Submodular Functions, Optimization,

and Applications to Machine Learning
— Spring Quarter, Lecture 14 —

http://www.ee.washington.edu/people/faculty/bilmes/classes/ee596b_spring_2016/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes

May 18th, 2016

f(A) + f(B) > f(AUB) + f(ANB)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F1/59 (pg

Logistics
(NN}

Cumulative Outstanding Reading

@ Read chapters 2 and 3 from Fujishige's book.
@ Read chapter 1 from Fujishige's book.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F2/59 (pg.2/246)

Logistics
(LNl

Announcements, Assignments, and Reminders

@ Homework 4, available now at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Wednesday (5/25) at 11:55pm.

o Homework 3, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (5/2) at 11:55pm.

@ Homework 2, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (4/18) at 11:55pm.

@ Homework 1, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Friday (4/8) at 11:55pm.

o Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google
hangout (set up meeting via our our discussion board (https:
//canvas.uw.edu/courses/1039754/discussion_topics)).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F3/59 (pg.3/246)

Logistics
(W1

Class Road Map - IT-

L1(3/28): Motivation, Applications, &
Basic Definitions

L2(3/30): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).

L3(4/4): Info theory exs, more apps,
definitions, graph/combinatorial examples,
matrix rank example, visualization
L4(4/6): Graph and Combinatorial
Examples, matrix rank, Venn diagrams,
examples of proofs of submodularity, some
useful properties

L5(4/11): Examples & Properties, Other
Defs., Independence

L6(4/13): Independence, Matroids,
Matroid Examples, matroid rank is
submodular

L7(4/18): Matroid Rank, More on
Partition Matroid, System of Distinct
Reps, Transversals, Transversal Matroid,
L8(4/20): Transversals, Matroid and
representation, Dual Matroids,

L9(4/25): Dual Matroids, Properties,
Combinatorial Geometries, Matroid and
Greedy

L10(4/27): Matroid and Greedy,
Polyhedra, Matroid Polytopes,

L11(5/2): From Matroids to
Polymatroids, Polymatroids

L12(5/4): Polymatroids, Polymatroids
and Greedy

L13(5/9): Polymatroids and Greedy;
Possible Polytopes; Extreme Points;
Polymatroids, Greedy, and Cardinality
Constrained-Maximization

L14(5/11): Cardinality Constrained
Maximization; Curvature; Submodular
Max w. Other Constraints

L15(5/16):
L16(5/18):
7(5/23):
8(5/25):
L19(6/1):
L20(6/6): Final Presentations
maximization.

L1
L1

Finals Week: June 6th-10th, 2016.

Prof. Jeff Bilmes

2016/Submodularity - Lecture 14 - May 18th,

Review
[ERNNARN

Polymatroidal polyhedron and greedy

@ Thus, restating the above results into a single complete theorem, we
have a result very similar to what we saw for matroids (i.e.,
Theorem 77)

Theorem 14.2.1

If f:2F — R is given, and P is a polytope in Rf of the form

P ={z e R¥ :2(A) < f(A),YA C E}, then the greedy solution to the
problem max(wz : x € P) is Yw optimum Iff f is monotone
non-decreasing submodular (i.e., iff P is a polyW

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F5/59 (pg.5/246)

Review
(RNRRRRN

Multiple Polytopes associated with arbitrary f

o Given an arbitrary submodular function f : 2V — R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).

o If f(0) #£0, can set f'(A) = f(A) — f(D) without destroying
submodularity. This does not change any minima, (i.e.,
argmin, f(A) = argminy f/(A)) so assume all functions are
normalized f(() = 0.

@ We can define several polytopes:

Py ={z € R : 2(S) < f(S),VS C E} (14.1)
Pf = Prn{z e R” : z >0} (14.2)
By =P;n{z e R : 2(E) = f(E)} (14.3)

@ Py is what is sometimes called the extended polytope (sometimes
notated as £ Py.

° Pf+ is Pr restricted to the positive orthant.

@ By is called the base polytope, analogous to the base in matroid.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F6/59 (pg.6/246)

Review
(NLRRRRN

Multiple Polytopes in 2D associated with f

Pt =Pn{zeR”:z>0} (14.1)
Py ={z e R¥ : 2(5) < f(S),VS C E} (14.2)
By=P;n{zr e R :2(E) = f(B)} (14.3)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F7/59 (pg.7/246)

Review
(NRT RN

A polymatroid function's polyhedron is a polymatroid.

Theorem 14.2.1

Let f be a submodular function defined on subsets of E. For any x € R¥,
we have:

rank(z) = max (y(E) : y < z,y € Py) =min (z(A) + f(E\A): ACE)
(14.1)

Essentially the same theorem as Theorem 7?7, but note Py rather than PJﬁ'.
Taking © = 0 we get:

Corollary 14.2.2

Let f be a submodular function defined on subsets of E. We have:

rank(0) = max (y(E) : y <0,y € Pf) =min(f(A): ACE) (14.2)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F8/59 (pg.8/246)

Review
(NRRR ARN

Polymatroid extreme points

Theorem 14.2.1

For a given ordering E = (e1,...,en) of E and a given E; = (ey,. .., €;)
and x generated by E; using the greedy procedure (z(e;) = f(ei|Ei—1)),
then x is an extreme point of Py

o We already saw that « € Py (Theorem 7).

@ To show that z is an extreme point of Py, note that it is the unique
solution of the following system of equations

z(Ej) = f(E;) for 1 <j<i<m (145
z(e) =0foree E\ E; (14.6)

There are i < m equations and 7 < m unknowns, and simple Gaussian
elimination gives us back the = constructed via the Greedy algorithm!!

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F9/59 (pg.9/246)

Review
(NNRNE AN

Polymatroid extreme points
o Moreover, we have (and will ultimately prove)

Corollary 14.2.2

If z is an extreme point of Py and B C E is given such that
supp(z) ={e€ E:xz(e) #0} T B C U(A: z(A) = f(A)) = sat(x), then
x is generated using greedy by some ordering of B.

o Note, sat(x) =cl(x) = U(A: x(A) = f(A)) is also called the closure
of = (recall that sets A such that z(A) = f(A) are called tight, and
such sets are closed under union and intersection, as seen in Lecture 8,

Theorem 77)
@ Thus, cl(x) is a tight set.

@ Also, supp(z) = {e € E : z(e) # 0} is called the support of .

e For arbitrary x, supp(x) is not necessarily tight, but for an extreme
point, supp(x) is.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F10/59 (pg.10/246)

Review
(NRRRRE N

Polymatroid with labeled edge lengths

@ Recall
F(elA) = f(A+e)—F(A)
@ Notice how
submodularity,
F(€lB) < f(e|A) for
A C B, defines the
shape of the polytope.

@ In fact, we have
strictness here
F(e|B) < f(e|A) for
A C B.

@ Also, consider how the
greedy algorithm
proceeds along the edges
of the polytope.

Prof. Jeff Bilmes

(‘a2

e
/s
2 /6;,@

(0
e/s;)

&

({="'3)"=)

e

2

flee)

e

7o
)

"8)

(e \\\e &3

fle)

7o

e

EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

>/

1

fle &€

(EDEN

(alay

»ﬁ‘

F11/59 (pg.11/246)

Review

Intuition: why greedy works with polymatroids

@ Given w, the goal is
to find
7 = (aer), 2(e))
that maximizes
2Tw = z(er)w(er) +
x(e2)w(ez).

o If w(ez) > w(ey) the
upper extreme point
indicated maximizes
xTw over x € P;r.

o If w(ez) < w(ey) the
lower extreme point
indicated maximizes
xTw over x € ij.

Maximal point in P;
for win this region.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F12/59 (pg.12/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NRNRARNERRERAN]

The Greedy Algorithm: 1 — 1/e intuition.
o At step 1 < k, greedy chooses v; to maximize f(v|S;)-

e acpar £04)
AV
4] L ; £(vlS)
So&— P, 4

(epest
& MM* E(f +v) —£(5 >//{
reV\s;
Cin =8 +a7;
A+t

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F13/59 (pg.13/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NRNRARNERRERAN]

The Greedy Algorithm: 1 — 1/e intuition.

o At step ¢ < k, greedy chooses v; to maximize f(v|S;).
o Let S* be optimal solution (of size k) and OPT = f(S%).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F13/59 (pg.14/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NRNRARNERRERAN]

The Greedy Algorithm: 1 — 1/e intuition.

o At step ¢ < k, greedy chooses v; to maximize f(v|S;).

o Let S* be optimal solution (of size k) and OPT = f(S*). By
submodularity, we will show:

| —

JveV \ S f(’U|Sl) = f(SZ + 1’|Sl) > (OPT = f(SZ)) (14.1)

o~

9 F

Prof. Jeff Bilmes

EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

F13/59 (pg.15/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[KRNRARNERRERAN]

The Greedy Algorithm: 1 — 1/e intuition.

o At step ¢ < k, greedy chooses v; to maximize f(v|S;).

o Let S* be optimal solution (of size k) and OPT = f(S*). By
submodularity, we will show:

JveV\S;: f(v]|S;) = f(S;+v]S;) >

(OPT — f(Si)) (14.1)

x| =

Prof. Jeff Bilmes

EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

F13/59 (pg.16/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NRNRARNERRERAN]

The Greedy Algorithm: 1 — 1/e intuition.

o At step ¢ < k, greedy chooses v; to maximize f(v|S;).
o Let S* be optimal solution (of size k) and OPT = f(S*). By

submodularity, we will show:

Jv e V\S;: f(v]Si) = f(Si +v[Si) = —(OPT — f(5:)) (14.1)

x| =

y e 5 o 0
Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F13/59 (pg.17/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NRNRARNERRERAN]

The Greedy Algorithm: 1 — 1/e intuition.

o At step ¢ < k, greedy chooses v; to maximize f(v|S;).
o Let S* be optimal solution (of size k) and OPT = f(S*). By
submodularity, we will show:

T e VS : F(u|S)= F(Si+0]Ss) > %(OPT _ sy (141)

! Equation (14.10) will
o 1\ [show that Equation (14.1)

03 <17 f) =

o OPT — f(Sit1)

< (1 - 1/k)(OPT — f(S;))
— OPT — f(Sk)
<(1-1/k)*OPT

< 1/eOPT

= OPT(1—1/e) < f(Sk)

2 e 5 o 0
Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F13/59 (pg.18/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NRNRARNERRERAN]

The Greedy Algorithm: 1 — 1/e intuition.

o At step ¢ < k, greedy chooses v; to maximize f(v|S;).
o Let S* be optimal solution (of size k) and OPT = f(S*). By
submodularity, we will show:

Jv e V\S;: f(v]Si) = f(Si +v[Si) > —(OPT — f(S;)) (14.1)

x| =

. Equation (14.10) will
o\ (1 — (1= 1/k)%) < f(Sk)/OPT [show that Equation (14.1)
0.9 j:
OPT — f(Si11)
. < (1-1/k)(OPT — £(S)
o7s = OPT — f(Sk)
< (1-1/k)*OPT
o1/ ' <1/eOPT
Rt 2 3 4 5 6 7 0 TP = OPT(l - 1/6) S f(Sk)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F13/59 (pg.19/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[LNRNNARNARRNRN

Cardinality Constrained Polymatroid Max Theorem

Theorem 14.3.1 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R, define
{Si},=p to be the chain formed by the greedy algorithm (Eqn. (?7)). Then
for allk, £ € Z 'y, 'we have: -~

oF)\ 4

f(Se)>(1—e Z/k)s%elwgkf(s) (14.2)

and in particular, for £ = k, we have f(Sk) = (1 — 1/e) maxg. gj< f(5).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F14/59 (pg.20/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[LNANNARNARRNRN

Cardinality Constrained Polymatroid Max Theorem

Theorem 14.3.1 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R, define
{Si};>q to be the chain formed by the greedy algorithm (Eqn. (7?)). Then
for all k, ¢ € Z4, we have:

£(Se) > (1— ek Jmax, f(S) (14.2)

and in particular, for £ = k, we have f(Si) > (1 — 1/e) maxg. g <k f(5).

@ k is size of optimal set, i.e., OPT = f(S*) with |S*| =k

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F14/59 (pg.21/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[LNANNARNARRNRN

Cardinality Constrained Polymatroid Max Theorem

Theorem 14.3.1 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R, define
{Si};>q to be the chain formed by the greedy algorithm (Eqn. (7?)). Then
for all k, ¢ € Z4, we have:

£(Se) > (1— ek Jmax, f(S) (14.2)

and in particular, for £ = k, we have f(Si) > (1 — 1/e) maxg. g <k f(5).

o k is size of optimal set, i.e., OPT = f(S*) with |S*| =k
@ / is size of set we are choosing (i.e., we choose Sy from greedy chain).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F14/59 (pg.22/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[LNANNARNARRNRN

Cardinality Constrained Polymatroid Max Theorem

Theorem 14.3.1 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R, define
{Si};>q to be the chain formed by the greedy algorithm (Eqn. (7?)). Then
for all k, ¢ € Z4, we have:

£(Se) = (1 —eF) Jmax f(S) (14.2)

and in particular, for £ = k, we have f(Si) > (1 — 1/e) maxg. g <k f(5).

o k is size of optimal set, i.e., OPT = f(S*) with |S*| =k

@ / is size of set we are choosing (i.e., we choose Sy from greedy chain).

@ Bound is how well does S, (of size ¢) do relative to S*, the optimal set of
size k.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F14/59 (pg.23/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[LNANNARNARRNRN

Cardinality Constrained Polymatroid Max Theorem

Theorem 14.3.1 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R, define
{Si};>q to be the chain formed by the greedy algorithm (Eqn. (7?)). Then
for all k, ¢ € Z4, we have:

£(Se) = (1 —eF) Jmax f(S) (14.2)

and in particular, for £ = k, we have f(Si) > (1 — 1/e) maxg. g <k f(5).

o k is size of optimal set, i.e., OPT = f(S*) with |S*| =k

@ / is size of set we are choosing (i.e., we choose Sy from greedy chain).

@ Bound is how well does S (of size ¢) do relative to S*, the optimal set of
size k.

@ Intuitively, bound should get worse when ¢ < k and get better when
0> k.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F14/59 (pg.24/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(N RNNARNRRRNRN

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 14.3.1.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F15/59 (pg.25/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(N RNNARNRRRNRN

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 14.3.1.

@ Fix ¢ (number of items greedy will chose) and & (size of optimal set to
compare against).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F15/59 (pg.26/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(N RNRARNRRRNRN

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 14.3.1.

@ Fix ¢ (number of items greedy will chose) and & (size of optimal set to
compare against).

@ Set S*/€ argmax {f(95) : |S| < k}

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F15/59 (pg.27/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(N RNNARNRRRNRN

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 14.3.1.

@ Fix ¢ (number of items greedy will chose) and & (size of optimal set to
compare against).

@ Set S* € argmax {f(9) : |S| < k}

@ w.l.o.g. assume |S*| = k.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F15/59 (pg.28/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(N RNNARNRRRNRN

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 14.3.1.

@ Fix ¢ (number of items greedy will chose) and & (size of optimal set to
compare against).

@ Set S* € argmax {f(9) : |S| < k}

o w.l.o.g. assume |S*| = k.

e Order S* = (v}, v3,...,v;) arbitrarily.

