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Cumulative Outstanding Reading

Read chapters 2 and 3 from Fujishige’s book.

Read chapter 1 from Fujishige’s book.
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Announcements, Assignments, and Reminders

Homework 4, soon available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments)

Homework 3, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (5/2) at 11:55pm.

Homework 2, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (4/18) at 11:55pm.

Homework 1, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Friday (4/8) at 11:55pm.

Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google
hangout (set up meeting via our our discussion board (https:
//canvas.uw.edu/courses/1039754/discussion_topics)).
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Class Road Map - IT-I
L1(3/28): Motivation, Applications, &
Basic Definitions

L2(3/30): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).

L3(4/4): Info theory exs, more apps,
definitions, graph/combinatorial examples,
matrix rank example, visualization

L4(4/6): Graph and Combinatorial
Examples, matrix rank, Venn diagrams,
examples of proofs of submodularity, some
useful properties

L5(4/11): Examples & Properties, Other
Defs., Independence

L6(4/13): Independence, Matroids,
Matroid Examples, matroid rank is
submodular

L7(4/18): Matroid Rank, More on
Partition Matroid, System of Distinct
Reps, Transversals, Transversal Matroid,

L8(4/20): Transversals, Matroid and
representation, Dual Matroids,

L9(4/25): Dual Matroids, Properties,
Combinatorial Geometries, Matroid and
Greedy

L10(4/27): Matroid and Greedy,
Polyhedra, Matroid Polytopes,

L11(5/2): From Matroids to
Polymatroids, Polymatroids

L12(5/4): Polymatroids, Polymatroids
and Greedy

L13(5/9): Polymatroids and Greedy;
Possible Polytopes; Extreme Points;
Polymatroids, Greedy, and Cardinality
Constrained Maximization

L14(5/11):

L15(5/16):

L16(5/18):

L17(5/23):

L18(5/25):

L19(6/1):

L20(6/6): Final Presentations
maximization.

Finals Week: June 6th-10th, 2016.
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Logistics Review

Matroid and Polymatroid: side-by-side

A Matroid is:

1 a set system (E, I)
2 empty-set containing ∅ ∈ I
3 down closed, ∅ ⊆ I ′ ⊆ I ∈ I ⇒ I ′ ∈ I.

4 any maximal set I in I, bounded by another set A, has the same
matroid rank (any maximal independent subset I ⊆ A has same size
|I|).

A Polymatroid is:

1 a compact set P ⊆ RE
+

2 zero containing, 0 ∈ P
3 down monotone, 0 ≤ y ≤ x ∈ P ⇒ y ∈ P
4 any maximal vector y in P , bounded by another vector x, has the

same vector rank (any maximal independent subvector y ≤ x has same
sum y(E)).
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A polymatroid vs. a polymatroid function’s polyhedron

Summarizing the above, we have:

Given a polymatroid function f , its associated polytope is given as

P+
f =

{
y ∈ RE

+ : y(A) ≤ f(A) for all A ⊆ E
}

(12.10)

We also have the definition of a polymatroidal polytope P (compact
subset, zero containing, down-monotone, and ∀x any maximal
independent subvector y ≤ x has same component sum y(E)).

Is there any relationship between these two polytopes?

In the next theorem, we show that any P+
f -basis has the same

component sum, when f is a polymatroid function, and P+
f satisfies

the other properties so that P+
f is a polymatroid.
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A polymatroid function’s polyhedron is a polymatroid.

Theorem 12.2.1

Let f be a polymatroid function defined on subsets of E. For any x ∈ RE
+,

and any P+
f -basis yx ∈ RE

+ of x, the component sum of yx is

yx(E) = rank(x) = max
(
y(E) : y ≤ x, y ∈ P+

f

)

= min (x(A) + f(E \A) : A ⊆ E) (12.10)

As a consequence, P+
f is a polymatroid, since r.h.s. is constant w.r.t. yx.

Taking E \B = supp(x) (so elements B are all zeros in x), and for b /∈ B
we make x(b) is big enough, the r.h.s. min has solution A∗ = B. We recover
submodular function from the polymatroid polyhedron via the following:

rank

(
1

ε
1E\B

)
= f(B) = max

{
y(B) : y ∈ P+

f

}
(12.11)

In fact, we will ultimately see a number of important consequences of this
theorem (other than just that P+

f is a polymatroid)
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A polymatroid is a polymatroid function’s polytope

So, when f is a polymatroid function, P+
f is a polymatroid.

Is it the case that, conversely, for any polymatroid P , there is an
associated polymatroidal function f such that P = P+

f ?

