢(S;+1) > b and then take \S; as the solution.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F45/59 (pg.54/69)

Submodular Max w. Other Constraints
Lrrrrrrrerrrrrererrerrrrrrtnd

A Knapsack Constraint

@ There are a number of ways of getting approximation bounds using
this strategy.

@ If we run the normalized greedy procedure starting with Sy = (), and
compare the solution found with the max of the singletons
max,cy f({v}), choosing the max, then we get a (1 — e~1/2) = 0.39
approximation, in O(n?) time (Minoux trick also possible for further
speed)

@ Partial enumeration: On the other hand, we can get a
(1 — e~ 1) ~ 0.63 approximation in O(n®) time if we run the above
procedure starting from all sets of cardinality three (so restart for all
So such that |Sp| = 3), and compare that with the best singleton and
pairwise solution.

@ Extending something similar to this to d simultaneous knapsack
constraints is possible as well.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F46/59 (pg.55/69)

Submodular Max w. Other Constraints
Lrrrrerrerrrrrrmerrerrrrrrnt

Local Search Algorithms

From J. Vondrak

@ Local search involves switching up to ¢ elements, as long as it provides
a (non-trivial) improvement; can iterate in several phases. Some
examples follow:

@ 1/3 approximation to unconstrained non-monotone maximization
[Feige, Mirrokni, Vondrak, 2007]

o 1/(k+2+ % + &¢) approximation for non-monotone maximization
subject to k matroids [Lee, Mirrokni, Nagarajan, Sviridenko, 2009]

e 1/(k+ &;) approximation for monotone submodular maximization
subject to k£ > 2 matroids [Lee, Sviridenko, Vondrak, 2010].

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F47/59 (pg.56/69)

Submodular Max w. Other Constraints
Lrrrrerrerrrrrrrerrererrretd

What About Non-monotone

@ Alternatively, we may wish to maximize non-monotone submodular
functions. This includes of course graph cuts, and this problem is
APX-hard, so maximizing non-monotone functions, even
unconstrainedly, is hard.

e If f is an arbitrary submodular function (so neither polymatroidal, nor
necessarily positive or negative), then verifying if the maximum of f is
positive or negative is already NP-hard.

@ Therefore, submodular function max in such case is inapproximable
unless P=NP (since any such procedure would give us the sign of the
max).

@ Thus, any approximation algorithm must be for unipolar submodular
functions. E.g., non-negative but otherwise arbitrary submodular
functions.

@ We may get a (% — <) approximation for maximizing non-monotone
non-negative submodular functions, with most O(%n3 logn) function
calls using approximate local maxima.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F48/59 (pg.57/69)

Submodular Max w. Other Constraints
Lrrrrerrerrrrrrrrmerrrrrretd

Submodularity and local optima

@ Given any submodular function f, a set S C V is a local maximum of f
if f(S—v)<f(S)forallveSand f(S+wv)<f(S)forallveV\S

(i.e., local in a Hamming ball of radius 1).

@ The following interesting result is true for any submodular function:

Given a submodular function f, if S is a local maximum of f, and I C S or
I2 S, then f(I) < f(9).

@ ldea of proof: Given vy, vy € S, suppose f(S —v1) < f(5) and
f(S —wv2) < f(S). Submodularity requires
f(S —wvi)+ f(S —wv2) > f(S) + f(S — v1 — v2) which would be
impossible unless f(S —v; —v9) < f(.5).

e Similarly, given vi,vy ¢ S, and f(S +wv1) < f(S) and f(S + v2) < f(S).
Submodularity requires f(S +v1) + f(S +v2) > f(S) + f(S +v1 + v2)
which requires f(S + v1 + v2) < f(9).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F49/59 (pg.58/69)

Submodular Max w. Other Constraints
Lrrrrerrerrrrrrrrmerrrrrretd

Submodularity and local optima

@ Given any submodular function f, a set S C V is a local maximum of f
if f(S—v)<f(S)forallveSand f(S+wv)<f(S)forallveV\S

(i.e., local in a Hamming ball of radius 1).

