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Logistics Review

Cumulative Outstanding Reading

Read chapters 2 and 3 from Fujishige’s book.

Read chapter 1 from Fujishige’s book.
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Logistics Review

Announcements, Assignments, and Reminders

Homework 4, available now at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Wednesday (5/25) at 11:55pm.

Homework 3, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (5/2) at 11:55pm.

Homework 2, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (4/18) at 11:55pm.

Homework 1, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Friday (4/8) at 11:55pm.

Weekly O�ce Hours: Mondays, 3:30-4:30, or by skype or google
hangout (set up meeting via our our discussion board (https:
//canvas.uw.edu/courses/1039754/discussion_topics)).

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 14 - May 18th, 2016 F3/59 (pg.3/246)



Logistics Review

Class Road Map - IT-I
L1(3/28): Motivation, Applications, &
Basic Definitions

L2(3/30): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).

L3(4/4): Info theory exs, more apps,
definitions, graph/combinatorial examples,
matrix rank example, visualization

L4(4/6): Graph and Combinatorial
Examples, matrix rank, Venn diagrams,
examples of proofs of submodularity, some
useful properties

L5(4/11): Examples & Properties, Other
Defs., Independence

L6(4/13): Independence, Matroids,
Matroid Examples, matroid rank is
submodular

L7(4/18): Matroid Rank, More on
Partition Matroid, System of Distinct
Reps, Transversals, Transversal Matroid,

L8(4/20): Transversals, Matroid and
representation, Dual Matroids,

L9(4/25): Dual Matroids, Properties,
Combinatorial Geometries, Matroid and
Greedy

L10(4/27): Matroid and Greedy,
Polyhedra, Matroid Polytopes,

L11(5/2): From Matroids to
Polymatroids, Polymatroids

L12(5/4): Polymatroids, Polymatroids
and Greedy

L13(5/9): Polymatroids and Greedy;
Possible Polytopes; Extreme Points;
Polymatroids, Greedy, and Cardinality
Constrained Maximization

L14(5/11): Cardinality Constrained
Maximization; Curvature; Submodular
Max w. Other Constraints

L15(5/16):

L16(5/18):

L17(5/23):

L18(5/25):

L19(6/1):

L20(6/6): Final Presentations
maximization.

Finals Week: June 6th-10th, 2016.
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Logistics Review

Polymatroidal polyhedron and greedy

Thus, restating the above results into a single complete theorem, we
have a result very similar to what we saw for matroids (i.e.,
Theorem ??)

Theorem 14.2.1

If f : 2E ! R+ is given, and P is a polytope in RE

+ of the form
P =

�
x 2 RE

+ : x(A)  f(A), 8A ✓ E
 
, then the greedy solution to the

problem max(wx : x 2 P ) is 8w optimum iff f is monotone
non-decreasing submodular (i.e., iff P is a polymatroid).
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Logistics Review

Multiple Polytopes associated with arbitrary f

Given an arbitrary submodular function f : 2V ! R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).
If f(;) 6= 0, can set f 0(A) = f(A)� f(;) without destroying
submodularity. This does not change any minima, (i.e.,
argmin

A

f(A) = argmin
A

0 f 0(A)) so assume all functions are
normalized f(;) = 0.
We can define several polytopes:

P
f

=
�
x 2 RE : x(S)  f(S), 8S ✓ E

 
(14.1)

P+
f

= P
f

\
�
x 2 RE : x � 0

 
(14.2)

B
f

= P
f

\
�
x 2 RE : x(E) = f(E)

 
(14.3)

P
f

is what is sometimes called the extended polytope (sometimes
notated as EP

f

.
P+
f

is P
f

restricted to the positive orthant.
B

f

is called the base polytope, analogous to the base in matroid.
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Logistics Review

Multiple Polytopes in 2D associated with f

P
f

P
f

P+
f

B
f

P+
f

= P
f

\
�
x 2 RE : x � 0

 
(14.1)

P
f

=
�
x 2 RE : x(S)  f(S), 8S ✓ E

 
(14.2)

B
f

= P
f

\
�
x 2 RE : x(E) = f(E)

 
(14.3)
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Logistics Review

A polymatroid function’s polyhedron is a polymatroid.

Theorem 14.2.1

Let f be a submodular function defined on subsets of E. For any x 2 RE ,
we have:

rank(x) = max (y(E) : y  x, y 2 P
f

) = min (x(A) + f(E \A) : A ✓ E)
(14.1)

Essentially the same theorem as Theorem ??, but note P
f

rather than P+
f

.
Taking x = 0 we get:

Corollary 14.2.2

Let f be a submodular function defined on subsets of E. We have:

rank(0) = max (y(E) : y  0, y 2 P
f

) = min (f(A) : A ✓ E) (14.2)
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Logistics Review

Polymatroid extreme points

Theorem 14.2.1

For a given ordering E = (e1, . . . , em) of E and a given E
i

= (e1, . . . , ei)
and x generated by E

i

using the greedy procedure (x(e
i

) = f(e
i

|E
i�1)),

then x is an extreme point of P
f

Proof.

We already saw that x 2 P
f

(Theorem ??).

To show that x is an extreme point of P
f

, note that it is the unique
solution of the following system of equations

x(E
j

) = f(E
j

) for 1  j  i  m (14.5)

x(e) = 0 for e 2 E \ E
i

(14.6)

There are i  m equations and i  m unknowns, and simple Gaussian
elimination gives us back the x constructed via the Greedy algorithm!!
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Logistics Review

Polymatroid extreme points
Moreover, we have (and will ultimately prove)

Corollary 14.2.2

If x is an extreme point of P
f

and B ✓ E is given such that
supp(x) = {e 2 E : x(e) 6= 0} ✓ B ✓ [(A : x(A) = f(A)) = sat(x), then
x is generated using greedy by some ordering of B.

Note, sat(x) = cl(x) = [(A : x(A) = f(A)) is also called the closure
of x (recall that sets A such that x(A) = f(A) are called tight, and
such sets are closed under union and intersection, as seen in Lecture 8,
Theorem ??)

Thus, cl(x) is a tight set.

Also, supp(x) = {e 2 E : x(e) 6= 0} is called the support of x.

For arbitrary x, supp(x) is not necessarily tight, but for an extreme
point, supp(x) is.
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Logistics Review

Polymatroid with labeled edge lengths

Recall
f(e|A) = f(A+e)�f(A)

Notice how
submodularity,
f(e|B)  f(e|A) for
A ✓ B, defines the
shape of the polytope.

In fact, we have
strictness here
f(e|B) < f(e|A) for
A ⇢ B.

Also, consider how the
greedy algorithm
proceeds along the edges
of the polytope.

e1
e2

e 3

f(e1
|e2

)

f(e1
|e3

)

f(e1
)
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3 )
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Intuition: why greedy works with polymatroids

Given w, the goal is
to find
x = (x(e1), x(e2))
that maximizes
x|w = x(e1)w(e1) +
x(e2)w(e2).

If w(e2) > w(e1) the
upper extreme point
indicated maximizes
x|w over x 2 P+

f

.

If w(e2) < w(e1) the
lower extreme point
indicated maximizes
x|w over x 2 P+

f

. e1

e2

f(e1)

f(e1|e2)

f(e
2)

f(e
2|e

1)

45°

w(e 2
)>w(e 1

)

w(e 2
)<w(e 1

)

Maximal point in 
for w in this region.

P+
f

M
axim
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Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints

The Greedy Algorithm: 1� 1/e intuition.
At step i < k, greedy chooses v

i

to maximize f(v|S
i

).

Let S⇤ be optimal solution (of size k) and OPT = f(S⇤).

By
submodularity, we will show:

9v 2 V \ S
i

: f(v|S
i

) = f(S
i

+ v|S
i

) � 1

k
(OPT� f(S

i

)) (14.1)

Equation (14.10) will
show that Equation (14.1)
):

OPT� f(S
i+1)

 (1� 1/k)(OPT� f(S
i

))

) OPT� f(S
k

)

 (1� 1/k)kOPT

 1/eOPT

) OPT(1� 1/e)  f(S
k

)
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Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints

The Greedy Algorithm: 1� 1/e intuition.
At step i < k, greedy chooses v

i

to maximize f(v|S
i

).
Let S⇤ be optimal solution (of size k) and OPT = f(S⇤).

By
submodularity, we will show:

9v 2 V \ S
i

: f(v|S
i

) = f(S
i

+ v|S
i

) � 1

k
(OPT� f(S

i

)) (14.1)

Equation (14.10) will
show that Equation (14.1)
):

OPT� f(S
i+1)

 (1� 1/k)(OPT� f(S
i

))

) OPT� f(S
k

)

 (1� 1/k)kOPT

 1/eOPT

) OPT(1� 1/e)  f(S
k

)
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Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints

The Greedy Algorithm: 1� 1/e intuition.
At step i < k, greedy chooses v

i

to maximize f(v|S
i

).
Let S⇤ be optimal solution (of size k) and OPT = f(S⇤). By
submodularity, we will show:

9v 2 V \ S
i

: f(v|S
i

) = f(S
i

+ v|S
i

) � 1

k
(OPT� f(S

i

)) (14.1)

Equation (14.10) will
show that Equation (14.1)
):

OPT� f(S
i+1)

 (1� 1/k)(OPT� f(S
i

))

) OPT� f(S
k

)

 (1� 1/k)kOPT

 1/eOPT

) OPT(1� 1/e)  f(S
k

)
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Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints

The Greedy Algorithm: 1� 1/e intuition.
At step i < k, greedy chooses v

i

to maximize f(v|S
i

).
Let S⇤ be optimal solution (of size k) and OPT = f(S⇤). By
submodularity, we will show:

9v 2 V \ S
i

: f(v|S
i

) = f(S
i

+ v|S
i

) � 1

k
(OPT� f(S

i

)) (14.1)

Equation (14.10) will
show that Equation (14.1)
):

OPT� f(S
i+1)

 (1� 1/k)(OPT� f(S
i

))

) OPT� f(S
k

)

 (1� 1/k)kOPT

 1/eOPT

) OPT(1� 1/e)  f(S
k

)
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Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints

The Greedy Algorithm: 1� 1/e intuition.
At step i < k, greedy chooses v

i

to maximize f(v|S
i

).
Let S⇤ be optimal solution (of size k) and OPT = f(S⇤). By
submodularity, we will show:

9v 2 V \ S
i

: f(v|S
i

) = f(S
i

+ v|S
i

) � 1

k
(OPT� f(S

i

)) (14.1)
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Equation (14.10) will
show that Equation (14.1)
):
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 (1� 1/k)(OPT� f(S
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)

 (1� 1/k)kOPT
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k

)
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Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints

The Greedy Algorithm: 1� 1/e intuition.
At step i < k, greedy chooses v

i

to maximize f(v|S
i

).
Let S⇤ be optimal solution (of size k) and OPT = f(S⇤). By
submodularity, we will show:

9v 2 V \ S
i

: f(v|S
i

) = f(S
i

+ v|S
i
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k
(OPT� f(S

i

)) (14.1)
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Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints

The Greedy Algorithm: 1� 1/e intuition.
At step i < k, greedy chooses v

i

to maximize f(v|S
i

).
Let S⇤ be optimal solution (of size k) and OPT = f(S⇤). By
submodularity, we will show:

9v 2 V \ S
i

: f(v|S
i

) = f(S
i

+ v|S
i

) � 1

k
(OPT� f(S

i

)) (14.1)
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Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints

Cardinality Constrained Polymatroid Max Theorem

Theorem 14.3.1 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V ! R+, define
{S

i

}
i�0 to be the chain formed by the greedy algorithm (Eqn. (??)). Then

for all k, ` 2 Z++, we have:

f(S
`

) � (1� e�`/k) max
S:|S|k

f(S) (14.2)

and in particular, for ` = k, we have f(S
k

) � (1� 1/e)max
S:|S|k

f(S).

k is size of optimal set, i.e., OPT = f(S⇤) with |S⇤| = k

` is size of set we are choosing (i.e., we choose S
`

from greedy chain).
Bound is how well does S

`

(of size `) do relative to S⇤, the optimal set of
size k.
Intuitively, bound should get worse when ` < k and get better when
` > k.
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Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints

Cardinality Constrained Polymatroid Max Theorem

Theorem 14.3.1 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V ! R+, define
{S

i

}
i�0 to be the chain formed by the greedy algorithm (Eqn. (??)). Then

for all k, ` 2 Z++, we have:

f(S
`

) � (1� e�`/k) max
S:|S|k

f(S) (14.2)

and in particular, for ` = k, we have f(S
k

) � (1� 1/e)max
S:|S|k

f(S).

k is size of optimal set, i.e., OPT = f(S⇤) with |S⇤| = k

` is size of set we are choosing (i.e., we choose S
`

from greedy chain).
Bound is how well does S

`

(of size `) do relative to S⇤, the optimal set of
size k.
Intuitively, bound should get worse when ` < k and get better when
` > k.
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Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints

Cardinality Constrained Polymatroid Max Theorem

Theorem 14.3.1 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V ! R+, define
{S

i

}
i�0 to be the chain formed by the greedy algorithm (Eqn. (??)). Then

for all k, ` 2 Z++, we have:

f(S
`

) � (1� e�`/k) max
S:|S|k

f(S) (14.2)

and in particular, for ` = k, we have f(S
k

) � (1� 1/e)max
S:|S|k

f(S).

k is size of optimal set, i.e., OPT = f(S⇤) with |S⇤| = k

` is size of set we are choosing (i.e., we choose S
`

from greedy chain).

Bound is how well does S
`

(of size `) do relative to S⇤, the optimal set of
size k.
Intuitively, bound should get worse when ` < k and get better when
` > k.
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Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints

Cardinality Constrained Polymatroid Max Theorem

Theorem 14.3.1 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V ! R+, define
{S

i

}
i�0 to be the chain formed by the greedy algorithm (Eqn. (??)). Then

for all k, ` 2 Z++, we have:

f(S
`

) � (1� e�`/k) max
S:|S|k

f(S) (14.2)

and in particular, for ` = k, we have f(S
k

) � (1� 1/e)max
S:|S|k

f(S).

k is size of optimal set, i.e., OPT = f(S⇤) with |S⇤| = k

` is size of set we are choosing (i.e., we choose S
`

from greedy chain).
Bound is how well does S

`

(of size `) do relative to S⇤, the optimal set of
size k.

Intuitively, bound should get worse when ` < k and get better when
` > k.
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Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints

Cardinality Constrained Polymatroid Max Theorem

Theorem 14.3.1 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V ! R+, define
{S

i

}
i�0 to be the chain formed by the greedy algorithm (Eqn. (??)). Then

for all k, ` 2 Z++, we have:

f(S
`

) � (1� e�`/k) max
S:|S|k

f(S) (14.2)

and in particular, for ` = k, we have f(S
k

) � (1� 1/e)max
S:|S|k

f(S).

k is size of optimal set, i.e., OPT = f(S⇤) with |S⇤| = k

` is size of set we are choosing (i.e., we choose S
`

from greedy chain).
Bound is how well does S

`

(of size `) do relative to S⇤, the optimal set of
size k.
Intuitively, bound should get worse when ` < k and get better when
` > k.
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Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 14.3.1.

Fix ` (number of items greedy will chose) and k (size of optimal set to
compare against).

Set S⇤ 2 argmax {f(S) : |S|  k}
w.l.o.g. assume |S⇤| = k.

Order S⇤ = (v⇤1, v
⇤
2, . . . , v

⇤
k

) arbitrarily.

Let S
i

= (v1, v2, . . . , vi) be the greedy order chain chosen by the
algorithm, for i 2 {1, 2, . . . , `}.
Then the following inequalities (on the next slide) follow:

. . .
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Cardinality Constrained Polymatroid Max Theorem

. . . proof of Theorem 14.3.1 cont.

For all i < `, we have

f(S⇤)

 f(S⇤ [ S
i

) = f(S
i

) + f(S⇤|S
i

) (14.3)

= f(S
i

) +

kX

j=1

f(v⇤
j

|S
i

[
�
v⇤1, v

⇤
2, . . . , v

⇤
j�1

 
) (14.4)

 f(S
i

) +
X

v2S⇤

f(v|S
i

) (14.5)

 f(S
i
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X

v2S⇤

f(v
i+1|Si

) = f(S
i

) +
X

v2S⇤

f(S
i+1|Si

) (14.6)

= f(S
i

) + kf(S
i+1|Si

) (14.7)

Therefore, we have Equation 14.1, i.e.,:

f(S⇤)� f(S
i

)  kf(S
i+1|Si

) = k(f(S
i+1)� f(S

i

)) (14.8)

. . .
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Cardinality Constrained Polymatroid Max Theorem

. . . proof of Theorem 14.3.1 cont.

Define gap �
i

, f(S⇤)� f(S
i

), so �
i

� �
i+1 = f(S

i+1)� f(S
i

),

giving

�
i

 k(�
i

� �
i+1) (14.9)

or

�
i+1  (1� 1

k
)�

i

(14.10)

The relationship between �0 and �
`

is then

�
l

 (1� 1

k
)`�0 (14.11)

Now, �0 = f(S⇤)� f(;)  f(S⇤) since f � 0.

Also, by variational bound 1� x  e�x for x 2 R, we have

�
`

 (1� 1

k
)`�0  e�`/kf(S⇤) (14.12)
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Cardinality Constrained Polymatroid Max Theorem

. . . proof of Theorem 14.3.1 cont.

When we identify �
l

= f(S⇤)� f(S
`

), a bit of rearranging then gives:

f(S
`

) � (1� e�`/k)f(S⇤) (14.13)

With ` = k, when picking k items, greedy gets (1� 1/e) ⇡ 0.6321
bound. This means that if S

k

is greedy solution of size k, and S⇤ is an
optimal solution of size k, f(S

k

) � (1� 1/e)f(S⇤) ⇡ 0.6321f(S⇤).

What if we want to guarantee a solution no worse than .95f(S⇤) where
|S⇤| = k?

Set 0.95 = (1� e�`/k), which gives
` = d�k ln(1� 0.95)e = 4k. And d� ln(1� 0.999)e = 7.

So solution, in the worst case, quickly gets very good. Typical/practical
case is much better.
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Greedy running time

Greedy computes a new maximum n = |V | times, and each maximum
computation requires O(n) comparisons, leading to O(n2)
computation for greedy.

This is the best we can do for arbitrary functions, but O(n2) is not
practical to some.

Greedy can be made much faster in practice by a simple strategy made
possible, once again, via the use of submodularity.

This is called Minoux’s 1977 Accelerated Greedy strategy (and has
been rediscovered a few times, e.g., “Lazy greedy”), and runs much
faster while still producing same answer.

We describe it next:
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Minoux’s Accelerated Greedy for Submodular Functions

At stage i in the algorithm, we have a set of gains f(v|S
i

) for all
v /2 S

i

. Store these values ↵
v

 f(v|S
i

) in sorted priority queue.

Priority queue, O(1) to find max, O(log n) to insert in right place.

Once we choose a max v, then set S
i+1  S

i

+ v.

For v /2 S
i+1 we have f(v|S

i+1)  f(v|S
i

) by submodularity.

Therefore, if we find a v0 such that f(v0|S
i+1) � ↵

v

for all v 6= v0, then
since

f(v0|S
i+1) � ↵

v

= f(v|S
i

) � f(v|S
i+1) (14.14)

we have the true max, and we need not re-evaluate gains of other
elements again.

Strategy is: find the argmax
v

02V \Si+1
↵
v

0 , and then compute the real
f(v0|S

i+1). If it is greater than all other ↵
v

’s then that’s the next
greedy step. Otherwise, replace ↵

v

0 with its real value, resort
(O(log n)), and repeat.
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Minoux’s Accelerated Greedy for Submodular Functions

Minoux’s algorithm is exact, in that it has the same guarantees as does
the O(n2) greedy Algorithm 2 (this means it will return either the
same answers, or answers that have the 1� 1/e guarantee).

In practice: Minoux’s trick has enormous speedups (⇡ 700⇥) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).

When choosing a of size k, näıve greedy algorithm is O(nk) but
accelerated variant at the very best does O(n+ k), so this limits the
speedup.

Algorithm has been rediscovered (I think) independently (CELF -
cost-e↵ective lazy forward selection, Leskovec et al., 2007)

Can be used used for “big data” sets (e.g., social networks, selecting
blogs of greatest influence, document summarization, etc.).
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When choosing a of size k, näıve greedy algorithm is O(nk) but
accelerated variant at the very best does O(n+ k), so this limits the
speedup.

Algorithm has been rediscovered (I think) independently (CELF -
cost-e↵ective lazy forward selection, Leskovec et al., 2007)

Can be used used for “big data” sets (e.g., social networks, selecting
blogs of greatest influence, document summarization, etc.).

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 14 - May 18th, 2016 F21/59 (pg.71/246)



Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints

Priority Queue

Use a priority queue Q as a data structure: operations include:

Insert an item (v,↵) into queue, with v 2 V and ↵ 2 R.

insert(Q, (v,↵)) (14.15)

Pop the item (v,↵) with maximum value ↵ o↵ the queue.

