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Cumulative Outstanding Reading

@ Read chapters 2 and 3 from Fujishige's book.
@ Read chapter 1 from Fujishige's book.
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Announcements, Assignments, and Reminders

@ Homework 4, soon available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments)

@ Homework 3, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (5/2) at 11:55pm.

Homework 2, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (4/18) at 11:55pm.

Homework 1, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Friday (4/8) at 11:55pm.

Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google
hangout (set up meeting via our our discussion board (https:
//canvas.uw.edu/courses/1039754/discussion_topics)).
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Class Road Map - IT-I

@ L1(3/28): Motivation, Applications, & @ L11(5/2): From Matroids to
Basic Definitions Polymatroids, Polymatroids
@ L2(3/30): Machine Learning Apps @ L12(5/4): Polymatroids, Polymatroids
(diversity, complexity, parameter, learning and Greedy
target, surrogate). @ L13(5/9): Polymatroids and Greedy;
@ L3(4/4): Info theory exs, more apps, Possible Polytopes; Extreme Points;
definitions, graph/combinatorial examples, Polymatroids, Greedy, and Cardinality
matrix rank example, visualization Constrained Maximization

@ L4(4/6): Graph and Combinatorial
Examples, matrix rank, Venn diagrams,
examples of proofs of submodularity, some
useful properties

L5(4/11): Examples & Properties, Other
Defs., Independence

@ L6(4/13): Independence, Matroids,
Matroid Examples, matroid rank is
submodular

L7(4/18): Matroid Rank, More on
Partition Matroid, System of Distinct
Reps, Transversals, Transversal Matroid,
L8(4/20): Transversals, Matroid and
representation, Dual Matroids,

L9(4/25): Dual Matroids, Properties,
Combinatorial Geometries, Matroid and
Greedy

L10(4/27): Matroid and Greedy,
Polyhedra, Matroid Polytopes,

L14(5/11):

°
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L20(6/6): Final Presentations
maximization.

Finals Week: June 6th-10th, 2016.
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Matroid and Polymatroid: side-by-side

A Matroid is:

a set system (E,7)

empty-set containing ) € Z
downclosed, ) CI'CI eI =1 €cT.

any maximal set I in Z, bounded by another set A, has the same
matroid rank (any maximal independent subset I C A has same size

171)-

A Polymatroid is:

©0 00

a compact set P C Rf
zero containing, 0 € P

down monotone, 0 <y<zxreP=yecP

©0 00

any maximal vector y in P, bounded by another vector x, has the
same vector rank (any maximal independent subvector y < x has same
sum y(E)).
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A polymatroid vs. a polymatroid function’s polyhedron

@ Summarizing the above, we have:

e Given a polymatroid function f , its associated polytope is given as
Pt ={y e Ry :y(A) < f(A) forall AC E} (12.10)

o We also have the definition of a polymatroidal polytope P (compact
subset, zero containing, down-monotone, and Vx any maximal
independent subvector y < x has same component sum y(E)).

@ Is there any relationship between these two polytopes?
@ In the next theorem, we show that any P;r—basis has the same
component sum, when f is a polymatroid function, and Pf+ satisfies

the other properties so that P;r is a polymatroid.

F6/47 (pg.6/190)
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A polymatroid function's polyhedron is a polymatroid.

Theorem 12.2.1

Let f be a polymatroid function defined on subsets of E. For any x € ]Rf,
and any P;r—basis y* e Rf of x, the component sum of y* is

y*(E) = rank(z) = max <y(E) ry<uz,y€ PJZ")
=min (z(A)+ f(E\A): ACE) (12.10)

As a consequence, PJT is a polymatroid, since r.h.s. is constant w.r.t. y*.

Taking E \ B = supp(z) (so elements B are all zeros in x), and for b ¢ B
we make z(b) is big enough, the r.h.s. min has solution A* = B. We recover
submodular function from the polymatroid polyhedron via the following:

rank (11E\B> — f(B) = max {y(B) ye Pf+} (12.11)

In fact, we will ultimately see a number of important consequences of this
theorem (other than just that P} is a polymatroid
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A polymatroid is a polymatroid function’s polytope

@ So, when f is a polymatroid function, P;r is a polymatroid.

@ Is it the case that, conversely, for any polymatroid P, there is an
associated polymatroidal function f such that P = P}“?

Theorem 12.2.1

For any polymatroid P (compact subset of RY, zero containing, down-monotone,
and Vx € Rf any maximal independent subvector y < x has same component sum
y(E) = rank(z)), there is a polymatroid function f : 2F — R (normalized,
monotone non-decreasing, submodular) such that P = Pf+ where

Pf ={zeR”:z>0,z(4) < f(A),YA C E}.
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Tight sets D(y) are closed, and max tight set sat(y)
Recall the definition of the set of tight sets at y € P;r:

D(y) ={A: ACE, y(A) = f(A)} (12.10)

Theorem 12.2.1

For any y € P}, with f a polymatroid function, then D(y) is closed under
union and intersection.

We have already proven this as part of Theorem 11.4.1 [

Also recall the definition of sat(y), the maximal set of tight elements
relative to y € Rf.

sat(y) € | J{T : T € D(y)} (12.11)
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Vector rank, rank(x), is submodular

@ Recall that the matroid rank function is submodular.

@ The vector rank function rank(z) also satisfies a form of
submodularity, namely one defined on the real lattice.

Theorem 12.2.1 (vector rank and submodularity)

Let P be a polymatroid polytope. The vector rank function rank : Rf - R
with rank(z) = max (y(E) : y < x,y € P) satisfies, for all u,v € R¥

rank(u) + rank(v) > rank(u V v) + rank(u A v) (12.10)
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Polymatroidal polyhedron and greedy

@ Let (E,Z) be a set system and w € Rf be a weight vector.

o Recall greedy algorithm: Set A = (), and repeatedly choose y € E'\ A
such that AU {y} € Z with w(y) as large as possible, stopping when
no such y exists.

e For a matroid, we saw that independence system (E,Z) is a matroid iff
for each weight function w € R%, the greedy algorithm leads to a set
I € 7 of maximum weight w([).

e Stated succinctly, considering max{w([) : I € Z}, then (E,Z) is a
matroid iff greedy works for this maximization.

@ Can we also characterize a polymatroid in this way?
@ That is, if we consider max {wx 1T € P;r} where P;r represents the

“independent vectors”, is it the case that P]T is a polymatroid iff
greedy works for this maximization?

@ Can we, ultimately, even relax things so that w € RE?
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Polymatroidal polyhedron and greedy

@ What is the greedy solution in this setting, when w € RE?

@ Sort elements of F w.r.t. w so that, w.l.o.g.
E = (e1,e2,...,6em) with w(er) > w(eg) > -+ > w(ep).

o Let k+ 1 be the first point (if any) at which we are non-positive, i.e.,
w(ey) >0 and 0 > w(epq1).

@ Next define partial accumulated sets F;, for i = 0...m, we have w.r.t.
the above sorted order:

E et e, .. e} (12.31)

(note Ey =0, f(Ep) =0, and E and E; is always sorted w.r.t w).

@ The greedy solution is the vector = € Rf with elements defined as:

w(er) S f(Ey) = f(er) = [(e1]Eo) = [(e1]0) (12.32)
w(e:) ¥ F(E) — f(Bio1) = flei|Eiy) fori=2...k  (12.33)
z(er) L ofori=k+1...m=|E| (12.34)
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Polymatroidal polyhedron and greedy

Theorem 12.2.2

The vector = € Rf as previously defined using the greedy algorithm
maximizes wx over P]T, with w € Rf, if f is submodular.

Proof.

@ Consider the LP strong duality equation:

max(wz : x € P]T) = min(Z yaf(A) 1y e RiE, Z yala > w)
ACE ACE
(12.30)

@ Sort E by w descending, and define the following vector y € ]Rf as

yg, < w(e;) —w(ejpq) fori=1...(m—1), (12.31)
yp < w(en), and (12.32)
yA < 0 otherwise (12.33)
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Polymatroids and Greedy

Polymatroidal polyhedron and greedy

Conversely, suppose P;r is a polytope of form
Py = {z e RY :2(A) < f(A),YA C E}, then the greedy solution to
max(wzx : x € P) is optimum only if f is submodular.

@ Choose A and B arbitrarily, and then order elements of E as
(e1,€2,...,em), with E; = (e, ea,...,¢€;), so the following is true:
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Polymatroids and Greedy

Polymatroidal polyhedron and greedy

Conversely, suppose P;r is a polytope of form

Py = {z e RY :2(A) < f(A),YA C E}, then the greedy solution to
max(wzx : x € P) is optimum only if f is submodular.

Proof.

@ Choose A and B arbitrarily, and then order elements of E as
(e1,€2,...,em), with E; = (e, ea,...,¢€;), so the following is true:

@ For1<p<qg<m, A={ei,ea,...,€x €xt1,...,€p} = Ep and
B={e1,c,..., ettty eg} = By U (B, \ Ey)
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Polymatroids and Greedy

Polymatroidal polyhedron and greedy

Conversely, suppose P;r is a polytope of form
Py = {z e RY :2(A) < f(A),YA C E}, then the greedy solution to
max(wzx : x € P) is optimum only if f is submodular.

@ Choose A and B arbitrarily, and then order elements of E as
(e1,€2,...,em), with E; = (e, ea,...,¢€;), so the following is true:

@ For1<p<qg<m, A={ei,ea,...,€x €xt1,...,€p} = Ep and
B ={e1,ea,...,ex €pt1,...,64} = Ex U (Eq \ Ep)

o Note, then we have AN B = {ej,...,ex} = Ey, and AUB = Ej,.
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Polymatroids and Greedy
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Polymatroidal polyhedron and greedy

Theorem 12.3.1

Conversely, suppose P;r is a polytope of form
= {z e RE : 2(A) < f(A),VA C E}, then the greedy solution to
max(wzx : x € P) is optimum only if f is submodular.
Proof
@ Choose A and B arbitrarily, and then order elements of E as
(e1,€2,...,em), with E; = (e, ea,...,¢€;), so the following is true:
@ For1<p<qg<m, A={ei,ea,...,€x €xt1,...,€p} = Ep and
B ={e1,ea,...,ex €pt1,...,64} = Ex U (Eq \ Ep)
o Note, then we have AN B = {ej,...,ex} = Ey, and AUB = Ej,.
o Define w € {0,1}™

q
d i
= 2161 = 1408 (12.1)
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Polymatroids and Greedy
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Polymatroidal polyhedron and greedy

Theorem 12.3.1

Conversely, suppose P;r is a polytope of form
Py = {z e RY :2(A) < f(A),YA C E}, then the greedy solution to
max(wzx : x € P) is optimum only if f is submodular.

