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Cumulative Outstanding Reading

Read chapters 2 and 3 from Fujishige’s book.

Read chapter 1 from Fujishige’s book.
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Announcements, Assignments, and Reminders

Homework 4, soon available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments)

Homework 3, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (5/2) at 11:55pm.

Homework 2, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (4/18) at 11:55pm.

Homework 1, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Friday (4/8) at 11:55pm.

Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google
hangout (set up meeting via our our discussion board (https:
//canvas.uw.edu/courses/1039754/discussion_topics)).
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Class Road Map - IT-I
L1(3/28): Motivation, Applications, &
Basic Definitions

L2(3/30): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).

L3(4/4): Info theory exs, more apps,
definitions, graph/combinatorial examples,
matrix rank example, visualization

L4(4/6): Graph and Combinatorial
Examples, matrix rank, Venn diagrams,
examples of proofs of submodularity, some
useful properties

L5(4/11): Examples & Properties, Other
Defs., Independence

L6(4/13): Independence, Matroids,
Matroid Examples, matroid rank is
submodular

L7(4/18): Matroid Rank, More on
Partition Matroid, System of Distinct
Reps, Transversals, Transversal Matroid,

L8(4/20): Transversals, Matroid and
representation, Dual Matroids,

L9(4/25): Dual Matroids, Properties,
Combinatorial Geometries, Matroid and
Greedy

L10(4/27): Matroid and Greedy,
Polyhedra, Matroid Polytopes,

L11(5/2): From Matroids to
Polymatroids, Polymatroids

L12(5/4): Polymatroids, Polymatroids
and Greedy, Possible Polytopes, Extreme
Points

L13(5/9):

L14(5/11):

L15(5/16):

L16(5/18):

L17(5/23):

L18(5/25):

L19(6/1):

L20(6/6): Final Presentations
maximization.

Finals Week: June 6th-10th, 2016.
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Logistics Review

P -basis of x given compact set P ⊆ RE
+

Definition 12.2.1 (subvector)

y is a subvector of x if y ≤ x (meaning y(e) ≤ x(e) for all e ∈ E).

Definition 12.2.2 (P -basis)

Given a compact set P ⊆ RE+, for any x ∈ RE+, a subvector y of x is called
a P -basis of x if y maximal in P .
In other words, y is a P -basis of x if y is a maximal P -contained subvector
of x.

Here, by y being “maximal”, we mean that there exists no z > y (more
precisely, no z ≥ y + ε1e for some e ∈ E and ε > 0) having the properties
of y (the properties of y being: in P , and a subvector of x).
In still other words: y is a P -basis of x if:

1 y ≤ x (y is a subvector of x); and
2 y ∈ P and y + ε1e /∈ P for all e ∈ E where y(e) < x(e) and ∀ε > 0 (y

is maximal P -contained).
Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016 F5/58 (pg.5/70)

Logistics Review

A vector form of rank

Recall the definition of rank from a matroid M = (E, I).
rank(A) = max {|I| : I ⊆ A, I ∈ I} = max

I∈I
|A ∩ I| (12.1)

vector rank: Given a compact set P ⊆ RE+, we can define a form of
“vector rank” relative to this P in the following way: Given an x ∈ RE ,
we define the vector rank, relative to P , as:

rank(x) = max (y(E) : y ≤ x, y ∈ P ) = max
y∈P

(x ∧ y)(E) (12.2)

where y ≤ x is componentwise inequality (yi ≤ xi,∀i), and where
(x ∧ y) ∈ RE+ has (x ∧ y)(i) = min(x(i), y(i)).

If Bx is the set of P -bases of x, than rank(x) = maxy∈Bx y(E).

If x ∈ P , then rank(x) = x(E) (x is its own unique self P -basis).

If xmin = minx∈P x(E), and x ≤ xmin what then? −∞?

In general, might be hard to compute and/or have ill-defined properties.
Next, we look at an object that restrains and cultivates this form of rank.
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Polymatroidal polyhedron (or a “polymatroid”)

Definition 12.2.1 (polymatroid)

A polymatroid is a compact set P ⊆ RE+ satisfying

1 0 ∈ P
2 If y ≤ x ∈ P then y ∈ P (called down monotone).