Theorem 12.2.1

For any polymatroid P (compact subset of RE
+, zero containing, down-monotone,

and ∀x ∈ RE
+ any maximal independent subvector y ≤ x has same component sum

y(E) = rank(x)), there is a polymatroid function f : 2E → R (normalized,

monotone non-decreasing, submodular) such that P = P+
f where

P+
f =

{
x ∈ RE : x ≥ 0, x(A) ≤ f(A), ∀A ⊆ E

}
.
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Tight sets D(y) are closed, and max tight set sat(y)

Recall the definition of the set of tight sets at y ∈ P+
f :

D(y) , {A : A ⊆ E, y(A) = f(A)} (12.10)

Theorem 12.2.1

For any y ∈ P+
f , with f a polymatroid function, then D(y) is closed under

union and intersection.

Proof.

We have already proven this as part of Theorem 11.4.1

Also recall the definition of sat(y), the maximal set of tight elements
relative to y ∈ RE

+.

sat(y)
def
=
⋃
{T : T ∈ D(y)} (12.11)
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Vector rank, rank(x), is submodular

Recall that the matroid rank function is submodular.

The vector rank function rank(x) also satisfies a form of
submodularity, namely one defined on the real lattice.

Theorem 12.2.1 (vector rank and submodularity)

Let P be a polymatroid polytope. The vector rank function rank : RE
+ → R

with rank(x) = max (y(E) : y ≤ x, y ∈ P ) satisfies, for all u, v ∈ RE
+

rank(u) + rank(v) ≥ rank(u ∨ v) + rank(u ∧ v) (12.10)
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Polymatroidal polyhedron and greedy

Let (E, I) be a set system and w ∈ RE
+ be a weight vector.

Recall greedy algorithm: Set A = ∅, and repeatedly choose y ∈ E \A
such that A ∪ {y} ∈ I with w(y) as large as possible, stopping when
no such y exists.

For a matroid, we saw that independence system (E, I) is a matroid iff
for each weight function w ∈ RE

+, the greedy algorithm leads to a set
I ∈ I of maximum weight w(I).

Stated succinctly, considering max {w(I) : I ∈ I}, then (E, I) is a
matroid iff greedy works for this maximization.

Can we also characterize a polymatroid in this way?

That is, if we consider max
{
wx : x ∈ P+

f

}
, where P+

f represents the

“independent vectors”, is it the case that P+
f is a polymatroid iff

greedy works for this maximization?

Can we, ultimately, even relax things so that w ∈ RE?
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Polymatroidal polyhedron and greedy

What is the greedy solution in this setting, when w ∈ RE?
Sort elements of E w.r.t. w so that, w.l.o.g.
E = (e1, e2, . . . , em) with w(e1) ≥ w(e2) ≥ · · · ≥ w(em).
Let k + 1 be the first point (if any) at which we are non-positive, i.e.,
w(ek) > 0 and 0 ≥ w(ek+1).
That is, we have

w(e1) ≥ w(e2) ≥ · · · ≥ w(ek) > 0 ≥ w(ek+1) ≥ · · · ≥ w(em) (12.30)

Next define partial accumulated sets Ei, for i = 0 . . .m, we have w.r.t.
the above sorted order:

Ei
def
= {e1, e2, . . . ei} (12.32)

(note E0 = ∅, f(E0) = 0, and E and Ei is always sorted w.r.t w).
The greedy solution is the vector x ∈ RE

+ with elements defined as:

x(e1)
def
= f(E1) = f(e1) = f(e1|E0) = f(e1|∅) (12.33)

x(ei)
def
= f(Ei)− f(Ei−1) = f(ei|Ei−1) for i = 2 . . . k (12.34)

x(ei)
def
= 0 for i = k + 1 . . .m = |E| (12.35)
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Polymatroidal polyhedron and greedy

Proof.

Next, y is also feasible for the dual constraints in Eq. ?? since:

Next, we check that y is dual feasible. Clearly, y ≥ 0,

and also, considering y component wise, for any i, we have that

∑

A:ei∈A
yA =

∑

j≥i
yEj =

m−1∑

j=i

(w(ej)− w(ej+1)) + w(em) = w(ei).

Now optimality for x and y follows from strong duality, i.e.:

wx =
∑

e∈E
w(e)x(e) =

m∑

i=1

w(ei)f(ei|Ei−1) =
m∑

i=1

w(ei)
(
f(Ei)− f(Ei−1)

)

=
m−1∑

i=1

f(Ei)
(
w(ei)− w(ei+1)

)
+ f(E)w(em) =

∑

A⊆E
yAf(A)

. . .
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Polymatroidal polyhedron and greedy

Theorem 12.3.1

Conversely, suppose P+
f is a polytope of form

P+
f =

{
x ∈ RE

+ : x(A) ≤ f(A), ∀A ⊆ E
}

, then the greedy solution to
max(wx : x ∈ P ) is optimum only if f is submodular.