@ Choose A and B arbitrarily, and then order elements of E as
(e1,€2,...,em), with E; = (e, ea,...,¢€;), so the following is true:

@ For1<p<qg<m, A={ei,ea,...,€x €xt1,...,€p} = Ep and
B ={e1,ea,...,ex €pt1,...,64} = Ex U (Eq \ Ep)

o Note, then we have AN B = {ej,...,ex} = Ey, and AUB = Ej,.

o Define w € {0,1}"™ as:

q
w=ED 1o, =1aup (12.1)
=1

@ Suppose optimum solution z is given by the greedy procedure.
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Polymatroids and Greedy
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Polymatroidal polyhedron and greedy

@ Then

k 5
Zﬂﬂi = f(E1) + Z(f(Ei) — f(Bi-1)) = f(Ex) = f(AN B)
= = (12.2)
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Polymatroids and Greedy
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Polymatroidal polyhedron and greedy

@ Then

k k
Z:Ei = f(Ey) + Z(f(Ei) — f(Ei-1)) = f(Ex) = f(AN B)
= = (12.2)
@ and
Y wi=f(B)+ Y _(f(E) - f(Bi1)) = f(Bp) = f(4)  (123)
=1 =2

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 12 - May 11th, 2016 F14/47 (pg.20/190)



P\yma oids and Greedy

Polymatroidal polyhedron and greedy
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Polymatroids and Greedy
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Polymatroidal polyhedron and greedy

@ Thus, we have

vB)= Y wm= Y z=f(AUB)+ f(ANB) - f(4)
i€l,...k,p+1,....q ice;€EB
(12.5)
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Polymatroids and Greedy
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Polymatroidal polyhedron and greedy

@ Thus, we have

vB)= Y wm= Y z=f(AUB)+ f(ANB) - f(4)
i€l,...k,p+1,....q ice;€EB
(12.5)

@ But given that the greedy algorithm gives the optimal solution to
max(wz : x € P;r) we have that x € P;r and thus z(B) < f(B).
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Polymatroids and Greedy
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Polymatroidal polyhedron and greedy

@ Thus, we have

wB)= S m=Y mi=fAUB)+ f(ANB) - f(A)

i€l,...k,p+1,....q ice;€EB
(12.5)

@ But given that the greedy algorithm gives the optimal solution to
max(wz : © € P), we have that z € P} and thus z(B) < f(B).

@ Thus,

z(B) = f(AUB) + f(ANB) — = > < f(B) (126)
i:e;,€EB

ensuring the submodularity of f, since A and B are arbitrary.

F14/47 (pg.24/190)
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Review from Lecture 9

@ The next slide comes from lecture 9.
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Polymatroids and Greedy
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Matroid and the greedy algorithm

@ Let (F,Z) be an independence system, and we are given a
non-negative modular weight function w : £ — R,..

Algorithm 1: The Matroid Greedy Algorithm

1 Set X «0;
2 while v € E\ X s.t. XU {v} €7 do
3 LUEargmaX{w(v):veE\X, XU{v} eI},

4 X+ X U{v};

@ Same as sorting items by decreasing weight w, and then choosing
items in that order that retain independence.

Theorem 12.3.7

Let (E,Z) be an independence system. Then the pair (E,Z) is a matroid if
and only if for each weight function w € R, Algorithm ?? above leads to
a set I € T of maximum weight w(I).
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Polymatroids and Greedy
(NN}

Polymatroidal polyhedron and greedy

@ Thus, restating the above results into a single complete theorem, we
have a result very similar to what we saw for matroids (i.e.,
Theorem 10.5.1)

Theorem 12.3.1

If f:2F — R, is given, and P is a polytope in Rf of the form

P ={z eRY :2(A) < f(A),YA C E}, then the greedy solution to the
problem max(wz : x € P) is Yw optimum iff f is monotone non-decreasing
submodular (i.e., iff P is a polymatroid).
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Possible Polytopes
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Multiple Polytopes associated with arbitrary f

@ Given an arbitrary submodular function f : 2V — R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).
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Possible Polytopes
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Multiple Polytopes associated with arbitrary f

e Given an arbitrary submodular function f : 2V — R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).

o If f(0) #0, can set f'(A) = f(A) — f(D) without destroying
submodularity. This does not change any minima, (i.e.,
argmin f(A) = argminy f/(A)) so assume all functions are
normalized f(()) = 0.
Note that due to constraint z(0) < f(0), we must have f(0) > 0 since if not (i.e., if

f(0) <0), then Pf+ doesn't exist.
Another form of normalization can do is:
. A) ifFA#D
‘) =1 12.7
F4 {0 ifA=10 ( )
This preserves submodularity due to f(A) + f(B) > (A UB)+ f(AN B), and if
AN B =10 then r.h.s. only gets smaller when f(() > 0
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Possible Polytopes
[NERNNR

Multiple Polytopes associated with arbitrary f

o Given an arbitrary submodular function f : 2V — R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).

o If f(0) #£0, can set f'(A) = f(A) — f(D) without destroying
submodularity. This does not change any minima, (i.e.,
argmin f(A) = argminy f/(A)) so assume all functions are
normalized f(() = 0.

@ We can define several polytopes:

Py ={x e R¥ : 2(5) < f(S),VS C B} (12.7)
Pf=Prn{zeR”:z >0} (12.8)
By=P;n{zeR¥ :2(E) = f(E)} (12.9)
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Possible Polytopes
[NERNNR

Multiple Polytopes associated with arbitrary f

o Given an arbitrary submodular function f : 2V — R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).

o If f(0) #£0, can set f'(A) = f(A) — f(D) without destroying
submodularity. This does not change any minima, (i.e.,
argmin f(A) = argminy f/(A)) so assume all functions are
normalized f(() = 0.

@ We can define several polytopes:

Py ={x e R¥ : 2(5) < f(S),VS C E} (12.7)
Pf=Prn{zeR”:z >0} (12.8)
By =P;n{zeR¥ :2(E) = f(E)} (12.9)

@ Py is what is sometimes called the extended polytope (sometimes
notated as £ Py.
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Possible Polytopes
[NERNNR

Multiple Polytopes associated with arbitrary f

o Given an arbitrary submodular function f : 2V — R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).

o If f(0) #£0, can set f'(A) = f(A) — f(D) without destroying
submodularity. This does not change any minima, (i.e.,
argmin f(A) = argminy f/(A)) so assume all functions are
normalized f(() = 0.

@ We can define several polytopes:

Py ={x e R¥ : 2(5) < f(S),VS C E} (12.7)
Pf=Prn{zeR”:z >0} (12.8)
By =P;n{zeR¥ :2(E) = f(E)} (12.9)

@ P is what is sometimes called the extended polytope (sometimes
notated as £ Py.
° P]T is Pf restricted to the positive orthant.
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Possible Polytopes
[NERNNR

Multiple Polytopes associated with arbitrary f

o Given an arbitrary submodular function f : 2V — R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).

o If f(0) #£0, can set f'(A) = f(A) — f(D) without destroying
submodularity. This does not change any minima, (i.e.,
argmin f(A) = argminy f/(A)) so assume all functions are
normalized f(() = 0.

@ We can define several polytopes:

Py ={x e R¥ : 2(5) < f(S),VS C E} (12.7)
Pf=Prn{zeR”:z >0} (12.8)
By =P;n{zeR¥ :2(E) = f(E)} (12.9)

@ P is what is sometimes called the extended polytope (sometimes
notated as £ Py.

° Pf+ is Pr restricted to the positive orthant.

@ By is called the base polytope, analogous to the base in matroid.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 12 - May 11th, 2016 F18/47 (pg.33/190)



Possible Polytopes
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Multiple Polytopes associated with f

+ P
Pf !

Pt =Prn{zeR”:z>0} (12.10)
Py ={z e R" : 2(S) < f(9),VS C E} (12.11)
By =P;n{z e R : z(E) = f(B)} (12.12)
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Possible Polytopes
[LERNRR

Multiple Polytopes associated with f

Pt =Pn{zeR”:z>0} (12.10)
Py ={z e R¥ : 2(5) < f(S),VS C E} (12.11)
By=P;n{zr e R :2(E) = f(B)} (12.12)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 12 - May 11th, 2016 F19/47 (pg.35/190)



Possible Polytopes
[LERNRR

Multiple Polytopes associated with f

Py Py
By
Pt =Prn{zeR”:z>0} (12.10)
Py ={z e RP : 2(S) < f(9),VS C E} (12.11)
By =P;n{z e R” : z(E) = f(B)} (12.12)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 12 - May 11th, 2016 F19/47 (pg.36/190)



Possible Polytopes
[RLRNRR

Base Polytope in 3D

Py ={z e R : 2(5) < f(S),VS C E} (12.13)
By=P;n{zr e R :z(E) = f(B)} (12.14)
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Possible Polytopes
[ARE NRR

A polymatroid function's polyhedron is a polymatroid.

Theorem 12.4.1
Let f be a submodular function defined on subsets of E. For any = € RY,
we have:

rank(z) = max (y(E) : y < z,y € Py) =min (z(A) + f(E\A): ACE)
(12.15)

Essentially the same theorem as Theorem 11.4.1, but note P rather than
P]T. Taking z = 0 we get:

Corollary 12.4.2

Let f be a submodular function defined on subsets of E. x € RF, we have:

rank(0) = max (y(E) :y <0,y € Pf) =min(f(A): ACE) (12.16)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 12 - May 11th, 2016 F21/47 (pg.38/190)



Possible Polytopes
[ERRE AR

Proof of Theorem 12.4.1

Proof of Theorem 12.4.1.

@ Let y* be the optimal solution of the l.h.s. and let A C F be any
subset.

Ol
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Possible Polytopes
[ERRE AR

Proof of Theorem 12.4.1

Proof of Theorem 12.4.1.

@ Let y* be the optimal solution of the I.h.s. and let A C E be any
subset.

@ Then y*(E) =y*(A)+y*(E\ A) < f(A)+x(E\ A) since if y* € Py,
y*(A) < f(A) and since y* < x, y*(E\ A) < z(F \ A). This is a form
of weak duality.