F15/59 (pg.29/246)

EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

Prof. Jeff Bilmes

Polymatroids, Greedy, and Cardinality Constrained Maximization
(N RNRARNRRRNRN

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 14.3.1.

@ Fix ¢ (number of items greedy will chose) and & (size of optimal set to
compare against).

@ Set S* € argmax {f(9) : |S| < k}

e w.l.o.g. assume |S*| = k.

e Order S* = (v}, v3,...,v;) arbitrarily.
@ Let S; = (v1,v2,...,v;) be the greedy order chain chosen by the
algorithm, foré € {1,2,...,¢}.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F15/59 (pg.30/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(N RNNARNRRRNRN

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 14.3.1.

@ Fix ¢ (number of items greedy will chose) and & (size of optimal set to
compare against).

Set S* € argmax {f(9) : |S| < k}

w.l.0.g. assume |S*| = k.

Order S* = (v}, v3,...,v}) arbitrarily.

Let S; = (v1,v2,...,v;) be the greedy order chain chosen by the
algorithm, for i € {1,2,...,/¢}.

Then the following inequalities (on the next slide) follow:

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F15/59 (pg.31/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(NN ANARNRRRNRN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 14.3.1 cont.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F16/59 (pg.32/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(NN ANARNRRRNRN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 14.3.1 cont.

@ For all 7 </, we have

f(5%)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F16/59 (pg.33/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(NN ANARNRRRNRN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 14.3.1 cont.

@ For all 7 < ¢, we have

f(8%) < f(STUSH)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F16/59 (pg.34/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(NN ANARNRRRNRN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 14.3.1 cont.

@ For all 7 < ¢, we have

f(8%) < F(5TUS:) = f(Si) + f(S7[50) (14.3)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F16/59 (pg.35/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(NN NNARNARRNRN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 14.3.1 cont.

@ For all 7 < ¢, we have

f(5%) < f(STUS:) = £(Si) +F(57]50) (14.3)
k
- f(SL) + Z f(U;’SZ U {’U;U;v 7’03—1}) (14'4)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F16/59 (pg.36/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(NN NNARNARRNRN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 14.3.1 cont.

@ For all 7 < ¢, we have

f(5%) < f(STUS:) = f(Si) + f(S7]S:) (14.3)
k
:f(Si)+Zf(v;f|S¢U{vf,vé‘,...,v;_l}) (14.4)
j=1
< f(S)+) f(vlS) (14.5)
VES*

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F16/59 (pg.37/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(NN NNARNARRNRN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 14.3.1 cont.

@ For all 7 < ¢, we have

f(5%) < f(STUS:) = f(Si) + f(S7]50) (14.3)
= £(S) +Zl::f(vj|si U {v},v3,...,v51}) (14.4)
< f(S:) +]_Z*f(vSi) (14.5)
< f(Si) + ”g: f @it |Si)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F16/59 (pg.38/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(NN NNARNARRNRN

Cardinality Constrained Polymatroid Max Theorem

.. proof of Theorem 14.3.1 cont.

@ For all 7 < ¢, we have

f(S%) < f(STUS:) = f(S:) + f(S7]5) (14.3)
k
(Si) + > Fw3|Ss U {vf,03,...,v3_1}) (14.4)
j=1
+ Y f(01S) (14.5)
VES*
+ Y F@igalS) = £(S) + Y _(F(SiralS) (14.6)
vES* vES*

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F16/59 (pg.39/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(NN ANARNRRRNRN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 14.3.1 cont.

@ For all 7 < ¢, we have

F(S7) < F(STUS:) = f(S)) + F(S7]S))
k

= £(S)+ 32 F@31S: U {o, o8, vle)
j=1

< f(S)+) f(vlS)

vES*
< F(S)+) fwinalS) = fF(Si) + Y f(Si]Sh)
VES* vES*

= f(Si) + kf(Si1]S:)

(14.3)
(14.4)
(14.5)

(14.6)

(14.7)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F16/59 (pg.40/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(NN NNARNARRNRN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 14.3.1 cont.

@ For all 7 < ¢, we have

f(S%) < f(S*US;) = f(S:) + f(S¥]S;)
“
= f(Si) + Zf(vﬂsi U {vi,03,...,051})
=

< F(S)+) F(0]S)

VES*
< F(S)+) fwialSi) = fF(Si) + Y f(Si]Sh)
vES* vES*

= f(Si) + kf(Sit1|S:)
@ Therefore, we have Equation 14.1, i.e.,:

F(S7) = f(Si) < kf(Si1lSi) = k(f (Sit1) — £(Si))

(14.3)

(14.4)
(14.5)
(14.6)

(14.7)

(14.8)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F16/59 (pg.41/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRR NRRNARRNRN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 14.3.1 cont.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F17/59 (pg.42/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRR NRRNARRNRN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 14.3.1 cont.
o Define gap(d; = (f(5*) — £(S5), sofd; — dixi = f(Si+1) — f(Si),

= ’F(‘U}'——h /51)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F17/59 (pg.43/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRR NRRNARRNRN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 14.3.1 cont.

o Define gap &; = f(S*) — f(Si), s0 6; — dir1 = f(Sit1) — £(Si). giving
0; < k’(&b —0i+1) (14.9)
or

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F17/59 (pg.44/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRR NRRNARRNRN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 14.3.1 cont.
o Define gap &; = f(S*) — f(Si), 50 &; — dir1 = f(Siy1) — f(Si), giving
0; < k:((SZ — 5i+1) (14.9)
or .
div1 < (1— %)51 (14.10)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F17/59 (pg.45/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRR NRRNARRNRN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 14.3.1 cont.
o Define gap &; = f(S*) — f(Si), 50 &; — dir1 = f(Siy1) — f(Si), giving
0; < k:((SZ — (5@4.1) (14.9)
or .
div1 < (1-— %)51 (14.10)

@ The relationship between §y and §; is then

1
& < (1-— %)% (14.11)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F17/59 (pg.46/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRR NRRNARRNRN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 14.3.1 cont.
o Define gap &; = f(S*) — f(Si), 50 &; — dir1 = f(Siy1) — f(Si), giving

(57; < k:((SZ = 5i+1) (14.9)
or .
div1 < (1-— %)51 (14.10)
@ The relationship between §y and §; is then
Ly
o < (1-— %) 0o (14.11)

e Now, 09 = (f(S*) — f(0) < f(S*) since' f > 0.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F17/59 (pg.47/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRR NRRNARRNRN

Cardinality Constrained Polymatroid Max Theorem

.. proof of Theorem 14.3.1 cont.

o Define gap &; = f(S*) — f(Si), s0 &; — dir1 = f(Sit1) — £(Si), giving
0; < k:((SZ = 5i+1) (14.9)
or

1
bi+1 < (1= %)51' (14.10)
@ The relationship between §y and §; is then
5 < 1—— 5o = (1, 4@4) (14.11)

@ Now, o = f(5*) — f(0) < f(S5") since f > 0.

@ Also, by variational bound 1 — z < e * for x € R, we have
1
5 < (1— %)%0 < e kg (5%) (14.12)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F17/59 (pg.48/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNR ARNARRNRN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 14.3.1 cont.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F18/59 (pg.49/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNR ARNARRNRN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 14.3.1 cont.
@ When we identify §; = f(S*) — f(S¢), a bit of rearranging then gives:

£(S)) = (=7 £(57) (14.13)

Ol

v

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F18/59 (pg.50/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNR ARNARRNRN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 14.3.1 cont.
@ When we identify §; = f(S*) — f(S¢), a bit of rearranging then gives:

F(S)) > (1 —e M) f(S7) (14.13)

Ol

v

e With ¢ = k, when picking k items, greedy gets (1 — 1/e) ~ 006321
bound. This means that if Sy is greedy solution of size k, and S* is an
optimal solution of size k, f(Si) > (1 —1/e)f(S*) ~ 0.6321f(S™).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F18/59 (pg.51/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNR ARNARRNRN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 14.3.1 cont.
@ When we identify §; = f(S*) — f(S¢), a bit of rearranging then gives:

F(S)) > (1 —e M) f(S7) (14.13)

Ol

v

e With ¢ = k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if S is greedy solution of size k, and S* is an
optimal solution of size k, f(Sx) > (1 —1/e) f(S*) = 0.6321f(S*).

e What if we want to guarantee a solution no worse than .95f(S*) where
|S*| = k7

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F18/59 (pg.52/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNR ARNARRNRN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 14.3.1 cont.
@ When we identify §; = f(S*) — f(S¢), a bit of rearranging then gives:

F(S)) > (1 —e M) f(S7) (14.13)

Ol

v

e With ¢ = k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if S is greedy solution of size k, and S* is an
optimal solution of size k, f(Sx) > (1 —1/e) f(S*) = 0.6321f(S*).

e What if we want to guarantee a solution no worse than .95f(S*) where
|S*| = k? Set 0.95 = (1 —e~*/*), which gives
¢=[—kIn(1—0.95)] =4k.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F18/59 (pg.53/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNR ARNARRNRN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 14.3.1 cont.
@ When we identify §; = f(S*) — f(S¢), a bit of rearranging then gives:

F(S)) > (1 —e M) f(S7) (14.13)

Ol

v

e With ¢ = k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if S is greedy solution of size k, and S* is an
optimal solution of size k, f(Sx) > (1 —1/e) f(S*) = 0.6321f(S*).

e What if we want to guarantee a solution no worse than .95f(S*) where
|S*| = k? Set 0.95 = (1 — e~*/¥), which gives
{ =[—kIn(1 —0.95)] = 4k. And [—In(1 —0.999)] = 7.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F18/59 (pg.54/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNR ARNARRNRN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 14.3.1 cont.
@ When we identify §; = f(S*) — f(S¢), a bit of rearranging then gives:

F(S)) > (1 —e M) f(S7) (14.13)

Ol

v

e With ¢ = k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if S is greedy solution of size k, and S* is an
optimal solution of size k, f(Sx) > (1 —1/e) f(S*) = 0.6321f(S*).

e What if we want to guarantee a solution no worse than .95f(S*) where
|S*| = k? Set 0.95 = (1 — e~*/¥), which gives
{ =[—kIn(1 —0.95)] = 4k. And [—In(1 —0.999)] = 7.

@ So solution, in the worst case, quickly gets very good. Typical/practical
case is much better.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F18/59 (pg.55/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNA RNRRRNRN

Greedy running time

@ Greedy computes a new maximum n = |V/| times, and each maximum
computation requires O(n) comparisons, leading to O(n?)
computation for greedy.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F19/59 (pg.56/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNA RNRRRNRN

Greedy running time

o Greedy computes a new maximum n = |V/| times, and each maximum
computation requires O(n) comparisons, leading to O(n?)
computation for greedy.

@ This is the best we can do for arbitrary functions, but O(n?) is not
practical to some.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F19/59 (pg.57/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNA RNRRRNRN

Greedy running time

o Greedy computes a new maximum n = |V/| times, and each maximum
computation requires O(n) comparisons, leading to O(n?)
computation for greedy.

@ This is the best we can do for arbitrary functions, but O(n?) is not
practical to some.

@ Greedy can be made much faster in practice by a simple strategy made
possible, once again, via the use of submodularity.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F19/59 (pg.58/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNA RNRRRNRN

Greedy running time

o Greedy computes a new maximum n = |V/| times, and each maximum
computation requires O(n) comparisons, leading to O(n?)
computation for greedy.

@ This is the best we can do for arbitrary functions, but O(n?) is not
practical to some.

@ Greedy can be made much faster in practice by a simple strategy made
possible, once again, via the use of submodularity.

@ This is called Minoux’s 1977 Accelerated Greedy strategy (and has
been rediscovered a few times, e.g., “Lazy greedy”), and runs much
faster while still producing same answer.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F19/59 (pg.59/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNA RNRRRNRN

Greedy running time

Greedy computes a new maximum n = |V| times, and each maximum
computation requires O(n) comparisons, leading to O(n?)
computation for greedy.

This is the best we can do for arbitrary functions, but O(n?) is not
practical to some.

@ Greedy can be made much faster in practice by a simple strategy made
possible, once again, via the use of submodularity.

This is called Minoux’s 1977 Accelerated Greedy strategy (and has
been rediscovered a few times, e.g., “Lazy greedy”), and runs much
faster while still producing same answer.

@ We describe it next:

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F19/59 (pg.60/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNRY NRRRNRN

Minoux's Accelerated Greedy for Submodular Functions

@ At stage i in the algorithm, we have a set of gains@f(w|S;) for all
v & S;. Store these values(ay %= f(v]S;) in sortedspriority queue.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F20/59 (pg.61/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNRY NRRRNRN

Minoux's Accelerated Greedy for Submodular Functions

@ At stage i in the algorithm, we have a set of gains f(v|S;) for all
v ¢ S;. Store these values «, < f(v|S;) in sorted priority queue.
@ Priority queue, O(1) to find max, O(logn) to insert in right place.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F20/59 (pg.62/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNRY NRRRNRN

Minoux's Accelerated Greedy for Submodular Functions

@ At stage i in the algorithm, we have a set of gains f(v|S;) for all

v ¢ S;. Store these values «, < f(v|S;) in sorted priority queue.
@ Priority queue, O(1) to find max, O(logn) to insert in right place.
@ Once we choose a max v, then set(S;41 < S; + v:

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F20/59 (pg.63/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNRY NRRRNRN

Minoux's Accelerated Greedy for Submodular Functions

@ At stage i in the algorithm, we have a set of gains f(v|S;) for all
v ¢ S;. Store these values «, < f(v|S;) in sorted priority queue.

@ Priority queue, O(1) to find max, O(logn) to insert in right place.

@ Once we choose a max v, then set S;11 < S; + v.

e For@ & Sixy) we have f(v|Si+1) < (v]S;) by submodularity.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F20/59 (pg.64/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNRY NRRRNRN

Minoux's Accelerated Greedy for Submodular Functions

@ At stage i in the algorithm, we have a set of gains f(v|S;) for all
v ¢ S;. Store these values «, < f(v|S;) in sorted priority queue.

@ Priority queue, O(1) to find max, O(logn) to insert in right place.
@ Once we choose a max v, then set S;11 < S; + v.
e For v ¢ S;y1 we have f(v]Si+1) < f(v]S;i) by submodularity.
@ Therefore, if we find a@’ such that(f(v/|Si+1) > au for all v # ¢/, then
since fal) NSale~tv
F'Sit1) > o = f(v]Si) > f(v]Sit1) (14.14)

we have the true max, and we need not re-evaluate gains of other
elements again.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F20/59 (pg.65/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNRY NRRRNRN

Minoux's Accelerated Greedy for Submodular Functions

@ At stage i in the algorithm, we have a set of gains f(v|S;) for all
v ¢ S;. Store these values «, < f(v|S;) in sorted priority queue.

@ Priority queue, O(1) to find max, O(logn) to insert in right place.

@ Once we choose a max v, then set S;11 < S; + v.

e For v ¢ S;y1 we have f(v]Si+1) < f(v]S;i) by submodularity.