Proof.

Choose A and B arbitrarily, and then order elements of E as
(e1, e2, . . . , em), with Ei = (e1, e2, . . . , ei), so the following is true:

For 1 ≤ p ≤ q ≤ m, A = {e1, e2, . . . , ek, ek+1, . . . , ep} = Ep and
B = {e1, e2, . . . , ek, ep+1, . . . , eq} = Ek ∪ (Eq \ Ep)

Note, then we have A ∩B = {e1, . . . , ek} = Ek, and A ∪B = Eq.

Define w ∈ {0, 1}m as:

w
def
=

q∑

i=1

1ei = 1A∪B (12.1)

Suppose optimum solution x is given by the greedy procedure.

. . .
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Polymatroidal polyhedron and greedy

Proof.

Then

k∑

i=1

xi = f(E1) +
k∑

i=2

(f(Ei)− f(Ei−1)) = f(Ek) = f(A ∩B)

(12.2)

and

p∑

i=1

xi = f(E1) +

p∑

i=2

(f(Ei)− f(Ei−1)) = f(Ep) = f(A) (12.3)

and

q∑

i=1

xi = f(E1) +

q∑

i=2

(f(Ei)− f(Ei−1)) = f(Eq) = f(A ∪B) (12.4). . .
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Polymatroidal polyhedron and greedy

Proof.

Thus, we have

x(B) =
∑

i∈1,...,k,p+1,...,q

xi =
∑

i:ei∈B
xi = f(A ∪B) + f(A ∩B)− f(A)

(12.5)

But given that the greedy algorithm gives the optimal solution to
max(wx : x ∈ P+

f ), we have that x ∈ P+
f and thus x(B) ≤ f(B).

Thus,

x(B) = f(A ∪B) + f(A ∩B)− f(A) =
∑

i:ei∈B
xi ≤ f(B) (12.6)

ensuring the submodularity of f , since A and B are arbitrary.
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Review from Lecture 9

The next slide comes from lecture 9.
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Matroid and the greedy algorithm

Let (E, I) be an independence system, and we are given a
non-negative modular weight function w : E → R+.

Algorithm 1: The Matroid Greedy Algorithm

1 Set X ← ∅ ;
2 while ∃v ∈ E \X s.t. X ∪ {v} ∈ I do
3 v ∈ argmax {w(v) : v ∈ E \X, X ∪ {v} ∈ I} ;
4 X ← X ∪ {v} ;

Same as sorting items by decreasing weight w, and then choosing
items in that order that retain independence.

Theorem 12.3.7

Let (E, I) be an independence system. Then the pair (E, I) is a matroid if
and only if for each weight function w ∈ RE

+, Algorithm 1 above leads to a
set I ∈ I of maximum weight w(I).
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Polymatroidal polyhedron and greedy

Thus, restating the above results into a single complete theorem, we
have a result very similar to what we saw for matroids (i.e.,
Theorem 10.5.1)

Theorem 12.3.1

If f : 2E → R+ is given, and P is a polytope in RE
+ of the form

P =
{
x ∈ RE

+ : x(A) ≤ f(A), ∀A ⊆ E
}

, then the greedy solution to the
problem max(wx : x ∈ P ) is ∀w optimum iff f is monotone non-decreasing
submodular (i.e., iff P is a polymatroid).
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Multiple Polytopes associated with arbitrary f

Given an arbitrary submodular function f : 2V → R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).
If f(∅) 6= 0, can set f ′(A) = f(A)− f(∅) without destroying
submodularity. This does not change any minima, (i.e.,
argminA f(A) = argminA′ f

′(A)) so assume all functions are
normalized f(∅) = 0.
Note that due to constraint x(∅) ≤ f(∅), we must have f(∅) ≥ 0 since if not (i.e., if
f(∅) < 0), then P+

f doesn’t exist.
Another form of normalization can do is:

f ′(A) =

{
f(A) if A 6= ∅
0 if A = ∅

(12.7)

This preserves submodularity due to f(A) + f(B) ≥ f(A ∪B) + f(A ∩B), and if
A ∩B = ∅ then r.h.s. only gets smaller when f(∅) ≥ 0.