Ol
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Possible Polytopes
[ERRE AR

Proof of Theorem 12.4.1

Proof of Theorem 12.4.1.

@ Let y* be the optimal solution of the I.h.s. and let A C E be any
subset.

o Then y*(E) =y*(A)+y*(E\ A) < f(A) +z(E\ A) since if y* € Py,
y*(A) < f(A) and since y* <z, y*(E\ A) < z(F\ A). This is a form
of weak duality.

@ Also, for any e € E, if y*(e) < z(e) then there must be some reason
for this other than the constraint y* < x, namely it must be that
3T € D(x) with e € T (i.e., e is a member of at least one of the tight
sets).

Ol
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Possible Polytopes
[ERRE AR

Proof of Theorem 12.4.1

Proof of Theorem 12.4.1.

@ Let y* be the optimal solution of the I.h.s. and let A C E be any
subset.

o Then y*(E) =y*(A)+y*(E\ A) < f(A) +z(E\ A) since if y* € Py,
y*(A) < f(A) and since y* <z, y*(E\ A) < z(F\ A). This is a form
of weak duality.

@ Also, for any e € E, if y*(e) < z(e) then there must be some reason
for this other than the constraint y* < x, namely it must be that
3T € D(x) with e € T (i.e., e is a member of at least one of the tight
sets).

@ Hence, for all e ¢ sat(y*) we have y*(e) = x(e), and moreover
y*(sat(y*)) = f(sat(y*)) by definition.

Ol
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Possible Polytopes
[ERRE AR

Proof of Theorem 12.4.1

Proof of Theorem 12.4.1.

@ Let y* be the optimal solution of the I.h.s. and let A C E be any
subset.

e Then y*(E) =y*(A)+y* (E\ A) < f(A) +2(E\ A) since if y* € Py,
y*(A) < f(A) and since y* <z, y*(E\ A) < z(F\ A). This is a form
of weak duality.

@ Also, for any e € E, if y*(e) < z(e) then there must be some reason
for this other than the constraint y* < x, namely it must be that
3T € D(x) with e € T (i.e., e is a member of at least one of the tight
sets).

@ Hence, for all e ¢ sat(y*) we have y*(e) = x(e), and moreover
y*(sat(y*)) = f(sat(y*)) by definition.
@ Thus we have that

v (sat(y")) + " (B \ sat(y")) = f(sat(y")) + (B \ sat(y")), strong
duality, showing that the two sides are equal for y*.

Ol
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Possible Polytopes
[ARRNL N

Greedy and Py

@ In Theorem ?7, we can relax PJZF to Py (prime and dual feasibiity still
hold as does strong duality).
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Possible Polytopes
[ARRNL N

Greedy and Py

@ In Theorem ??, we can relax PJT to Py (prime and dual feasibiity still
hold as does strong duality).

@ The proof, that is, shows that x € Py, not just Pf+.
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Possible Polytopes
[ARRNL N

Greedy and Py

@ In Theorem ??, we can relax PJT to Py (prime and dual feasibiity still
hold as does strong duality).
@ The proof, that is, shows that x € Py, not just P;r.

e If Je such that w(e) < 0 then max(wz : © € Py) = oo since we can let
ZTe — 00, unless we ignore the negative elements or assume w > 0.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 12 - May 11th, 2016 F23/47 (pg.46/190)



Possible Polytopes
[ARRNL N

Greedy and Py

@ In Theorem ??, we can relax PJT to Py (prime and dual feasibiity still
hold as does strong duality).

@ The proof, that is, shows that x € Py, not just P;r.

o If Je such that w(e) < 0 then max(wz : v € Py) = oo since we can let
ZTe — 00, unless we ignore the negative elements or assume w > 0.

@ Moreover, in either Py, or PJr case, since the greedy constructed an x
has (E) = f(E), we have that the greedy = € By.
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Possible Polytopes
[ARRNL N

Greedy and P

@ In Theorem ??, we can relax PJT to Py (prime and dual feasibiity still
hold as does strong duality).

@ The proof, that is, shows that x € Py, not just P;r.

o If Je such that w(e) < 0 then max(wz : v € Py) = oo since we can let
ZTe — 00, unless we ignore the negative elements or assume w > 0.

@ Moreover, in either Py, or P;r case, since the greedy constructed an =
has z(E) = f(F), we have that the greedy z € By.

@ In fact, we will see, in the next section, that the greedy x is a vertex of
By.
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Possible Polytopes
[NNNNAT ]

Greedy and Py

@ Recall that Theorem 11.4.1 states that
max (y(E) cy<uwmy€ P;) =min (z(A)+ f(E\A): ACE)
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Possible Polytopes
[NNNNAT ]

Greedy and Py

@ Recall that Theorem 11.4.1 states that
max (y(E) ry<wmye P]T) = min (z(A) + f(E\ A): ACE)

@ Theorem 77 states that greedy algorithm maximizes wz over Pf for
w e Rf with f being submodular.

F24/47 (pg.50/190)
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Possible Polytopes
[NNNNAT ]

Greedy and Py

@ Recall that Theorem 11.4.1 states that
max (y(E) cy<uwmy€ P]T) =min (z(A)+ f(E\A): ACE)

@ Theorem ?7 states that greedy algorithm maximizes wx over PJZL for
w E ]Rf with f being submodular.

@ Above implies that Theorem ??7 can be generalized to over Py and
that greedy solution gives a point in B, even for arbitrary finite w.
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Extreme Points
1l

Polymatroid extreme points

@ The greedy algorithm does more than solve max(wx : z € P}T) We
can use it to generate vertices of polymatroidal polytopes.
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Extreme Points
1l

Polymatroid extreme points

@ The greedy algorithm does more than solve max(wx : z € P}T) We
can use it to generate vertices of polymatroidal polytopes.
o Consider PJT and also C}L e {z:2eR¥ z(e) < f(e),Ve € E}
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Extreme Points
1l

Polymatroid extreme points
@ The greedy algorithm does more than solve max(wx : z € P}T) We
can use it to generate vertices of polymatroidal polytopes.
o Consider P and also C+ {x z € RE z(e) < f(e),Ve € E}
@ Then orderlng A= (a1,...,aq4) arbltrarlly with 4; = {a1,...,a;},
f(A) =3, flai|Ai—1) <>, f(a;), and hence PJT - C;{.
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Extreme Points
1l

Polymatroid extreme points
@ The greedy algorithm does more than solve max(wz : x € Pf ). We
can use it to generate vertices of polymatroidal polytopes.
o Consider P and also C+ {a: z € RE x(e) < f(e),Ve € E}
@ Then ordermg A= (a1,...,a4) arbltrarlly with 4; = {a1,...,a;},
fA) =3, flai]Aizq) < Z f(al) and hence P} C C}.
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Extreme Points
1l

Polymatroid extreme points

@ Since w € Rf is arbitrary, it may be that any e € E' is max (i.e., is
such that w(e) > w(e’) for €’ € E'\ {e}).
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Extreme Points
1l

Polymatroid extreme points

@ Since w € Rf is arbitrary, it may be that any e € E' is max (i.e., is
such that w(e) > w(e’) for €’ € E'\ {e}).

@ Thus, intuitively, any first vertex of the polytope away from the origin
might be obtained by advancing along the corresponding axis.
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Extreme Points
1l

Polymatroid extreme points

@ Since w € Rf is arbitrary, it may be that any e € E' is max (i.e., is
such that w(e) > w(e’) for €’ € E'\ {e}).

@ Thus, intuitively, any first vertex of the polytope away from the origin
might be obtained by advancing along the corresponding axis.

@ Recall, base polytope defined as the extreme face of P;. le.,

By=P;n{z e RY :2(E) = f(B)} (12.17)
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Extreme Points
1l

Polymatroid extreme points

@ Since w € Rf is arbitrary, it may be that any e € E' is max (i.e., is
such that w(e) > w(e’) for €’ € E'\ {e}).

@ Thus, intuitively, any first vertex of the polytope away from the origin
might be obtained by advancing along the corresponding axis.

@ Recall, base polytope defined as the extreme face of P;. le.,

By=P;n{z e RY :2(E) = f(B)} (12.17)
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Extreme Points
1l

Polymatroid extreme points
@ Since w € Rf is arbitrary, it may be that any e € E' is max (i.e., is
such that w(e) > w(e’) for €’ € E'\ {e}).

@ Thus, intuitively, any first vertex of the polytope away from the origin
might be obtained by advancing along the corresponding axis.

@ Recall, base polytope defined as the extreme face of P;. le.,
By=P;n{z e RY :2(E) = f(B)} (12.17)

@ Also, intuitively, we can continue advancing along the skeletal edges of
the polytope to reach any other vertex, given the appropriate ordering.
If we advance in all dimensions, we'll reach a vertex in By, and if we
advance only in some dimensions, we'll reach a vertex in P \ By.
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Extreme Points
1l

Polymatroid extreme points
@ Since w € Rf is arbitrary, it may be that any e € E' is max (i.e., is
such that w(e) > w(e’) for €’ € E'\ {e}).

@ Thus, intuitively, any first vertex of the polytope away from the origin
might be obtained by advancing along the corresponding axis.

@ Recall, base polytope defined as the extreme face of P;. le.,
By=P;n{z e RY :2(E) = f(B)} (12.17)

@ Also, intuitively, we can continue advancing along the skeletal edges of
the polytope to reach any other vertex, given the appropriate ordering.
If we advance in all dimensions, we'll reach a vertex in By, and if we
advance only in some dimensions, we'll reach a vertex in P \ By.

o We formalize this next:

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 12 - May 11th, 2016 F25/47 (pg.61/190)



Extreme Points
1l

Polymatroid extreme points
e Given any arbitrary order of F' = (eq, e, ...
Ei = (61, €2, ..., 62').

,€m), define
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Extreme Points
1l

Polymatroid extreme points
e Given any arbitrary order of F' = (eq, e, ...
Ei = (61, €2, ..., 62').

,€m), define

@ As before, a vector z is generated by F; using the greedy procedure as

follows
z(e1) = f(Er) = f(e1) (12.18)
(ej) = F(Ej) = f(Ej—1) = flej|Ejr) for2<j<i  (12.19)
z(e) =0fore € E\ E; (12.20)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 12 - May 11th, 2016 F25/47 (pg.63/190)



Extreme Points

Polymatroid extreme points
e Given any arbitrary order of F' = (eq, e, ...
Ei = (61, €2, ..., 62').