@ Therefore, if we find a v’ such that f(v'|Si+1) > oy, for all v # ¢/, then
since

FW'Si41) = o = f(v]Si) > f(v[Sis1) (14.14)

we have the true max, and we need not re-evaluate gains of other
elements again. Salt

o Strategy is: find the argmax,/ey\g,,, @/, and then compute the real
F(@'|Si+1). If it is greater than all other «v,’s then that’s the next
greedy step. Otherwise, replace «,, with its real value, resort
(O(logn)), and repeat.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F20/59 (pg.66/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNARY RRRERN

Minoux's Accelerated Greedy for Submodular Functions

@ Minoux's algorithm is exact, in that it has the same guarantees as does
the O(n?) greedy Algorithm 2 (this means it will return either the
same answers, or answers that have the 1 — 1/e guarantee).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F21/59 (pg.67/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNARY RRRERN

Minoux's Accelerated Greedy for Submodular Functions

@ Minoux's algorithm is exact, in that it has the same guarantees as does
the O(n?) greedy Algorithm 2 (this means it will return either the
same answers, or answers that have the 1 — 1/e guarantee).

@ In practice: Minoux's trick has enormous speedups (& 700X) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F21/59 (pg.68/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNARY RRRERN

Minoux's Accelerated Greedy for Submodular Functions

@ Minoux's algorithm is exact, in that it has the same guarantees as does
the O(n?) greedy Algorithm 2 (this means it will return either the
same answers, or answers that have the 1 — 1/e guarantee).

@ In practice: Minoux's trick has enormous speedups (= 700) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).

@ When choosing a of size k, naive greedy algorithm is O(nk) but
accelerated variant at the very best does O(n + k), so this limits the
speedup.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F21/59 (pg.69/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNARY RRRERN

Minoux's Accelerated Greedy for Submodular Functions

@ Minoux's algorithm is exact, in that it has the same guarantees as does
the O(n?) greedy Algorithm 2 (this means it will return either the
same answers, or answers that have the 1 — 1/e guarantee).

@ In practice: Minoux's trick has enormous speedups (= 700X) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).

@ When choosing a of size k, naive greedy algorithm is O(nk) but
accelerated variant at the very best does O(n + k), so this limits the
speedup.

@ Algorithm has been rediscovered (I think) independently (CELF -
cost-effective lazy forward selection; Leskovec et al., 2007)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F21/59 (pg.70/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNARY ERRNRN

Minoux's Accelerated Greedy for Submodular Functions

@ Minoux's algorithm is exact, in that it has the same guarantees as does
the O(n?) greedy Algorithm 2 (this means it will return either the
same answers, or answers that have the 1 — 1/e guarantee).

@ In practice: Minoux's trick has enormous speedups (= 700) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).

@ When choosing a of size k, naive greedy algorithm is O(nk) but
accelerated variant at the very best does O(n + k), so this limits the
speedup.

@ Algorithm has been rediscovered (I think) independently (CELF -
cost-effective lazy forward selection, Leskovec et al., 2007)

@ Can be used used for “big data” sets (e.g., social networks, selecting
blogs of greatest influence, document summarization, etc.).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F21/59 (pg.71/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNARNA RRRRN

Priority Queue

@ Use a priority queue () as a data structure: operations include:

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F22/59 (pg.72/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNARNA RRRRN

Priority Queue

@ Use a priority queue () as a data structure: operations include:
o Insert an item (v, @) into queue, with v € V and a € R.

INSERT(Q, (v,) (14.15)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F22/59 (pg.73/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNARNA RRRRN

Priority Queue

@ Use a priority queue () as a data structure: operations include:
o Insert an item (v, @) into queue, with v € V and « € R.

INSERT(Q, (v, @)) (14.15)
e Pop the item (v, &) with maximum value « off the queue.

(v, @) + POP(Q) (14.16)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F22/59 (pg.74/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNARNA RRRRN

Priority Queue

@ Use a priority queue () as a data structure: operations include:
o Insert an item (v, @) into queue, with v € V and a € R.

INSERT(Q, (v, @)) (14.15)
o Pop the item (v,) with maximum value « off the queue.

(v, @) + POP(Q) (14.16)
o Query the value of the max item in the queue

MAX(Q) € R (14.17)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F22/59 (pg.75/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNARNA RRRRN

Priority Queue

@ Use a priority queue () as a data structure: operations include:
o Insert an item (v, @) into queue, with v € V and a € R.

INSERT(Q, (v, @)) (14.15)
o Pop the item (v,) with maximum value « off the queue.

(v, @) + POP(Q) (14.16)
o Query the value of the max item in the queue

MAX(Q) € R (14.17)

@ On next slide, we call a popped item “fresh” if the value (v, «) popped has
the correct value av = f(v|S;). Use extra "bit" to store this info

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F22/59 (pg.76/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNARNA RRRRN

Priority Queue

@ Use a priority queue () as a data structure: operations include:
o Insert an item (v, @) into queue, with v € V and a € R.

INSERT(Q, (v, @)) (14.15)
o Pop the item (v,) with maximum value « off the queue.

(v, @) + POP(Q) (14.16)
o Query the value of the max item in the queue

MAX(Q) € R (14.17)

@ On next slide, we call a popped item “fresh” if the value (v, @) popped has
the correct value av = f(v|S;). Use extra "bit" to store this info

o If a popped item is fresh, it must be the maximum — this can happen if,
at given iteration, v was first popped and neither fresh nor maximum so
placed back in the queue, and it then percolates back to the top at which
point it is fresh — thereby avoid extra queue check.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F22/59 (pg.77/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNARNRN RNRN

Minoux's Accelerated Greedy Algorithm Submodular Max

Algorithm 2: Minoux’'s Accelerated Greedy Algorithm

1 Set Sp < 0 ;i < 0 ; Initialize priority queue @ ;
2 for v € F do

3 | INSERT(Q, f(v))

4 repeat

5 (v,) < POP(Q) ;

6 if o not “fresh” then

7 L recompute « < f(v|S;)

8 if (popped o in line 5 was “fresh”) OR (a > MAX(Q)) then
9 Set _Si-i-l «— S; U {U} ;

10 14—1+1;

11 else

12 | INSERT(Q, (v, a))

13 until i = |E|;

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F23/59 (pg.78/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNARNARE NRN

Minimum Submodular Cover

o Given polymatroid f, goal is to find a covering set of minimum cost:
S* € argmin |S| such that' f(S) > « (14.18)
scv
where « is a “cover” requirement.

Mar £04) £Ls) =z v
A<V
[A4)¢ #

/)
<
’\..Q

H5)-

EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

Prof. Jeff Bilmes

F24/59 (pg.79/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNARNARE NRN

Minimum Submodular Cover

@ Given polymatroid f, goal is to find a covering set of minimum cost:
S* € argmin |S| such that f(S) > « (14.18)
scv
where « is a “cover” requirement.

e Normally takefee ="f(V)) but defining{f(A) = min {f(A4), a} we can
take any a. Hence, we have equivalent formulation:

S* € argmin |S| such that f/(S) > f'(V) (14.19)

_ $05)=£V)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F24/59 (pg.80/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNARNARY NN

Minimum Submodular Cover

@ Given polymatroid f, goal is to find a covering set of minimum cost:
S* € argmin |S| such that f(S) > « (14.18)
scv

where « is a “cover” requirement.

e Normally take o« = f(V') but defining f'(A) = min {f(A), a} we can
take any a. Hence, we have equivalent formulation:

S* € argmin | S| such that f/'(S) > f'(V) (14.19)
SCV

@ Note that this immediately generalizes standard set cover, in which
case f(A) is the cardinality of the union of sets indexed by A.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F24/59 (pg.81/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNARNARE NRN

Minimum Submodular Cover

@ Given polymatroid f, goal is to find a covering set of minimum cost:

S* € argmin |S| such that f(S) > « (14.18)
Nak%

where « is a “cover” requirement.

e Normally take a = f(V') but defining f'(A) = min {f(A), a} we can
take any a. Hence, we have equivalent formulation:

S* € argmin | S| such that f/'(S) > f'(V) (14.19)
SCvV

@ Note that this immediately generalizes standard set cover, in which
case f(A) is the cardinality of the union of sets indexed by A.

@ Algorithm: Pick the first S; chosen by aforementioned greedy
algorithm such that (f(iS;) = a

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F24/59 (pg.82/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNARNARE NRN

Minimum Submodular Cover

@ Given polymatroid f, goal is to find a covering set of minimum cost:

S* € argmin |S| such that f(S) > « (14.18)
Nak%

where « is a “cover” requirement.

e Normally take a = f(V') but defining f'(A) = min {f(A), a} we can
take any a. Hence, we have equivalent formulation:

S* € argmin | S| such that f/'(S) > f'(V) (14.19)
scv

@ Note that this immediately generalizes standard set cover, in which
case f(A) is the cardinality of the union of sets indexed by A.

@ Algorithm: Pick the first .S; chosen by aforementioned greedy
algorithm such that f(S;) > «a.

@ For integer valued f, this greedy algorithm aniO(log(maxsey f({s})))
approximation. Set cover is hard to approximate with a factor better
than (1 — ¢€) log o, where « is the desired cover constraint.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F24/59 (pg.83/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNARNAREL AN

Summary: Monotone Submodular Maximization

@ Only makes sense when there is a constraint.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F25/59 (pg.84/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNARNAREL AN

Summary: Monotone Submodular Maximization

@ Only makes sense when there is a constraint.

@ We discussed cardinality constraint

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F25/59 (pg.85/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNARNAREL AN

Summary: Monotone Submodular Maximization

@ Only makes sense when there is a constraint.
@ We discussed cardinality constraint

@ Generalizes the max k-cover problem, and also similar to the set cover
problem.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F25/59 (pg.86/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNARNAREL AN

Summary: Monotone Submodular Maximization

@ Only makes sense when there is a constraint.
@ We discussed cardinality constraint

@ Generalizes the max k-cover problem, and also similar to the set cover
problem.

@ Simple greedy algorithm gets 1 — e~*/F approximation, where k is size
of optimal set we compare against, and £ is size of set greedy
algorithm chooses.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F25/59 (pg.87/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNARNAREL AN

Summary: Monotone Submodular Maximization

Only makes sense when there is a constraint.

We discussed cardinality constraint

Generalizes the max k-cover problem, and also similar to the set cover
problem.

Simple greedy algorithm gets 1 — e /% approximation, where k is size
of optimal set we compare against, and £ is size of set greedy
algorithm chooses.

@ Submodular cover: min. |S|s.t. f(S) > a.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F25/59 (pg.88/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNARNAREL AN

Summary: Monotone Submodular Maximization

Only makes sense when there is a constraint.

We discussed cardinality constraint

Generalizes the max k-cover problem, and also similar to the set cover

problem.

Simple greedy algorithm gets 1 — e /% approximation, where k is size
of optimal set we compare against, and £ is size of set greedy
algorithm chooses.

Submodular cover: min. |S]s.t. f(S) > a.

Minoux's accelerated greedy trick.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F25/59 (pg.89/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
[NNRNNARNRRRNT N

The Greedy Algorithm: 1 — 1/e intuition.

o At step ¢ < k, greedy chooses v; to maximize f(v|S;).
o Let S* be optimal solution (of size k) and OPT = f(S*). By
submodularity, we will show:

Jv e V\ Si: f(v|Si) = f(Si +v]Si) > —(OPT — f(S;)) (14.1)

| =

. Equation (14.10) will
o\ (1= (1 =1/k)") < f(Sk)/OPT {show that Equation (14.1)
0.9 ::
OPT — f(Sis1)
. < (1- 1/k)(OPT — £(5)))
o7s = OPT — f(Sk)
< (1-1/k)*OPT
1_1/025 i < 1/eOPT
Rt 2 3 4 5 6 7 0 TP = OPT(l - 1/6) S f(Sk)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F26/59 (pg.90/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(NERNRARNARNNAY]

Randomized greedy

@ How can we produce a randomized greedy strategy, one where each
greedy sweep produces a set that, on average, has a 1 — 1/e guarantee?

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F27/59 (pg.91/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(NERNRARNARNNAY]

Randomized greedy

@ How can we produce a randomized greedy strategy, one where each
greedy sweep produces a set that, on average, has a 1 — 1/e guarantee?

@ Suppose the following holds:

Blf (0] 49) > LD =T (14.20)

where A; = (a1, as,...,a;) are the first i elements chosen by the
strategy.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F27/59 (pg.92/246)

Polymatroids, Greedy, and Cardinality Constrained Maximization
(NNRNRARNARNNAY]

Randomized greedy

@ How can we produce a randomized greedy strategy, one where each
greedy sweep produces a set that, on average, has a 1 — 1/e guarantee?

@ Suppose the following holds:

f(OPT) — f(Ai)

3 (14.20)

E[f(ai1]4:)] >

where A; = (a1, aq,...,a;) are the first i elements chosen by the
strategy.

@ See problem 5, homework 4.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F27/59 (pg.93/246)

Curvature
(AN

Curvature of a Submodular function

@ For any submodular function, we have [f(j[S) < f(j|0) so that
f(G18)/f(3]0) < 1 whenever (f(3[0) # 0.

b // §ebini '](‘Vl(i)b’thl

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F28/59 (pg.94/246)

Curvature
(AN

Curvature of a Submodular function

@ For any submodular function, we have f(j|S) < f(j|0) so that
f(318)/f(5]0) < 1 whenever f(j|0) # 0.

e For f:2Y — R, (non-negative) functions, we also have
£(1S)/f(j]0) > 0 — and = 0 whenever j is “spanned” by S.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F28/59 (pg.95/246)

Curvature
(AN

Curvature of a Submodular function

@ For any submodular function, we have f(j|S) < f(j|0) so that
FG18)/£(i10) < 1 whenever £(j|0) # 0.

e For f:2V — R, (non-negative) functions, we also have
f(G1S)/f(7]0) > 0 — and = 0 whenever j is “spanned” by S.

@ The total curvature of a submodular function is defined as follows:

A o AU TUVAD) g0

c=1-— min

min .
s.jes:f(j10#0 f(7]0) f#0 f()

S s s /PUJ\/\o?“
A(;) =0 ~

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F28/59 (pg.96/246)

Curvature
(AN

Curvature of a Submodular function

e For any submodular function, we have f(j]S) < f(j]0) so that
f(518)/f(j]0) < 1 whenever f(j|0) # 0.
e For f:2V — R (non-negative) functions, we also have
f(G1S)/f(3]0) > 0 — and = 0 whenever j is “spanned” by S.
@ The total curvature of a submodular function is defined as follows:
cA1- i LU g JUIVAD gy o
s.5¢S:f0#0 f(10) fGy#o f(4)

e cc[0,1].

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F28/59 (pg.97/246)

Curvature
(AN

Curvature of a Submodular function

@ For any submodular function, we have f(j]S) < f(j]0) so that
FG18)/£(i10) < 1 whenever £(j|0) # 0.

e For f:2V — R, (non-negative) functions, we also have
f(G1S)/f(3]0) > 0 — and = 0 whenever j is “spanned” by S.

@ The total curvature of a submodular function is defined as follows:

A . JUIS) _y i LUVAID g4 01

c=1-—

sagssom=o FGI0) — fGmo 1)

@ c€[0,1]. When ¢ =0, f(j|S) = f(j|0) for all S,j,.a sufficient
condition for modularity, and we saw in Theorem ?? that greedy is
optimal for max weight indep. set of a matroid.