We can define several polytopes:

Pf =
{
x ∈ RE : x(S) ≤ f(S),∀S ⊆ E

}
(12.8)

P+
f = Pf ∩

{
x ∈ RE : x ≥ 0

}
(12.9)

Bf = Pf ∩
{
x ∈ RE : x(E) = f(E)

}
(12.10)

Pf is what is sometimes called the extended polytope (sometimes
notated as EPf .
P+
f is Pf restricted to the positive orthant.
Bf is called the base polytope, analogous to the base in matroid.
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Multiple Polytopes associated with f

PfP+
f

Bf

Pf
P+
f

Bf

Pf
P+
f

Bf

P+
f = Pf ∩

{
x ∈ RE : x ≥ 0

}
(12.11)

Pf =
{
x ∈ RE : x(S) ≤ f(S),∀S ⊆ E

}
(12.12)

Bf = Pf ∩
{
x ∈ RE : x(E) = f(E)

}
(12.13)
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Base Polytope in 3D
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Pf =
{
x ∈ RE : x(S) ≤ f(S),∀S ⊆ E

}
(12.14)

Bf = Pf ∩
{
x ∈ RE : x(E) = f(E)

}
(12.15)
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A polymatroid function’s polyhedron is a polymatroid.

Theorem 12.4.1

Let f be a submodular function defined on subsets of E. For any x ∈ RE ,
we have:

rank(x) = max (y(E) : y ≤ x, y ∈ Pf ) = min (x(A) + f(E \A) : A ⊆ E)
(12.16)

Essentially the same theorem as Theorem 11.4.1, but note Pf rather than
P+
f . Taking x = 0 we get:

Corollary 12.4.2

Let f be a submodular function defined on subsets of E. x ∈ RE , we have:

rank(0) = max (y(E) : y ≤ 0, y ∈ Pf ) = min (f(A) : A ⊆ E) (12.17)
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Proof of Theorem 12.4.1

Proof of Theorem 12.4.1.

Let y∗ be the optimal solution of the l.h.s. and let A ⊆ E be any
subset.

Then y∗(E) = y∗(A) + y∗(E \A) ≤ f(A) + x(E \A) since if y∗ ∈ Pf ,
y∗(A) ≤ f(A) and since y∗ ≤ x, y∗(E \A) ≤ x(E \A). This is a form
of weak duality.

Also, for any e ∈ E, if y∗(e) < x(e) then there must be some reason
for this other than the constraint y∗ ≤ x, namely it must be that
∃T ∈ D(x) with e ∈ T (i.e., e is a member of at least one of the tight
sets).

Hence, for all e /∈ sat(y∗) we have y∗(e) = x(e), and moreover
y∗(sat(y∗)) = f(sat(y∗)) by definition.

Thus we have that
y∗(sat(y∗)) + y∗(E \ sat(y∗)) = f(sat(y∗)) + x(E \ sat(y∗)), strong
duality, showing that the two sides are equal for y∗.
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Greedy and Pf

In Theorem ??, we can relax P+
f to Pf (prime and dual feasibiity still

hold as does strong duality).

The proof, that is, shows that x ∈ Pf , not just P+
f .

If ∃e such that w(e) < 0 then max(wx : x ∈ Pf ) =∞ since we can let
xe →∞, unless we ignore the negative elements or assume w ≥ 0.

Moreover, in either Pf , or P+
f case, since the greedy constructed an x

has x(E) = f(E), we have that the greedy x ∈ Bf .

In fact, we will see, in the next section, that the greedy x is a vertex of
Bf .
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Greedy and Pf

Recall that Theorem 11.4.1 states that
max

(
y(E) : y ≤ x, y ∈ P+

f

)
= min (x(A) + f(E \A) : A ⊆ E)

Theorem ?? states that greedy algorithm maximizes wx over P+
f for

w ∈ RE
+ with f being submodular.

Above implies that Theorem ?? can be generalized to over Pf and
that greedy solution gives a point in Bf , even for arbitrary finite w.
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Polymatroid extreme points
The greedy algorithm does more than solve max(wx : x ∈ P+

f ). We
can use it to generate vertices of polymatroidal polytopes.

Consider P+
f and also C+

f
def
=
{
x : x ∈ RE

+, x(e) ≤ f(e),∀e ∈ E
}

Then ordering A = (a1, . . . , a|A|) arbitrarily with Ai = {a1, . . . , ai},
f(A) =

∑
i f(ai|Ai−1) ≤

∑
i f(ai), and hence P+

f ⊆ C+
f .
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Polymatroid extreme points
Since w ∈ RE

+ is arbitrary, it may be that any e ∈ E is max (i.e., is
such that w(e) > w(e′) for e′ ∈ E \ {e}).

Thus, intuitively, any first vertex of the polytope away from the origin
might be obtained by advancing along the corresponding axis.