@ The following interesting result is true for any submodular function:

© 00 N © G & W N =

[u—y
(=]

—
N =

Given a submodular function f, if S is a local maximum of f, and I C S or
128, then f(I) < f(9).

@ In other words, once we have identified a local maximum, the two
intervals in the Boolean lattice [(}, S] and [S, V] can be ruled out as a
possible improvement over S.

@ Finding a local maximum is already hard (PLS-complete), but it is
possible to find an approximate local maximum relatively efficiently.

@ This is the approach that yields the (% — £) approximation algorithm.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F49/59 (pg.59/69)

Submodular Max w. Other Constraints
Lrrrrerrerrrrrrrrrerrerrretnt

Linear time algorithm unconstrained non-monotone max

Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.
Buchbinder, Feldman, Naor, Schwartz 2012. Recall [a]+ = max(a,0).

Algorithm 3: Randomized Linear-time non-monotone submodular max

Set L« (;U<«+V /* Lower L, upper U. Invariant: L C U */ ;
Order elements of V = (v, vs,...,vy,) arbitrarily ;

fori < 0...|V]| do

o [F@ID))s: b [T {0y 5

if a=b=0then p<+ 1/2;

else p + a/(a+b);
if Flip of coin with Pr(heads) = p draws heads then
L L+ LU{v};

Otherwise /* if the coin drew tails, an event with prob. 1 —p */

| U« U\{v}

13

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F50/59 (pg.60/69)

return which I1s the same as U at this point

Submodular Max w. Other Constraints
Lrrrrerrerrrrrrrrrrerrrrrrted

Linear time algorithm unconstrained non-monotone max

@ Each “sweep” of the algorithm is O(n).

@ Running the algorithm 1x (with an arbitrary variable order) results in
a 1/3 approximation.

@ The 1/2 guarantee is in expected value (the expected solution has the
1/2 guarantee).

@ In practice, run it multiple times, each with a different random
permutation of the elements, and then take the cumulative best.

@ |t may be possible to choose the random order smartly to get better
results in practice.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F51/59 (pg.61/69)

Submodular Max w. Other Constraints
Lrrrrerrerrrrrrrrrrrerrrrred

More general still: multiple constraints different types

@ In the past several years, there has been a plethora of papers on
maximizing both monotone and non-monotone submodular functions
under various combinations of one or more knapsack and/or matroid
constraints.

@ The approximation quality is usually some function of the number of
matroids, and is often not a function of the number of knapsacks.

@ Often the computational costs of the algorithms are prohibitive (e.g.,
exponential in k) with large constants, so these algorithms might not
scale.

@ On the other hand, these algorithms offer deep and interesting intuition
into submodular functions, beyond what we have covered here.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F52/59 (pg.62/69)

Submodular Max w. Other Constraints
Lrrrrerrerrrrrrrrrrrrerrrrtnd

Some results on submodular maximization

@ As we've seen, we can get 1 — 1/e for non-negative monotone
submodular (polymatroid) functions with greedy algorithm under
cardinality constraints, and this is tight.

@ For general matroid, greedy reduces to 1/2 approximation (as we've
seen).

@ We can recover 1 — 1/e approximation using the continuous greedy
algorithm on the multilinear extension and then using pipage rounding
to re-integerize the solution (see J. Vondrak's publications).

@ More general constraints are possible too, as we see on the next table
(for references, see Jan Vondrak’s publications
http://theory.stanford.edu/~jvondrak/).

Prof. Jeff Bilmes

EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

F53/59 (pg.63,/69)

Submodular Max w. Other Constraints
Lrrrrerrerrrrrrrrrr ettt

Submodular Max Summary - 2012: From J. Vondrak

Monotone Maximization

knapsacks

Constraint Approximation | Hardness Technique
S| <k 1—1/e 1—-1/e greedy
matroid 1—-1/e 1 —1/e | multilinear ext.
O(1) knapsacks 1-1/e 1 —1/e | multilinear ext.
k matroids k+e k/logk local search
k matroids and O(1) .
knapsacks O(k) k/logk | multilinear ext.
Nonmonotone Maximization
Constraint Approximation | Hardness Technique
Unconstrained 1/2 1/2 combinatorial
matroid 1/e 0.48 multilinear ext.
O(1) knapsacks 1/e 0.49 multilinear ext.
k matroids k+O(1) k/logk local search
7 MRS el O10) O(k) k/logk | multilinear ext.