,€m), define

@ As before, a vector z is generated by F; using the greedy procedure as

follows
z(e1) = f(Er) = f(e1) (12.18)
(ej) = F(Ej) = f(Ej—1) = flej|Ejr) for2<j<i  (12.19)
z(e) =0fore € E\ E; (12.20)

@ An extreme point of Py is a point that is not a convex combination of
two other distinct points in Pr. Equivalently, an extreme point
corresponds to setting certain inequalities in the specification of Py to
be equalities, so that there is a unique single point solution.
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Extreme Points
1l

Polymatroid extreme points

Theorem 12.5.1

For a given ordering E = (e1,...,en) of E and a given E; = (eq1,...,€;)
and x generated by E; using the greedy procedure (x(e;) = f(ei|Ei-1)),
then x is an extreme point of Py
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Extreme Points
1l

Polymatroid extreme points

Theorem 12.5.1

For a given ordering E = (ey1,...,en) of E and a given E; = (e1,...,¢;)
and x generated by E; using the greedy procedure (x(e;) = f(ei|Ei-1)),
then x is an extreme point of Py

Proof.
o We already saw that x € Py (Theorem 7).
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Extreme Points
1l

Polymatroid extreme points

Theorem 12.5.1

For a given ordering E = (ey1,...,en) of E and a given E; = (e1,...,¢;)
and x generated by E; using the greedy procedure (x(e;) = f(ei|Ei-1)),
then x is an extreme point of Py

o We already saw that x € Py (Theorem 7).

@ To show that z is an extreme point of Py, note that it is the unique
solution of the following system of equations
z(Ej) = f(E;) for 1 <j<i<m (12.21)
z(e) =0foree E\ E; (12.22)

There are i < m equations and 7 < m unknowns, and simple Gaussian
elimination gives us back the = constructed via the Greedy algorithm!!
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Extreme Points
1l

Polymatroid extreme points
@ As an example, we have x(E7) = z(e1) = f(e1)
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Extreme Points

Polymatroid extreme points
@ As an example, we have x(E7) = z(e1) = f(e1)
o x(Es3) =x(e1) + z(e2) = f(e1,e2) so

z(e2) = f(e1,e2) — x(e1) = fler, e2) — fle1) = f(ezler).
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Extreme Points
1l

Polymatroid extreme points
@ As an example, we have x(E7) = z(ep)
o x(Es3) =x(e1) + z(e2) = f(e1,e2) so
z(ez) = fler, e2) —x(er) = fler, e2) — fler) = flezler).
o z(E3) =x(e1) + x(e2) + x(e3) = f(e1,ea,e3) so x(e3) =
fle1,e2,e3) — x(e2) — z(e1) = fler, e2,e3) — fle1, e2) = flesler, e2)

= fle1)
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Extreme Points

Polymatroid extreme points
@ As an example, we have x(E7) = z(e1) = f(e1)
o z(E2) =x(e1) + x(e2) = f(e1,e2) so
z(e2) = f(e1,e2) — x(e1) = fler, e2) — fle1) = f(ezler).
o z(E3) =x(e1) + x(e2) + x(e3) = f(e1,ea,e3) so x(e3) =
fler,e2,e3) — x(e2) — z(er) = fler, e2,e3) — fler, e2) = f(esler, e2)
@ And so on ..., but we see that this is just Gaussian elimination.
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Extreme Points
1l

Polymatroid extreme points
@ As an example, we have x(E7) = z(e1) = f(e1)
o z(E2) =x(e1) + x(e2) = f(e1,e2) so
z(e2) = f(e1,e2) — x(e1) = fler, e2) — fle1) = f(ezler).
o z(E3) =x(e1) + x(e2) + x(e3) = f(e1,ea,e3) so x(e3) =
fler,e2,e3) — x(e2) — z(er) = fler, e2,e3) — fler, e2) = f(esler, e2)
@ And so on ..., but we see that this is just Gaussian elimination.

@ Also, since x € Py, for each i, we see that,

o(E)) = f(B;) for1<j<i (12.23)
2(A) < f(A),YACE (12.24)
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Extreme Points
1l

Polymatroid extreme points
@ As an example, we have x(E7) = z(e1) = f(e1)
o z(E2) =x(e1) + x(e2) = f(e1,e2) so
z(e2) = f(e1,e2) — x(e1) = fler, e2) — fle1) = f(ezler).
o z(E3) =x(e1) + x(e2) + x(e3) = f(e1,ea,e3) so x(e3) =
fler,e2,e3) — x(e2) — z(er) = fler, e2,e3) — fler, e2) = f(esler, e2)
@ And so on ..., but we see that this is just Gaussian elimination.

@ Also, since x € Py, for each i, we see that,

z(Ej) = f(Ej) forl1<j<i (12.23)
z(A) < f(A),VACE (12.24)
@ Thus, the greedy procedure provides a modular function lower bound

on f that is tight on all points F; in the order. This can be useful in
its own right, as it provides subgradients and subdifferential structure.
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Extreme Points
11

Polymatroid extreme points
some examples
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Extreme Points

Polymatroid extreme points
@ Moreover, we have (and will ultimately prove)

Corollary 12.5.2

If  is an extreme point of Py and B C E is given such that
supp(z) ={e€ E:xz(e) #0} C B CU(A: z(A) = f(A)) = sat(x), then
x is generated using greedy by some ordering of B.
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Extreme Points
1l

Polymatroid extreme points
@ Moreover, we have (and will ultimately prove)

Corollary 12.5.2

If  is an extreme point of Py and B C E is given such that
supp(z) ={e€ E:xz(e) #0} C B CU(A: z(A) = f(A)) = sat(x), then
x is generated using greedy by some ordering of B.

o Note, sat(z) =cl(x) = U(A: x(A) = f(A)) is also called the closure
of = (recall that sets A such that z(A) = f(A) are called tight, and
such sets are closed under union and intersection, as seen in Lecture 8,
Theorem 77)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 12 - May 11th, 2016 F25/47 (pg.76/190)



Extreme Points
1l

Polymatroid extreme points
@ Moreover, we have (and will ultimately prove)

Corollary 12.5.2

If  is an extreme point of Py and B C E is given such that

supp(z) ={e€ E:xz(e) #0} C B CU(A: z(A) = f(A)) = sat(x), then
x is generated using greedy by some ordering of B.

o Note, sat(z) =cl(x) = U(A: x(A) = f(A)) is also called the closure
of = (recall that sets A such that z(A) = f(A) are called tight, and
such sets are closed under union and intersection, as seen in Lecture 8,
Theorem 77)

@ Thus, cl(x) is a tight set.
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Extreme Points
1l

Polymatroid extreme points
@ Moreover, we have (and will ultimately prove)

Corollary 12.5.2

If  is an extreme point of Py and B C E is given such that
supp(z) ={e€ E:xz(e) #0} C B CU(A: z(A) = f(A)) = sat(x), then
x is generated using greedy by some ordering of B.

o Note, sat(z) =cl(x) = U(A: x(A) = f(A)) is also called the closure
of = (recall that sets A such that z(A) = f(A) are called tight, and
such sets are closed under union and intersection, as seen in Lecture 8,
Theorem 77)

@ Thus, cl(x) is a tight set.

@ Also, supp(z) ={e € E : z(e) # 0} is called the support of z.
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Extreme Points

Polymatroid extreme points
@ Moreover, we have (and will ultimately prove)

Corollary 12.5.2

If  is an extreme point of Py and B C E is given such that
supp(z) ={e€ E:xz(e) #0} C B CU(A: z(A) = f(A)) = sat(x), then
x is generated using greedy by some ordering of B.

o Note, sat(z) =cl(x) = U(A: x(A) = f(A)) is also called the closure
of = (recall that sets A such that z(A) = f(A) are called tight, and
such sets are closed under union and intersection, as seen in Lecture 8,
Theorem 77)

@ Thus, cl(x) is a tight set.
@ Also, supp(z) ={e € E : z(e) # 0} is called the support of z.

e For arbitrary x, supp(x) is not necessarily tight, but for an extreme
point, supp(x) is.
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Extreme Points
i

Polymatroid with labeled edge lengths

@ Recall
fe|A) = f(A+e)—f(A) e
@ Notice how 2
submodularity,
F(elB) < f(e|A) for
A C B, defines the
shape of the polytope.

f(e,le,)

@ In fact, we have ]
strictness here s
F(e|B) < f(e|A) for
ACB.

@ Also, consider how the
greedy algorithm
proceeds along the edges f(el) 1
of the polytope.
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Extreme Points

Polymatroid with labeled edge lengths

@ Recall
F(elA) = f(A+e)—f(A)
@ Notice how
submodularity,
F(€lB) < f(e|A) for
A C B, defines the <&
shape of the polytope.

@ In fact, we have
strictness here
F(e|B) < f(e|A) for
A CB.

@ Also, consider how the
greedy algorithm
proceeds along the edges
of the polytope.

(‘al%a)

(sl
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Extreme Points
(N1 ]

Intuition: why greedy works with polymatroids

Maximal pointin P/

@ Given w, the goal is . . .
& for w in this region.

to find

z = (z(e1),z(e2)) e fe |e.) ’5 zZ
that maximizes 2 112, 2- .
xTw = z(ep)w(er) + = %
N £

z(e2)w(ez). $\@\ 52

o If w(ez) > w(ey) the e\z . < /?\'
upper extreme point ’q}, @\ \\ o \(?2 3
indicated maximizes = S\ 45 % =
xTw over x € P;r. \V\\Q/\” P

o If w(ez) < w(ey) the \450 &):1
lower extreme point =
indicated maximizes
xTw over x € ij. f(e1) e1
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[NRRRAR RN RRARNANAT]

Maximization of Submodular Functions

@ Submodular maximization is quite useful.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[NRRRAR RN RRARNANAT]

Maximization of Submodular Functions

@ Submodular maximization is quite useful.

@ Applications: sensor placement, facility location, document
summarization, or any kind of covering problem (choose a small set of
elements that cover some domain as much as possible).
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[NRRRAR RN RRARNANAT]

Maximization of Submodular Functions

@ Submodular maximization is quite useful.

@ Applications: sensor placement, facility location, document
summarization, or any kind of covering problem (choose a small set of
elements that cover some domain as much as possible).

@ For polymatroid function (or any monotone non-decreasing function),
unconstrained maximization is trivial (take ground set).
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[NRRRAR RN RRARNANAT]

Maximization of Submodular Functions

@ Submodular maximization is quite useful.