3 For every x ∈ RE+, any maximal vector y ∈ P with y ≤ x (i.e., any
P -basis of x), has the same component sum y(E)
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Matroid and Polymatroid: side-by-side

A Matroid is:

1 a set system (E, I)
2 empty-set containing ∅ ∈ I
3 down closed, ∅ ⊆ I ′ ⊆ I ∈ I ⇒ I ′ ∈ I.

4 any maximal set I in I, bounded by another set A, has the same
matroid rank (any maximal independent subset I ⊆ A has same size
|I|).

A Polymatroid is:

1 a compact set P ⊆ RE+
2 zero containing, 0 ∈ P
3 down monotone, 0 ≤ y ≤ x ∈ P ⇒ y ∈ P
4 any maximal vector y in P , bounded by another vector x, has the

same vector rank (any maximal independent subvector y ≤ x has same
sum y(E)).
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Polymatroid function and its polyhedron.

Definition 12.2.1

A polymatroid function is a real-valued function f defined on subsets of E
which is normalized, non-decreasing, and submodular. That is we have

1 f(∅) = 0 (normalized)

2 f(A) ≤ f(B) for any A ⊆ B ⊆ E (monotone non-decreasing)

3 f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) for any A,B ⊆ E (submodular)

We can define the polyhedron P+
f associated with a polymatroid function

as follows

P+
f =

{
y ∈ RE+ : y(A) ≤ f(A) for all A ⊆ E

}
(12.1)

=
{
y ∈ RE : y ≥ 0, y(A) ≤ f(A) for all A ⊆ E

}
(12.2)
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A polymatroid vs. a polymatroid function’s polyhedron

Summarizing the above, we have:

Given a polymatroid function f , its associated polytope is given as

P+
f =

{
y ∈ RE

+ : y(A) ≤ f(A) for all A ⊆ E
}

(12.10)

We also have the definition of a polymatroidal polytope P (compact
subset, zero containing, down-monotone, and ∀x any maximal
independent subvector y ≤ x has same component sum y(E)).

Is there any relationship between these two polytopes?

In the next theorem, we show that any P+
f -basis has the same

component sum, when f is a polymatroid function, and P+
f satisfies

the other properties so that P+
f is a polymatroid.
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A polymatroid function’s polyhedron is a polymatroid.

Theorem 12.2.1

Let f be a polymatroid function defined on subsets of E. For any x ∈ RE+,
and any P+

f -basis yx ∈ RE+ of x, the component sum of yx is

yx(E) = rank(x) = max
(
y(E) : y ≤ x, y ∈ P+

f

)
= min (x(A) + f(E \A) : A ⊆ E) (12.10)

As a consequence, P+
f is a polymatroid, since r.h.s. is constant w.r.t. yx.

Taking E \B = supp(x) (so elements B are all zeros in x), and for b /∈ B
we make x(b) is big enough, the r.h.s. min has solution A∗ = B. We recover
submodular function from the polymatroid polyhedron via the following:

rank

(
1

ε
1E\B

)
= f(B) = max

{
y(B) : y ∈ P+

f

}
(12.11)

In fact, we will ultimately see a number of important consequences of this
theorem (other than just that P+

f is a polymatroid)
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A polymatroid function’s polyhedron is a polymatroid.

Proof.

Clearly 0 ∈ P+
f since f is non-negative.

Also, for any y ∈ P+
f then any x <= y is also such that x ∈ P+

f . So,

P+
f is down-monotone.

Now suppose that we are given an x ∈ RE+, and maximal yx ∈ P+
f

with yx ≤ x (i.e., yx is a P+
f -basis of x).

Goal is to show that any such yx has yx(E) = const, dependent only
on x and also f (which defines the polytope) but not dependent on
yx, the particular P+

f -basis.

Doing so will thus establish that P+
f is a polymatroid.

. . .
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

First trivial case: could have yx = x, which happens if
x(A) ≤ f(A),∀A ⊆ E (i.e., x ∈ P+

f strictly). In such case,

min (x(A) + f(E \A) : A ⊆ E) (12.10)

= x(E) + min (f(E \A)− x(E \A) : A ⊆ E) (12.11)

= x(E) + min (f(A)− x(A) : A ⊆ E) (12.12)

= x(E) (12.13)

When x ∈ P+
f , y = x is clearly the solution to

max
(
y(E) : y ≤ x, y ∈ P+

f

)
, so this is tight, and rank(x) = x(E).