Moy m@) f—=mar £8)
T (m) T EF (™)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F28/59 (pg.98/246)

Curvature
(AN

—
Curvature of aSubmoduIar func m

e For any submodiilar function, we have f(j|S) < f(j]0) so that

f(415)/f(4]0) < 1 whenever f(j|0) # 0.

e For f:2V — R, (non-negative) functions, we also have
f(G1S)/f(3]0) > 0 — and = 0 whenever j is “spanned” by S.
@ The total curvature of a submodular function is defined as follows:

A : fG1S) N VIAY)

min =1—- min —W———F~ 14.21
S.jgs:f(j|0)20 f(4]0) fi#0 f() ()

@ c€[0,1]. When ¢ =0, f(j|S) = f(4]0) for all S, 7, a sufficient
condition for modularity, and we saw in Theorem ?? that greedy is
optimal for max weight indep. set of a matroid.

@ For f with curvature ¢, then VA C V, Vv ¢ a, V¢ > ¢

LV A) “da+0) =@ > 1 -)fw) (14.22)

c=1-—

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F28/59 (pg.99/246)

Curvature
(AN

Curvature of a Submodular function

@ For any submodular function, we have f(j|S) < f(j|0) so that
FG18)/£(i10) < 1 whenever £(j|0) # 0.

e For f:2V — R, (non-negative) functions, we also have
f(G1S)/f(3]0) > 0 — and = 0 whenever j is “spanned” by S.

@ The total curvature of a submodular function is defined as follows:

cA1- i LU g JUIVAD gy o

s.5¢S:f G020 f(410) fGi#o f(j)

e ce€[0,1]. When ¢ =0, f(j|S) = f(4]0) for all S, 7, a sufficient
condition for modularity, and we saw in Theorem ?? that greedy is
optimal for max weight indep. set of a matroid.

e For f with curvature ¢, then VA C V, Vv ¢ a, V' > ¢
F(A+0) - F(4) = (1— &) f(v) (14.22)

@ When ¢ = 1 then submodular function is “maximally curved”, i.e.,
there exists is a subset that fully spans some other element.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F28/59 (pg.100/246

Curvature
(AN

Curvature of a Submodular function

@ For any submodular function, we have f(j]S) < f(j]0) so that
FG18)/£(i10) < 1 whenever £(j|0) # 0.

e For f:2V — R, (non-negative) functions, we also have
f(G1S)/f(3]0) > 0 — and = 0 whenever j is “spanned” by S.

@ The total curvature of a submodular function is defined as follows:

cA1- i LU g JUIVAD gy o

s.5¢S:f G020 f(410) fGi#o f(j)

e ce€[0,1]. When ¢ =0, f(j|S) = f(4]0) for all S, 7, a sufficient
condition for modularity, and we saw in Theorem ?? that greedy is
optimal for max weight indep. set of a matroid.

e For f with curvature ¢, then VA C V, Vv ¢ a, V' > ¢
F(A+0) - F(4) = (1— &) f(v) (14.22)

@ When ¢ = 1 then submodular function is “maximally curved”, i.e.,
there exists is a subset that fully spans some other element.
@ Matroid rank functions with some dependence is infinitely curved.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F28/59 (pg.101/246

Curvature
i

Curvature of a Submodular function

@ By submodularity, total curvature can be computed in either form:

1(15) w JGVAGY oy

— min " m "
S.ges:£(il0)#0 f(4]0) gfGin£0 f(5]0)

cél

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

Curvature
i

Curvature of a Submodular function

e By submodularity, total curvature can be computed in either form:

A f1S) . fUIVA{LD
c=1-— min - =1— min ——————~ 14.23
S¢S0 f(510) ifGn#0 f(510) (14.23)
£l
@ Note: Matroid rank is either modular ¢ = 0 or i ly curved c =1

— hence, matroid rank can have only the extreme points of curvature,
namely 0 or 1.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F29/59 (pg.103/246

Curvature
i

Curvature of a Submodular function

e By submodularity, total curvature can be computed in either form:

FGIS)) - i FOVAGD a0y

min - -
S.jes:f(jl0)#0 f(4]0) grGlmzo f(510)

cél—

@ Note: Matroid rank is either modular ¢ = 0 or infinitely curved ¢ =1
— hence, matroid rank can have only the extreme points of curvature,
namely 0 or 1.

@ Polymatroid functions are, in this sense, more nuanced, in that they
allow non-extreme curvature, with ¢ € [0, 1].

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F29/59 (pg.104/246

Curvature
i

Curvature of a Submodular function

By submodularity, total curvature can be computed in either form:

TGS _y oy JUVAGD gy g

min - -
S.jes:f(jl0)#0 f(4]0) grGlmzo f(510)

cél—

Note: Matroid rank is either modular ¢ = 0 or infinitely curved ¢ = 1
— hence, matroid rank can have only the extreme points of curvature,
namely 0 or 1.

Polymatroid functions are, in this sense, more nuanced, in that they
allow non-extreme curvature, with ¢ € [0,1].

It will be remembered the notion of “partial dependence within

polymatroid functions. D)
ﬂ B;_\ \Qc&ﬂ

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F29/59 (pg.105/246

Curvature
1l

Curvature for f(S) = +/|9]

Curvature of f(S) = /|S| as function of

V)< o f(S)= /|5 with |[V]=n

has curvature

1-(Vn—vn—-1).

1

o o o o
@D N o ©

A|) as func. of |V|

curvature of sqrt(
o o o o
N © S (&

o

o

20 40 60 80 100

o

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F30/59 (pg.106/246

Curvature
1l

Curvature for f(S) = +/|9]

Curvature of f(S) = /|S| as function of

Vi=n o f(S) = /IS] with [V| =n

has curvature
1—(Vn—+vn—1).

o Approximation gets worse
with bigger ground set.

1

o o o o
@D N o ©

A|) as func. of |V|

curvature of sqrt(
o o o o
N © S (&

o

o

o

20 40 60 80 100 »
n

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F30/59 (pg.107/246

Curvature
1l

Curvature for f(S) = +/|9]

Curvature of f(S) = /|9 as function of o f(9)=+/]S| with |[V|=n

1 |V’ =n ' has curvature
ol 1—(v/n—+vn-1).
~os} o Approximation gets worse
30_7 with bigger ground set.
”;os @ Functions of the form
Tos f(S) = +/m(S) where
3041 m :V — R, approximation
'§°-3' worse with n if
S0z min; j |m(7) —m(j)| has a
o1 fixed lower bound with
% 20 20 50 30 100 increasing n.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F30/59 (pg.108/246

Curvature
(NN]

Curvature and approximation

@ Curvature limitation can help the greedy algorithm in terms of
approximation bounds.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F31/59 (pg.109/246

Curvature
(NN]

Curvature and approximation

@ Curvature limitation can help the greedy algorithm in terms of
approximation bounds.

e Conforti & Cornuéjols showed that greedy gives a 1/(1 + ¢)
approximation to max { f(S) : S € Z} when f has total curvature c.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F31/59 (pg.110/246

Curvature
(NN]

Curvature and approximation

@ Curvature limitation can help the greedy algorithm in terms of
approximation bounds.

@ Conforti & Cornuéjols showed that greedy gives a 1/(1 + ¢)
approximation to max { f(S) : S € Z} when f has total curvature c.

@ Hence, greedy subject to matroid constraint is a max(1/(1 + ¢),1/2)
approximation algorithm, and if ¢ < 1 then it is better than 1/2 (e.g.,
with ¢ = 1/4 then we have a 0.8 algorithm).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F31/59 (pg.111/246

Curvature
(NN |

Curvature and approximation

@ Curvature limitation can help the greedy algorithm in terms of
approximation bounds.

@ Conforti & Cornuéjols showed that greedy gives a 1/(1 + ¢)
approximation to max { f(S) : S € Z} when f has total curvature c.

@ Hence, greedy subject to matroid constraint is a max(1/(1 + ¢),1/2)
approximation algorithm, and if ¢ < 1 then it is better than 1/2 (e.g.,
with ¢ = 1/4 then we have a 0.8 algorithm).

1

YA I

C‘?D 0.9f——>

1-1/e

0.2 0.4

o
©
a

For k-uniform matroid
® (i.e., k-cardinality con-

straints), then approxima-

tion factor becomes

1 —c

(1—e7)

approximation bound
o
3 =)
Qq o

o
2

Il
=
3]

o

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

Submodular Max w. Other Constraints
(AR R RN

Generalizations

e Consider @ k-uniform matroid M = (V,Z) where
Z={S CV:|S| <k} and consider problem max {f(A): A eI}

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F32/59 (pg.113/246

Submodular Max w. Other Constraints
(AN RN AR RN RN

Generalizations

e Consider a k-uniform matroid M = (V,Z) where
Z={SCV:|S| <k} and consider problem max {f(A): A eI}

@ Hence, the greedy algorithm is 1 — 1/e optimal for maximizing
polymatroidal f subject to a k-uniform matroid constraint.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F32/59 (pg.114/246

Submodular Max w. Other Constraints
(AN RN AR RN RN

Generalizations

e Consider a k-uniform matroid M = (V,Z) where
Z={SCV:|S| <k} and consider problem max {f(A): A eI}

@ Hence, the greedy algorithm is 1 — 1/e optimal for maximizing
polymatroidal f subject to a k-uniform matroid constraint.

@ Might be useful to allow an arbitrary matroid (e.g., partition matroid
IT={XCV:|XNVj| <k foralli=1,...,¢}., ora transversal,
etc).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F32/59 (pg.115/246

Submodular Max w. Other Constraints
(AR R RN

Generalizations

e Consider a k-uniform matroid M = (V,Z) where
Z={SCV:|S| <k} and consider problem max {f(A): A eI}

@ Hence, the greedy algorithm is 1 — 1/e optimal for maximizing
polymatroidal f subject to a k-uniform matroid constraint.

@ Might be useful to allow an arbitrary matroid (e.g., partition matroid
I={XCV: XNV <k;foralli=1,...,¢}., ora transversal,
etc).

@ Knapsack constraint: if each item v € V' has a cost ¢(v), we may ask
fore(S) < b where b is a budget, in units of costs.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F32/59 (pg.116/246

Submodular Max w. Other Constraints
(AR R RN

Generalizations

e Consider a k-uniform matroid M = (V,Z) where
Z={SCV:|S| <k} and consider problem max {f(A): A eI}

@ Hence, the greedy algorithm is 1 — 1/e optimal for maximizing
polymatroidal f subject to a k-uniform matroid constraint.

@ Might be useful to allow an arbitrary matroid (e.g., partition matroid
I={XCV: XNV <k;foralli=1,...,¢}., ora transversal,
etc).

@ Knapsack constraint: if each item v € V' has a cost ¢(v), we may ask
for ¢(S) < b where b is a budget, in units of costs. Q: Is
Z = {1 : ¢(I) < b} the independent sets of a matroid?

C C: \/-7/ﬁ+

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F32/59 (pg.117/246

Submodular Max w. Other Constraints
(AR R RN

Generalizations

e Consider a k-uniform matroid M = (V,Z) where
Z={SCV:|S| <k} and consider problem max {f(A): A eI}

@ Hence, the greedy algorithm is 1 — 1/e optimal for maximizing
polymatroidal f subject to a k-uniform matroid constraint.

@ Might be useful to allow an arbitrary matroid (e.g., partition matroid
I={XCV: XNV <k;foralli=1,...,¢}., ora transversal,
etc).

@ Knapsack constraint: if each item v € V' has a cost ¢(v), we may ask
for ¢(S) < b where b is a budget, in units of costs. Q: Is
Z ={I:c(I) < b} the independent sets of a matroid?

@ We may wish to maximize f subject to multiple matroid constraints.
le., S€Zy,S €1y,...,5 €1, where Z; are independent sets of the
it matroid.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F32/59 (pg.118/246

Submodular Max w. Other Constraints
(AN RN AR RN RN

Generalizations

e Consider a k-uniform matroid M = (V,Z) where
Z={SCV:|S| <k} and consider problem max {f(A): A eI}

@ Hence, the greedy algorithm is 1 — 1/e optimal for maximizing
polymatroidal f subject to a k-uniform matroid constraint.

@ Might be useful to allow an arbitrary matroid (e.g., partition matroid
I={XCV: XNV <k;foralli=1,...,¢}., ora transversal,
etc).

@ Knapsack constraint: if each item v € V' has a cost ¢(v), we may ask
for ¢(S) < b where b is a budget, in units of costs. Q: Is
Z ={I:c(I) < b} the independent sets of a matroid?

@ We may wish to maximize f subject to multiple matroid constraints.
le., S€Ii,S €Iy,...,5 € 1, where Z; are independent sets of the
it matroid.

e Combinations of the above (e.g., knapsack & multiple matroid
constraints).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F32/59 (pg.119/246

Submodular Max w. Other Constraints
(L RRRRR RN RN RN AR

Greedy over multiple matroids

@ Obvious heuristic is to use the greedy step but always stay feasible.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F33/59 (pg.120/246

Submodular Max w. Other Constraints
(L RRRRR RN RN AR R RN

Greedy over multiple matroids

@ Obvious heuristic is to use the greedy step but always stay feasible.
@ l.e., Starting with Sy = (), we repeat the following greedy step

Sit1 =5 U argmax f(S; U{v}) (14.24)
veV\S; : Si+veMb_; Z;

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F33/59 (pg.121/246

Submodular Max w. Other Constraints
(L RRRRR RN RN RN AR

Greedy over multiple matroids

@ Obvious heuristic is to use the greedy step but always stay feasible.
e le., Starting with Sy =), we repeat the following greedy step

Sit1 =5 U argmax f(S; U{v}) (14.24)
veV\S; : Si—l—UEﬂ?:l T;

@ That is, we keep choosing next whatever feasible element looks best.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F33/59 (pg.122/246

Submodular Max w. Other Constraints
(L RRRRR RN RN RN AR

Greedy over multiple matroids

@ Obvious heuristic is to use the greedy step but always stay feasible.
e le., Starting with Sy =), we repeat the following greedy step

Sit1 =5 U argmax f(S; U{v}) (14.24)
veV\S; : Si—i-UEﬂ?:l T;

@ That is, we keep choosing next whatever feasible element looks best.
@ This algorithm is simple and also has a guarantee

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F33/59 (pg.123/246

Submodular Max w. Other Constraints
(L RRRRR RN RN AR R RN

Greedy over multiple matroids

@ Obvious heuristic is to use the greedy step but always stay feasible.
e le., Starting with Sy =), we repeat the following greedy step

Sit1 =5 U argmax f(S; U{v}) (14.24)
veV\S; : Si—l—UEﬂ?:l T;

@ That is, we keep choosing next whatever feasible element looks best.
@ This algorithm is simple and also has a guarantee

Theorem 14.5.1

Given a polymatroid function f, and set of matroids {M; = (E,Ij)}];:l,
the above greedy algorithm returns sets S; such that for each i we have

f(Si) > zﬁ maX|s|<; S, T, f(S), assuming such sets exists.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F33/59 (pg.124/246

Submodular Max w. Other Constraints
(L RRRRR RN RN RN AR

Greedy over multiple matroids

@ Obvious heuristic is to use the greedy step but always stay feasible.
e le., Starting with Sy =), we repeat the following greedy step

Sit1 =5 U argmax f(S; U{v}) (14.24)
veV\S; : Si—i-UEﬂ?:l T;

@ That is, we keep choosing next whatever feasible element looks best.
@ This algorithm is simple and also has a guarantee

Theorem 14.5.1

Given a polymatroid function f, and set of matroids {M; = (E,Ij)}];:l,
the above greedy algorithm returns sets S; such that for each i we have

f(Si) 2 5 mMaX|s|<; S, T, f(S), assuming such sets exists.