@ Applications: sensor placement, facility location, document
summarization, or any kind of covering problem (choose a small set of
elements that cover some domain as much as possible).

@ For polymatroid function (or any monotone non-decreasing function),
unconstrained maximization is trivial (take ground set).

@ Thus, when we do monotone submodular maximization, we either
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[NRRRAR RN RRARNANAT]

Maximization of Submodular Functions

@ Submodular maximization is quite useful.

@ Applications: sensor placement, facility location, document
summarization, or any kind of covering problem (choose a small set of
elements that cover some domain as much as possible).

@ For polymatroid function (or any monotone non-decreasing function),
unconstrained maximization is trivial (take ground set).
@ Thus, when we do monotone submodular maximization, we either
e Find the maximum under some constraint
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[NRRRAR RN RRARNANAT]

Maximization of Submodular Functions

@ Submodular maximization is quite useful.

@ Applications: sensor placement, facility location, document
summarization, or any kind of covering problem (choose a small set of
elements that cover some domain as much as possible).

@ For polymatroid function (or any monotone non-decreasing function),
unconstrained maximization is trivial (take ground set).
@ Thus, when we do monotone submodular maximization, we either

e Find the maximum under some constraint
e Find the maximum for a non-polymatroid submodular function
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[NRRRAR RN RRARNANAT]

Maximization of Submodular Functions

@ Submodular maximization is quite useful.

@ Applications: sensor placement, facility location, document
summarization, or any kind of covering problem (choose a small set of
elements that cover some domain as much as possible).

@ For polymatroid function (or any monotone non-decreasing function),
unconstrained maximization is trivial (take ground set).
@ Thus, when we do monotone submodular maximization, we either

e Find the maximum under some constraint
e Find the maximum for a non-polymatroid submodular function
e Do both.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
[NRRRAR RN RRARNANAT]

Maximization of Submodular Functions

(]

Submodular maximization is quite useful.

Applications: sensor placement, facility location, document
summarization, or any kind of covering problem (choose a small set of
elements that cover some domain as much as possible).

For polymatroid function (or any monotone non-decreasing function),
unconstrained maximization is trivial (take ground set).
Thus, when we do monotone submodular maximization, we either

e Find the maximum under some constraint

e Find the maximum for a non-polymatroid submodular function

e Do both.
There is also a sort of dual problem that is often considered together
with max, and those are minimum cover problems (to be defined).
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(RERRNAR RN RRNRNNARN

The Set Cover Problem

o Let F be a ground set and let E1, Fo, ..., Ey,, be a set of subsets.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(RERRNAR RN RRNRNNARN

The Set Cover Problem

o Let F be a ground set and let E1, Fo, ..., Ey,, be a set of subsets.
o Let V. ={1,2,...,m} be the set of integers.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(RERRNAR RN RRNRNNARN

The Set Cover Problem

o Let F be a ground set and let E1, Fo, ..., Ey,, be a set of subsets.
o Let V. ={1,2,...,m} be the set of integers.
o Define f:2V = Zy as f(X) = |U,cx Evl
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(RERRNAR RN RRNRNNARN

The Set Cover Problem

Let E be a ground set and let Ey, Fs, ..., E,, be a set of subsets.
Let V =1{1,2,...,m} be the set of integers.

Define f: 2V — Zy as f(X) = |Uyex Eol

Then f is the set cover function. As we say, f is monotone
submodular (a polymatroid).
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(RERRNAR RN RRNRNNARN

The Set Cover Problem

Let E be a ground set and let Ey, Fs, ..., E,, be a set of subsets.
Let V =1{1,2,...,m} be the set of integers.

Define f: 2V — Zy as f(X) = |Uyex Eol

Then f is the set cover function. As we say, f is monotone
submodular (a polymatroid).

@ The set cover problem asks for the smallest subset X of V' such that
f(X) = |E| (smallest subset of the subsets of E) where E is still
covered. l.e.,

minimize| X| subject to f(X) > |E| (12.25)
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(RERRNAR RN RRNRNNARN

The Set Cover Problem

Let E be a ground set and let Ey, Fs, ..., E,, be a set of subsets.
Let V =1{1,2,...,m} be the set of integers.

Define f: 2V — Zy as f(X) = |Uyex Eol

Then f is the set cover function. As we say, f is monotone
submodular (a polymatroid).

The set cover problem asks for the smallest subset X of V' such that
f(X) = |E| (smallest subset of the subsets of E) where E is still
covered. l.e.,

minimize| X| subject to f(X) > |E| (12.25)

We might wish to use a more general modular function m(X) rather
than cardinality | X|.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(RERRNAR RN RRNRNNARN

The Set Cover Problem

Let E be a ground set and let Ey, Fs, ..., E,, be a set of subsets.
Let V =1{1,2,...,m} be the set of integers.

Define f: 2V — Zy as f(X) = |Uyex Eol

Then f is the set cover function. As we say, f is monotone
submodular (a polymatroid).

The set cover problem asks for the smallest subset X of V' such that
f(X) = |E| (smallest subset of the subsets of E) where E is still
covered. l.e.,

minimize| X| subject to f(X) > |E| (12.25)

We might wish to use a more general modular function m(X) rather
than cardinality | X|.

This problem is NP-hard, and Feige in 1998 showed that it cannot be
approximated with a ratio better than (1 — €)logn unless NP is
slightly superpolynomial (n@(leglogn)),
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(R RN RN RRNRNNARN

What About Non-monotone

@ So even simple case of cardinality constrained submodular function
maximization is NP-hard.

@ This will be true of most submodular max (and related) problems.

@ Hence, the only hope is approximation algorithms. Question is, what is
the tradeoff between running time and approximation quality, and is it
possible to get tight bounds (i.e., an algorithm that achieves an
approximation ratio, and a proof that one can't do better than that
unless some extremely unlike event were to be true, such as P=NP).
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(NRE RNRRRRRRRNRNNARN

The Max k-Cover Problem

@ Let F be a ground set and let E1, Eo, ..., E,, be a set of subsets.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(NRE RNRRRRRRRNRNNARN

The Max k-Cover Problem

@ Let F be a ground set and let E1, Eo, ..., E,, be a set of subsets.
o Let V=1{1,2,...,m} be the set of integers.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(NRE RNRRRRRRRNRNNARN

The Max k-Cover Problem

@ Let F be a ground set and let E1, Eo, ..., E,, be a set of subsets.
o Let V=1{1,2,...,m} be the set of integers.
o Define f:2V = Zy as f(X) = |U,ey BEvl
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(NRE RNRRRRRRRNRNNARN

The Max k-Cover Problem

Let E be a ground set and let Eq, Fs, ..., E,, be a set of subsets.
Let V = {1,2,...,m} be the set of integers.

Define f: 2V — Zy as f(X) = |U,ey Evl

Then f is the set cover function. As we saw, f is monotone
submodular (a polymatroid).
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(NRE RNRRRRRRRNRNNARN

The Max k-Cover Problem

Let E be a ground set and let Eq, Fs, ..., E,, be a set of subsets.
Let V = {1,2,...,m} be the set of integers.

Define f: 2V — Zy as f(X) = |U,ey Evl

Then f is the set cover function. As we saw, f is monotone
submodular (a polymatroid).

@ The max k cover problem asks, given a k, what sized k set of sets X
can we choose that covers the most? l.e., that maximizes f(X) as in:

max f(X) subject to | X| <k (12.26)
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(NRE RNRRRRRRRNRNNARN

The Max k-Cover Problem

Let E be a ground set and let Eq, Fs, ..., E,, be a set of subsets.
Let V = {1,2,...,m} be the set of integers.

Define f: 2V — Zy as f(X) = |U,ey Evl

Then f is the set cover function. As we saw, f is monotone
submodular (a polymatroid).

@ The max k cover problem asks, given a k, what sized k set of sets X
can we choose that covers the most? l.e., that maximizes f(X) as in:

max f(X) subject to | X| <k (12.26)

@ This problem is NP-hard, and Feige in 1998 showed that it cannot be
approximated with a ratio better than (1 — 1/e).
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(R NRRRRRRRNRNNARN

Cardinality Constrained Max. of Polymatroid Functions

@ Now we are given an arbitrary polymatroid function f.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(R NRRRRRRRNRNNARN

Cardinality Constrained Max. of Polymatroid Functions

@ Now we are given an arbitrary polymatroid function f.
e Given k, goal is: find A* € argmax {f(A) : |A| < k}
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(R NRRRRRRRNRNNARN

Cardinality Constrained Max. of Polymatroid Functions

@ Now we are given an arbitrary polymatroid function f.
o Given k, goal is: find A* € argmax {f(A) : |A| < k}
e w.l.o.g., we can find A* € argmax {f(A) : |A| = k}
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(R NRRRRRRRNRNNARN

Cardinality Constrained Max. of Polymatroid Functions

@ Now we are given an arbitrary polymatroid function f.

o Given k, goal is: find A* € argmax {f(A) : |A| <k}

e w.lo.g., we can find A* € argmax {f(A) : |A| = k}

@ An important result by Nemhauser et. al. (1978) states that for
normalized (f()) = 0) monotone submodular functions (i.e.,

polymatroids) can be approximately maximized using a simple greedy
algorithm.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(R NRRRRRRRNRNNARN

Cardinality Constrained Max. of Polymatroid Functions

Now we are given an arbitrary polymatroid function f.
Given k, goal is: find A* € argmax {f(A) : |A| < k}
w.l.o.g., we can find A* € argmax {f(4) : |A| =k}

An important result by Nemhauser et. al. (1978) states that for
normalized (f(f) = 0) monotone submodular functions (i.e.,
polymatroids) can be approximately maximized using a simple greedy

algorithm.
@ Starting with Sy = (), we repeat the following greedy step for
i=0...(k—1):
Sit1 = S; U argmax f(S; U {v}) (12.27)
veV\S;
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(AR ARRRRRNRNRARN

The Greedy Algorithm for Submodular Max

A bit more precisely:
Algorithm 1: The Greedy Algorithm

1 Set Sp <+ 0 ;
> for i < 0...|E| —1do
3 Choose v; as follows:

v; € {argmax,cys, F({v}15) } = {argmax, s, F(Si U} }
A Set Slqu — S; U {Uz} ,
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(NERRNE FRRRRRNRNNARN

Greedy Algorithm for Card. Constrained Submodular Max

@ This algorithm has a guarantee
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(NERRNE FRRRRRNRNNARN