This is a value dependent only on x and not on any of its P+
f -bases.

. . .
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

2nd trivial case: x(A) > f(A),∀A ⊆ E (i.e., x /∈ P+
f every direction),

Then for any order (a1, a2, . . . ) of the elements and
Ai , (a1, a2, . . . , ai), we have x(ai) ≥ f(ai) ≥ f(ai|Ai−1), the second
inequality by submodularity. This gives

min (x(A) + f(E \A) : A ⊆ E) (12.10)

= x(E) + min (f(A)− x(A) : A ⊆ E) (12.11)

= x(E) + min

(∑
i

f(ai|Ai−1)−
∑
i

x(ai) : A ⊆ E
)

(12.12)

= x(E) + min

∑
i

(
f(ai|Ai−1)− x(ai)

)
︸ ︷︷ ︸

≤0

: A ⊆ E

 (12.13)

= x(E) + f(E)− x(E) = f(E) = max(y(E) : y ∈ P+
f ).

(12.14)

. . .
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

Assume neither trivial case. Because yx ∈ P+
f , we have that

yx(A) ≤ f(A) for all A ⊆ E.

We show that the constant is given by

yx(E) = min (x(A) + f(E \A) : A ⊆ E) (12.1)

For any P+
f -basis yx of x, and any A ⊆ E, we have weak relationship:

yx(E) = yx(A) + yx(E \A) (12.2)

≤ x(A) + f(E \A). (12.3)

This follows since yx ≤ x and since yx ∈ P+
f .

This ensures

max
(
y(E) : y ≤ x, y ∈ P+

f

)
≤ min (x(A) + f(E \A) : A ⊆ E) (12.4)

Given an A where equality in Eqn. (12.3) holds, above min result follows.
. . .
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

For any y ∈ P+
f , call a set B ⊆ E tight if y(B) = f(B). The union

(and intersection) of tight sets B,C is again tight, since

f(B) + f(C) = y(B) + y(C) (12.5)

= y(B ∩ C) + y(B ∪ C) (12.6)

≤ f(B ∩ C) + f(B ∪ C) (12.7)

≤ f(B) + f(C) (12.8)

which requires equality everywhere above.

Because y(A) ≤ f(A), ∀A, this means y(B ∩ C) = f(B ∩ C) and
y(B ∪ C) = f(B ∪ C), so both also are tight.

For y ∈ P+
f , it will be ultimately useful to define this lattice family of

tight sets: D(y) , {A : A ⊆ E, y(A) = f(A)}.
. . .
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

Also, we define sat(y)
def
=
⋃ {T : T ∈ D(y)}.

Consider again a P+
f -basis yx (so maximal).

Given a e ∈ E, either yx(e) is cut off due to x (so yx(e) = x(e)) or e
is saturated by f , meaning it is an element of some tight set and
e ∈ sat(yx).

Let E \A = sat(yx) be the union of all such tight sets (which is also
tight, so yx(E \A) = f(E \A)).

Hence, we have

yx(E) = yx(A) + yx(E \A) = x(A) + f(E \A) (12.9)

So we identified the A to be the elements that are non-tight, and
achieved the min, as desired.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016 F17/58 (pg.17/70)

Polymatroids Polymatroids and Greedy Possible Polytopes Extreme Points

A polymatroid is a polymatroid function’s polytope

So, when f is a polymatroid function, P+
f is a polymatroid.

Is it the case that, conversely, for any polymatroid P , there is an
associated polymatroidal function f such that P = P+

f ?

Theorem 12.3.1

For any polymatroid P (compact subset of RE
+, zero containing, down-monotone,

and ∀x ∈ RE
+ any maximal independent subvector y ≤ x has same component sum

y(E) = rank(x)), there is a polymatroid function f : 2E → R (normalized,

monotone non-decreasing, submodular) such that P = P+
f where

P+
f =

{
x ∈ RE : x ≥ 0, x(A) ≤ f(A), ∀A ⊆ E

}
.
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Tight sets D(y) are closed, and max tight set sat(y)

Recall the definition of the set of tight sets at y ∈ P+
f :

D(y) , {A : A ⊆ E, y(A) = f(A)} (12.10)

Theorem 12.3.2

For any y ∈ P+
f , with f a polymatroid function, then D(y) is closed under

union and intersection.