@ For one matroid, we have a 1/2 approximation.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F33/59 (pg.125/246

Submodular Max w. Other Constraints
(L RRRRR RN RN RN AR

Greedy over multiple matroids

@ Obvious heuristic is to use the greedy step but always stay feasible.
e le., Starting with Sy =), we repeat the following greedy step

Sit1 =5 U argmax f(S; U{v}) (14.24)
veV\S; : Si—i-UEﬂ?:l T;

@ That is, we keep choosing next whatever feasible element looks best.
@ This algorithm is simple and also has a guarantee

Theorem 14.5.1

Given a polymatroid function f, and set of matroids {M; = (E,Ij)}];:l,
the above greedy algorithm returns sets S; such that for each i we have

f(Si) 2 5 mMaX|s|<; S, T, f(S), assuming such sets exists.

@ For one matroid, we have a 1/2 approximation.

@ Very easy algorithm, Minoux trick still possible, while addresses
multiple matroid constraints

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F33/59 (pg.126/246

Submodular Max w. Other Constraints
(L RRRRR RN RN RN AR

Greedy over multiple matroids

@ Obvious heuristic is to use the greedy step but always stay feasible.
e le., Starting with Sy =), we repeat the following greedy step

Sit1 =5 U argmax f(S; U{v}) (14.24)
veV\S; : Si—l—UEﬂ?:l T;

@ That is, we keep choosing next whatever feasible element looks best.
@ This algorithm is simple and also has a guarantee

Theorem 14.5.1

Given a polymatroid function f, and set of matroids {M; = (E,Ij)}f;:l,

the above greedy algorithm returns sets S; such that for each i we have

f(Si) > ﬁ mMaX|s|<; S, T, f(S), assuming such sets exists.

@ For one matroid, we have a 1/2 approximation.

@ Very easy algorithm, Minoux trick still possible, while addresses
multiple matroid constraints — but the bound is not that good when
there are many matroids.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F33/59 (pg.127/246

Submodular Max w. Other Constraints
(R RN RN RN NR RN RN RN NN AR

Matroid Intersection and Bipartite Matching

@ Why might we want to do matroid intersection?

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F34/59 (pg.128/246

Submodular Max w. Other Constraints
(R RN RN RN NR RN RN RN NN AR

Matroid Intersection and Bipartite Matching

@ Why might we want to do matroid intersection?
e Consider bipartite graph G = (V, F, E)). Define two partition matroids
]\f\/ = (E./Iv), and]\[F = (E,IF>

Vgp

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F34/59 (pg.129/246

Submodular Max w. Other Constraints
(R RN RN RN NR RN RN RN NN AR

Matroid Intersection and Bipartite Matching

@ Why might we want to do matroid intersection?

e Consider bipartite graph G = (V, F, E)). Define two partition matroids
MV = (E,Iv), and MF = (E,IF)

@ Independence in each matroid corresponds to:

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F34/59 (pg.130/246

Submodular Max w. Other Constraints
(R RN RN RN NR RN RN RN NN AR

Matroid Intersection and Bipartite Matching

@ Why might we want to do matroid intersection?
e Consider bipartite graph G = (V, F, E)). Define two partition matroids
MV = (E,Iv), and MF = (E,IF)
@ Independence in each matroid corresponds to:
Q@ [cTyif|IN(V,f)|<1forall f€F,

V7 e b

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F34/59 (pg.131/246

Submodular Max w. Other Constraints
(R RN RN RN NR RN RN RN NN AR

Matroid Intersection and Bipartite Matching

@ Why might we want to do matroid intersection?

e Consider bipartite graph G = (V, F, E)). Define two partition matroids
MV = (E,Iv), and MF = (E,IF)
@ Independence in each matroid corresponds to:
Q@ IcTyiflIn(V,f)|<1lforall feF,
Q@ andlcZpif|IN(v,F)|<1forallvelV.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F34/59 (pg.132/246

Submodular Max w. Other Constraints
(R RN RN RN NR RN RN RN NN AR

Matroid Intersection and Bipartite Matching

@ Why might we want to do matroid intersection?
e Consider bipartite graph G = (V, F, E)). Define two partition matroids
MV = (E,Iv), and MF = (E,IF)

@ Independence in each matroid corresponds to:
QIcTyif|In(V,f)<1forall fePF,
Q@andIcZpif|IN(v,F)|<1forallveV.

®

eV

(o
v

Prof. Jeff Bilmes

EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

Submodular Max w. Other Constraints

Matroid Intersection and Bipartite Matching

@ Why might we want to do matroid intersection?
e Consider bipartite graph G = (V, F, E)). Define two partition matroids
MV = (E,Iv), and MF = (E,IF)
@ Independence in each matroid corresponds to:
QIcZyif|lIN(V,f)|<1lforall feF,
Q@andIcZpif|IN(v,F)|<1forallveV.

o
o
7 I 1% I3
s.
o
@ Therefore, a matching in G is simultaneously independent in both My

and Mp and finding the maximum matching is finding the maximum
cardinality set independent in both matroids.

Prof. Jeff Bilmes

EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

Submodular Max w. Other Constraints

Matroid Intersection and Bipartite Matching

@ Why might we want to do matroid intersection?
e Consider bipartite graph G = (V, F, E)). Define two partition matroids
MV = (E,Iv), and MF = (E,IF)
@ Independence in each matroid corresponds to:
Q@ IcTyiflIn(V,f)|<1lforall feF,
Q@andIcZpif|IN(v,F)|<1forallveV.

F

o
o
7 Ia 1%
s.
o
@ Therefore, a matching in G is simultaneously independent in both My

and MF and finding the maximum matching is finding the maximum
cardinality set independent in both matroids.

@ In bipartite graph case, therefore, can be solved in polynomial time.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

Submodular Max w. Other Constraints
[RRE AR RN RN RN RN AR RN

Matroid Intersection and Network Communication

o Let G; = (W1, E) and G3 = (Va, E) be two graphs on an isomorphic
set of edges (lets just give them same names E).

2 O/ﬁ)\

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F35/59 (pg.136/246

Submodular Max w. Other Constraints
[RRE AR RN RN AR RN AR RN

Matroid Intersection and Network Communication

o Let G; = (W1, E) and Gy = (Va, E) be two graphs on an isomorphic
set of edges (lets just give them same names E).

@ Consider two cycle matroids associated with these graphs
M, = (E,Z;) and My = (E,Z;). They might be very different (e.g.,
an edge might be between two distinct nodes in G but the same edge
is a loop in multi-graph G2.)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F35/59 (pg.137/246

Submodular Max w. Other Constraints
[RRE AR RN RN AR RN AR RN

Matroid Intersection and Network Communication

o Let G; = (W1, E) and Gy = (Va, E) be two graphs on an isomorphic
set of edges (lets just give them same names E).

@ Consider two cycle matroids associated with these graphs
M, = (E,Z;) and My = (E,Z;). They might be very different (e.g.,
an edge might be between two distinct nodes in G but the same edge
is a loop in multi-graph G2.)

@ We may wish to find the maximum size edge-induced subgraph that is
still forest in both graphs (i.e., adding any edges will create a circuit in
either My, My, or both).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F35/59 (pg.138/246

Submodular Max w. Other Constraints
[RRE AR RN RN AR RN AR RN

Matroid Intersection and Network Communication

o Let G; = (W1, E) and Gy = (Va, E) be two graphs on an isomorphic
set of edges (lets just give them same names E).

@ Consider two cycle matroids associated with these graphs
M, = (E,Z;) and My = (E,Z;). They might be very different (e.g.,
an edge might be between two distinct nodes in G but the same edge
is a loop in multi-graph G2.)

@ We may wish to find the maximum size edge-induced subgraph that is
still forest in both graphs (i.e., adding any edges will create a circuit in
either My, My, or both).

@ This is again a matroid intersection problem.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F35/59 (pg.139/246

Submodular Max w. Other Constraints
(RN RN RN NN AR RN AR

Matroid Intersection and TSP

@ Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

Submodular Max w. Other Constraints
[N RN RN RN RN

Matroid Intersection and TSP

@ Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.
@ Given directed graph G, goal is to find such a Hamiltonian cycle.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F36/59 (pg.141/246

Submodular Max w. Other Constraints
[N RN RN RN RN

Matroid Intersection and TSP

@ Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.

@ Given directed graph G, goal is to find such a Hamiltonian cycle.

@ From G with n nodes, create G’ with n + 1 nodes by duplicating
(w.l.o.g.) a particular node v; € V(G) to vi",v;, and have all
outgoing edges from v; come instead from v;" and all edges incoming
to v; go instead to Uf’.

o % S

o

o >U+ S
o>

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

Submodular Max w. Other Constraints
[N RN RN RN RN

Matroid Intersection and TSP

@ Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.

@ Given directed graph G, goal is to find such a Hamiltonian cycle.

@ From G with n nodes, create G’ with n + 1 nodes by duplicating
(w.l.o.g.) a particular node v; € V(G) to vi",v;, and have all
outgoing edges from v; come instead from v;" and all edges incoming
to v; go instead to Uf’.

@ Let M; be the cycle matroid on G’.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F36/59 (pg.143/246

Submodular Max w. Other Constraints
[N RN RN RN RN

Matroid Intersection and TSP

@ Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.

@ Given directed graph G, goal is to find such a Hamiltonian cycle.

@ From G with n nodes, create G’ with n + 1 nodes by duplicating
(w.l.o.g.) a particular node v; € V(G) to vi",v;, and have all
outgoing edges from v; come instead from v;" and all edges incoming
to v; go instead to Uf’.

@ Let M; be the cycle matroid on G’.

@ Let My be the partition matroid having as independent sets those that
have no more than one edge leaving any node — i.e., I € Z(My) if
[INd (v)] <1 forallve V(G).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F36/59 (pg.144/246

Submodular Max w. Other Constraints
(RN RN RN NN AR RN AR

Matroid Intersection and TSP

@ Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.

@ Given directed graph G, goal is to find such a Hamiltonian cycle.

@ From G with n nodes, create G’ with n + 1 nodes by duplicating
(w.l.o.g.) a particular node v; € V(G) to vi",v;, and have all
outgoing edges from v; come instead from v;" and all edges incoming
to v; go instead to Uf’.

@ Let M; be the cycle matroid on G’.

@ Let My be the partition matroid having as independent sets those that
have no more than one edge leaving any node — i.e., I € Z(My) if
[INd (v)] <1 forallve V(G).

o Let Ms be the partition matroid having as independent sets those that

have no more than one edge entering any node — i.e., I € Z(Ms) if
1N 6t W) < 1 for all v € V(G). P _ U%hf
(vt\/

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F36/59 (pg.145/246

Submodular Max w. Other Constraints
[N RN RN RN RN

Matroid Intersection and TSP

@ Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.

@ Given directed graph G, goal is to find such a Hamiltonian cycle.

@ From G with n nodes, create G’ with n + 1 nodes by duplicating
(w.l.o.g.) a particular node v; € V(G) to vi",v;, and have all
outgoing edges from v; come instead from v;" and all edges incoming
to v; go instead to Uf’.

@ Let M; be the cycle matroid on G’.

@ Let My be the partition matroid having as independent sets those that
have no more than one edge leaving any node — i.e., I € Z(My) if
[INd (v)] <1 forallve V(G).

o Let Ms be the partition matroid having as independent sets those that
have no more than one edge entering any node — i.e., I € Z(M3) if
[ITNét(v)| <1 forallveV(G).

@ Then a Hamiltonian cycle exists iff there is an n-element intersection
of Ml, Mz, and Mg.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F36/59 (pg.146/246

Submodular Max w. Other Constraints
[N RN RN RN RN

Matroid Intersection and TSP

@ Recall, the traveling salesperson problem (TSP) is the problem to,
given a directed graph, start at a node, visit all cities, and return to the
starting point. Optimization version does this tour at minimum cost.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F36/59 (pg.147/246

Submodular Max w. Other Constraints
[N RN RN RN RN

Matroid Intersection and TSP

@ Recall, the traveling salesperson problem (TSP) is the problem to,
given a directed graph, start at a node, visit all cities, and return to the
starting point. Optimization version does this tour at minimum cost.

@ Since TSP is NP-complete, we obviously can't solve matroid
intersections of 3 more matroids, unless P=NP.

36,59 (pg.148/246

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

Submodular Max w. Other Constraints
[N RN RN RN RN

Matroid Intersection and TSP

@ Recall, the traveling salesperson problem (TSP) is the problem to,
given a directed graph, start at a node, visit all cities, and return to the
starting point. Optimization version does this tour at minimum cost.

@ Since TSP is NP-complete, we obviously can't solve matroid
intersections of 3 more matroids, unless P=NP.

@ But bipartite graph example gives us hope for 2 matroids, as in that
case we can easily solve max | X| s.t. z € 7y N Zs.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F36/59 (pg.149/246

Submodular Max w. Other Constraints
[RERRL RN RN RN AR RN AR

Greedy over multiple matroids: Generalized Bipartite

Matching

@ Generalized bipartite matching (i.e., max bipartite matching with
submodular costs on the edges). Use two partition matroids (as
mentioned earlier in class)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F37/59 (pg.150/246

Submodular Max w. Other Constraints
[RERRL RN RN RN AR RN AR

Greedy over multiple matroids: Generalized Bipartite

Matching

o Generalized bipartite matching (i.e., max bipartite matching with
submodular costs on the edges). Use two partition matroids (as
mentioned earlier in class)

@ Useful in natural language processing: Ex. Computer language
translation, find an alignment between two language strings.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F37/59 (pg.151/246

Submodular Max w. Other Constraints
[RERRL RN RN RN AR RN AR

Greedy over multiple matroids: Generalized Bipartite

Matching

o Generalized bipartite matching (i.e., max bipartite matching with
submodular costs on the edges). Use two partition matroids (as
mentioned earlier in class)

@ Useful in natural language processing: Ex. Computer language
translation, find an alignment between two language strings.

e Consider bipartite graph G = (E, F, V') where E and F are the
left /right set of nodes, respectively, and V' is the set of edges.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F37/59 (pg.152/246

Submodular Max w. Other Constraints
[RERRL RN RN RN AR RN AR

Greedy over multiple matroids: Generalized Bipartite

Matching

o Generalized bipartite matching (i.e., max bipartite matching with
submodular costs on the edges). Use two partition matroids (as
mentioned earlier in class)

@ Useful in natural language processing: Ex. Computer language
translation, find an alignment between two language strings.

e Consider bipartite graph G = (E, F, V') where E and F are the
left/right set of nodes, respectively, and V' is the set of edges.