(v,↵) pop(Q) (14.16)

Query the value of the max item in the queue

max(Q) 2 R (14.17)

On next slide, we call a popped item “fresh” if the value (v,↵) popped has
the correct value ↵ = f(v|S

i

). Use extra “bit” to store this info

If a popped item is fresh, it must be the maximum — this can happen if,
at given iteration, v was first popped and neither fresh nor maximum so
placed back in the queue, and it then percolates back to the top at which
point it is fresh — thereby avoid extra queue check.
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Minoux’s Accelerated Greedy Algorithm Submodular Max

Algorithm 2: Minoux’s Accelerated Greedy Algorithm

1 Set S0  ; ; i 0 ; Initialize priority queue Q ;
2 for v 2 E do
3 INSERT(Q, f(v))

4 repeat
5 (v,↵) pop(Q) ;
6 if ↵ not “fresh” then
7 recompute ↵ f(v|S

i

)

8 if (popped ↵ in line 5 was “fresh”) OR (↵ � max(Q)) then
9 Set S

i+1  S
i

[ {v} ;
10 i i+ 1 ;

11 else
12 insert(Q, (v,↵))

13 until i = |E|;
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Minimum Submodular Cover

Given polymatroid f , goal is to find a covering set of minimum cost:

S⇤ 2 argmin
S✓V

|S| such that f(S) � ↵ (14.18)

where ↵ is a “cover” requirement.

Normally take ↵ = f(V ) but defining f 0(A) = min {f(A),↵} we can
take any ↵. Hence, we have equivalent formulation:

S⇤ 2 argmin
S✓V

|S| such that f 0(S) � f 0(V ) (14.19)

Note that this immediately generalizes standard set cover, in which
case f(A) is the cardinality of the union of sets indexed by A.
Algorithm: Pick the first S

i

chosen by aforementioned greedy
algorithm such that f(S

i

) � ↵.
For integer valued f , this greedy algorithm an O(log(max

s2V f({s})))
approximation. Set cover is hard to approximate with a factor better
than (1� ✏) log↵, where ↵ is the desired cover constraint.
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Summary: Monotone Submodular Maximization

Only makes sense when there is a constraint.

We discussed cardinality constraint

Generalizes the max k-cover problem, and also similar to the set cover
problem.

Simple greedy algorithm gets 1� e�`/k approximation, where k is size
of optimal set we compare against, and ` is size of set greedy
algorithm chooses.

Submodular cover: min. |S| s.t. f(S) � ↵.

Minoux’s accelerated greedy trick.
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The Greedy Algorithm: 1� 1/e intuition.
At step i < k, greedy chooses v

i

to maximize f(v|S
i

).
Let S⇤ be optimal solution (of size k) and OPT = f(S⇤). By
submodularity, we will show:

9v 2 V \ S
i

: f(v|S
i

) = f(S
i

+ v|S
i

) � 1

k
(OPT� f(S

i

)) (14.1)

k1 2 3 4 5 6 7 8 9 10
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1� 1/e

(1� (1� 1/k)k)  f(S
k

)/OPT
Equation (14.10) will
show that Equation (14.1)
):

OPT� f(S
i+1)

 (1� 1/k)(OPT� f(S
i

))

) OPT� f(S
k

)

 (1� 1/k)kOPT

 1/eOPT

) OPT(1� 1/e)  f(S
k

)
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Randomized greedy

How can we produce a randomized greedy strategy, one where each
greedy sweep produces a set that, on average, has a 1� 1/e guarantee?

Suppose the following holds:

E[f(a
i+1|Ai

)] � f(OPT )� f(A
i

)

k
(14.20)

where A
i

= (a1, a2, . . . , ai) are the first i elements chosen by the
strategy.

See problem 5, homework 4.
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Curvature of a Submodular function

For any submodular function, we have f(j|S)  f(j|;) so that
f(j|S)/f(j|;)  1 whenever f(j|;) 6= 0.

For f : 2V ! R+ (non-negative) functions, we also have
f(j|S)/f(j|;) � 0 — and = 0 whenever j is “spanned” by S.
The total curvature of a submodular function is defined as follows:

c
�
= 1� min

S,j /2S:f(j|;) 6=0

f(j|S)
f(j|;) = 1� min

f(j) 6=0

f(j|V \ j)
f(j)

(14.21)

c 2 [0, 1].

When c = 0, f(j|S) = f(j|;) for all S, j, a su�cient
condition for modularity, and we saw in Theorem ?? that greedy is
optimal for max weight indep. set of a matroid.

For f with curvature c, then 8A ✓ V , 8v /2 a, 8c0 � c:

f(A+ v)� f(A) � (1� c0)f(v) (14.22)

When c = 1 then submodular function is “maximally curved”, i.e.,
there exists is a subset that fully spans some other element.
Matroid rank functions with some dependence is infinitely curved.
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Curvature of a Submodular function

For any submodular function, we have f(j|S)  f(j|;) so that
f(j|S)/f(j|;)  1 whenever f(j|;) 6= 0.
For f : 2V ! R+ (non-negative) functions, we also have
f(j|S)/f(j|;) � 0 — and = 0 whenever j is “spanned” by S.

The total curvature of a submodular function is defined as follows:

c
�
= 1� min

S,j /2S:f(j|;) 6=0

f(j|S)
f(j|;) = 1� min

f(j) 6=0

f(j|V \ j)
f(j)

(14.21)

c 2 [0, 1].

When c = 0, f(j|S) = f(j|;) for all S, j, a su�cient
condition for modularity, and we saw in Theorem ?? that greedy is
optimal for max weight indep. set of a matroid.

For f with curvature c, then 8A ✓ V , 8v /2 a, 8c0 � c:

f(A+ v)� f(A) � (1� c0)f(v) (14.22)

When c = 1 then submodular function is “maximally curved”, i.e.,
there exists is a subset that fully spans some other element.
Matroid rank functions with some dependence is infinitely curved.
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Curvature of a Submodular function

For any submodular function, we have f(j|S)  f(j|;) so that
f(j|S)/f(j|;)  1 whenever f(j|;) 6= 0.
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optimal for max weight indep. set of a matroid.
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When c = 1 then submodular function is “maximally curved”, i.e.,
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Curvature of a Submodular function

By submodularity, total curvature can be computed in either form:

c
�
= 1� min

S,j /2S:f(j|;) 6=0

f(j|S)
f(j|;) = 1� min

j:f(j|;) 6=0

f(j|V \ {j})
f(j|;) (14.23)

Note: Matroid rank is either modular c = 0 or infinitely curved c = 1
— hence, matroid rank can have only the extreme points of curvature,
namely 0 or 1.

Polymatroid functions are, in this sense, more nuanced, in that they
allow non-extreme curvature, with c 2 [0, 1].

It will be remembered the notion of “partial dependence” within
polymatroid functions.
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By submodularity, total curvature can be computed in either form:

c
�
= 1� min

S,j /2S:f(j|;) 6=0

f(j|S)
f(j|;) = 1� min

j:f(j|;) 6=0

f(j|V \ {j})
f(j|;) (14.23)

Note: Matroid rank is either modular c = 0 or infinitely curved c = 1
— hence, matroid rank can have only the extreme points of curvature,
namely 0 or 1.

Polymatroid functions are, in this sense, more nuanced, in that they
allow non-extreme curvature, with c 2 [0, 1].

It will be remembered the notion of “partial dependence” within
polymatroid functions.

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 14 - May 18th, 2016 F29/59 (pg.104/246)



Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints

Curvature of a Submodular function

By submodularity, total curvature can be computed in either form:

c
�
= 1� min

S,j /2S:f(j|;) 6=0

f(j|S)
f(j|;) = 1� min

j:f(j|;) 6=0

f(j|V \ {j})
f(j|;) (14.23)

Note: Matroid rank is either modular c = 0 or infinitely curved c = 1
— hence, matroid rank can have only the extreme points of curvature,
namely 0 or 1.

Polymatroid functions are, in this sense, more nuanced, in that they
allow non-extreme curvature, with c 2 [0, 1].

It will be remembered the notion of “partial dependence” within
polymatroid functions.

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 14 - May 18th, 2016 F29/59 (pg.105/246)

I Eii £Ei¥€€"
"



Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints
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Curvature and approximation

Curvature limitation can help the greedy algorithm in terms of
approximation bounds.

Conforti & Cornuéjols showed that greedy gives a 1/(1 + c)
approximation to max {f(S) : S 2 I} when f has total curvature c.
Hence, greedy subject to matroid constraint is a max(1/(1 + c), 1/2)
approximation algorithm, and if c < 1 then it is better than 1/2 (e.g.,
with c = 1/4 then we have a 0.8 algorithm).

For k-uniform matroid
(i.e., k-cardinality con-
straints), then approxima-
tion factor becomes
1
c

(1� e�c)
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Conforti & Cornuéjols showed that greedy gives a 1/(1 + c)
approximation to max {f(S) : S 2 I} when f has total curvature c.

Hence, greedy subject to matroid constraint is a max(1/(1 + c), 1/2)
approximation algorithm, and if c < 1 then it is better than 1/2 (e.g.,
with c = 1/4 then we have a 0.8 algorithm).

For k-uniform matroid
(i.e., k-cardinality con-
straints), then approxima-
tion factor becomes
1
c

(1� e�c)

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 14 - May 18th, 2016 F31/59 (pg.110/246)



Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints

Curvature and approximation

Curvature limitation can help the greedy algorithm in terms of
approximation bounds.
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Generalizations

Consider a k-uniform matroid M = (V, I) where
I = {S ✓ V : |S|  k}, and consider problem max {f(A) : A 2 I}

Hence, the greedy algorithm is 1� 1/e optimal for maximizing
polymatroidal f subject to a k-uniform matroid constraint.

Might be useful to allow an arbitrary matroid (e.g., partition matroid
I = {X ✓ V : |X \ V

i

|  k
i

for all i = 1, . . . , `}., or a transversal,
etc).

Knapsack constraint: if each item v 2 V has a cost c(v), we may ask
for c(S)  b where b is a budget, in units of costs.

Q: Is
I = {I : c(I)  b} the independent sets of a matroid?

We may wish to maximize f subject to multiple matroid constraints.
I.e., S 2 I1, S 2 I2, . . . , S 2 I

p

where I
i

are independent sets of the
ith matroid.

Combinations of the above (e.g., knapsack & multiple matroid
constraints).
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Generalizations

Consider a k-uniform matroid M = (V, I) where
I = {S ✓ V : |S|  k}, and consider problem max {f(A) : A 2 I}
Hence, the greedy algorithm is 1� 1/e optimal for maximizing
polymatroidal f subject to a k-uniform matroid constraint.

Might be useful to allow an arbitrary matroid (e.g., partition matroid
I = {X ✓ V : |X \ V

i

|  k
i

for all i = 1, . . . , `}., or a transversal,
etc).

Knapsack constraint: if each item v 2 V has a cost c(v), we may ask
for c(S)  b where b is a budget, in units of costs. Q: Is
I = {I : c(I)  b} the independent sets of a matroid?

We may wish to maximize f subject to multiple matroid constraints.
I.e., S 2 I1, S 2 I2, . . . , S 2 I

p

where I
i

are independent sets of the
ith matroid.

Combinations of the above (e.g., knapsack & multiple matroid
constraints).
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Greedy over multiple matroids

Obvious heuristic is to use the greedy step but always stay feasible.