Greedy Algorithm for Card. Constrained Submodular Max

@ This algorithm has a guarantee

Theorem 12.6.1

Given a polymatroid function f , the above greedy algorithm returns sets S;
such that for each i we have f(S;) > (1 — 1/e) maxg<; f(95).
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(NERRNE FRRRRRNRNNARN

Greedy Algorithm for Card. Constrained Submodular Max

@ This algorithm has a guarantee

Theorem 12.6.1

Given a polymatroid function f , the above greedy algorithm returns sets S;
such that for each i we have f(S;) > (1 — 1/e) maxg<; f(95).

e To find A* € argmax {f(A) : |A| < k}, we repeat the greedy step
until k =17+ 1:
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Polymatroids, Greedy, and Cardinality Constrained Maximization

Greedy Algorithm for Card. Constrained Submodular Max

@ This algorithm has a guarantee

Theorem 12.6.1

Given a polymatroid function f , the above greedy algorithm returns sets S;
such that for each i we have f(S;) > (1 — 1/e) maxg<; f(95).

e To find A* € argmax {f(A) : |A| <k}, we repeat the greedy step
until k =7+ 1:

@ Again, since this generalizes max k-cover, Feige (1998) showed that
this can't be improved. Unless P = N P, no polynomial time algorithm
can do better than (1 —1/e + €) for any € > 0.
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(NERRNRY ARRRRNRNRARN

The Greedy Algorithm: 1 — 1/e intuition.
o At step 1 < k, greedy chooses v; to maximize f(v|S;).
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(NERRNRY ARRRRNRNRARN

The Greedy Algorithm: 1 — 1/e intuition.

o At step ¢ < k, greedy chooses v; to maximize f(v|S;).
o Let S* be optimal solution (of size k) and OPT = f(S™).
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(NERRNRY ARRRRNRNRARN

The Greedy Algorithm: 1 — 1/e intuition.

o At step ¢ < k, greedy chooses v; to maximize f(v|S;).
o Let S* be optimal solution (of size k) and OPT = f(S*). By

submodularity, we will show:

dveV \ S; f(?J’SZ) = f(SZ + 1)‘51') > (OPT — f(Sl)) (12.28)

| =

v
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(NERRNRY ARRRRNRNRARN

The Greedy Algorithm: 1 — 1/e intuition.

o At step ¢ < k, greedy chooses v; to maximize f(v|S;).
o Let S* be optimal solution (of size k) and OPT = f(S*). By

submodularity, we will show:

Jo e V\Si: f(u]Si) = £(Si +v[S;) > —(OPT — f(S;))  (12.28)

| =

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 12 - May 11th, 2016 F35/47 (pg.118/190



Polymatroids, Greedy, and Cardinality Constrained Maximization
(NERRNRY ARRRRNRNRARN

The Greedy Algorithm: 1 — 1/e intuition.

o At step ¢ < k, greedy chooses v; to maximize f(v|S;).
o Let S* be optimal solution (of size k) and OPT = f(S*). By
submodularity, we will show:

Jo e V\Si: f(u]Si) = £(Si +v[S;) > —(OPT — f(S;))  (12.28)

| =

r e 2 9 0
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(NERRNRY ARRRRNRNRARN

The Greedy Algorithm: 1 — 1/e intuition.

o At step ¢ < k, greedy chooses v; to maximize f(v|S;).
o Let S* be optimal solution (of size k) and OPT = f(S*). By
submodularity, we will show:

Jo e V\Si: f(u]Si) = £(Si +v[S;) > —(OPT — f(S;))  (12.28)

| =

éo.as | Equation (12.37) will
1" show that
o () | Equation (12.28) =
1 | OPT — f(Sit1)
f < (1 —1/k)(OPT — f(S)))
| = OPT — f(Sk)
| < (1-1/k)*OPT
< 1/eOPT
= OPT(1—1/e) < f(Sk)

r e 2 9 0
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(NERRNARY RRRRNRNNARN

Cardinality Constrained Polymatroid Max Theorem

Theorem 12.6.2 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R, define

{Si};>q to be the chain formed by the greedy algorithm (Eqn. (12.27)).
Then for all k,{ € Z4, we have:

£(Se) = (1 — etk e f(S) (12.29)

and in particular, for £ = k, we have f(Si) > (1 — 1/e) maxg. g <k f(5).
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(NERRNARY RRRRNRNNARN

Cardinality Constrained Polymatroid Max Theorem

Theorem 12.6.2 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R, define
{Si};>o to be the chain formed by the greedy algorithm (Eqn. (12.27)).
Then for all k,¢ € Z, ., we have:

£(Se) > (1— ek Jmax f(S) (12.29)

and in particular, for £ = k, we have f(Si) > (1 — 1/e) maxg. g <k f(5).

@ k is size of optimal set, i.e., OPT = f(S*) with |S*| =k
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Polymatroids, Greedy, and Cardinality Constrained Maximization
(NERRNARY RRRRNRNNARN

Cardinality Constrained Polymatroid Max Theorem

Theorem 12.6.2 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R, define
{Si};>o to be the chain formed by the greedy algorithm (Eqn. (12.27)).
Then for all k,¢ € Z, ., we have:

£(Se) > (1— ek Jmax f(S) (12.29)

and in particular, for £ = k, we have f(Si) > (1 — 1/e) maxg. g <k f(5).

o k is size of optimal set, i.e., OPT = f(S*) with |S*| =k
@ / is size of set we are choosing (i.e., we choose Sy from greedy chain).
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Cardinality Constrained Polymatroid Max Theorem

Theorem 12.6.2 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R, define
{Si};>o to be the chain formed by the greedy algorithm (Eqn. (12.27)).
Then for all k,¢ € Z, ., we have:

£(Se) = (1 — etk e f(S) (12.29)

and in particular, for £ = k, we have f(Si) > (1 — 1/e) maxg. g <k f(5).

o k is size of optimal set, i.e., OPT = f(S*) with |S*| =k

@ / is size of set we are choosing (i.e., we choose Sy from greedy chain).

@ Bound is how well does S (of size ¢) do relative to S*, the optimal set of
size k.
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Cardinality Constrained Polymatroid Max Theorem

Theorem 12.6.2 (Nemhauser et al. 1978)

Given non-negative monotone submodular function f : 2V — R, define
{Si};>o to be the chain formed by the greedy algorithm (Eqn. (12.27)).
Then for all k,¢ € Z, ., we have:

£(Se) = (1 — etk e f(S) (12.29)

and in particular, for £ = k, we have f(Si) > (1 — 1/e) maxg. g <k f(5).

o k is size of optimal set, i.e., OPT = f(S*) with |S*| =k

@ / is size of set we are choosing (i.e., we choose Sy from greedy chain).

@ Bound is how well does S (of size ¢) do relative to S*, the optimal set of
size k.

@ Intuitively, bound should get worse when ¢ < k and get better when
0> k.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 12 - May 11th, 2016 F36/47 (pg.125/190



Polymatroids, Greedy, and Cardinality Constrained Maximization
(NERRNARRL ARRNANNRRN

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 12.6.2.
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Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 12.6.2.

@ Fix ¢ (number of items greedy will chose) and & (size of optimal set to
compare against).
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Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 12.6.2.

@ Fix ¢ (number of items greedy will chose) and & (size of optimal set to
compare against).

@ Set S* € argmax {f(9) : |S| < k}

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 12 - May 11th, 2016 F37/47 (pg.128/190



Polymatroids, Greedy, and Cardinality Constrained Maximization
(NERRNARRL ARRNANNRRN

Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 12.6.2.

@ Fix ¢ (number of items greedy will chose) and & (size of optimal set to
compare against).

@ Set S* € argmax {f(95) : |S| <k}

@ w.l.o.g. assume |S*| = k.
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Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 12.6.2.

@ Fix ¢ (number of items greedy will chose) and & (size of optimal set to
compare against).

@ Set S* € argmax {f(95) : |S| <k}

e w.l.o.g. assume |S*| = k.

e Order S* = (v}, v3,...,v;) arbitrarily.
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Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 12.6.2.

@ Fix ¢ (number of items greedy will chose) and & (size of optimal set to
compare against).

@ Set S* € argmax {f(95) : |S| <k}

@ w.l.o.g. assume |S*| = k.

e Order §* = (v}, v3,...,v;) arbitrarily.
@ Let S; = (v1,v2,...,v;) be the greedy order chain chosen by the
algorithm, for i € {1,2,...,¢}.
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Cardinality Constrained Polymatroid Max Theorem

Proof of Theorem 12.6.2.

@ Fix ¢ (number of items greedy will chose) and & (size of optimal set to
compare against).

Set S* € argmax {f(9) : |S]| < k}

w.l.0.g. assume |S*| = k.

Order S* = (v}, v3,...,v}) arbitrarily.

Let S; = (v1,v2,...,v;) be the greedy order chain chosen by the
algorithm, for i € {1,2,...,¢}.

Then the following inequalities (on the next slide) follow:
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 12.6.2 cont.
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 12.6.2 cont.

@ For all 7 </, we have

f(5%)
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 12.6.2 cont.

@ For all 7 < ¢, we have

f8) < f(S*US)
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 12.6.2 cont.

@ For all 7 < ¢, we have

F(8%) < F(STUS:) = f(Si) + f(57[50) (12.30)
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 12.6.2 cont.

@ For all 7 < ¢, we have

f(8%) < F(STUS:) = f(Si) + f(57[50) (12.30)

k
= f(S;) + Z fF1S; U {vf,03,...,v5_1}) (12.31)
Jj=1
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 12.6.2 cont.

@ For all 7 < ¢, we have

f(87) < fF(STUS:) = f(Si) + f(57[S)) (12.30)
k
= £(S) + ) F@;1Siu {vf,05,...,v51}) (12.31)
j=1
< f(S)+ ) f(lS) (12.32)
vES*
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 12.6.2 cont.

@ For all 7 < ¢, we have

F(8%) < F(STUS:) = £(Si) + £(57150) (12.30)
= f(S;) +§k:lf(v;‘|5i U {v},v3,...,v51}) (12.31)
< f(53) +]ZS* f(v]Sy) (12.32)
< f(S)+ i: f(vi1]Si)
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Cardinality Constrained Polymatroid Max Theorem

.. proof of Theorem 12.6.2 cont.