@ F corresponds to, say, an English language sentence and F
corresponds to a French language sentence — goal is to form a
matching (an alignment) between the two.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F37/59 (pg.153/246

Submodular Max w. Other Constraints
[RRRRRL RN RN AR RN

Greedy over > 1 matroids: Multiple Language Alignment

@ Consider English string and French string, set up as a bipartite graph.

| have ... as an example of public ownership

je le ai ... comme exemple de propriété publique

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

Submodular Max w. Other Constraints
[RRRRRL RN RN AR RN

Greedy over > 1 matroids: Multiple Language Alignment

@ One possible alignment, a matching, with score as sum of edge
weights.

| have ... as an example of public ownership

VAL A

je le ai ... comme exemple de propriété publique

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F38/59 (pg.155/246

Submodular Max w. Other Constraints

Greedy over > 1 matroids: Multiple Language Alignment

@ Edges incident to English words constitute an edge partition

| have ... as an example of public ownership

je le ai ... comme exemple de propriété publique
@ The two edge partitions can be used to set up two 1-partition matroids
on the edges.

@ For each matroid, a set of edges is independent only if the set
intersects each partition block no more than one time.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

Submodular Max w. Other Constraints
[RRRRRL RN RN AR RN

Greedy over > 1 matroids: Multiple Language Alignment

@ Edges incident to French words constitute an edge partition

je le ai ... comme exemple de propriété publique
@ The two edge partitions can be used to set up two 1-partition matroids
on the edges.

@ For each matroid, a set of edges is independent only if the set
intersects each partition block no more than one time.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

Submodular Max w. Other Constraints
[RRRRRRY RN RN RN RN RN

Greedy over > 1 matroids: Multiple Language Alignment

@ Typical to use bipartite matching to find an alignment between the two
language strings.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F39/59 (pg.158/246

Submodular Max w. Other Constraints
[RRRRRRY RN RN RN RN RN

Greedy over > 1 matroids: Multiple Language Alignment

@ Typical to use bipartite matching to find an alignment between the two
language strings.

@ As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F39/59 (pg.159/246

Submodular Max w. Other Constraints
[RRRRRRY RN RN RN RN RN

Greedy over > 1 matroids: Multiple Language Alignment

@ Typical to use bipartite matching to find an alignment between the two
language strings.

@ As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.

@ We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

Submodular Max w. Other Constraints
[RRRRRRY RN RN RN RN RN

Greedy over > 1 matroids: Multiple Language Alignment

@ Typical to use bipartite matching to find an alignment between the two
language strings.

@ As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.

@ We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:

Fertility at most 1
... the ... of public ownership .. . the ... of public ownership

.. le ... de propriété publique ... le ... de propriété publique

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F39/59 (pg.161/246

Submodular Max w. Other Constraints
[RRRRRRY RN RN RN RN RN

Greedy over > 1 matroids: Multiple Language Alignment

@ Typical to use bipartite matching to find an alignment between the two
language strings.

@ As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.

@ We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:

Fertility at most 2
.. . the ... of public ownership .. . the ... of public ownership

.. le ... de propriété publique ... le ... de propriété publique

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

Submodular Max w. Other Constraints
[RRRRRR RN AR NN RN AR RN AR

Greedy over > 1 matroids: Multiple Language Alignment

@ Generalizing further, each block of edges in each partition matroid can
have its own “fertility” limit:
I={XCV: | XNV <k;foralli=1,...,¢}.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F40/59 (pg.163/246

Submodular Max w. Other Constraints
[RRRRRR RN AR NN RN AR RN AR

Greedy over > 1 matroids: Multiple Language Alignment

@ Generalizing further, each block of edges in each partition matroid can
have its own “fertility” limit:

T={XCV:|XNV|<kiforalli=1,... 0}

@ Maximizing submodular function subject to multiple matroid
constraints addresses this problem.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F40/59 (pg.164/246

Submodular Max w. Other Constraints
[RRRRRRR RN R RN RN AR

Greedy over multiple matroids: Submodular Welfare

@ Submodular Welfare Maximization: Consider E a set of m goods to be
distributed /partitioned among n people (“players”).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F41/59 (pg.165/246

Submodular Max w. Other Constraints
[RRRRRRR RN R RN RN AR

Greedy over multiple matroids: Submodular Welfare

@ Submodular Welfare Maximization: Consider E a set of m goods to be
distributed /partitioned among n people (“players”).

e Each players has a submodular “valuation” function, g; : 2¥ — R,
that measures how “desirable” or “valuable” a given subset A C F of
goods are to that player.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F41/59 (pg.166/246

Submodular Max w. Other Constraints
[RRRRRRR RN R RN RN AR

Greedy over multiple matroids: Submodular Welfare

@ Submodular Welfare Maximization: Consider E a set of m goods to be
distributed /partitioned among n people (“players”).

o Each players has a submodular “valuation” function, g; : 28 — R,
that measures how “desirable” or “valuable” a given subset A C F of
goods are to that player.

@ Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F41/59 (pg.167/246

Submodular Max w. Other Constraints
[RRRRRRR RN R RN RN AR

Greedy over multiple matroids: Submodular Welfare

@ Submodular Welfare Maximization: Consider E a set of m goods to be
distributed /partitioned among n people (“players”).

o Each players has a submodular “valuation” function, g; : 28 — R,
that measures how “desirable” or “valuable” a given subset A C F of
goods are to that player.

@ Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.

@ Goal of submodular welfare: Partition the goods
E=F, UFEyU---UZE, into n blocks in order to maximize the
submodular social welfare, measured as:

n
submodular-social-welfare(Ey, Eo, . .., Ey,) = Z gi(E;). (14.25)
i=1

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F41/59 (pg.168/246

Submodular Max w. Other Constraints
[RRRRRRR RN R RN RN AR

Greedy over multiple matroids: Submodular Welfare

@ Submodular Welfare Maximization: Consider E a set of m goods to be
distributed /partitioned among n people (“players”).

o Each players has a submodular “valuation” function, g; : 28 — R,
that measures how “desirable” or “valuable” a given subset A C F of
goods are to that player.

@ Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.

@ Goal of submodular welfare: Partition the goods
E=F,UFEyU---UZE, into n blocks in order to maximize the
submodular social welfare, measured as:

n
submodular-social-welfare(Ey, Es, . .., Ey,) = ZgZ(El) (14.25)
=1

@ We can solve this via submodular maximization subject to multiple
matroid independence constraints as we next describe . ..

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F41/59 (pg.169/246

Submodular Max w. Other Constraints
[RRRRRRRRRY ARRRR RN

Submodular Welfare: Submodular Max over matroid

partition

@ Create new ground set E’ as disjoint union of n copies of the ground
set. l.e.,

EF'=FyWFEW.-.-WE (14.26)

nx

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F42/59 (pg.170/246

Submodular Max w. Other Constraints
[RRRRRRRRRY ARRRR RN

Submodular Welfare: Submodular Max over matroid

partition

@ Create new ground set E’ as disjoint union of n copies of the ground
set. l.e.,

EF=EYWEWY.- - -WE (14.26)

nx

e Let E) c E’ be the it" block of E'.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F42/59 (pg.171/246

Submodular Max w. Other Constraints
[RRRRRRRRRY ARRRR RN

Submodular Welfare: Submodular Max over matroid

partition

@ Create new ground set E’ as disjoint union of n copies of the ground
set. l.e.,

EF=EYWEWY.- - -WE (14.26)

nx

o Let E® C E' be the i*" block of E'.
e For any e € F, the corresponding element in E() is called (e,i) € E(
(each original element is tagged by integer).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F42/59 (pg.172/246

Submodular Max w. Other Constraints
[RRRRRRRRRY ARRRR RN

Submodular Welfare: Submodular Max over matroid

partition

@ Create new ground set E’ as disjoint union of n copies of the ground
set. l.e.,

EF=EYWEWY.- - -WE (14.26)

nx

e Let £ c E’ be the it" block of E'.

e For any e € F, the corresponding element in E() is called (e,i) € E®
(each original element is tagged by integer).
@ Fore € E, define E. = {(¢/,i) € E' : ¢/ = e}.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F42/59 (pg.173/246

Submodular Max w. Other Constraints
[RRRRRRRRRY ARRRR RN

Submodular Welfare: Submodular Max over matroid

partition

@ Create new ground set E’ as disjoint union of n copies of the ground
set. l.e.,

EF=EYWEWY.- - -WE (14.26)

nx

o Let E® C E' be the i*" block of E'.

e For any e € F, the corresponding element in E() is called (e,i) € E®
(each original element is tagged by integer).

e Fore € E, define E. = {(¢/,i) € E' : ¢/ = e}.

@ Hence, {Ee}eeE is a partition of E’, each block of the partition for
one of the original elements in F.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F42/59 (pg.174/246

Submodular Max w. Other Constraints
[RRRRRRRRRY ARRRR RN

Submodular Welfare: Submodular Max over matroid

partition

@ Create new ground set E’ as disjoint union of n copies of the ground
set. l.e.,

EF=EYWEWY.- - -WE (14.26)

nx

o Let E() C E’ be the i*" block of E.

e For any e € F, the corresponding element in E() is called (e,i) € E®
(each original element is tagged by integer).

e Fore € E, define E. = {(¢/,i) € E' : ¢/ = e}.

o Hence, {E.} . is a partition of E’, each block of the partition for
one of the original elements in F.

o Create a 1l-partition matroid M = (E’,Z) where

I={SCE :VeecE, |SNE|<1} (14.27)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F42/59 (pg.175/246

Submodular Max w. Other Constraints
[RRRRRRR RN RN R RN RN AR RN

Submodular Welfare: Submodular Max over matroid

partition

@ Hence, S is independent in matroid M = (E’,I) if S uses each
original element no more than once.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F43/59 (pg.176/246

Submodular Max w. Other Constraints
[RRRRRRR RN RN R RN RN AR RN

Submodular Welfare: Submodular Max over matroid

partition

@ Hence, S is independent in matroid M = (E’,I) if S uses each
original element no more than once.

e Create submodular function f’ : 2%

F1(8) =30 gi(Sn EW),

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F43/59 (pg.177/246

Submodular Max w. Other Constraints
[RRRRRRR RN RN R RN RN AR RN

Submodular Welfare: Submodular Max over matroid

partition

@ Hence, S is independent in matroid M = (E’,I) if S uses each
original element no more than once.

o Create submodular function f’: 2" — R with
F1(8) =Y (SN EW).

@ Submodular welfare maximization becomes matroid constrained
submodular max max {f’(S) : S € Z}, so greedy algorithm gives a 1/2
approximation.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F43/59 (pg.178/246

Submodular Max w. Other Constraints

Submodular Social Welfare
@ Have n = 6 people (who don't
like to share) and |E| =m =7

ALY

@ might be e = "salmon roll".

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

Submodular Max w. Other Constraints
(NRRRRRRRRNRY RN RN NN

Submodular Social Welfare

AL

e Have n = 6 people (who don't
like to share) and |[E|=m =7
pieces of sushi. E.g., e € E
might be e = "salmon roll”.

@ Goal: distribute sushi to people
to maximize social welfare.

Yie

=
L)

L A€

-
%

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

Submodular Max w. Other Constraints
(NRRRRRRRRNRY RN RN NN

Submodular Social Welfare

LALLLA

@ Have n = 6 people (who don't
like to share) and |[E|=m =7
pieces of sushi. E.g., e € E

@ might be e = "salmon roll”.
L @ Goal: distribute sushi to people
=

to maximize social welfare.

@ Ground set disjoint union
FYFYWEWEWEWE,

-
=

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 14 - May 18th, 2016 F44/59 (pg.181/246)

Submodula v. Other Constraints
(NERRRERN (ARRRRRNNAREY

Submodular Social Welfare

@ Have n = 6 people (who don't
like to share) and |[E|=m =7
pieces of sushi. E.g., e € E

@ might be e = "salmon roll”.
L @ Goal: distribute sushi to people
e =

to maximize social welfare.

@ Ground set disjoint union
FYJFYEWEWEWE.

@ Partition matroid partitions:
E,UE,UE.,UE., UE.U
E., UE,,.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F44/59 (p 6)

Submodular Social Welfare

Submodular Max w. Other Constraints

Have n = 6 people (who don't
like to share) and |[E|=m =7
pieces of sushi. E.g., e € E
might be e = "salmon roll”.

Goal: distribute sushi to people
to maximize social welfare.

Ground set disjoint union
FYJFYEWEWEWE.
Partition matroid partitions:
E., UE,UFE. UE,, UFE.,U
E., UE,..

independent allocation

Submodular Social Welfare

Submodular Max w. Other Constraints

Have n = 6 people (who don't
like to share) and |[E|=m =7
pieces of sushi. E.g., e € E
might be e = "salmon roll”.
Goal: distribute sushi to people
to maximize social welfare.

Ground set disjoint union
FYJFYEWEWEWE.

Partition matroid partitions:
E,UE,UFE,UE.,, UE. U
E., UE,..

independent allocation

non-independent allocation

Submodular Max w. Other Constraints
[RRRRRRR RN NN AR RN RN RN AN

Monotone Submodular over Knapsack Constraint

@ The constraint |A| < k is a simple cardinality constraint.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F45/59 (pg.185/246

Submodular Max w. Other Constraints
[RRRRRRR RN NN AR RN RN RN AN

Monotone Submodular over Knapsack Constraint

@ The constraint |A| < k is a simple cardinality constraint.

o Consider a non-negative integral modular function ¢: £ — Z,..

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F45/59 (pg.186/246

Submodular Max w. Other Constraints
[RRRRRRR RN NN AR RN RN RN AN

Monotone Submodular over Knapsack Constraint

@ The constraint |A| < k is a simple cardinality constraint.
o Consider a non-negative integral modular function ¢: £ — Z,..

@ A knapsack constraint would be of the form ¢(A) < b where B is some
integer budget that must not be exceeded. That is
max {f(A) : ACV,c(A) <b}.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F45/59 (pg.187/246

Submodular Max w. Other Constraints
[RRRRRRR RN NN AR RN RN RN AN

Monotone Submodular over Knapsack Constraint

@ The constraint |A| < k is a simple cardinality constraint.
o Consider a non-negative integral modular function ¢: £ — Z,..

@ A knapsack constraint would be of the form ¢(A) < b where B is some
integer budget that must not be exceeded. That is
max {f(A) : ACV,c(A) <b}.

@ Important: A knapsack constraint yields an independence system
(down closed) but it is not a matroid!

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F45/59 (pg.188/246

Submodular Max w. Other Constraints
[RRRRRRR RN NN AR RN RN RN AN

Monotone Submodular over Knapsack Constraint

@ The constraint |A| < k is a simple cardinality constraint.
o Consider a non-negative integral modular function ¢: £ — Z,..

@ A knapsack constraint would be of the form ¢(A) < b where B is some
integer budget that must not be exceeded. That is
max {f(A) : ACV,c(A) <b}.

@ Important: A knapsack constraint yields an independence system
(down closed) but it is not a matroid!

@ c(e) may be seen as the cost of item e and if ¢(e) =1 for all e, then
we recover the cardinality constraint we saw earlier.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F45/59 (pg.189/246

Submodular Max w. Other Constraints
[RRRRRRR RN NN AR RN RN RN AN

Monotone Submodular over Knapsack Constraint

@ Greedy can be seen as choosing the best gain: Starting with Sy = 0,
we repeat the following greedy step

Sit1=S;U {argmax(F(S: U o)) — f(Si)>} (14.28)

veV\S;

the gain is f({v}|Si) = f(Si +v) — f(Si), so greedy just chooses next
the currently unselected element with greatest gain.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

Submodular Max w. Other Constraints
[RRRRRRR RN NN AR RN RN RN AN

Monotone Submodular over Knapsack Constraint

@ Greedy can be seen as choosing the best gain: Starting with Sy = 0,
we repeat the following greedy step

Sit+1=5; U {argmax(f(Si U{v}) - f(&'))} (14.28)
veV\S;

the gain is f({v}|Si) = f(Si +v) — f(Si), so greedy just chooses next

the currently unselected element with greatest gain.