Recall, base polytope defined as the extreme face of Pf . I.e.,

Bf = Pf ∩
{
x ∈ RE

+ : x(E) = f(E)
}

(12.18)

Also, intuitively, we can continue advancing along the skeletal edges of
the polytope to reach any other vertex, given the appropriate ordering.
If we advance in all dimensions, we’ll reach a vertex in Bf , and if we
advance only in some dimensions, we’ll reach a vertex in Pf \Bf .

We formalize this next:
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Polymatroid extreme points
Given any arbitrary order of E = (e1, e2, . . . , em), define
Ei = (e1, e2, . . . , ei).

As before, a vector x is generated by Ei using the greedy procedure as
follows

x(e1) = f(E1) = f(e1) (12.19)

x(ej) = f(Ej)− f(Ej−1) = f(ej |Ej−1) for 2 ≤ j ≤ i (12.20)

x(e) = 0 for e ∈ E \ Ei (12.21)

An extreme point of Pf is a point that is not a convex combination of
two other distinct points in Pf . Equivalently, an extreme point
corresponds to setting certain inequalities in the specification of Pf to
be equalities, so that there is a unique single point solution.
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Polymatroid extreme points

Theorem 12.5.1

For a given ordering E = (e1, . . . , em) of E and a given Ei = (e1, . . . , ei)
and x generated by Ei using the greedy procedure (x(ei) = f(ei|Ei−1)),
then x is an extreme point of Pf

Proof.

We already saw that x ∈ Pf (Theorem ??).

To show that x is an extreme point of Pf , note that it is the unique
solution of the following system of equations

x(Ej) = f(Ej) for 1 ≤ j ≤ i ≤ m (12.22)

x(e) = 0 for e ∈ E \ Ei (12.23)

There are i ≤ m equations and i ≤ m unknowns, and simple Gaussian
elimination gives us back the x constructed via the Greedy algorithm!!
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Polymatroid extreme points
As an example, we have x(E1) = x(e1) = f(e1)

x(E2) = x(e1) + x(e2) = f(e1, e2) so
x(e2) = f(e1, e2)− x(e1) = f(e1, e2)− f(e1) = f(e2|e1).
x(E3) = x(e1) + x(e2) + x(e3) = f(e1, e2, e3) so x(e3) =
f(e1, e2, e3)− x(e2)− x(e1) = f(e1, e2, e3)− f(e1, e2) = f(e3|e1, e2)
And so on . . . , but we see that this is just Gaussian elimination.

Also, since x ∈ Pf , for each i, we see that,

x(Ej) = f(Ej) for 1 ≤ j ≤ i (12.24)

x(A) ≤ f(A),∀A ⊆ E (12.25)

Thus, the greedy procedure provides a modular function lower bound
on f that is tight on all points Ei in the order. This can be useful in
its own right, as it provides subgradients and subdifferential structure.
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Polymatroid extreme points
some examples
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Polymatroid extreme points
Moreover, we have (and will ultimately prove)

Corollary 12.5.2

If x is an extreme point of Pf and B ⊆ E is given such that
supp(x) = {e ∈ E : x(e) 6= 0} ⊆ B ⊆ ∪(A : x(A) = f(A)) = sat(x), then
x is generated using greedy by some ordering of B.

Note, sat(x) = cl(x) = ∪(A : x(A) = f(A)) is also called the closure
of x (recall that sets A such that x(A) = f(A) are called tight, and
such sets are closed under union and intersection, as seen in Lecture 8,
Theorem 12.2.1)

Thus, cl(x) is a tight set.

Also, supp(x) = {e ∈ E : x(e) 6= 0} is called the support of x.

For arbitrary x, supp(x) is not necessarily tight, but for an extreme
point, supp(x) is.
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Polymatroid with labeled edge lengths
Recall
f(e|A) = f(A+e)−f(A)
Notice how
submodularity,
f(e|B) ≤ f(e|A) for
A ⊆ B, defines the
shape of the polytope.

In fact, we have
strictness here
f(e|B) < f(e|A) for
A ⊂ B.

Also, consider how the
greedy algorithm
proceeds along the edges
of the polytope.

e1

e2

f(e1)

f(e1|e2)

f(e
2)

f(e
2|e

1)
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Polymatroid with labeled edge lengths

Recall
f(e|A) = f(A+e)−f(A)
Notice how
submodularity,
f(e|B) ≤ f(e|A) for
A ⊆ B, defines the
shape of the polytope.

In fact, we have
strictness here
f(e|B) < f(e|A) for
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Intuition: why greedy works with polymatroids

Given w, the goal is
to find
x = (x(e1), x(e2))
that maximizes
xᵀw = x(e1)w(e1) +
x(e2)w(e2).