I.e., Starting with S0 = ;, we repeat the following greedy step

S
i+1 = S

i

[
(

argmax
v2V \Si : Si+v2

Tp
i=1 Ii

f(S
i

[ {v})
)

(14.24)

That is, we keep choosing next whatever feasible element looks best.
This algorithm is simple and also has a guarantee

Theorem 14.5.1

Given a polymatroid function f , and set of matroids {M
j

= (E, I
j

)}p
j=1,

the above greedy algorithm returns sets S
i

such that for each i we have
f(S

i

) � 1
p+1 max|S|i,S2

Tp
i=1 Ii f(S), assuming such sets exists.

For one matroid, we have a 1/2 approximation.
Very easy algorithm, Minoux trick still possible, while addresses
multiple matroid constraints

— but the bound is not that good when
there are many matroids.
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Matroid Intersection and Bipartite Matching

Why might we want to do matroid intersection?

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 14 - May 18th, 2016 F34/59 (pg.128/246)



Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints

Matroid Intersection and Bipartite Matching

Why might we want to do matroid intersection?
Consider bipartite graph G = (V, F,E). Define two partition matroids
M

V

= (E, I
V

), and M
F

= (E, I
F

).
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Matroid Intersection and Bipartite Matching

Why might we want to do matroid intersection?
Consider bipartite graph G = (V, F,E). Define two partition matroids
M

V

= (E, I
V

), and M
F

= (E, I
F

).
Independence in each matroid corresponds to:

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 14 - May 18th, 2016 F34/59 (pg.130/246)



Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints

Matroid Intersection and Bipartite Matching

Why might we want to do matroid intersection?
Consider bipartite graph G = (V, F,E). Define two partition matroids
M

V

= (E, I
V

), and M
F

= (E, I
F

).
Independence in each matroid corresponds to:

1 I 2 I
V

if |I \ (V, f)|  1 for all f 2 F ,
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Matroid Intersection and Bipartite Matching

Why might we want to do matroid intersection?
Consider bipartite graph G = (V, F,E). Define two partition matroids
M

V

= (E, I
V

), and M
F

= (E, I
F

).
Independence in each matroid corresponds to:

1 I 2 I
V

if |I \ (V, f)|  1 for all f 2 F ,
2 and I 2 I

F

if |I \ (v, F )|  1 for all v 2 V .
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Matroid Intersection and Bipartite Matching

Why might we want to do matroid intersection?
Consider bipartite graph G = (V, F,E). Define two partition matroids
M

V

= (E, I
V

), and M
F

= (E, I
F

).
Independence in each matroid corresponds to:

1 I 2 I
V

if |I \ (V, f)|  1 for all f 2 F ,
2 and I 2 I

F

if |I \ (v, F )|  1 for all v 2 V .

V F V F
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Matroid Intersection and Bipartite Matching

Why might we want to do matroid intersection?
Consider bipartite graph G = (V, F,E). Define two partition matroids
M

V

= (E, I
V

), and M
F

= (E, I
F

).
Independence in each matroid corresponds to:

1 I 2 I
V

if |I \ (V, f)|  1 for all f 2 F ,
2 and I 2 I

F

if |I \ (v, F )|  1 for all v 2 V .

V F V F

Therefore, a matching in G is simultaneously independent in both M
V

and M
F

and finding the maximum matching is finding the maximum
cardinality set independent in both matroids.
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Matroid Intersection and Bipartite Matching

Why might we want to do matroid intersection?
Consider bipartite graph G = (V, F,E). Define two partition matroids
M

V

= (E, I
V

), and M
F

= (E, I
F

).
Independence in each matroid corresponds to:

1 I 2 I
V

if |I \ (V, f)|  1 for all f 2 F ,
2 and I 2 I

F

if |I \ (v, F )|  1 for all v 2 V .

V F V F

Therefore, a matching in G is simultaneously independent in both M
V

and M
F

and finding the maximum matching is finding the maximum
cardinality set independent in both matroids.
In bipartite graph case, therefore, can be solved in polynomial time.
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Matroid Intersection and Network Communication

Let G1 = (V1, E) and G2 = (V2, E) be two graphs on an isomorphic
set of edges (lets just give them same names E).

Consider two cycle matroids associated with these graphs
M1 = (E, I1) and M2 = (E, I2). They might be very di↵erent (e.g.,
an edge might be between two distinct nodes in G1 but the same edge
is a loop in multi-graph G2.)

We may wish to find the maximum size edge-induced subgraph that is
still forest in both graphs (i.e., adding any edges will create a circuit in
either M1, M2, or both).

This is again a matroid intersection problem.
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Matroid Intersection and Network Communication

Let G1 = (V1, E) and G2 = (V2, E) be two graphs on an isomorphic
set of edges (lets just give them same names E).

Consider two cycle matroids associated with these graphs
M1 = (E, I1) and M2 = (E, I2). They might be very di↵erent (e.g.,
an edge might be between two distinct nodes in G1 but the same edge
is a loop in multi-graph G2.)

We may wish to find the maximum size edge-induced subgraph that is
still forest in both graphs (i.e., adding any edges will create a circuit in
either M1, M2, or both).

This is again a matroid intersection problem.
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Matroid Intersection and Network Communication

Let G1 = (V1, E) and G2 = (V2, E) be two graphs on an isomorphic
set of edges (lets just give them same names E).

Consider two cycle matroids associated with these graphs
M1 = (E, I1) and M2 = (E, I2). They might be very di↵erent (e.g.,
an edge might be between two distinct nodes in G1 but the same edge
is a loop in multi-graph G2.)

We may wish to find the maximum size edge-induced subgraph that is
still forest in both graphs (i.e., adding any edges will create a circuit in
either M1, M2, or both).

This is again a matroid intersection problem.
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Matroid Intersection and Network Communication

Let G1 = (V1, E) and G2 = (V2, E) be two graphs on an isomorphic
set of edges (lets just give them same names E).

Consider two cycle matroids associated with these graphs
M1 = (E, I1) and M2 = (E, I2). They might be very di↵erent (e.g.,
an edge might be between two distinct nodes in G1 but the same edge
is a loop in multi-graph G2.)

We may wish to find the maximum size edge-induced subgraph that is
still forest in both graphs (i.e., adding any edges will create a circuit in
either M1, M2, or both).

This is again a matroid intersection problem.
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Matroid Intersection and TSP

Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.

Given directed graph G, goal is to find such a Hamiltonian cycle.
From G with n nodes, create G0 with n+ 1 nodes by duplicating
(w.l.o.g.) a particular node v1 2 V (G) to v+1 , v

�
1 , and have all

outgoing edges from v1 come instead from v�1 and all edges incoming
to v1 go instead to v+1 .
Let M1 be the cycle matroid on G0.
Let M2 be the partition matroid having as independent sets those that
have no more than one edge leaving any node — i.e., I 2 I(M2) if
|I \ ��(v)|  1 for all v 2 V (G0).
Let M3 be the partition matroid having as independent sets those that
have no more than one edge entering any node — i.e., I 2 I(M3) if
|I \ �+(v)|  1 for all v 2 V (G0).
Then a Hamiltonian cycle exists iff there is an n-element intersection
of M1, M2, and M3.
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Matroid Intersection and TSP

Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.
Given directed graph G, goal is to find such a Hamiltonian cycle.

From G with n nodes, create G0 with n+ 1 nodes by duplicating
(w.l.o.g.) a particular node v1 2 V (G) to v+1 , v
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1 , and have all

outgoing edges from v1 come instead from v�1 and all edges incoming
to v1 go instead to v+1 .
Let M1 be the cycle matroid on G0.
Let M2 be the partition matroid having as independent sets those that
have no more than one edge leaving any node — i.e., I 2 I(M2) if
|I \ ��(v)|  1 for all v 2 V (G0).
Let M3 be the partition matroid having as independent sets those that
have no more than one edge entering any node — i.e., I 2 I(M3) if
|I \ �+(v)|  1 for all v 2 V (G0).
Then a Hamiltonian cycle exists iff there is an n-element intersection
of M1, M2, and M3.
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Matroid Intersection and TSP

Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.
Given directed graph G, goal is to find such a Hamiltonian cycle.
From G with n nodes, create G0 with n+ 1 nodes by duplicating
(w.l.o.g.) a particular node v1 2 V (G) to v+1 , v

�
1 , and have all

outgoing edges from v1 come instead from v�1 and all edges incoming
to v1 go instead to v+1 .

Let M1 be the cycle matroid on G0.
Let M2 be the partition matroid having as independent sets those that
have no more than one edge leaving any node — i.e., I 2 I(M2) if
|I \ ��(v)|  1 for all v 2 V (G0).
Let M3 be the partition matroid having as independent sets those that
have no more than one edge entering any node — i.e., I 2 I(M3) if
|I \ �+(v)|  1 for all v 2 V (G0).
Then a Hamiltonian cycle exists iff there is an n-element intersection
of M1, M2, and M3.
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Matroid Intersection and TSP

Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.
Given directed graph G, goal is to find such a Hamiltonian cycle.
From G with n nodes, create G0 with n+ 1 nodes by duplicating
(w.l.o.g.) a particular node v1 2 V (G) to v+1 , v

�
1 , and have all

outgoing edges from v1 come instead from v�1 and all edges incoming
to v1 go instead to v+1 .
Let M1 be the cycle matroid on G0.

Let M2 be the partition matroid having as independent sets those that
have no more than one edge leaving any node — i.e., I 2 I(M2) if
|I \ ��(v)|  1 for all v 2 V (G0).
Let M3 be the partition matroid having as independent sets those that
have no more than one edge entering any node — i.e., I 2 I(M3) if
|I \ �+(v)|  1 for all v 2 V (G0).
Then a Hamiltonian cycle exists iff there is an n-element intersection
of M1, M2, and M3.
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Matroid Intersection and TSP

Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.
Given directed graph G, goal is to find such a Hamiltonian cycle.
From G with n nodes, create G0 with n+ 1 nodes by duplicating
(w.l.o.g.) a particular node v1 2 V (G) to v+1 , v

�
1 , and have all

outgoing edges from v1 come instead from v�1 and all edges incoming
to v1 go instead to v+1 .
Let M1 be the cycle matroid on G0.
Let M2 be the partition matroid having as independent sets those that
have no more than one edge leaving any node — i.e., I 2 I(M2) if
|I \ ��(v)|  1 for all v 2 V (G0).

Let M3 be the partition matroid having as independent sets those that
have no more than one edge entering any node — i.e., I 2 I(M3) if
|I \ �+(v)|  1 for all v 2 V (G0).
Then a Hamiltonian cycle exists iff there is an n-element intersection
of M1, M2, and M3.
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Matroid Intersection and TSP

Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.
Given directed graph G, goal is to find such a Hamiltonian cycle.
From G with n nodes, create G0 with n+ 1 nodes by duplicating
(w.l.o.g.) a particular node v1 2 V (G) to v+1 , v

�
1 , and have all

outgoing edges from v1 come instead from v�1 and all edges incoming
to v1 go instead to v+1 .
Let M1 be the cycle matroid on G0.
Let M2 be the partition matroid having as independent sets those that
have no more than one edge leaving any node — i.e., I 2 I(M2) if
|I \ ��(v)|  1 for all v 2 V (G0).
Let M3 be the partition matroid having as independent sets those that
have no more than one edge entering any node — i.e., I 2 I(M3) if
|I \ �+(v)|  1 for all v 2 V (G0).