Proof.

We have already proven this as part of Theorem 11.4.1

Also recall the definition of sat(y), the maximal set of tight elements
relative to y ∈ RE+.

sat(y)
def
=
⋃
{T : T ∈ D(y)} (12.11)
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Join ∨ and meet ∧ for x, y ∈ RE
+

For x, y ∈ RE+, define vectors x ∧ y ∈ RE+ and x ∨ y ∈ RE+ such that, for
all e ∈ E

(x ∨ y)(e) = max(x(e), y(e)) (12.12)

(x ∧ y)(e) = min(x(e), y(e)) (12.13)

Hence,

x ∨ y ,

(
max

(
x(e1), y(e1)

)
,max

(
x(e2), y(e2)

)
, . . . ,max

(
x(en), y(en)

))
and similarly

x ∧ y ,

(
min

(
x(e1), y(e1)

)
,min

(
x(e2), y(e2)

)
, . . . ,min

(
x(en), y(en)

))
From this, we can define things like an lattices, and other constructs.
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Vector rank, rank(x), is submodular

Recall that the matroid rank function is submodular.

The vector rank function rank(x) also satisfies a form of
submodularity, namely one defined on the real lattice.

Theorem 12.3.3 (vector rank and submodularity)

Let P be a polymatroid polytope. The vector rank function rank : RE+ → R
with rank(x) = max (y(E) : y ≤ x, y ∈ P ) satisfies, for all u, v ∈ RE+

rank(u) + rank(v) ≥ rank(u ∨ v) + rank(u ∧ v) (12.14)
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Vector rank rank(x) is submodular, proof

Proof of Theorem 12.3.3.

Let a ∈ RE+ be a P -basis of u ∧ v, so rank(u ∧ v) = a(E).

By the polymatroid property, ∃ an independent b ∈ P such that:
a ≤ b ≤ u∨ v and also such that rank(b) = b(E) = rank(u∨ v), so b is
a P -basis of u ∨ v, and thus b ≤ u ∨ v.

Given e ∈ E, if a(e) is maximal due to P , then a(e) = b(e)
≤ min(u(e), v(e)).

If a(e) is maximal due to (u ∧ v)(e), then
a(e) = min(u(e), v(e)) ≤ b(e).
Therefore, in either case, a = b ∧ (u ∧ v) . . .

. . . and since b ≤ u ∨ v, we get

a+ b = b ∧ u ∧ v + b = b ∧ u+ b ∧ v (12.15)

To see this, consider each case where either b is the minimum, or u is minimum

with b ≤ v, or v is minimum with b ≤ u.
. . .
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Vector rank rank(x) is submodular, proof

. . . proof of Theorem 12.3.3.

b is independent, and b ∧ u and b ∧ v are independent subvectors of u
and v respectively, so (b ∧ u)(E) ≤ rank(u) and (b ∧ v)(E) ≤ rank(v).

Hence,
rank(u ∧ v) + rank(u ∨ v) = a(E) + b(E) (12.16)

= (b ∧ u)(E) + (b ∧ v)(E) (12.17)

≤ rank(u) + rank(v) (12.18)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016 F23/58 (pg.23/70)

Polymatroids Polymatroids and Greedy Possible Polytopes Extreme Points

A polymatroid function’s polyhedron vs. a polymatroid.

Note the remarkable similarity between the proof of Theorem 12.3.3
and the proof of Theorem 6.6.1 that the standard matroid rank
function is submodular.

Next, we prove Theorem 12.3.1, that any polymatroid polytope P has
a polymatroid function f such that P = P+

f .

Given this result, we can conclude that a polymatroid is really an
extremely natural polyhedral generalization of a matroid. This was all
realized by Jack Edmonds in the mid 1960s (and published in 1969 in
his landmark paper “Submodular Functions, Matroids, and Certain
Polyhedra”).
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Proof of Theorem 12.3.1

Proof of Theorem 12.3.1.

We are given a polymatroid P .