@ Core idea in knapsack case: Greedy can be extended to choose next
whatever looks cost-normalized best, i.e., Starting some initial set Sy,
we repeat the following cost-normalized greedy step

Sit1=5; U {argmax F(S: Uv}) = £(S) } (14.29)

veV\S; C(U)

which we repeat until ¢(S;+1) > b and then take S; as the solution.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F45/59 (pg.191/246

Submodular Max w. Other Constraints
[RRRRRR RN AR RN RN RN RN

A Knapsack Constraint

@ There are a number of ways of getting approximation bounds using
this strategy.

@ If we run the normalized greedy procedure starting with Sp = (), and
compare the solution found with the max of the singletons
max,cy f({v}), choosing the max, then we get a (1 —e~1/2) ~ 0.39
approximation, in O(n?) time (Minoux trick also possible for further
speed)

@ Partial enumeration: On the other hand, we can get a
(1 — e~ ') ~ 0.63 approximation in O(n®) time if we run the above
procedure starting from all sets of cardinality three (so restart for all
So such that |Sp| = 3), and compare that with the best singleton and
pairwise solution.

o Extending something similar to this to d simultaneous knapsack
constraints is possible as well.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

Submodular Max w. Other Constraints
[RRRRRR RN ARRRRRNA RN

Local Search Algorithms

From J. Vondrak

@ Local search involves switching up to t elements, as long as it provides
a (non-trivial) improvement; can iterate in several phases. Some
examples follow:

@ 1/3 approximation to unconstrained non-monotone maximization
[Feige, Mirrokni, Vondrak, 2007]

® 1/(k+2+ } + &;) approximation for non-monotone maximization
subject to k matroids [Lee, Mirrokni, Nagarajan, Sviridenko, 2009]

e 1/(k + 0;) approximation for monotone submodular maximization
subject to k > 2 matroids [Lee, Sviridenko, Vondrak, 2010].

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F47/59 (pg.193/246

Submodular Max w. Other Constraints
[RRRRRR RN RN AR R RN NN

What About Non-monotone

@ Alternatively, we may wish to maximize non-monotone submodular
functions. This includes of course graph cuts, and this problem is
APX-hard, so maximizing non-monotone functions, even
unconstrainedly, is hard.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F48/59 (pg.194/246

Submodular Max w. Other Constraints
[RRRRRR RN RN AR R RN NN

What About Non-monotone

o Alternatively, we may wish to maximize non-monotone submodular
functions. This includes of course graph cuts, and this problem is
APX-hard, so maximizing non-monotone functions, even
unconstrainedly, is hard.

e If fis an arbitrary submodular function (so neither polymatroidal, nor
necessarily positive or negative), then verifying if the maximum of f is
positive or negative is already NP-hard.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F48/59 (pg.195/246

Submodular Max w. Other Constraints
[RRRRRR RN RN AR R RN NN

What About Non-monotone

o Alternatively, we may wish to maximize non-monotone submodular
functions. This includes of course graph cuts, and this problem is
APX-hard, so maximizing non-monotone functions, even
unconstrainedly, is hard.

e If fis an arbitrary submodular function (so neither polymatroidal, nor
necessarily positive or negative), then verifying if the maximum of f is
positive or negative is already NP-hard.

@ Therefore, submodular function max in such case is inapproximable
unless P=NP (since any such procedure would give us the sign of the
max).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F48/59 (pg.196/246

Submodular Max w. Other Constraints
[RRRRRR RN RN AR R RN NN

What About Non-monotone

o Alternatively, we may wish to maximize non-monotone submodular
functions. This includes of course graph cuts, and this problem is
APX-hard, so maximizing non-monotone functions, even
unconstrainedly, is hard.

e If fis an arbitrary submodular function (so neither polymatroidal, nor
necessarily positive or negative), then verifying if the maximum of f is
positive or negative is already NP-hard.

@ Therefore, submodular function max in such case is inapproximable
unless P=NP (since any such procedure would give us the sign of the
max).

@ Thus, any approximation algorithm must be for unipolar submodular
functions. E.g., non-negative but otherwise arbitrary submodular
functions.

Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

Submodular Max w. Other Constraints
[RRRRRR RN RN AR R RN NN

What About Non-monotone

o Alternatively, we may wish to maximize non-monotone submodular
functions. This includes of course graph cuts, and this problem is
APX-hard, so maximizing non-monotone functions, even
unconstrainedly, is hard.

e If fis an arbitrary submodular function (so neither polymatroidal, nor
necessarily positive or negative), then verifying if the maximum of f is
positive or negative is already NP-hard.

@ Therefore, submodular function max in such case is inapproximable
unless P=NP (since any such procedure would give us the sign of the
max).

@ Thus, any approximation algorithm must be for unipolar submodular
functions. E.g., non-negative but otherwise arbitrary submodular
functions.

o We may get a (% —) approximation for maximizing non-monotone
non-negative submodular functions, with most O(%n‘3 logn) function
calls using approximate local maxima.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F48/59 (pg.198/246

Submodular Max w. Other Constraints
[RRRRRR RN ARRRNA RN

Submodularity and local optima

@ Given any submodular function f, a set S C V is a local maximum of f
if f(S—wv)<f(S)forallvesSand f(S+wv) < f(S)forallveV\S
(i.e., local in a Hamming ball of radius 1).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F49/59 (pg.199/246

Submodular Max w. Other Constraints
[RRRRRR RN ARRRNA RN

Submodularity and local optima

@ Given any submodular function f, a set S C V is a local maximum of f
if f(S—wv)<f(S)forallvesSand f(S+v) < f(S)forallveV\S
(i.e., local in a Hamming ball of radius 1).

@ The following interesting result is true for any submodular function:

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F49/59 (pg.200/246

Submodular Max w. Other Constraints
[RRRRRR RN ARRRNA RN

Submodularity and local optima

@ Given any submodular function f, a set S C V is a local maximum of f
if f(S—wv)<f(S)forallvesSand f(S+v) < f(S)forallveV\S
(i.e., local in a Hamming ball of radius 1).

@ The following interesting result is true for any submodular function:

Given a submodular function f, if S is a local maximum of f, and I C S or
ID S, then f(I) < f(S5).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F49/59 (pg.201/246

Submodular Max w. Other Constraints
[RRRRRR RN ARRRNA RN

Submodularity and local optima

@ Given any submodular function f, a set S C V is a local maximum of f
if f(S—wv)<f(S)forallvesSand f(S+v) < f(S)forallveV\S
(i.e., local in a Hamming ball of radius 1).

@ The following interesting result is true for any submodular function:

Given a submodular function f, if S is a local maximum of f, and I C S or
ID S, then f(I) < f(S5).

@ Idea of proof: Given vy, v9 € S, suppose f(S —wv1) < f(5) and
f(S —w9) < f(S). Submodularity requires
f(S —wvi1)+ f(S—w2) > f(S)+ f(S — vi — v2) which would be
impossible unless f(S — vy — v2) < f(9).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F49/59 (pg.202/246

Submodular Max w. Other Constraints
[RRRRRR RN ARRRNA RN

Submodularity and local optima

@ Given any submodular function f, a set S C V is a local maximum of f
if f(S—wv)<f(S)forallvesSand f(S+v) < f(S)forallveV\S
(i.e., local in a Hamming ball of radius 1).

@ The following interesting result is true for any submodular function:

Given a submodular function f, if S is a local maximum of f, and I C S or
ID S, then f(I) < f(S5).

@ Idea of proof: Given vy, vy € S, suppose f(S —wv1) < f(S) and
f(S —wv9) < f(S). Submodularity requires
f(S —wv1)+ f(S—wv2) > f(S)+ f(S — v1 — v2) which would be
impossible unless f(S —v; —v9) < f(95).

e Similarly, given vi,v2 ¢ S, and f(S+v1) < f(S) and f(S +v2) < f(95).
Submodularity requires f(S 4+ v1) + f(S +v2) > f(S) + f(S 4+ v1 + v2)
which requires f(S + v + v2) < f(S5).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F49/59 (pg.203/246

Submodular Max w. Other Constraints
[RRRRRR RN ARRRNA RN

Submodularity and local optima

@ Given any submodular function f, a set S C V is a local maximum of f
if f(S—wv)<f(S)forallvesSand f(S+v) < f(S)forallveV\S
(i.e., local in a Hamming ball of radius 1).

@ The following interesting result is true for any submodular function:

Given a submodular function f, if S is a local maximum of f, and I C S or
ID S, then f(I) < f(S5).

@ In other words, once we have identified a local maximum, the two
intervals in the Boolean lattice [, S] and [S, V] can be ruled out as a
possible improvement over S.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F49/59 (pg.204/246

Submodular Max w. Other Constraints
[RRRRRR RN ARRRNA RN

Submodularity and local optima

@ Given any submodular function f, a set S C V is a local maximum of f
if f(S—wv)<f(S)forallvesSand f(S+v) < f(S)forallveV\S
(i.e., local in a Hamming ball of radius 1).

@ The following interesting result is true for any submodular function:

Given a submodular function f, if S is a local maximum of f, and I C S or
ID S, then f(I) < f(S5).

@ In other words, once we have identified a local maximum, the two
intervals in the Boolean lattice [, S] and [S, V] can be ruled out as a
possible improvement over S.

e Finding a local maximum is already hard (PLS-complete), but it is
possible to find an approximate local maximum relatively efficiently.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F49/59 (pg.205/246

Submodular Max w. Other Constraints
[RRRRRR RN ARRRNA RN

Submodularity and local optima

@ Given any submodular function f, a set S C V is a local maximum of f
if f(S—wv)<f(S)forallvesSand f(S+v) < f(S)forallveV\S
(i.e., local in a Hamming ball of radius 1).

@ The following interesting result is true for any submodular function:

Given a submodular function f, if S is a local maximum of f, and I C S or
ID S, then f(I) < f(S5).

@ In other words, once we have identified a local maximum, the two
intervals in the Boolean lattice [, S] and [S, V] can be ruled out as a
possible improvement over S.

e Finding a local maximum is already hard (PLS-complete), but it is
possible to find an approximate local maximum relatively efficiently.

@ This is the approach that yields the (<) approximation algorithm.

L_
3

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F49/59 (pg.206/246

Submodular Max w. Other Constraints
[RRRRRR RN RN RY RRRNR RN

Linear time algorithm unconstrained non-monotone max

@ Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F50/59 (pg.207/246

Submodular Max w. Other Constraints
[RRRRRR RN RN RY RRRNR RN

Linear time algorithm unconstrained non-monotone max

e Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.
@ Buchbinder, Feldman, Naor, Schwartz 2012.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F50/59 (pg.208/246

Submodular Max w. Other Constraints
[RRRRRR RN RN RY RRRNR RN

Linear time algorithm unconstrained non-monotone max

e Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.
@ Buchbinder, Feldman, Naor, Schwartz 2012. Recall [a|; = max(a,0).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F50/59 (pg.209/246

Submodular Max w. Other Constraints
[RRRRRR RN RN RY RRRNR RN

Linear time algorithm unconstrained non-monotone max

e Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.
@ Buchbinder, Feldman, Naor, Schwartz 2012. Recall [a]+ = max(a,O0).

Algorithm 6: Randomized Linear-time non-monotone submodular max

1Set L« Q;U+V /* Lower L, upper U. Invariant: L C U */ ;
2 Order elements of V' = (v, v9,...,v,) arbitrarily ;

3 fori«+0...]V]|do

4 | a< [f(ulD)]4; b [=f(UIU\A{vi})]+ ;

5 ifa=b=0thenp+«+ 1/2;

6 ;

7 else p < a/(a + b);

8 ;

9 if Flip of coin with Pr(heads) = p draws heads then

10 | L+ Lu{v};

11 Otherwise /* if the coin drew tails, an event with prob. 1 —p */
12 L U<+ U\{v}

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F50/59 (pg.210/246

Submodular Max w. Other Constraints
[RRRRRRR RN RRRRRRRY RRRRR AN

Linear time algorithm unconstrained non-monotone max

e Each “sweep” of the algorithm is O(n).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F51/59 (pg.211/246

Submodular Max w. Other Constraints
[RRRRRRR RN RRRRRRRY RRRRR AN

Linear time algorithm unconstrained non-monotone max

@ Each “sweep” of the algorithm is O(n).

@ Running the algorithm 1x (with an arbitrary variable order) results in
a 1/3 approximation.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

Submodular Max w. Other Constraints
[RRRRRRR RN RRRRRRRY RRRRR AN

Linear time algorithm unconstrained non-monotone max

@ Each “sweep” of the algorithm is O(n).

@ Running the algorithm 1x (with an arbitrary variable order) results in
a 1/3 approximation.

@ The 1/2 guarantee is in expected value (the expected solution has the
1/2 guarantee).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F51/59 (pg.213/246

Submodular Max w. Other Constraints
[RRRRRRR RN RRRRRRRY RRRRR AN

Linear time algorithm unconstrained non-monotone max

Each “sweep” of the algorithm is O(n).

Running the algorithm 1x (with an arbitrary variable order) results in
a 1/3 approximation.

The 1/2 guarantee is in expected value (the expected solution has the
1/2 guarantee).

In practice, run it multiple times, each with a different random
permutation of the elements, and then take the cumulative best.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F51/59 (pg.214/246

Submodular Max w. Other Constraints
[RRRRRRR RN RRRRRRRY RRRRR AN

Linear time algorithm unconstrained non-monotone max

@ Each “sweep” of the algorithm is O(n).

@ Running the algorithm 1x (with an arbitrary variable order) results in
a 1/3 approximation.

@ The 1/2 guarantee is in expected value (the expected solution has the
1/2 guarantee).

@ In practice, run it multiple times, each with a different random
permutation of the elements, and then take the cumulative best.

@ It may be possible to choose the random order smartly to get better
results in practice.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F51/59 (pg.215/246

Submodular Max w. Other Constraints
[RRRRRR RN RN RRRRR R RERR AN

More general still: multiple constraints different types

@ In the past several years, there has been a plethora of papers on
maximizing both monotone and non-monotone submodular functions
under various combinations of one or more knapsack and/or matroid
constraints.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F52/59 (pg.216/246

Submodular Max w. Other Constraints
[RRRRRR RN RN RRRRR R RERR AN

More general still: multiple constraints different types

@ In the past several years, there has been a plethora of papers on
maximizing both monotone and non-monotone submodular functions
under various combinations of one or more knapsack and/or matroid
constraints.

@ The approximation quality is usually some function of the number of
matroids, and is often not a function of the number of knapsacks.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F52/59 (pg.217/246

Submodular Max w. Other Constraints
[RRRRRR RN RN RRRRR R RERR AN

More general still: multiple constraints different types

@ In the past several years, there has been a plethora of papers on
maximizing both monotone and non-monotone submodular functions
under various combinations of one or more knapsack and/or matroid
constraints.