Then a Hamiltonian cycle exists iff there is an n-element intersection
of M1, M2, and M3.
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Matroid Intersection and TSP

Definition: a Hamiltonian cycle is a cycle that passes through each
node exactly once.
Given directed graph G, goal is to find such a Hamiltonian cycle.
From G with n nodes, create G0 with n+ 1 nodes by duplicating
(w.l.o.g.) a particular node v1 2 V (G) to v+1 , v

�
1 , and have all

outgoing edges from v1 come instead from v�1 and all edges incoming
to v1 go instead to v+1 .
Let M1 be the cycle matroid on G0.
Let M2 be the partition matroid having as independent sets those that
have no more than one edge leaving any node — i.e., I 2 I(M2) if
|I \ ��(v)|  1 for all v 2 V (G0).
Let M3 be the partition matroid having as independent sets those that
have no more than one edge entering any node — i.e., I 2 I(M3) if
|I \ �+(v)|  1 for all v 2 V (G0).
Then a Hamiltonian cycle exists iff there is an n-element intersection
of M1, M2, and M3.
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Matroid Intersection and TSP

Recall, the traveling salesperson problem (TSP) is the problem to,
given a directed graph, start at a node, visit all cities, and return to the
starting point. Optimization version does this tour at minimum cost.

Since TSP is NP-complete, we obviously can’t solve matroid
intersections of 3 more matroids, unless P=NP.

But bipartite graph example gives us hope for 2 matroids, as in that
case we can easily solve max |X| s.t. x 2 I1 \ I2.
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Matroid Intersection and TSP

Recall, the traveling salesperson problem (TSP) is the problem to,
given a directed graph, start at a node, visit all cities, and return to the
starting point. Optimization version does this tour at minimum cost.

Since TSP is NP-complete, we obviously can’t solve matroid
intersections of 3 more matroids, unless P=NP.

But bipartite graph example gives us hope for 2 matroids, as in that
case we can easily solve max |X| s.t. x 2 I1 \ I2.
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Matroid Intersection and TSP

Recall, the traveling salesperson problem (TSP) is the problem to,
given a directed graph, start at a node, visit all cities, and return to the
starting point. Optimization version does this tour at minimum cost.

Since TSP is NP-complete, we obviously can’t solve matroid
intersections of 3 more matroids, unless P=NP.

But bipartite graph example gives us hope for 2 matroids, as in that
case we can easily solve max |X| s.t. x 2 I1 \ I2.
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Greedy over multiple matroids: Generalized Bipartite
Matching

Generalized bipartite matching (i.e., max bipartite matching with
submodular costs on the edges). Use two partition matroids (as
mentioned earlier in class)

Useful in natural language processing: Ex. Computer language
translation, find an alignment between two language strings.

Consider bipartite graph G = (E,F, V ) where E and F are the
left/right set of nodes, respectively, and V is the set of edges.

E corresponds to, say, an English language sentence and F
corresponds to a French language sentence — goal is to form a
matching (an alignment) between the two.

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 14 - May 18th, 2016 F37/59 (pg.150/246)



Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints

Greedy over multiple matroids: Generalized Bipartite
Matching

Generalized bipartite matching (i.e., max bipartite matching with
submodular costs on the edges). Use two partition matroids (as
mentioned earlier in class)

Useful in natural language processing: Ex. Computer language
translation, find an alignment between two language strings.

Consider bipartite graph G = (E,F, V ) where E and F are the
left/right set of nodes, respectively, and V is the set of edges.

E corresponds to, say, an English language sentence and F
corresponds to a French language sentence — goal is to form a
matching (an alignment) between the two.
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Greedy over multiple matroids: Generalized Bipartite
Matching

Generalized bipartite matching (i.e., max bipartite matching with
submodular costs on the edges). Use two partition matroids (as
mentioned earlier in class)

Useful in natural language processing: Ex. Computer language
translation, find an alignment between two language strings.

Consider bipartite graph G = (E,F, V ) where E and F are the
left/right set of nodes, respectively, and V is the set of edges.

E corresponds to, say, an English language sentence and F
corresponds to a French language sentence — goal is to form a
matching (an alignment) between the two.
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Greedy over multiple matroids: Generalized Bipartite
Matching

Generalized bipartite matching (i.e., max bipartite matching with
submodular costs on the edges). Use two partition matroids (as
mentioned earlier in class)

Useful in natural language processing: Ex. Computer language
translation, find an alignment between two language strings.

Consider bipartite graph G = (E,F, V ) where E and F are the
left/right set of nodes, respectively, and V is the set of edges.

E corresponds to, say, an English language sentence and F
corresponds to a French language sentence — goal is to form a
matching (an alignment) between the two.
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Greedy over > 1 matroids: Multiple Language Alignment

Consider English string and French string, set up as a bipartite graph.

I have ... as an example of public ownership

je le ai ... comme exemple de propriété publique
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Greedy over > 1 matroids: Multiple Language Alignment

One possible alignment, a matching, with score as sum of edge
weights.

I have ... as an example of public ownership

je le ai ... comme exemple de propriété publique
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Greedy over > 1 matroids: Multiple Language Alignment

Edges incident to English words constitute an edge partition

I have ... as an example of public ownership

je le ai ... comme exemple de propriété publique
The two edge partitions can be used to set up two 1-partition matroids
on the edges.

For each matroid, a set of edges is independent only if the set
intersects each partition block no more than one time.
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Greedy over > 1 matroids: Multiple Language Alignment

Edges incident to French words constitute an edge partition

I have ... as an example of public ownership

je le ai ... comme exemple de propriété publique
The two edge partitions can be used to set up two 1-partition matroids
on the edges.

For each matroid, a set of edges is independent only if the set
intersects each partition block no more than one time.
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Greedy over > 1 matroids: Multiple Language Alignment

Typical to use bipartite matching to find an alignment between the two
language strings.

As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.

We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:
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Greedy over > 1 matroids: Multiple Language Alignment

Typical to use bipartite matching to find an alignment between the two
language strings.

As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.

We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:
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Greedy over > 1 matroids: Multiple Language Alignment

Typical to use bipartite matching to find an alignment between the two
language strings.

As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.

We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:
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Greedy over > 1 matroids: Multiple Language Alignment

Typical to use bipartite matching to find an alignment between the two
language strings.

As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.

We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:

Fertility at most 1
. . . the ... of public ownership

. . . le ... de propriété publique

. . . the ... of public ownership

. . . le ... de propriété publique
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Greedy over > 1 matroids: Multiple Language Alignment

Typical to use bipartite matching to find an alignment between the two
language strings.

As we saw, this is equivalent to two 1-partition matroids and a
non-negative modular cost function on the edges.

We can generalize this using a polymatroid cost function on the edges,
and two k-partition matroids, allowing for “fertility” in the models:

Fertility at most 2
. . . the ... of public ownership

. . . le ... de propriété publique

. . . the ... of public ownership

. . . le ... de propriété publique
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Greedy over > 1 matroids: Multiple Language Alignment

Generalizing further, each block of edges in each partition matroid can
have its own “fertility” limit:
I = {X ✓ V : |X \ V

i

|  k
i

for all i = 1, . . . , `}.

Maximizing submodular function subject to multiple matroid
constraints addresses this problem.
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Greedy over > 1 matroids: Multiple Language Alignment

Generalizing further, each block of edges in each partition matroid can
have its own “fertility” limit:
I = {X ✓ V : |X \ V

i

|  k
i

for all i = 1, . . . , `}.
Maximizing submodular function subject to multiple matroid
constraints addresses this problem.
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Greedy over multiple matroids: Submodular Welfare

Submodular Welfare Maximization: Consider E a set of m goods to be
distributed/partitioned among n people (“players”).

Each players has a submodular “valuation” function, g
i

: 2E ! R+

that measures how “desirable” or “valuable” a given subset A ✓ E of
goods are to that player.

Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.

Goal of submodular welfare: Partition the goods
E = E1 [ E2 [ · · · [ E

n

into n blocks in order to maximize the
submodular social welfare, measured as:

submodular-social-welfare(E1, E2, . . . , En

) =
nX

i=1

g
i

(E
i

). (14.25)

We can solve this via submodular maximization subject to multiple
matroid independence constraints as we next describe . . .
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Greedy over multiple matroids: Submodular Welfare

Submodular Welfare Maximization: Consider E a set of m goods to be
distributed/partitioned among n people (“players”).

Each players has a submodular “valuation” function, g
i

: 2E ! R+

that measures how “desirable” or “valuable” a given subset A ✓ E of
goods are to that player.

Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.

Goal of submodular welfare: Partition the goods
E = E1 [ E2 [ · · · [ E

n

into n blocks in order to maximize the
submodular social welfare, measured as:

submodular-social-welfare(E1, E2, . . . , En

) =
nX

i=1

g
i

(E
i

). (14.25)

We can solve this via submodular maximization subject to multiple
matroid independence constraints as we next describe . . .

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 14 - May 18th, 2016 F41/59 (pg.166/246)



Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints

Greedy over multiple matroids: Submodular Welfare

Submodular Welfare Maximization: Consider E a set of m goods to be
distributed/partitioned among n people (“players”).

Each players has a submodular “valuation” function, g
i

: 2E ! R+

that measures how “desirable” or “valuable” a given subset A ✓ E of
goods are to that player.

Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.

Goal of submodular welfare: Partition the goods
E = E1 [ E2 [ · · · [ E

n

into n blocks in order to maximize the
submodular social welfare, measured as:

submodular-social-welfare(E1, E2, . . . , En

) =
nX

i=1

g
i

(E
i

). (14.25)

We can solve this via submodular maximization subject to multiple
matroid independence constraints as we next describe . . .
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Greedy over multiple matroids: Submodular Welfare

Submodular Welfare Maximization: Consider E a set of m goods to be
distributed/partitioned among n people (“players”).

Each players has a submodular “valuation” function, g
i

: 2E ! R+

that measures how “desirable” or “valuable” a given subset A ✓ E of
goods are to that player.

Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.

Goal of submodular welfare: Partition the goods
E = E1 [ E2 [ · · · [ E

n

into n blocks in order to maximize the
submodular social welfare, measured as:

submodular-social-welfare(E1, E2, . . . , En

) =

nX

i=1

g
i

(E
i

). (14.25)

We can solve this via submodular maximization subject to multiple
matroid independence constraints as we next describe . . .
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Greedy over multiple matroids: Submodular Welfare

Submodular Welfare Maximization: Consider E a set of m goods to be
distributed/partitioned among n people (“players”).

Each players has a submodular “valuation” function, g
i

: 2E ! R+

that measures how “desirable” or “valuable” a given subset A ✓ E of
goods are to that player.

Assumption: No good can be shared between multiple players, each
good must be allocated to a single player.