Define αmax , max {x(E) : x ∈ P}, and note that αmax > 0 when P
is non-empty, and αmax = limα→∞ rank(α1E) = rank(αmax1E).

Hence, for any x ∈ P , and ∀e ∈ E, we have x(e) ≤ x(E) ≤ αmax.

Define a function f : 2V → R as, for any A ⊆ E,

f(A) , rank(αmax1A) (12.19)

Then f is submodular since

f(A) + f(B) = rank(αmax1A) + rank(αmax1B) (12.20)

≥ rank(αmax1A ∨ αmax1B) + rank(αmax1A ∧ αmax1B) (12.21)

= rank(αmax1A∪B) + rank(αmax1A∩B) (12.22)

= f(A ∪B) + f(A ∩B) (12.23)
. . .
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Proof of Theorem 12.3.1

Proof of Theorem 12.3.1.

Moreover, we have that f is non-negative, normalized with f(∅) = 0,
and monotone non-decreasing (since rank is monotone).

Hence, f is a polymatroid function.

Consider the polytope P+
f defined as:

P+
f =

{
x ∈ RE+ : x(A) ≤ f(A), ∀A ⊆ E

}
(12.24)

Given an x ∈ P , then for any A ⊆ E, x ≤ αmax1A, so
x(A) ≤ max {z(E) : z ∈ P, z ≤ αmax1A} = rank(αmax1A) = f(A),
therefore x ∈ P+

f .

Hence, P ⊆ P+
f .

We will next show that P+
f ⊆ P to complete the proof.

. . .
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Proof of Theorem 12.3.1

Proof of Theorem 12.3.1.

Let x ∈ P+
f be chosen arbitrarily (goal is to show that x ∈ P ).

Suppose x /∈ P . Then, choose y to be a P -basis of x that maximizes
the number of y elements strictly less than the corresponding x
element. I.e., that maximizes |N(y)|, where

N(y) = {e ∈ E : y(e) < x(e)} (12.25)

Choose w between y and x, so that

y ≤ w , (y + x)/2 ≤ x (12.26)

so y is also a P -basis of w.

Hence, rank(x) = rank(w) = y(E), and the set of P -bases of w are
also P -bases of x.

. . .
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Proof of Theorem 12.3.1

Proof of Theorem 12.3.1.

For any A ⊆ E, define xA ∈ RE+ as

xA(e) =

{
x(e) if e ∈ A
0 else

(12.27)

note this is an analogous definition to 1A but for a non-unity vector.

Now, we have

y(N(y)) < w(N(y)) ≤ f(N(y)) = rank(αmax1N(y)) (12.28)

the last inequality follows since w ≤ x ∈ P+
f , and y ≤ w.

Thus, y ∧ xN(y) is not a P -basis of w ∧ xN(y) since, over N(y), it is
neither tight at w nor tight at the rank (i.e., not a maximal
independent subvector on N(y)).
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Proof of Theorem 12.3.1

Proof of Theorem 12.3.1.

We can extend y ∧ xN(y) to be a P -basis of w ∧ xN(y) since
y ∧ xN(y) < w ∧ xN(y).

This P -basis, in turn, can be extended to be a P -basis ŷ of w & x.

Now, we have ŷ(N(y)) > y(N(y)),

and also that ŷ(E) = y(E) (since both are P -bases),

hence ŷ(e) < y(e) for some e /∈ N(y).

Thus, ŷ is a base of x, which violates the maximality of |N(y)|.
This contradiction means that we must have had x ∈ P .

Therefore, P+
f = P .
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More on polymatroids

Theorem 12.3.4

A polymatroid can equivalently be defined as a pair (E,P ) where E is a
finite ground set and P ⊆ RE+ is a compact non-empty set of independent
vectors such that

1 every subvector of an independent vector is independent (if x ∈ P and
y ≤ x then y ∈ P , i.e., down closed)

2 If u, v ∈ P (i.e., are independent) and u(E) <
v(E), then there exists a vector w ∈ P such
that

u < w ≤ u ∨ v (12.29)
u

v u∨v

w1

w2

Corollary 12.3.5

The independent vectors of a polymatroid form a convex polyhedron in RE+.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016 F30/58 (pg.30/70)



Polymatroids Polymatroids and Greedy Possible Polytopes Extreme Points

Review

The next slide comes from lecture 6.
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Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 12.3.3 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then the
following are equivalent.