If w(e2) > w(e1) the
upper extreme point
indicated maximizes
xᵀw over x ∈ P+

f .

If w(e2) < w(e1) the
lower extreme point
indicated maximizes
xᵀw over x ∈ P+

f . e1
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f(e1)

f(e1|e2)

f(e
2)

f(e
2|e

1)
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Maximization of Submodular Functions

Submodular maximization is quite useful.

Applications: sensor placement, facility location, document
summarization, or any kind of covering problem (choose a small set of
elements that cover some domain as much as possible).

For polymatroid function (or any monotone non-decreasing function),
unconstrained maximization is trivial (take ground set).

Thus, when we do monotone submodular maximization, we either

Find the maximum under some constraint
Find the maximum for a non-polymatroid submodular function
Do both.

There is also a sort of dual problem that is often considered together
with max, and those are minimum cover problems (to be defined).
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The Set Cover Problem

Let E be a ground set and let E1, E2, . . . , Em be a set of subsets.

Let V = {1, 2, . . . ,m} be the set of integers.

Define f : 2V → Z+ as f(X) = |⋃v∈X Ev|
Then f is the set cover function. As we say, f is monotone
submodular (a polymatroid).

The set cover problem asks for the smallest subset X of V such that
f(X) = |E| (smallest subset of the subsets of E) where E is still
covered. I.e.,

minimize|X| subject to f(X) ≥ |E| (12.26)

We might wish to use a more general modular function m(X) rather
than cardinality |X|.
This problem is NP-hard, and Feige in 1998 showed that it cannot be
approximated with a ratio better than (1− ε) log n unless NP is
slightly superpolynomial (nO(log logn)).
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What About Non-monotone

So even simple case of cardinality constrained submodular function
maximization is NP-hard.

This will be true of most submodular max (and related) problems.

Hence, the only hope is approximation algorithms. Question is, what is
the tradeoff between running time and approximation quality, and is it
possible to get tight bounds (i.e., an algorithm that achieves an
approximation ratio, and a proof that one can’t do better than that
unless some extremely unlike event were to be true, such as P=NP).
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The Max k-Cover Problem

Let E be a ground set and let E1, E2, . . . , Em be a set of subsets.

Let V = {1, 2, . . . ,m} be the set of integers.

Define f : 2V → Z+ as f(X) = |⋃v∈V Ev|
Then f is the set cover function. As we saw, f is monotone
submodular (a polymatroid).

The max k cover problem asks, given a k, what sized k set of sets X
can we choose that covers the most? I.e., that maximizes f(X) as in:

max f(X) subject to |X| ≤ k (12.27)

This problem is NP-hard, and Feige in 1998 showed that it cannot be
approximated with a ratio better than (1− 1/e).
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Cardinality Constrained Max. of Polymatroid Functions

Now we are given an arbitrary polymatroid function f .

Given k, goal is: find A∗ ∈ argmax {f(A) : |A| ≤ k}
w.l.o.g., we can find A∗ ∈ argmax {f(A) : |A| = k}
An important result by Nemhauser et. al. (1978) states that for
normalized (f(∅) = 0) monotone submodular functions (i.e.,
polymatroids) can be approximately maximized using a simple greedy
algorithm.

Starting with S0 = ∅, we repeat the following greedy step for
i = 0 . . . (k − 1):

Si+1 = Si ∪
{
argmax
v∈V \Si

f(Si ∪ {v})
}

(12.28)
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The Greedy Algorithm for Submodular Max

A bit more precisely:

Algorithm 1: The Greedy Algorithm

1 Set S0 ← ∅ ;
2 for i← 0 . . . |E| − 1 do
3 Choose vi as follows:

vi ∈
{
argmaxv∈V \Si

f({v}|Si)
}
=
{
argmaxv∈V \Si

f(Si ∪ {v})
}

;

4 Set Si+1 ← Si ∪ {vi} ;
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Greedy Algorithm for Card. Constrained Submodular Max

This algorithm has a guarantee

Theorem 12.6.1

Given a polymatroid function f , the above greedy algorithm returns sets Si
such that for each i we have f(Si) ≥ (1− 1/e)max|S|≤i f(S).