Goal of submodular welfare: Partition the goods
E = E1 [ E2 [ · · · [ E

n

into n blocks in order to maximize the
submodular social welfare, measured as:

submodular-social-welfare(E1, E2, . . . , En

) =

nX

i=1

g
i

(E
i

). (14.25)

We can solve this via submodular maximization subject to multiple
matroid independence constraints as we next describe . . .
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Submodular Welfare: Submodular Max over matroid
partition

Create new ground set E0 as disjoint union of n copies of the ground
set. I.e.,

E0 = E ] E ] · · · ] E| {z }
n⇥

(14.26)

Let E(i) ⇢ E0 be the ith block of E0.

For any e 2 E, the corresponding element in E(i) is called (e, i) 2 E(i)

(each original element is tagged by integer).

For e 2 E, define E
e

= {(e0, i) 2 E0 : e0 = e}.
Hence, {E

e

}
e2E is a partition of E0, each block of the partition for

one of the original elements in E.

Create a 1-partition matroid M = (E0, I) where

I =
�
S ✓ E0 : 8e 2 E, |S \ E

e

|  1
 

(14.27)
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Submodular Welfare: Submodular Max over matroid
partition

Create new ground set E0 as disjoint union of n copies of the ground
set. I.e.,

E0 = E ] E ] · · · ] E| {z }
n⇥

(14.26)

Let E(i) ⇢ E0 be the ith block of E0.

For any e 2 E, the corresponding element in E(i) is called (e, i) 2 E(i)

(each original element is tagged by integer).

For e 2 E, define E
e

= {(e0, i) 2 E0 : e0 = e}.
Hence, {E

e

}
e2E is a partition of E0, each block of the partition for

one of the original elements in E.

Create a 1-partition matroid M = (E0, I) where

I =
�
S ✓ E0 : 8e 2 E, |S \ E

e

|  1
 

(14.27)
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Submodular Welfare: Submodular Max over matroid
partition

Create new ground set E0 as disjoint union of n copies of the ground
set. I.e.,

E0 = E ] E ] · · · ] E| {z }
n⇥

(14.26)

Let E(i) ⇢ E0 be the ith block of E0.

For any e 2 E, the corresponding element in E(i) is called (e, i) 2 E(i)

(each original element is tagged by integer).

For e 2 E, define E
e

= {(e0, i) 2 E0 : e0 = e}.
Hence, {E

e

}
e2E is a partition of E0, each block of the partition for

one of the original elements in E.

Create a 1-partition matroid M = (E0, I) where

I =
�
S ✓ E0 : 8e 2 E, |S \ E

e

|  1
 

(14.27)
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Submodular Welfare: Submodular Max over matroid
partition

Create new ground set E0 as disjoint union of n copies of the ground
set. I.e.,

E0 = E ] E ] · · · ] E| {z }
n⇥

(14.26)

Let E(i) ⇢ E0 be the ith block of E0.

For any e 2 E, the corresponding element in E(i) is called (e, i) 2 E(i)

(each original element is tagged by integer).

For e 2 E, define E
e

= {(e0, i) 2 E0 : e0 = e}.

Hence, {E
e

}
e2E is a partition of E0, each block of the partition for

one of the original elements in E.

Create a 1-partition matroid M = (E0, I) where

I =
�
S ✓ E0 : 8e 2 E, |S \ E

e

|  1
 

(14.27)
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Submodular Welfare: Submodular Max over matroid
partition

Create new ground set E0 as disjoint union of n copies of the ground
set. I.e.,

E0 = E ] E ] · · · ] E| {z }
n⇥

(14.26)

Let E(i) ⇢ E0 be the ith block of E0.

For any e 2 E, the corresponding element in E(i) is called (e, i) 2 E(i)

(each original element is tagged by integer).

For e 2 E, define E
e

= {(e0, i) 2 E0 : e0 = e}.
Hence, {E

e

}
e2E is a partition of E0, each block of the partition for

one of the original elements in E.

Create a 1-partition matroid M = (E0, I) where

I =
�
S ✓ E0 : 8e 2 E, |S \ E

e

|  1
 

(14.27)
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Submodular Welfare: Submodular Max over matroid
partition

Create new ground set E0 as disjoint union of n copies of the ground
set. I.e.,

E0 = E ] E ] · · · ] E| {z }
n⇥

(14.26)

Let E(i) ⇢ E0 be the ith block of E0.

For any e 2 E, the corresponding element in E(i) is called (e, i) 2 E(i)

(each original element is tagged by integer).

For e 2 E, define E
e

= {(e0, i) 2 E0 : e0 = e}.
Hence, {E

e

}
e2E is a partition of E0, each block of the partition for

one of the original elements in E.

Create a 1-partition matroid M = (E0, I) where

I =
�
S ✓ E0 : 8e 2 E, |S \ E

e

|  1
 

(14.27)
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Submodular Welfare: Submodular Max over matroid
partition

Hence, S is independent in matroid M = (E0, I) if S uses each
original element no more than once.

Create submodular function f 0 : 2E
0 ! R+ with

f 0(S) =
P

n

i=1 gi(S \ E(i)).

Submodular welfare maximization becomes matroid constrained
submodular max max {f 0(S) : S 2 I}, so greedy algorithm gives a 1/2
approximation.
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Submodular Welfare: Submodular Max over matroid
partition

Hence, S is independent in matroid M = (E0, I) if S uses each
original element no more than once.

Create submodular function f 0 : 2E
0 ! R+ with

f 0(S) =
P

n

i=1 gi(S \ E(i)).

Submodular welfare maximization becomes matroid constrained
submodular max max {f 0(S) : S 2 I}, so greedy algorithm gives a 1/2
approximation.
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Submodular Social Welfare

Have n = 6 people (who don’t
like to share) and |E| = m = 7
pieces of sushi. E.g., e 2 E
might be e = ”salmon roll”.
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Submodular Social Welfare

Have n = 6 people (who don’t
like to share) and |E| = m = 7
pieces of sushi. E.g., e 2 E
might be e = ”salmon roll”.

Goal: distribute sushi to people
to maximize social welfare.
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Submodular Social Welfare

Have n = 6 people (who don’t
like to share) and |E| = m = 7
pieces of sushi. E.g., e 2 E
might be e = ”salmon roll”.

Goal: distribute sushi to people
to maximize social welfare.

Ground set disjoint union
E ] E ] E ] E ] E ] E.
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Submodular Social Welfare

Have n = 6 people (who don’t
like to share) and |E| = m = 7
pieces of sushi. E.g., e 2 E
might be e = ”salmon roll”.

Goal: distribute sushi to people
to maximize social welfare.

Ground set disjoint union
E ] E ] E ] E ] E ] E.

Partition matroid partitions:
E

e1 [ E
e2 [ E

e3 [ E
e4 [ E

e5 [
E

e6 [ E
e7 .
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Submodular Social Welfare

Have n = 6 people (who don’t
like to share) and |E| = m = 7
pieces of sushi. E.g., e 2 E
might be e = ”salmon roll”.

Goal: distribute sushi to people
to maximize social welfare.

Ground set disjoint union
E ] E ] E ] E ] E ] E.

Partition matroid partitions:
E

e1 [ E
e2 [ E

e3 [ E
e4 [ E

e5 [
E

e6 [ E
e7 .

independent allocation
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Submodular Social Welfare

Have n = 6 people (who don’t
like to share) and |E| = m = 7
pieces of sushi. E.g., e 2 E
might be e = ”salmon roll”.

Goal: distribute sushi to people
to maximize social welfare.

Ground set disjoint union
E ] E ] E ] E ] E ] E.

Partition matroid partitions:
E

e1 [ E
e2 [ E

e3 [ E
e4 [ E

e5 [
E

e6 [ E
e7 .

independent allocation

non-independent allocation
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Monotone Submodular over Knapsack Constraint

The constraint |A|  k is a simple cardinality constraint.

Consider a non-negative integral modular function c : E ! Z+.

A knapsack constraint would be of the form c(A)  b where B is some
integer budget that must not be exceeded. That is
max {f(A) : A ✓ V, c(A)  b}.
Important: A knapsack constraint yields an independence system
(down closed) but it is not a matroid!

c(e) may be seen as the cost of item e and if c(e) = 1 for all e, then
we recover the cardinality constraint we saw earlier.
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Monotone Submodular over Knapsack Constraint

The constraint |A|  k is a simple cardinality constraint.

Consider a non-negative integral modular function c : E ! Z+.

A knapsack constraint would be of the form c(A)  b where B is some
integer budget that must not be exceeded. That is
max {f(A) : A ✓ V, c(A)  b}.
Important: A knapsack constraint yields an independence system
(down closed) but it is not a matroid!

c(e) may be seen as the cost of item e and if c(e) = 1 for all e, then
we recover the cardinality constraint we saw earlier.
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Monotone Submodular over Knapsack Constraint
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A knapsack constraint would be of the form c(A)  b where B is some
integer budget that must not be exceeded. That is
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Important: A knapsack constraint yields an independence system
(down closed) but it is not a matroid!
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we recover the cardinality constraint we saw earlier.

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 14 - May 18th, 2016 F45/59 (pg.188/246)



Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints

Monotone Submodular over Knapsack Constraint

The constraint |A|  k is a simple cardinality constraint.

Consider a non-negative integral modular function c : E ! Z+.

A knapsack constraint would be of the form c(A)  b where B is some
integer budget that must not be exceeded. That is
max {f(A) : A ✓ V, c(A)  b}.
Important: A knapsack constraint yields an independence system
(down closed) but it is not a matroid!

c(e) may be seen as the cost of item e and if c(e) = 1 for all e, then
we recover the cardinality constraint we saw earlier.
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Monotone Submodular over Knapsack Constraint

Greedy can be seen as choosing the best gain: Starting with S0 = ;,
we repeat the following greedy step

S
i+1 = S

i

[
(
argmax
v2V \Si

⇣
f(S

i

[ {v})� f(S
i

)
⌘)

(14.28)

the gain is f({v}|S
i

) = f(S
i

+ v)� f(S
i

), so greedy just chooses next
the currently unselected element with greatest gain.

Core idea in knapsack case: Greedy can be extended to choose next
whatever looks cost-normalized best, i.e., Starting some initial set S0,
we repeat the following cost-normalized greedy step

S
i+1 = S

i

[
(
argmax
v2V \Si

f(S
i

[ {v})� f(S
i

)

c(v)

)
(14.29)

which we repeat until c(S
i+1) > b and then take S

i

as the solution.
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Monotone Submodular over Knapsack Constraint

Greedy can be seen as choosing the best gain: Starting with S0 = ;,
we repeat the following greedy step

S
i+1 = S

i

[
(
argmax
v2V \Si

⇣
f(S

i

[ {v})� f(S
i

)
⌘)

(14.28)

the gain is f({v}|S
i

) = f(S
i

+ v)� f(S
i

), so greedy just chooses next
the currently unselected element with greatest gain.