1 B is the collection of bases of a matroid;

2 if B,B′ ∈ B, and x ∈ B′ \B, then B′−x+ y ∈ B for some y ∈ B \B′.
3 If B,B′ ∈ B, and x ∈ B′ \B, then B− y+x ∈ B for some y ∈ B \B′.

Properties 2 and 3 are called “exchange properties.”
Proof here is omitted but think about this for a moment in terms of linear
spaces and matrices, and (alternatively) spanning trees.
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More on polymatroids
For any compact set P , b is a base of P if it is a maximal subvector
within P . Recall the bases of matroids. In fact, we can define a
polymatroid via vector bases (analogous to how a matroid can be defined
via matroid bases).

Theorem 12.3.6

A polymatroid can equivalently be defined as a pair (E,P ) where E is a
finite ground set and P ⊆ RE+ is a compact non-empty set of independent
vectors such that

1 every subvector of an independent vector is independent (if x ∈ P and
y ≤ x then y ∈ P , i.e., down closed)

2 if b, c are bases of P and d is such that b ∧ c < d < b, then there exists
an f , with d ∧ c < f ≤ c such that d ∨ f is a base of P

3 All of the bases of P have the same rank.

Note, all three of the above are required for a polymatroid (a matroid
analogy would require the equivalent of only the first two).
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A word on terminology & notation

Recall how a matroid is sometimes given as (E, r) where r is the rank
function.

We mention also that the term “polymatroid” is sometimes not used
for the polytope itself, but instead but for the pair (E, f),

But now we see that (E, f) is equivalent to a polymatroid polytope, so
this is sensible.
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Where are we going with this?

Consider the right hand side of Theorem 11.4.1:
min (x(A) + f(E \A) : A ⊆ E)

We are going to study this problem, and approaches that address it, as
part of our ultimate goal which is to present strategies for submodular
function minimization (that we will ultimately get to, in near future
lectures).

As a bit of a hint on what’s to come, recall that we can write it as:
x(E) +min (f(A)− x(A) : A ⊆ E) where f is a polymatroid function.
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Another Interesting Fact: Matroids from polymatroid
functions

Theorem 12.3.7

Given integral polymatroid function f , let (E,F) be a set system with
ground set E and set of subsets F such that

∀F ∈ F , ∀∅ ⊂ S ⊆ F, |S| ≤ f(S) (12.30)

Then M = (E,F) is a matroid.

Proof.

Exercise

And its rank function is Exercise.
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Matroid instance of Theorem 11.4.1

Considering Theorem 11.4.1, the matroid case is now a special case,
where we have that:

Corollary 12.3.8

We have that:

max {y(E) : y ∈ Pind. set(M), y ≤ x} = min {rM (A) + x(E \A) : A ⊆ E}
(12.31)

where rM is the matroid rank function of some matroid.
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Review

The next two slides come respectively from Lecture 11 and Lecture 10.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016 F38/58 (pg.38/70)



Polymatroids Polymatroids and Greedy Possible Polytopes Extreme Points

Polymatroidal polyhedron (or a “polymatroid”)

Definition 12.4.1 (polymatroid)

A polymatroid is a compact set P ⊆ RE+ satisfying

1 0 ∈ P
2 If y ≤ x ∈ P then y ∈ P (called down monotone).

3 For every x ∈ RE+, any maximal vector y ∈ P with y ≤ x (i.e., any
P -basis of x), has the same component sum y(E)
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Maximum weight independent set via greedy weighted rank

Theorem 12.4.5

Let M = (V, I) be a matroid, with rank function r, then for any weight
function w ∈ RV+, there exists a chain of sets U1 ⊂ U2 ⊂ · · · ⊂ Un ⊆ V
such that

max {w(I)|I ∈ I} =
n∑
i=1

λir(Ui) (12.19)

where λi ≥ 0 satisfy

w =

n∑
i=1

λi1Ui (12.20)
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Polymatroidal polyhedron and greedy

Let (E, I) be a set system and w ∈ RE+ be a weight vector.

Recall greedy algorithm: Set A = ∅, and repeatedly choose y ∈ E \A
such that A ∪ {y} ∈ I with w(y) as large as possible, stopping when
no such y exists.