@ The approximation quality is usually some function of the number of
matroids, and is often not a function of the number of knapsacks.

@ Often the computational costs of the algorithms are prohibitive (e.g.,
exponential in k) with large constants, so these algorithms might not
scale.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F52/59 (pg.218/246

Submodular Max w. Other Constraints
[RRRRRR RN RN RRRRR R RERR AN

More general still: multiple constraints different types

@ In the past several years, there has been a plethora of papers on
maximizing both monotone and non-monotone submodular functions
under various combinations of one or more knapsack and/or matroid
constraints.

@ The approximation quality is usually some function of the number of
matroids, and is often not a function of the number of knapsacks.

@ Often the computational costs of the algorithms are prohibitive (e.g.,
exponential in k) with large constants, so these algorithms might not
scale.

@ On the other hand, these algorithms offer deep and interesting intuition
into submodular functions, beyond what we have covered here.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F52/59 (pg.219/246

Submodular Max w. Other Constraints
[RRRRRR RN RN RN RN RN NRR AN

Some results on submodular maximization

@ As we've seen, we can get 1 — 1/e for non-negative monotone
submodular (polymatroid) functions with greedy algorithm under
cardinality constraints, and this is tight.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F53/59 (pg.220/246

Submodular Max w. Other Constraints
[RRRRRR RN RN RN RN RN NRR AN

Some results on submodular maximization

@ As we've seen, we can get 1 — 1/e for non-negative monotone
submodular (polymatroid) functions with greedy algorithm under
cardinality constraints, and this is tight.

@ For general matroid, greedy reduces to 1/2 approximation (as we've
seen).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F53/59 (pg.221/246

Submodular Max w. Other Constraints
[RRRRRR RN RN RN RN RN NRR AN

Some results on submodular maximization

@ As we've seen, we can get 1 — 1/e for non-negative monotone
submodular (polymatroid) functions with greedy algorithm under
cardinality constraints, and this is tight.

e For general matroid, greedy reduces to 1/2 approximation (as we've
seen).

@ We can recover 1 — 1/e approximation using the continuous greedy
algorithm on the multilinear extension and then using pipage rounding
to re-integerize the solution (see J. Vondrak's publications).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F53/59 (pg.222/246

Submodular Max w. Other Constraints
[RRRRRR RN RN RN RN RN NRR AN

Some results on submodular maximization

@ As we've seen, we can get 1 — 1/e for non-negative monotone
submodular (polymatroid) functions with greedy algorithm under
cardinality constraints, and this is tight.

e For general matroid, greedy reduces to 1/2 approximation (as we've
seen).

@ We can recover 1 — 1/e approximation using the continuous greedy
algorithm on the multilinear extension and then using pipage rounding
to re-integerize the solution (see J. Vondrak's publications).

@ More general constraints are possible too, as we see on the next table
(for references, see Jan Vondrak's publications
http://theory.stanford.edu/~jvondrak/).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F53/59 (pg.223/246

Submodular Max w. Other Constraints
(NNRR RN RN RN RNRRRNN] RRRAY]

Submodular Max Summary - 2012: From J. Vondrak

Monotone Maximization

’ Constraint H Approximation ‘ Hardness ‘ Technique ‘
S| <k 1—1/e 1—-1/e greedy
matroid 1—1/e 1—1/e | multilinear ext.

O(1) knapsacks 1—1/e 1—1/e | multilinear ext.

k matroids kE+e k/logk local search
inar;]:;ilsds and O(1) O(k) k/logk | multilinear ext.

Nonmonotone Maximization

’ Constraint Approximation ‘ Hardness ‘ Technique
Unconstrained 1/2 1/2 combinatorial
matroid 1/e 0.48 multilinear ext.
O(1) knapsacks 1/e 0.49 multilinear ext.

k matroids k4 O(1) k/logk local search

kE matroids and O(1)

knapsacks O(k) k/logk | multilinear ext.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F54/59 (pg.224/246

Submodular Max w. Other Constraints
[RRRRRRR RN RN RN RRRNE RRRN

Submodular Max and polyhedral approaches

@ We've spent much time discussing SFM and the polymatroidal
polytope, and in general polyhedral approaches for SFM.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F55/59 (pg.225/246

Submodular Max w. Other Constraints
[RRRRRRR RN RN RN RRRNE RRRN

Submodular Max and polyhedral approaches

@ We've spent much time discussing SFM and the polymatroidal
polytope, and in general polyhedral approaches for SFM.

@ Most of the approaches for submodular max have not used such an
approach, probably due to the difficulty in computing the “concave
extension” of a submodular function (the convex extension is easy,
namely the Lovasz extension).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F55/59 (pg.226/246

Submodular Max w. Other Constraints
[RRRRRRR RN RN RN RRRNE RRRN

Submodular Max and polyhedral approaches

@ We've spent much time discussing SFM and the polymatroidal
polytope, and in general polyhedral approaches for SFM.

@ Most of the approaches for submodular max have not used such an
approach, probably due to the difficulty in computing the “concave
extension” of a submodular function (the convex extension is easy,
namely the Lovdsz extension).

@ A paper by Chekuri, Vondrak, and Zenklusen (2011) make some
progress on this front using multilinear extensions.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F55/59 (pg.227/246

Submodular Max w. Other Constraints
[RRRRRRR RN RN RN RRRNAE ARN

Multilinear extension
Definition 14.5.3

For a set function f : 2 — R, define its multilinear extension
F:[0,1]V - R by

F(z) =) f($)]z][Q-2 (14.30)

scv i€eS jev\s

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F56/59 (pg.228/246

Submodular Max w. Other Constraints
[RRRRRRR RN RN RN RRRNAE ARN

Multilinear extension
Definition 14.5.3

For a set function f : 2 — R, define its multilinear extension
F:[0,1]V - R by

F(z) =) f($)]z][Q-2 (14.30)

scv i€eS jev\s

o Note that F(z) = Ef(Z) where Z is a random binary vector over
{0, 1}V with elements independent w. probability x; for Z;.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F56/59 (pg.229/246

Submodular Max w. Other Constraints
[RRRRRRR RN RN RN RRRNAE ARN

Multilinear extension
Definition 14.5.3

For a set function f : 2 — R, define its multilinear extension
F:[0,1]V - R by

F(z) =) f($)]z][Q-2 (14.30)

scv i€eS jev\s

o Note that F(z) = Ef(Z) where Z is a random binary vector over
{0, 1}V with elements independent w. probability x; for Z;.
@ While this is defined for any set function, we have:

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F56/59 (pg.230/246

Submodular Max w. Other Constraints
(NERR RN RN RN N RNRRRNNRNY AR

Multilinear extension
Definition 14.5.3

For a set function f : 2 — R, define its multilinear extension
F:[0,1]V - R by

F(z) =) f($)]z][Q-2 (14.30)

SCV i€eS jev\s

o Note that F(z) = Ef(Z) where Z is a random binary vector over
{0, 1}V with elements independent w. probability x; for Z;.
@ While this is defined for any set function, we have:

Lemma 14.5.4

Let F:[0,1]Y — R be multilinear extension of set function f : 2" — R,
then

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F56/59 (pg.231/246

Submodular Max w. Other Constraints
(NERR RN RN RN N RNRRRNNRNY AR

Multilinear extension
Definition 14.5.3

For a set function f : 2 — R, define its multilinear extension
F:[0,1]V - R by

F(z) =) f($)]z][Q-2 (14.30)

SCV i€eS jev\s

o Note that F(z) = Ef(Z) where Z is a random binary vector over
{0, 1}V with elements independent w. probability x; for Z;.
@ While this is defined for any set function, we have:

Lemma 14.5.4

Let F:[0,1]Y — R be multilinear extension of set function f : 2" — R,
then

e If f is monotone non-decreasing, then % >0 forallieV, x €0, l]V.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F56/59 (pg.232/246

Submodular Max w. Other Constraints
(NERR RN RN RN N RNRRRNNRNY AR

Multilinear extension
Definition 14.5.3

For a set function f : 2 — R, define its multilinear extension
F:[0,1]V - R by

F(z) =) f($)]z][Q-2 (14.30)

SCV i€eS jev\s

o Note that F(z) = Ef(Z) where Z is a random binary vector over
{0, 1}V with elements independent w. probability x; for Z;.
@ While this is defined for any set function, we have:

Lemma 14.5.4

Let F:[0,1]Y — R be multilinear extension of set function f : 2" — R,
then

e If f is monotone non-decreasing, then % >0 forallieV, x €0, l]V.

o If f is submodular, then ;2 - <0 foralli,j inV, z €[0,1]V.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F56/59 (pg.233/246

Submodular Max w. Other Constraints
[RRRRRRR RN RN RN RRRNARY NN

Multilinear extension

@ Moreover, we have

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F57/59 (pg.234/246

Submodular Max w. Other Constraints
(NNRRRRRRRR RN RNRRRNNRNNE NN

Multilinear extension

@ Moreover, we have

Lemma 14.5.5

Let F: [0,1]Y — R be multilinear extension of set function f : 2V — R,
then

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F57/59 (pg.235/246

Submodular Max w. Other Constraints

Multilinear extension

@ Moreover, we have

Lemma 14.5.5

Let F: [0,1]Y — R be multilinear extension of set function f : 2V — R,
then

e If f is monotone non-decreasing, then F' is non-decreasing along any line of
direction d € RE with d > 0

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F57/59 (pg.236/246

Submodular Max w. Other Constraints

Multilinear extension

@ Moreover, we have

Lemma 14.5.5

Let F: [0,1]Y — R be multilinear extension of set function f : 2V — R,
then

e If f is monotone non-decreasing, then F' is non-decreasing along any line of
direction d € RE with d > 0

o If f is submodular, then F is concave along any line of direction d > 0, and is
convex along any line of direction 1,, — 1,, for any v,w € V.

v

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F57/59 (pg.237/246

Submodular Max w. Other Constraints

Multilinear extension

@ Moreover, we have

Lemma 14.5.5

Let F: [0,1]Y — R be multilinear extension of set function f : 2V — R,
then

e If f is monotone non-decreasing, then F' is non-decreasing along any line of
direction d € RE with d > 0

o If f is submodular, then F is concave along any line of direction d > 0, and is
convex along any line of direction 1,, — 1,, for any v,w € V.

v

@ Another connection between submodularity and convexity/concavity

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F57/59 (pg.238/246

Submodular Max w. Other Constraints

Multilinear extension

@ Moreover, we have

Lemma 14.5.5

Let F: [0,1]Y — R be multilinear extension of set function f : 2V — R,
then

e If f is monotone non-decreasing, then F' is non-decreasing along any line of
direction d € RE with d > 0

o If f is submodular, then F is concave along any line of direction d > 0, and is
convex along any line of direction 1,, — 1,, for any v,w € V.

v

@ Another connection between submodularity and convexity/concavity

@ but note, unlike the Lovdsz extension, this function is neither.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F57/59 (pg.239/246

Submodular Max w. Other Constraints
[RRRRRRR RN RN RN RRRNRRNY I

Submodular Max and polyhedral approaches

@ Basic idea: Given a set of constraints Z, we form a polytope Pz such
that {1[i EI} C Pr

o We find max,ep, F'(z) where F(z) is the multi-linear extension of f,
to find a fractional solution z*

@ We then round z* to a point on the hypercube, thus giving us a
solution to the discrete problem.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F58/59 (pg.240/246

Submodular Max w. Other Constraints
(RRRRRN RN RN RN RN AR |

Submodular Max and polyhedral approaches

@ In the recent paper by Chekuri, Vondrak, and Zenklusen, they show:

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F59/59 (pg.241/246

Submodular Max w. Other Constraints
(RRRRRN RN RN RN RN AR |

Submodular Max and polyhedral approaches

@ In the recent paper by Chekuri, Vondrak, and Zenklusen, they show:

@ 1) constant factor approximation algorithm for max {F'(x) : x € P} for
any down-monotone solvable polytope P and F' multilinear extension
of any non-negative submodular function.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

Submodular Max w. Other Constraints
(RRRRRN RN RN RN RN AR |

Submodular Max and polyhedral approaches

@ In the recent paper by Chekuri, Vondrak, and Zenklusen, they show:

@ 1) constant factor approximation algorithm for max {F'(x) : x € P} for
any down-monotone solvable polytope P and F' multilinear extension
of any non-negative submodular function.

@ 2) A randomized rounding (pipage rounding) scheme to obtain an
integer solution

F59/59 (pg.243/246

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016

Submodular Max w. Other Constraints
(RRRRRN RN RN RN RN AR |

Submodular Max and polyhedral approaches

@ In the recent paper by Chekuri, Vondrak, and Zenklusen, they show:

@ 1) constant factor approximation algorithm for max {F'(x) : x € P} for
any down-monotone solvable polytope P and F' multilinear extension
of any non-negative submodular function.

@ 2) A randomized rounding (pipage rounding) scheme to obtain an
integer solution

@ 3) An optimal (1 — 1/e) instance of their rounding scheme that can be
used for a variety of interesting independence systems, including O(1)
knapsacks, k matroids and O(1) knapsacks, a k-matchoid and ¢ sparse
packing integer programs, and unsplittable flow in paths and trees.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F59/59 (pg.244/246

Submodular Max w. Other Constraints
(RRRRRN RN RN RN RN AR |

Submodular Max and polyhedral approaches

@ In the recent paper by Chekuri, Vondrak, and Zenklusen, they show:

@ 1) constant factor approximation algorithm for max {F'(x) : x € P} for
any down-monotone solvable polytope P and F' multilinear extension
of any non-negative submodular function.

@ 2) A randomized rounding (pipage rounding) scheme to obtain an
integer solution

@ 3) An optimal (1 — 1/e) instance of their rounding scheme that can be
used for a variety of interesting independence systems, including O(1)
knapsacks, k matroids and O(1) knapsacks, a k-matchoid and ¢ sparse
packing integer programs, and unsplittable flow in paths and trees.

@ Also, Vondrak showed that this scheme achieves the %(1 —e 9
curvature based bound for any matroid, which matches the bound we
had earlier for uniform matroids with standard greedy.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F59/59 (pg.245/246

Submodular Max w. Other Constraints
(NN RN NN NN AR RRNRNNANY |

Submodular Max and polyhedral approaches

@ In the recent paper by Chekuri, Vondrak, and Zenklusen, they show:

@ 1) constant factor approximation algorithm for max {F'(x) : x € P} for
any down-monotone solvable polytope P and F' multilinear extension
of any non-negative submodular function.

@ 2) A randomized rounding (pipage rounding) scheme to obtain an
integer solution

@ 3) An optimal (1 — 1/e) instance of their rounding scheme that can be
used for a variety of interesting independence systems, including O(1)
knapsacks, k matroids and O(1) knapsacks, a k-matchoid and ¢ sparse
packing integer programs, and unsplittable flow in paths and trees.

@ Also, Vondrak showed that this scheme achieves the %(1 —e 9
curvature based bound for any matroid, which matches the bound we
had earlier for uniform matroids with standard greedy.

@ In practice, one needs to do Monte-Carlo methods to estimate the
multilinear extension (so further approximations would apply).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 14 - May 18th, 2016 F59/59 (pg.246/246