To find A∗ ∈ argmax {f(A) : |A| ≤ k}, we repeat the greedy step
until k = i+ 1:

Again, since this generalizes max k-cover, Feige (1998) showed that
this can’t be improved. Unless P = NP , no polynomial time algorithm
can do better than (1− 1/e+ ε) for any ε > 0.
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The Greedy Algorithm: 1− 1/e intuition.
At step i < k, greedy chooses vi to maximize f(v|Si).
Let S∗ be optimal solution (of size k) and OPT = f(S∗). By
submodularity, we will show:

∃v ∈ V \ Si : f(v|Si) = f(Si + v|Si) ≥
1

k
(OPT− f(Si)) (12.29)

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15
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0.35

0.4

(
1 − 1

k

)k

1

e

k

Equation (12.38) will
show that
Equation (12.29) ⇒:

OPT− f(Si+1)

≤ (1− 1/k)(OPT− f(Si))
⇒ OPT− f(Sk)
≤ (1− 1/k)kOPT

≤ 1/eOPT

⇒ OPT(1− 1/e) ≤ f(Sk)
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Cardinality Constrained Polymatroid Max Theorem

Theorem 12.6.2 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V → R+, define
{Si}i≥0 to be the chain formed by the greedy algorithm (Eqn. (12.28)).
Then for all k, ` ∈ Z++, we have:

f(S`) ≥ (1− e−`/k) max
S:|S|≤k

f(S) (12.30)

and in particular, for ` = k, we have f(Sk) ≥ (1− 1/e)maxS:|S|≤k f(S).

k is size of optimal set, i.e., OPT = f(S∗) with |S∗| = k

` is size of set we are choosing (i.e., we choose S` from greedy chain).

Bound is how well does S` (of size `) do relative to S∗, the optimal set of
size k.

Intuitively, bound should get worse when ` < k and get better when
` > k.
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Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 12.6.2.

Fix ` (number of items greedy will chose) and k (size of optimal set to
compare against).

Set S∗ ∈ argmax {f(S) : |S| ≤ k}
w.l.o.g. assume |S∗| = k.

Order S∗ = (v∗1, v
∗
2, . . . , v

∗
k) arbitrarily.

Let Si = (v1, v2, . . . , vi) be the greedy order chain chosen by the
algorithm, for i ∈ {1, 2, . . . , `}.
Then the following inequalities (on the next slide) follow:

. . .
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Cardinality Constrained Polymatroid Max Theorem

. . . proof of Theorem 12.6.2 cont.

For all i < `, we have

f(S∗) ≤ f(S∗ ∪ Si) = f(Si) + f(S∗|Si) (12.31)

= f(Si) +
k∑

j=1

f(v∗j |Si ∪
{
v∗1, v

∗
2, . . . , v

∗
j−1
}
) (12.32)

≤ f(Si) +
∑

v∈S∗
f(v|Si) (12.33)

≤ f(Si) +
∑

v∈S∗
f(vi+1|Si) = f(Si) +

∑

v∈S∗
f(Si+1|Si) (12.34)

= f(Si) + kf(Si+1|Si) (12.35)

Therefore, we have Equation 12.29, i.e.,:

f(S∗)− f(Si) ≤ kf(Si+1|Si) = k(f(Si+1)− f(Si)) (12.36)

. . .
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Cardinality Constrained Polymatroid Max Theorem

. . . proof of Theorem 12.6.2 cont.

Define δi , f(S∗)− f(Si), so δi − δi+1 = f(Si+1)− f(Si), giving

δi ≤ k(δi − δi+1) (12.37)

or

δi+1 ≤ (1− 1

k
)δi (12.38)

The relationship between δ0 and δ` is then

δl ≤ (1− 1

k
)`δ0 (12.39)

Now, δ0 = f(S∗)− f(∅) ≤ f(S∗) since f ≥ 0.

Also, by variational bound 1− x ≤ e−x for x ∈ R, we have

δ` ≤ (1− 1

k
)`δ0 ≤ e−`/kf(S∗) (12.40)

. . .
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Cardinality Constrained Polymatroid Max Theorem

. . . proof of Theorem 12.6.2 cont.

When we identify δl = f(S∗)− f(S`), a bit of rearranging then gives:

f(S`) ≥ (1− e−`/k)f(S∗) (12.41)

With ` = k, when picking k items, greedy gets (1− 1/e) ≈ 0.6321
bound. This means that if Sk is greedy solution of size k, and S∗ is an
optimal solution of size k, f(Sk) ≥ (1− 1/e)f(S∗) ≈ 0.6321f(S∗).

What if we want to guarantee a solution no worse than .95f(S∗) where
|S∗| = k? Set 0.95 = (1− e−`/k), which gives
` = d−k ln(1− 0.95)e = 4k. And d− ln(1− 0.999)e = 7.

So solution, in the worst case, quickly gets very good. Typical/practical
case is much better.
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Greedy running time

Greedy computes a new maximum n = |V | times, and each maximum
computation requires O(n) comparisons, leading to O(n2)
computation for greedy.

This is the best we can do for arbitrary functions, but O(n2) is not
practical to some.