Core idea in knapsack case: Greedy can be extended to choose next
whatever looks cost-normalized best, i.e., Starting some initial set S0,
we repeat the following cost-normalized greedy step

S
i+1 = S

i

[
(
argmax
v2V \Si

f(S
i

[ {v})� f(S
i

)

c(v)

)
(14.29)

which we repeat until c(S
i+1) > b and then take S

i

as the solution.
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A Knapsack Constraint

There are a number of ways of getting approximation bounds using
this strategy.

If we run the normalized greedy procedure starting with S0 = ;, and
compare the solution found with the max of the singletons
max

v2V f({v}), choosing the max, then we get a (1� e�1/2) ⇡ 0.39
approximation, in O(n2) time (Minoux trick also possible for further
speed)

Partial enumeration: On the other hand, we can get a
(1� e�1) ⇡ 0.63 approximation in O(n5) time if we run the above
procedure starting from all sets of cardinality three (so restart for all
S0 such that |S0| = 3), and compare that with the best singleton and
pairwise solution.

Extending something similar to this to d simultaneous knapsack
constraints is possible as well.
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Local Search Algorithms

From J. Vondrak

Local search involves switching up to t elements, as long as it provides
a (non-trivial) improvement; can iterate in several phases. Some
examples follow:

1/3 approximation to unconstrained non-monotone maximization
[Feige, Mirrokni, Vondrak, 2007]

1/(k + 2 + 1
k

+ �
t

) approximation for non-monotone maximization
subject to k matroids [Lee, Mirrokni, Nagarajan, Sviridenko, 2009]

1/(k + �
t

) approximation for monotone submodular maximization
subject to k � 2 matroids [Lee, Sviridenko, Vondrak, 2010].
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What About Non-monotone

Alternatively, we may wish to maximize non-monotone submodular
functions. This includes of course graph cuts, and this problem is
APX-hard, so maximizing non-monotone functions, even
unconstrainedly, is hard.

If f is an arbitrary submodular function (so neither polymatroidal, nor
necessarily positive or negative), then verifying if the maximum of f is
positive or negative is already NP-hard.
Therefore, submodular function max in such case is inapproximable
unless P=NP (since any such procedure would give us the sign of the
max).
Thus, any approximation algorithm must be for unipolar submodular
functions. E.g., non-negative but otherwise arbitrary submodular
functions.
We may get a (13 �

✏

n

) approximation for maximizing non-monotone
non-negative submodular functions, with most O(1

✏

n3 log n) function
calls using approximate local maxima.
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What About Non-monotone

Alternatively, we may wish to maximize non-monotone submodular
functions. This includes of course graph cuts, and this problem is
APX-hard, so maximizing non-monotone functions, even
unconstrainedly, is hard.
If f is an arbitrary submodular function (so neither polymatroidal, nor
necessarily positive or negative), then verifying if the maximum of f is
positive or negative is already NP-hard.
Therefore, submodular function max in such case is inapproximable
unless P=NP (since any such procedure would give us the sign of the
max).
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Submodularity and local optima

Given any submodular function f , a set S ✓ V is a local maximum of f
if f(S � v)  f(S) for all v 2 S and f(S + v)  f(S) for all v 2 V \ S
(i.e., local in a Hamming ball of radius 1).

The following interesting result is true for any submodular function:

Lemma 14.5.2

Given a submodular function f , if S is a local maximum of f , and I ✓ S or
I ◆ S, then f(I)  f(S).
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Submodularity and local optima

Given any submodular function f , a set S ✓ V is a local maximum of f
if f(S � v)  f(S) for all v 2 S and f(S + v)  f(S) for all v 2 V \ S
(i.e., local in a Hamming ball of radius 1).

The following interesting result is true for any submodular function:

Lemma 14.5.2

Given a submodular function f , if S is a local maximum of f , and I ✓ S or
I ◆ S, then f(I)  f(S).
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Submodularity and local optima

Given any submodular function f , a set S ✓ V is a local maximum of f
if f(S � v)  f(S) for all v 2 S and f(S + v)  f(S) for all v 2 V \ S
(i.e., local in a Hamming ball of radius 1).

The following interesting result is true for any submodular function:

Lemma 14.5.2

Given a submodular function f , if S is a local maximum of f , and I ✓ S or
I ◆ S, then f(I)  f(S).
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Submodularity and local optima

Given any submodular function f , a set S ✓ V is a local maximum of f
if f(S � v)  f(S) for all v 2 S and f(S + v)  f(S) for all v 2 V \ S
(i.e., local in a Hamming ball of radius 1).

The following interesting result is true for any submodular function:

Lemma 14.5.2

Given a submodular function f , if S is a local maximum of f , and I ✓ S or
I ◆ S, then f(I)  f(S).

Idea of proof: Given v1, v2 2 S, suppose f(S � v1)  f(S) and
f(S � v2)  f(S). Submodularity requires
f(S � v1) + f(S � v2) � f(S) + f(S � v1 � v2) which would be
impossible unless f(S � v1 � v2)  f(S).

Similarly, given v1, v2 /2 S, and f(S + v1)  f(S) and f(S + v2)  f(S).
Submodularity requires f(S + v1) + f(S + v2) � f(S) + f(S + v1 + v2)
which requires f(S + v1 + v2)  f(S).
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Submodularity and local optima

Given any submodular function f , a set S ✓ V is a local maximum of f
if f(S � v)  f(S) for all v 2 S and f(S + v)  f(S) for all v 2 V \ S
(i.e., local in a Hamming ball of radius 1).

The following interesting result is true for any submodular function:

Lemma 14.5.2

Given a submodular function f , if S is a local maximum of f , and I ✓ S or
I ◆ S, then f(I)  f(S).

In other words, once we have identified a local maximum, the two
intervals in the Boolean lattice [;, S] and [S, V ] can be ruled out as a
possible improvement over S.

Finding a local maximum is already hard (PLS-complete), but it is
possible to find an approximate local maximum relatively e�ciently.

This is the approach that yields the (13 �
✏

n

) approximation algorithm.
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if f(S � v)  f(S) for all v 2 S and f(S + v)  f(S) for all v 2 V \ S
(i.e., local in a Hamming ball of radius 1).

The following interesting result is true for any submodular function:

Lemma 14.5.2

Given a submodular function f , if S is a local maximum of f , and I ✓ S or
I ◆ S, then f(I)  f(S).

In other words, once we have identified a local maximum, the two
intervals in the Boolean lattice [;, S] and [S, V ] can be ruled out as a
possible improvement over S.

Finding a local maximum is already hard (PLS-complete), but it is
possible to find an approximate local maximum relatively e�ciently.

This is the approach that yields the (13 �
✏

n

) approximation algorithm.
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Submodularity and local optima

Given any submodular function f , a set S ✓ V is a local maximum of f
if f(S � v)  f(S) for all v 2 S and f(S + v)  f(S) for all v 2 V \ S
(i.e., local in a Hamming ball of radius 1).

The following interesting result is true for any submodular function:

Lemma 14.5.2

Given a submodular function f , if S is a local maximum of f , and I ✓ S or
I ◆ S, then f(I)  f(S).

In other words, once we have identified a local maximum, the two
intervals in the Boolean lattice [;, S] and [S, V ] can be ruled out as a
possible improvement over S.

Finding a local maximum is already hard (PLS-complete), but it is
possible to find an approximate local maximum relatively e�ciently.

This is the approach that yields the (13 �
✏

n

) approximation algorithm.
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Linear time algorithm unconstrained non-monotone max
Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.

Buchbinder, Feldman, Naor, Schwartz 2012.

Recall [a]+ = max(a, 0).

Algorithm 3: Randomized Linear-time non-monotone submodular max

1 Set L ; ; U  V /* Lower L, upper U . Invariant: L ✓ U */ ;
2 Order elements of V = (v1, v2, . . . , vn) arbitrarily ;
3 for i 0 . . . |V | do
4 a [f(v

i

|L)]+; b [�f(U |U \ {v
i

})]+ ;
5 if a = b = 0 then p 1/2 ;
6 ;
7 else p a/(a+ b);
8 ;
9 if Flip of coin with Pr(heads) = p draws heads then

10 L L [ {v
i

} ;

11 Otherwise /* if the coin drew tails, an event with prob. 1� p */
12 U  U \ {v}

13 return L (which is the same as U at this point)
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Linear time algorithm unconstrained non-monotone max
Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.
Buchbinder, Feldman, Naor, Schwartz 2012.

Recall [a]+ = max(a, 0).

Algorithm 4: Randomized Linear-time non-monotone submodular max

1 Set L ; ; U  V /* Lower L, upper U . Invariant: L ✓ U */ ;
2 Order elements of V = (v1, v2, . . . , vn) arbitrarily ;
3 for i 0 . . . |V | do
4 a [f(v

i

|L)]+; b [�f(U |U \ {v
i

})]+ ;
5 if a = b = 0 then p 1/2 ;
6 ;
7 else p a/(a+ b);
8 ;
9 if Flip of coin with Pr(heads) = p draws heads then

10 L L [ {v
i

} ;

11 Otherwise /* if the coin drew tails, an event with prob. 1� p */
12 U  U \ {v}

13 return L (which is the same as U at this point)
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Linear time algorithm unconstrained non-monotone max
Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.
Buchbinder, Feldman, Naor, Schwartz 2012. Recall [a]+ = max(a, 0).

Algorithm 5: Randomized Linear-time non-monotone submodular max

1 Set L ; ; U  V /* Lower L, upper U . Invariant: L ✓ U */ ;
2 Order elements of V = (v1, v2, . . . , vn) arbitrarily ;
3 for i 0 . . . |V | do
4 a [f(v

i

|L)]+; b [�f(U |U \ {v
i

})]+ ;
5 if a = b = 0 then p 1/2 ;
6 ;
7 else p a/(a+ b);
8 ;
9 if Flip of coin with Pr(heads) = p draws heads then

10 L L [ {v
i

} ;

11 Otherwise /* if the coin drew tails, an event with prob. 1� p */
12 U  U \ {v}

13 return L (which is the same as U at this point)
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Linear time algorithm unconstrained non-monotone max
Tight randomized tight 1/2 approximation algorithm for unconstrained
non-monotone non-negative submodular maximization.
Buchbinder, Feldman, Naor, Schwartz 2012. Recall [a]+ = max(a, 0).

Algorithm 6: Randomized Linear-time non-monotone submodular max

1 Set L ; ; U  V /* Lower L, upper U . Invariant: L ✓ U */ ;
2 Order elements of V = (v1, v2, . . . , vn) arbitrarily ;
3 for i 0 . . . |V | do
4 a [f(v

i

|L)]+; b [�f(U |U \ {v
i

})]+ ;
5 if a = b = 0 then p 1/2 ;
6 ;
7 else p a/(a+ b);
8 ;
9 if Flip of coin with Pr(heads) = p draws heads then

10 L L [ {v
i

} ;

11 Otherwise /* if the coin drew tails, an event with prob. 1� p */
12 U  U \ {v}

13 return L (which is the same as U at this point)
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Linear time algorithm unconstrained non-monotone max

Each “sweep” of the algorithm is O(n).