Prof. Jeff Bilmes

EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

F54/59 (pg.64/69)

http://theory.stanford.edu/~jvondrak/

Submodular Max w. Other Constraints
Lrrrrerrerrrrrererrrrrrerrtd

Submodular Max and polyhedral approaches

@ We've spent much time discussing SFM and the polymatroidal
polytope, and in general polyhedral approaches for SFM.

@ Most of the approaches for submodular max have not used such an
approach, probably due to the difficulty in computing the “concave
extension” of a submodular function (the convex extension is easy,
namely the Lovdsz extension).

@ A paper by Chekuri, Vondrak, and Zenklusen (2011) make some
progress on this front using multilinear extensions.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F55/59 (pg.65/69)

Submodular Max w. Other Constraints
Lrrrrerrerrrrrrrerrrrrrirnrtd

Multilinear extension
Definition 14.5.3

For a set function f : 2V — R, define its multilinear extension
F:[0,1]V = R by

Fz)=Y][]z J] - (14.30)

SCV i€S jeV\S

@ Note that F'(z) = Ef(Z) where & is a random binary vector over
{0, 1}V with elements independent w. probability x; for Z;.
@ While this is defined for any set function, we have:

Lemma 14.5.4

Let F:[0,1]V — R be multilinear extension of set function f : 2" — R,
then

e If f is monotone non-decreasing, then g—fi >0 forallicV,zc[0,1]V.

e If f is submodular, then af;ij <0 foralli,jinV, z €10,1]".

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F56/59 (pg.66/69)

Submodular Max w. Other Constraints
Lrrrrerrerrrrrrrerrerrrrinnd

Multilinear extension

@ Moreover, we have

Lemma 14.5.5

Let F:[0,1]Y — R be multilinear extension of set function f : 2"V — R,
then

e If f is monotone non-decreasing, then F' is non-decreasing along any line of
direction d € RE¥ with d > 0

o If f is submodular, then F' is concave along any line of direction d > 0, and is
convex along any line of direction 1, — 1,, for any v,w € V.

v

@ Another connection between submodularity and convexity/concavity

@ but note, unlike the Lovasz extension, this function is neither.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F57/59 (pg.67/69)

Submodular Max w. Other Constraints
Lrrrrerrerrrrrrrerrrrrrrrimi

Submodular Max and polyhedral approaches

@ Basic idea: Given a set of constraints Z, we form a polytope Pr such
that {1;: T € Z} C Py

e We find max,ecp, F'(x) where F(x) is the multi-linear extension of f,
to find a fractional solution x*

@ We then round x* to a point on the hypercube, thus giving us a
solution to the discrete problem.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F58/59 (pg.68/69)

Submodular Max w. Other Constraints
Lrrrrerrerrrrrererrerrrrrenn

Submodular Max and polyhedral approaches

@ In the recent paper by Chekuri, Vondrak, and Zenklusen, they show:

@ 1) constant factor approximation algorithm for max { F'(x) : = € P} for
any down-monotone solvable polytope P and F' multilinear extension
of any non-negative submodular function.

@ 2) A randomized rounding (pipage rounding) scheme to obtain an
integer solution

@ 3) An optimal (1 — 1/e) instance of their rounding scheme that can be
used for a variety of interesting independence systems, including O(1)
knapsacks, & matroids and O(1) knapsacks, a k-matchoid and ¢ sparse
packing integer programs, and unsplittable flow in paths and trees.

e Also, Vondrak showed that this scheme achieves the (1 — e™¢)
curvature based bound for any matroid, which matches the bound we
had earlier for uniform matroids with standard greedy.

@ In practice, one needs to do Monte-Carlo methods to estimate the
multilinear extension (so further approximations would apply).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F59/59 (pg.69/69)

	Logistics & Review
	Logistics
	Review

	Current Lecture
	Polymatroids, Greedy, and Cardinality Constrained Maximization
	Curvature
	Submodular Max w. Other Constraints