@ For all 7 < ¢, we have

f(S7) < F(STUSi) = f(Si) + f(S7[SH) (12.30)
k
(Si) + > F@31Si U {of,25, ..., 051 }) (12.31)
=1
+ > f(lS) (12.32)
vES*
< F(S)+ 3 foialS) = F(S0) + Y f(SialS)  (12.33)
vES* vES*
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 12.6.2 cont.

e For all i < £, we have
F(S*) < £(S*US) = £(S:) + £(S57IS:) (12.30)
= f(S;) +§k:lf(v;‘|5i U {v},v3,...,v51}) (12.31)
< f(Si) + ]ZS* f(lSi) (12.32)
< f(Si) +§j*f<w+1rsi> = £(S:) + Z*ﬂsimsi) (12.33)
= f(5) + Z%fS(SmISi) - (12.34)
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 12.6.2 cont.

@ For all 7 < ¢, we have
f(S%) < f(STUS:) = f(S) + f(S¥[Si) (12.30)
k
= £(S) + ) F@;1Siu {vf,05,...,v51}) (12.31)
j=1
< F(8)+ > f(vlS) (12.32)
vES*
< FS)+ Y foisalS) = £(S) + D £(SinlSi)  (12.33)
veES* vES*
= f(S) + kf(Six1]Si) (12.34)
@ Therefore, we have Equation 12.28, i.e.,:
F(S*) = f(Si) < kf(Siv1lSi) = k(f(Sit1) — f(S5)) (12.35)
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 12.6.2 cont.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 12 - May 11th, 2016 F39/47 (pg.143/190



Polymatroids, Greedy, and Cardinality Constrained Maximization
(NERRNARRNRY ARRNNARN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 12.6.2 cont.

@ Define &; = f(S*) — £(S:), s0 0; — 6ix1 = f(Si+1) — f(Si),
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 12.6.2 cont.

o Define &; = £(S*) — £(S:), 50 6; — 6ix1 = f(Si+1) — f(S;), giving
8; < k(8; — bi1) (12.36)

or
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 12.6.2 cont.

o Define &; = f(S*) — £(S:), 50 0; — 6ix1 = f(Si+1) — f(Si), giving
0; < k:((SZ = (5@4.1) (12.36)

or
- 1
it1 < (1 - %)51' (12.37)
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 12.6.2 cont.

o Define &; = f(S*) — £(S:), 50 0; — 6ix1 = f(Si+1) — f(Si), giving

0; < k:((SZ = (5@4.1) (12.36)
or .
bi+1 < (1= %)51' (12.37)
@ The relationship between §y and §; is then
Ly

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 12 - May 11th, 2016 F39/47 (pg.147/190



Polymatroids, Greedy, and Cardinality Constrained Maximization
(NERRNARRNRY ARRNNARN

Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 12.6.2 cont.

o Define &; = f(S*) — £(S:), 50 0; — 6ix1 = f(Si+1) — f(Si), giving

(57; < k:((SZ = (5@4.1) (12.36)
or .
dit1 < (1 - %)51' (12.37)
@ The relationship between §y and §; is then
L.
o <(1-— %) do (12.38)

® Now, do = f(5%) — f(0) < f(S5) since f > 0.
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 12.6.2 cont.

o Define &; = f(S*) — £(S:), 50 0; — 6ix1 = f(Si+1) — f(Si), giving
0; < k:((SZ = (5@4.1) (12.36)

or
1
dit1 < (1 - %)51' (12.37)

@ The relationship between §y and §; is then

1
&< (1-— %)% (12.38)

@ Now, o = f(5*) — f(0) < f(S5*) since f > 0.

@ Also, by variational bound 1 — z < e™® for x € R, we have

dp < (1 - %)650 < e R f(S%) (12.39)
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 12.6.2 cont.
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 12.6.2 cont.
@ When we identify §; = f(S*) — f(S¢), a bit of rearranging then gives:

F(S)) > (1 —e M) f(S7) (12.40)

Ol

v
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 12.6.2 cont.
@ When we identify §; = f(S*) — f(S¢), a bit of rearranging then gives:

F(S)) > (1 —e M) f(57) (12.40)

Ol

v

e With ¢ = k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if Sy is greedy solution of size k, and S* is an
optimal solution of size k, f(Si) > (1 —1/e)f(S*) ~ 0.6321f(S™).
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 12.6.2 cont.

@ When we identify §; = f(S*) — f(S¢), a bit of rearranging then gives:

F(S)) > (1 —e M) f(57) (12.40)

Ol

v

e With ¢ = k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if S is greedy solution of size k, and S* is an
optimal solution of size k, f(Sx) > (1 —1/e) f(S*) = 0.6321f(S*).

e What if we want to guarantee a solution no worse than .95f(S*) where
|S*| = k7
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 12.6.2 cont.

@ When we identify §; = f(S*) — f(S¢), a bit of rearranging then gives:

F(S)) > (1 —e M) f(57) (12.40)

Ol

v

e With ¢ = k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if S is greedy solution of size k, and S* is an
optimal solution of size k, f(Sx) > (1 —1/e) f(S*) = 0.6321f(S*).

e What if we want to guarantee a solution no worse than .95f(S*) where
|S*| = k? Set 0.95 = (1 — e~ /), which gives
¢ =[—kIn(1 — 0.95)] = 4k.
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 12.6.2 cont.

@ When we identify §; = f(S*) — f(S¢), a bit of rearranging then gives:

F(S)) > (1 —e M) f(57) (12.40)

Ol

v

e With ¢ = k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if S is greedy solution of size k, and S* is an
optimal solution of size k, f(Sx) > (1 —1/e) f(S*) = 0.6321f(S*).

e What if we want to guarantee a solution no worse than .95f(S*) where
|S*| = k? Set 0.95 = (1 — e~*/¥), which gives
{ =[—kIn(1 —0.95)] = 4k. And [—In(1 —0.999)] = 7.
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Cardinality Constrained Polymatroid Max Theorem

... proof of Theorem 12.6.2 cont.

@ When we identify §; = f(S*) — f(S¢), a bit of rearranging then gives:

F(S)) > (1 —e M) f(57) (12.40)

Ol

v

e With ¢ = k, when picking k items, greedy gets (1 — 1/e) ~ 0.6321
bound. This means that if S is greedy solution of size k, and S* is an
optimal solution of size k, f(Sx) > (1 —1/e) f(S*) = 0.6321f(S*).

e What if we want to guarantee a solution no worse than .95f(S*) where
|S*| = k? Set 0.95 = (1 — e~*/¥), which gives
{ =[—kIn(1 —0.95)] = 4k. And [—In(1 —0.999)] = 7.

@ So solution, in the worst case, quickly gets very good. Typical/practical
case is much better.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 12 - May 11th, 2016 F40/47 (pg.156/190



Polymatroids, Greedy, and Cardinality Constrained Maximization
(NERRNARRRRRNE NNRARN

Greedy running time

@ Greedy computes a new maximum n = |V/| times, and each maximum
computation requires O(n) comparisons, leading to O(n?)
computation for greedy.
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Greedy running time

o Greedy computes a new maximum n = |V/| times, and each maximum
computation requires O(n) comparisons, leading to O(n?)
computation for greedy.

@ This is the best we can do for arbitrary functions, but O(n?) is not
practical to some.
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Greedy running time

o Greedy computes a new maximum n = |V/| times, and each maximum
computation requires O(n) comparisons, leading to O(n?)
computation for greedy.

@ This is the best we can do for arbitrary functions, but O(n?) is not
practical to some.

@ Greedy can be made much faster in practice by a simple strategy made
possible, once again, via the use of submodularity.
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Greedy running time

Greedy computes a new maximum n = |V| times, and each maximum
computation requires O(n) comparisons, leading to O(n?)
computation for greedy.

This is the best we can do for arbitrary functions, but O(n?) is not
practical to some.

@ Greedy can be made much faster in practice by a simple strategy made
possible, once again, via the use of submodularity.

This is called Minoux’s 1977 Accelerated Greedy strategy (and has
been rediscovered a few times, e.g., “Lazy greedy”), and runs much
faster while still producing same answer.
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Greedy running time

o Greedy computes a new maximum n = |V/| times, and each maximum
computation requires O(n) comparisons, leading to O(n?)
computation for greedy.

@ This is the best we can do for arbitrary functions, but O(n?) is not
practical to some.

@ Greedy can be made much faster in practice by a simple strategy made
possible, once again, via the use of submodularity.

@ This is called Minoux’s 1977 Accelerated Greedy strategy (and has
been rediscovered a few times, e.g., “Lazy greedy”), and runs much
faster while still producing same answer.

@ We describe it next:
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Minoux's Accelerated Greedy for Submodular Functions

@ At stage i in the algorithm, we have a set of gains f(v|S;) for all
v ¢ S;. Store these values a,, <— f(v|S;) in sorted priority queue.
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Minoux's Accelerated Greedy for Submodular Functions

@ At stage i in the algorithm, we have a set of gains f(v|S;) for all
v ¢ S;. Store these values a, <— f(v|S;) in sorted priority queue.
@ Priority queue, O(1) to find max, O(logn) to insert in right place.
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Minoux's Accelerated Greedy for Submodular Functions

@ At stage i in the algorithm, we have a set of gains f(v|S;) for all

v ¢ S;. Store these values a, <— f(v|S;) in sorted priority queue.
@ Priority queue, O(1) to find max, O(logn) to insert in right place.
@ Once we choose a max v, then set S;;11 < S; + v.
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Minoux's Accelerated Greedy for Submodular Functions

@ At stage i in the algorithm, we have a set of gains f(v|S;) for all
v ¢ S;. Store these values a, <— f(v|S;) in sorted priority queue.

@ Priority queue, O(1) to find max, O(logn) to insert in right place.

@ Once we choose a max v, then set S;11 + S; + v.

e For v ¢ S;y1 we have f(v]|S;1+1) < f(v|S;) by submodularity.
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Minoux's Accelerated Greedy for Submodular Functions

@ At stage i in the algorithm, we have a set of gains f(v|S;) for all

v ¢ S;. Store these values a, <— f(v|S;) in sorted priority queue.
Priority queue, O(1) to find max, O(logn) to insert in right place.
Once we choose a max v, then set S;11 + S; + v.