Running the algorithm 1⇥ (with an arbitrary variable order) results in
a 1/3 approximation.

The 1/2 guarantee is in expected value (the expected solution has the
1/2 guarantee).

In practice, run it multiple times, each with a di↵erent random
permutation of the elements, and then take the cumulative best.

It may be possible to choose the random order smartly to get better
results in practice.
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Each “sweep” of the algorithm is O(n).

Running the algorithm 1⇥ (with an arbitrary variable order) results in
a 1/3 approximation.
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Linear time algorithm unconstrained non-monotone max

Each “sweep” of the algorithm is O(n).

Running the algorithm 1⇥ (with an arbitrary variable order) results in
a 1/3 approximation.

The 1/2 guarantee is in expected value (the expected solution has the
1/2 guarantee).

In practice, run it multiple times, each with a di↵erent random
permutation of the elements, and then take the cumulative best.

It may be possible to choose the random order smartly to get better
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Linear time algorithm unconstrained non-monotone max

Each “sweep” of the algorithm is O(n).

Running the algorithm 1⇥ (with an arbitrary variable order) results in
a 1/3 approximation.

The 1/2 guarantee is in expected value (the expected solution has the
1/2 guarantee).

In practice, run it multiple times, each with a di↵erent random
permutation of the elements, and then take the cumulative best.

It may be possible to choose the random order smartly to get better
results in practice.

Prof. Je↵ Bilmes EE596b/Spring 2016/Submodularity - Lecture 14 - May 18th, 2016 F51/59 (pg.214/246)



Polymatroids, Greedy, and Cardinality Constrained Maximization Curvature Submodular Max w. Other Constraints

Linear time algorithm unconstrained non-monotone max

Each “sweep” of the algorithm is O(n).

Running the algorithm 1⇥ (with an arbitrary variable order) results in
a 1/3 approximation.

The 1/2 guarantee is in expected value (the expected solution has the
1/2 guarantee).

In practice, run it multiple times, each with a di↵erent random
permutation of the elements, and then take the cumulative best.

It may be possible to choose the random order smartly to get better
results in practice.
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More general still: multiple constraints di↵erent types

In the past several years, there has been a plethora of papers on
maximizing both monotone and non-monotone submodular functions
under various combinations of one or more knapsack and/or matroid
constraints.

The approximation quality is usually some function of the number of
matroids, and is often not a function of the number of knapsacks.

Often the computational costs of the algorithms are prohibitive (e.g.,
exponential in k) with large constants, so these algorithms might not
scale.

On the other hand, these algorithms o↵er deep and interesting intuition
into submodular functions, beyond what we have covered here.
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More general still: multiple constraints di↵erent types

In the past several years, there has been a plethora of papers on
maximizing both monotone and non-monotone submodular functions
under various combinations of one or more knapsack and/or matroid
constraints.

The approximation quality is usually some function of the number of
matroids, and is often not a function of the number of knapsacks.

Often the computational costs of the algorithms are prohibitive (e.g.,
exponential in k) with large constants, so these algorithms might not
scale.

On the other hand, these algorithms o↵er deep and interesting intuition
into submodular functions, beyond what we have covered here.
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Some results on submodular maximization

As we’ve seen, we can get 1� 1/e for non-negative monotone
submodular (polymatroid) functions with greedy algorithm under
cardinality constraints, and this is tight.

For general matroid, greedy reduces to 1/2 approximation (as we’ve
seen).

We can recover 1� 1/e approximation using the continuous greedy
algorithm on the multilinear extension and then using pipage rounding
to re-integerize the solution (see J. Vondrak’s publications).

More general constraints are possible too, as we see on the next table
(for references, see Jan Vondrak’s publications
http://theory.stanford.edu/

~

jvondrak/).
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As we’ve seen, we can get 1� 1/e for non-negative monotone
submodular (polymatroid) functions with greedy algorithm under
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seen).

We can recover 1� 1/e approximation using the continuous greedy
algorithm on the multilinear extension and then using pipage rounding
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Some results on submodular maximization

As we’ve seen, we can get 1� 1/e for non-negative monotone
submodular (polymatroid) functions with greedy algorithm under
cardinality constraints, and this is tight.

For general matroid, greedy reduces to 1/2 approximation (as we’ve
seen).

We can recover 1� 1/e approximation using the continuous greedy
algorithm on the multilinear extension and then using pipage rounding
to re-integerize the solution (see J. Vondrak’s publications).

More general constraints are possible too, as we see on the next table
(for references, see Jan Vondrak’s publications
http://theory.stanford.edu/

~

jvondrak/).
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Some results on submodular maximization

As we’ve seen, we can get 1� 1/e for non-negative monotone
submodular (polymatroid) functions with greedy algorithm under
cardinality constraints, and this is tight.

For general matroid, greedy reduces to 1/2 approximation (as we’ve
seen).

We can recover 1� 1/e approximation using the continuous greedy
algorithm on the multilinear extension and then using pipage rounding
to re-integerize the solution (see J. Vondrak’s publications).

More general constraints are possible too, as we see on the next table
(for references, see Jan Vondrak’s publications
http://theory.stanford.edu/

~

jvondrak/).
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Submodular Max Summary - 2012: From J. Vondrak

Monotone Maximization
Constraint Approximation Hardness Technique

|S|  k 1� 1/e 1� 1/e greedy
matroid 1� 1/e 1� 1/e multilinear ext.

O(1) knapsacks 1� 1/e 1� 1/e multilinear ext.
k matroids k + ✏ k/ log k local search

k matroids and O(1)
knapsacks

O(k) k/ log k multilinear ext.

Nonmonotone Maximization
Constraint Approximation Hardness Technique

Unconstrained 1/2 1/2 combinatorial
matroid 1/e 0.48 multilinear ext.

O(1) knapsacks 1/e 0.49 multilinear ext.
k matroids k +O(1) k/ log k local search

k matroids and O(1)
knapsacks

O(k) k/ log k multilinear ext.
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Submodular Max and polyhedral approaches

We’ve spent much time discussing SFM and the polymatroidal
polytope, and in general polyhedral approaches for SFM.

Most of the approaches for submodular max have not used such an
approach, probably due to the di�culty in computing the “concave
extension” of a submodular function (the convex extension is easy,
namely the Lovász extension).

A paper by Chekuri, Vondrak, and Zenklusen (2011) make some
progress on this front using multilinear extensions.
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polytope, and in general polyhedral approaches for SFM.
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approach, probably due to the di�culty in computing the “concave
extension” of a submodular function (the convex extension is easy,
namely the Lovász extension).
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progress on this front using multilinear extensions.
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Submodular Max and polyhedral approaches

We’ve spent much time discussing SFM and the polymatroidal
polytope, and in general polyhedral approaches for SFM.

Most of the approaches for submodular max have not used such an
approach, probably due to the di�culty in computing the “concave
extension” of a submodular function (the convex extension is easy,
namely the Lovász extension).

A paper by Chekuri, Vondrak, and Zenklusen (2011) make some
progress on this front using multilinear extensions.
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Multilinear extension
Definition 14.5.3

For a set function f : 2V ! R, define its multilinear extension
F : [0, 1]V ! R by

F (x) =
X

S✓V

f(S)
Y

i2S
x
i

Y

j2V \S

(1� x
j

) (14.30)

Note that F (x) = Ef(x̂) where x̂ is a random binary vector over
{0, 1}V with elements independent w. probability x

i

for x̂
i

.
While this is defined for any set function, we have:

Lemma 14.5.4

Let F : [0, 1]V ! R be multilinear extension of set function f : 2V ! R,
then

If f is monotone non-decreasing, then @F

@xi
� 0 for all i 2 V , x 2 [0, 1]V .

If f is submodular, then @

2
F

@xi@xj
 0 for all i, j inV , x 2 [0, 1]V .
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.
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then
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F (x) =
X

S✓V

f(S)
Y

i2S
x
i

Y

j2V \S

(1� x
j
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Note that F (x) = Ef(x̂) where x̂ is a random binary vector over
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.
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then
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Multilinear extension
Definition 14.5.3

For a set function f : 2V ! R, define its multilinear extension
F : [0, 1]V ! R by

F (x) =
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f(S)
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j

) (14.30)

Note that F (x) = Ef(x̂) where x̂ is a random binary vector over
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i
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.
While this is defined for any set function, we have:

Lemma 14.5.4

Let F : [0, 1]V ! R be multilinear extension of set function f : 2V ! R,
then
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Multilinear extension
Definition 14.5.3
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F : [0, 1]V ! R by

F (x) =
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f(S)
Y
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) (14.30)

Note that F (x) = Ef(x̂) where x̂ is a random binary vector over
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.
While this is defined for any set function, we have:

Lemma 14.5.4
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then

If f is monotone non-decreasing, then @F
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Multilinear extension
Definition 14.5.3

For a set function f : 2V ! R, define its multilinear extension
F : [0, 1]V ! R by

F (x) =
X

S✓V

f(S)
Y

i2S
x
i

Y

j2V \S

(1� x
j

) (14.30)

Note that F (x) = Ef(x̂) where x̂ is a random binary vector over
{0, 1}V with elements independent w. probability x
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.
While this is defined for any set function, we have:

Lemma 14.5.4
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then

If f is monotone non-decreasing, then @F
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Multilinear extension

Moreover, we have

Lemma 14.5.5

Let F : [0, 1]V ! R be multilinear extension of set function f : 2V ! R,
then

If f is monotone non-decreasing, then F is non-decreasing along any line of
direction d 2 RE with d � 0

If f is submodular, then F is concave along any line of direction d � 0, and is
convex along any line of direction 1

v

� 1
w

for any v, w 2 V .

Another connection between submodularity and convexity/concavity

but note, unlike the Lovász extension, this function is neither.
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Submodular Max and polyhedral approaches

Basic idea: Given a set of constraints I, we form a polytope PI such
that {1

I

: I 2 I} ✓ PI

We find max
x2PI F (x) where F (x) is the multi-linear extension of f ,

to find a fractional solution x⇤

We then round x⇤ to a point on the hypercube, thus giving us a
solution to the discrete problem.
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Submodular Max and polyhedral approaches

In the recent paper by Chekuri, Vondrak, and Zenklusen, they show:

1) constant factor approximation algorithm for max {F (x) : x 2 P} for
any down-monotone solvable polytope P and F multilinear extension
of any non-negative submodular function.

2) A randomized rounding (pipage rounding) scheme to obtain an
integer solution

3) An optimal (1� 1/e) instance of their rounding scheme that can be
used for a variety of interesting independence systems, including O(1)
knapsacks, k matroids and O(1) knapsacks, a k-matchoid and ` sparse
packing integer programs, and unsplittable flow in paths and trees.

Also, Vondrak showed that this scheme achieves the 1
c

(1� e�c)
curvature based bound for any matroid, which matches the bound we
had earlier for uniform matroids with standard greedy.

In practice, one needs to do Monte-Carlo methods to estimate the
multilinear extension (so further approximations would apply).
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