Greedy can be made much faster in practice by a simple strategy made
possible, once again, via the use of submodularity.

This is called Minoux’s 1977 Accelerated Greedy strategy (and has
been rediscovered a few times, e.g., “Lazy greedy”), and runs much
faster while still producing same answer.

We describe it next:
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Minoux’s Accelerated Greedy for Submodular Functions

At stage i in the algorithm, we have a set of gains f(v|Si) for all
v /∈ Si. Store these values αv ← f(v|Si) in sorted priority queue.

Priority queue, O(1) to find max, O(log n) to insert in right place.

Once we choose a max v, then set Si+1 ← Si + v.

For v /∈ Si+1 we have f(v|Si+1) ≤ f(v|Si) by submodularity.

Therefore, if we find a v′ such that f(v′|Si+1) ≥ αv for all v 6= v′, then
since

f(v′|Si+1) ≥ αv = f(v|Si) ≥ f(v|Si+1) (12.42)

we have the true max, and we need not re-evaluate gains of other
elements again.

Strategy is: find the argmaxv′∈V \Si+1
αv′ , and then compute the real

f(v′|Si+1). If it is greater than all other αv’s then that’s the next
greedy step. Otherwise, replace αv′ with its real value, resort, and
repeat.
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Minoux’s Accelerated Greedy for Submodular Functions

Minoux’s algorithm is exact, in that it has the same guarantees as does
the O(n2) greedy Algorithm 2 (this means it will return either the
same answers, or answers that have the 1− 1/e guarantee).

In practice: Minoux’s trick has enormous speedups (≈ 700×) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).

When choosing a of size k, näıve greedy algorithm is O(nk) but
accelerated variant at the very best does O(n+ k), so this limits the
speedup.

Algorithm has been rediscovered (I think) independently (CELF -
cost-effective lazy forward selection, Leskovec et al., 2007)

Can be used used for “big data” sets (e.g., social networks, selecting
blogs of greatest influence, document summarization, etc.).
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Priority Queue

Use a priority queue Q as a data structure: operations include:
Insert an item (v, α) into queue, with v ∈ V and α ∈ R.

insert(Q, (v, α)) (12.43)

Pop the item (v, α) with maximum value α off the queue.

(v, α)← pop(Q) (12.44)

Query the value of the max item in the queue

max(Q) ∈ R (12.45)

On next slide, we call a popped item “fresh” if the value (v, α) popped has
the correct value α = f(v|Si). Use extra “bit” to store this info

If a popped item is fresh, it must be the maximum — this can happen if,
at given iteration, v was first popped and neither fresh nor maximum so
placed back in the queue, and it then percolates back to the top at which
point it is fresh — thereby avoid extra queue check.
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Minoux’s Accelerated Greedy Algorithm Submodular Max

Algorithm 2: Minoux’s Accelerated Greedy Algorithm

1 Set S0 ← ∅ ; i← 0 ; Initialize priority queue Q ;
2 for v ∈ E do
3 INSERT(Q, f(v))

4 repeat
5 (v, α)← pop(Q) ;
6 if α not “fresh” then
7 recompute α← f(v|Si)
8 if (popped α in line 5 was “fresh”) OR (α ≥ max(Q)) then
9 Set Si+1 ← Si ∪ {v} ;

10 i← i+ 1 ;

11 else
12 insert(Q, (v, α))

13 until i = |E|;
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Minimum Submodular Cover

Given polymatroid f , goal is to find a covering set of minimum cost:

S∗ ∈ argmin
S⊆V

|S| such that f(S) ≥ α (12.46)

where α is a “cover” requirement.

Normally take α = f(V ) but defining f ′(A) = min {f(A), α} we can
take any α. Hence, we have equivalent formulation:

S∗ ∈ argmin
S⊆V

|S| such that f ′(S) ≥ f ′(V ) (12.47)

Note that this immediately generalizes standard set cover, in which
case f(A) is the cardinality of the union of sets indexed by A.

Algorithm: Pick the first Si chosen by aforementioned greedy
algorithm such that f(Si) ≥ α.

For integer valued f , this greedy algorithm an O(log(maxs∈V f({s})))
approximation. Set cover is hard to approximate with a factor better
than (1− ε) logα, where α is the desired cover constraint.
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Summary: Monotone Submodular Maximization

Only makes sense when there is a constraint.

We discussed cardinality constraint

Generalizes the max k-cover problem, and also similar to the set cover
problem.

Simple greedy algorithm gets 1− e−`/k approximation, where k is size
of optimal set we compare against, and ` is size of set greedy
algorithm chooses.

Submodular cover: min. |S| s.t. f(S) ≥ α.

Minoux’s accelerated greedy trick.
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