For v ¢ Si+1 we have f(v|Si+1) < f(v|S;) by submodularity.
Therefore, if we find a v’ such that f(v/[|Sit1) > a, for all v # ¢/, then
since

f'1Si1) > ap = f(0]Si) > f(v]Siy1) (12.41)

we have the true max, and we need not re-evaluate gains of other
elements again.
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Minoux's Accelerated Greedy for Submodular Functions

@ At stage i in the algorithm, we have a set of gains f(v|S;) for all

v ¢ S;. Store these values a, <— f(v|S;) in sorted priority queue.
Priority queue, O(1) to find max, O(logn) to insert in right place.
Once we choose a max v, then set S;11 + S; + v.

For v ¢ Si+1 we have f(v|Si+1) < f(v|S;) by submodularity.
Therefore, if we find a v’ such that f(v/|Si+1) > «, for all v # ¢/, then
since

F'Sit1) > o = f(v]Si) > f(v]Sit1) (12.41)

we have the true max, and we need not re-evaluate gains of other
elements again.

@ Strategy is: find the argmax, ey g, , @, and then compute the real
f('|Si+1). If it is greater than all other ,’s then that’s the next
greedy step. Otherwise, replace o, with its real value, resort, and
repeat.
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Minoux's Accelerated Greedy for Submodular Functions

@ Minoux's algorithm is exact, in that it has the same guarantees as does
the O(n?) greedy Algorithm 2 (this means it will return either the
same answers, or answers that have the 1 — 1/e guarantee).
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Minoux's Accelerated Greedy for Submodular Functions

@ Minoux's algorithm is exact, in that it has the same guarantees as does
the O(n?) greedy Algorithm 2 (this means it will return either the
same answers, or answers that have the 1 — 1/e guarantee).

@ In practice: Minoux's trick has enormous speedups (= 700 ) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).
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Minoux's Accelerated Greedy for Submodular Functions

@ Minoux's algorithm is exact, in that it has the same guarantees as does
the O(n?) greedy Algorithm 2 (this means it will return either the
same answers, or answers that have the 1 — 1/e guarantee).

@ In practice: Minoux's trick has enormous speedups (= 700 ) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).

@ When choosing a of size k, naive greedy algorithm is O(nk) but
accelerated variant at the very best does O(n + k), so this limits the
speedup.
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Minoux's Accelerated Greedy for Submodular Functions

@ Minoux's algorithm is exact, in that it has the same guarantees as does
the O(n?) greedy Algorithm 2 (this means it will return either the
same answers, or answers that have the 1 — 1/e guarantee).

@ In practice: Minoux's trick has enormous speedups (= 700 ) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).

@ When choosing a of size k, naive greedy algorithm is O(nk) but
accelerated variant at the very best does O(n + k), so this limits the
speedup.

@ Algorithm has been rediscovered (| think) independently (CELF -
cost-effective lazy forward selection, Leskovec et al., 2007)
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Minoux's Accelerated Greedy for Submodular Functions

@ Minoux's algorithm is exact, in that it has the same guarantees as does
the O(n?) greedy Algorithm 2 (this means it will return either the
same answers, or answers that have the 1 — 1/e guarantee).

@ In practice: Minoux's trick has enormous speedups (= 700 ) over the
standard greedy procedure due to reduced function evaluations and use
of good data structures (priority queue).

@ When choosing a of size k, naive greedy algorithm is O(nk) but
accelerated variant at the very best does O(n + k), so this limits the
speedup.

@ Algorithm has been rediscovered (I think) independently (CELF -
cost-effective lazy forward selection, Leskovec et al., 2007)

@ Can be used used for “big data” sets (e.g., social networks, selecting
blogs of greatest influence, document summarization, etc.).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 12 - May 11th, 2016 F43/47 (pg.172/190



Polymatroids, Greedy, and Cardinality Constrained Maximization
(NERRNARRRRRRNANE RN

Priority Queue

@ Use a priority queue () as a data structure: operations include:
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Priority Queue

@ Use a priority queue () as a data structure: operations include:
o Insert an item (v, ) into queue, with v € V and a € R.

INSERT(Q, (v, ) (12.42)
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Priority Queue

@ Use a priority queue () as a data structure: operations include:
o Insert an item (v, @) into queue, with v € V and « € R.

INSERT(Q, (v, @)) (12.42)
e Pop the item (v, &) with maximum value « off the queue.

(v, @) < POP(Q) (12.43)
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Priority Queue

@ Use a priority queue () as a data structure: operations include:
o Insert an item (v, @) into queue, with v € V and « € R.

INSERT(Q, (v, @)) (12.42)
o Pop the item (v, &) with maximum value « off the queue.

(v, ) + POP(Q) (12.43)
o Query the value of the max item in the queue

MAX(Q) € R (12.44)
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Priority Queue

@ Use a priority queue () as a data structure: operations include:
o Insert an item (v, @) into queue, with v € V and « € R.

INSERT(Q, (v, @)) (12.42)
o Pop the item (v, &) with maximum value « off the queue.

(v, ) + POP(Q) (12.43)
o Query the value of the max item in the queue

MAX(Q) € R (12.44)

@ On next slide, we call a popped item “fresh” if the value (v, ) popped has
the correct value av = f(v|S;). Use extra "bit" to store this info
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Priority Queue

@ Use a priority queue () as a data structure: operations include:
o Insert an item (v, @) into queue, with v € V and « € R.

INSERT(Q, (v, @)) (12.42)
o Pop the item (v, &) with maximum value « off the queue.

(v, ) + POP(Q) (12.43)
o Query the value of the max item in the queue

MAX(Q) € R (12.44)

o On next slide, we call a popped item “fresh” if the value (v, ) popped has
the correct value av = f(v|S;). Use extra "bit" to store this info

@ If a popped item is fresh, it must be the maximum — this can happen if,
at given iteration, v was first popped and neither fresh nor maximum so
placed back in the queue, and it then percolates back to the top at which
point it is fresh — thereby avoid extra queue check.
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Minoux's Accelerated Greedy Algorithm Submodular Max

Algorithm 2: Minoux’s Accelerated Greedy Algorithm

1 Set Sp < 0 ; i < 0 ; Initialize priority queue Q ;
> for v € F do
3 | INSERT(Q, f(v))

1 repeat

] (v, @) < POP(Q) ;

] if o not “fresh” then

7 L recompute a < f(v]S;)

] if (popped «v in line 5 was “fresh”) OR (o > MAX(Q)) then
) L Set S;11 + S; U {’U} ;

) 11+ 1;

1 else

3 | INSERT(Q, (v, )
3 until i = |E|;
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Minimum Submodular Cover

@ Given polymatroid f, goal is to find a covering set of minimum cost:

S* € argmin |S| such that f(S) > « (12.45)
SCV

where « is a “cover” requirement.
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Minimum Submodular Cover

@ Given polymatroid f, goal is to find a covering set of minimum cost:
S* € argmin |S| such that f(S) > « (12.45)
scv
where « is a “cover” requirement.

e Normally take o = f(V') but defining f'(A) = min{f(A), a} we can
take any a. Hence, we have equivalent formulation:

S* € argmin | S| such that f'(S) > f/(V) (12.46)
Scv
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Minimum Submodular Cover

@ Given polymatroid f, goal is to find a covering set of minimum cost:
S* € argmin |S| such that f(S) > « (12.45)
scv

where « is a “cover” requirement.

e Normally take o« = f(V') but defining f'(A) = min {f(A), a} we can
take any a. Hence, we have equivalent formulation:

S* € argmin | S| such that f/'(S) > f'(V) (12.46)
SCV

@ Note that this immediately generalizes standard set cover, in which
case f(A) is the cardinality of the union of sets indexed by A.
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Minimum Submodular Cover

@ Given polymatroid f, goal is to find a covering set of minimum cost:

S* € argmin |S| such that f(S) > « (12.45)
Nak

where « is a “cover” requirement.

e Normally take o« = f(V') but defining f'(A) = min {f(A), a} we can
take any a. Hence, we have equivalent formulation:

S* € argmin | S| such that f/'(S) > f'(V) (12.46)
SCvV

@ Note that this immediately generalizes standard set cover, in which
case f(A) is the cardinality of the union of sets indexed by A.

@ Algorithm: Pick the first S; chosen by aforementioned greedy
algorithm such that f(.S;) > a.
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Minimum Submodular Cover

@ Given polymatroid f, goal is to find a covering set of minimum cost:

S* € argmin |S| such that f(S) > « (12.45)
Nak

where « is a “cover” requirement.

e Normally take o« = f(V') but defining f'(A) = min {f(A), a} we can
take any a. Hence, we have equivalent formulation:

S* € argmin | S| such that f/'(S) > f'(V) (12.46)
scv

@ Note that this immediately generalizes standard set cover, in which
case f(A) is the cardinality of the union of sets indexed by A.

@ Algorithm: Pick the first .S; chosen by aforementioned greedy
algorithm such that f(.S;) > a.

@ For integer valued f, this greedy algorithm an O(log(maxscy f({s})))
approximation. Set cover is hard to approximate with a factor better
than (1 — €)log o, where « is the desired cover constraint.
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Summary: Monotone Submodular Maximization

@ Only makes sense when there is a constraint.
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Summary: Monotone Submodular Maximization

@ Only makes sense when there is a constraint.

@ We discussed cardinality constraint
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Summary: Monotone Submodular Maximization

@ Only makes sense when there is a constraint.
@ We discussed cardinality constraint

@ Generalizes the max k-cover problem, and also similar to the set cover
problem.
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Summary: Monotone Submodular Maximization

@ Only makes sense when there is a constraint.
@ We discussed cardinality constraint

@ Generalizes the max k-cover problem, and also similar to the set cover
problem.

@ Simple greedy algorithm gets 1 — e ~*/F approximation, where k is size
of optimal set we compare against, and £ is size of set greedy
algorithm chooses.
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Summary: Monotone Submodular Maximization

Only makes sense when there is a constraint.

We discussed cardinality constraint

Generalizes the max k-cover problem, and also similar to the set cover
problem.

Simple greedy algorithm gets 1 — e~*/* approximation, where k is size
of optimal set we compare against, and £ is size of set greedy
algorithm chooses.

@ Submodular cover: min. |S|s.t. f(S) > a.
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Summary: Monotone Submodular Maximization

@ Only makes sense when there is a constraint.
@ We discussed cardinality constraint

@ Generalizes the max k-cover problem, and also similar to the set cover
problem.

o Simple greedy algorithm gets 1 — e~¢/* approximation, where k is size
of optimal set we compare against, and £ is size of set greedy
algorithm chooses.

e Submodular cover: min. |S] s.t. f(S) > a.

@ Minoux's accelerated greedy trick.
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