For a matroid, we saw that set system (E, I) is a matroid iff for each
weight function w ∈ RE+, the greedy algorithm leads to a set I ∈ I of
maximum weight w(I).

Stated succinctly, considering max {w(I) : I ∈ I}, then (E, I) is a
matroid iff greedy works for this maximization.

Can we also characterize a polymatroid in this way?

That is, if we consider max
{
wx : x ∈ P+

f

}
, where P+

f represents the

“independent vectors”, is it the case that P+
f is a polymatroid iff

greedy works for this maximization?

Can we, ultimately, even relax things so that w ∈ RE?
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Polymatroidal polyhedron and greedy

What is the greedy solution in this setting, when w ∈ RE?
Sort elements of E w.r.t. w so that, w.l.o.g.
E = (e1, e2, . . . , em) with w(e1) ≥ w(e2) ≥ · · · ≥ w(em).
Let k + 1 be the first point (if any) at which we are non-positive, i.e.,
w(ek) > 0 and 0 ≥ w(ek+1).
That is, we have

w(e1) ≥ w(e2) ≥ · · · ≥ w(ek) > 0 ≥ w(ek+1) ≥ · · · ≥ w(em) (12.32)

Next define partial accumulated sets Ei, for i = 0 . . .m, we have w.r.t.
the above sorted order:

Ei
def
= {e1, e2, . . . ei} (12.34)

(note E0 = ∅, f(E0) = 0, and E and Ei is always sorted w.r.t w).
The greedy solution is the vector x ∈ RE+ with elements defined as:

x(e1)
def
= f(E1) = f(e1) = f(e1|E0) = f(e1|∅) (12.35)

x(ei)
def
= f(Ei)− f(Ei−1) = f(ei|Ei−1) for i = 2 . . . k (12.36)

x(ei)
def
= 0 for i = k + 1 . . .m = |E| (12.37)
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Some Intuition: greedy and gain

Note x(ei) = f(ei|Ei−1) ≤ f(ei|E′) for any E′ ⊆ Ei−1
So x(e1) = f(e1) and this corresponds to w(e1) ≥ w(ei) for all i 6= 1.

Hence, for the largest value of w (namely w(e1)), we use for x(e1) the
largest possible gain value of e1 (namely f(e1|∅) ≥ f(e1|A) for any
A ⊆ E \ {e1}).

For the next largest value of w (namely w(e2)), we use for x(e2) the
next largest gain value of e2 (namely f(e2|e1)), while still ensuring (as
we will soon see in Theorem 12.4.1) that the resulting x ∈ Pf .

This process continues, using the next largest possible gain of ei for
x(ei) while ensuring (as we will show) we do not leave the polytope,
given the values we’ve already chosen for x(ei′) for i′ < i.
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Polymatroidal polyhedron and greedy

Theorem 12.4.1

The vector x ∈ RE+ as previously defined using the greedy algorithm
maximizes wx over P+

f , with w ∈ RE+, if f is submodular.

Proof.

Consider the LP strong duality equation:

max(wx : x ∈ P+
f ) = min

(∑
A⊆E

yAf(A) : y ∈ R2E

+ ,
∑
A⊆E

yA1A ≥ w
)

(12.38)

Sort E by w, and define the following vector y ∈ R2E
+ as

yEi ← w(ei)− w(ei+1) for i = 1 . . . (m− 1), (12.39)

yE ← w(em), and (12.40)

yA ← 0 otherwise (12.41)

. . .
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Polymatroidal polyhedron and greedy

Proof.

We first will see that greedy x ∈ P+
f (that is x(A) ≤ f(A),∀A).

Order A = (a1, a2, . . . , ak) based on order (e1, e2, . . . , em).
a1 a2 a3 a4 a5 . . .

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 . . . em

Define e−1 : E → {1, . . . ,m} so that e−1(ei) = i.

Then, we have x ∈ P+
f since for all A:

f(A) =

k∑
i=1

f(ai|a1:i−1) (12.42)

≥
k∑
i=1

f(ai|e1:e−1(ai)−1) (12.43)

=
∑
a∈A

f(a|e1:e−1(a)−1) = x(A) (12.44). . .
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Polymatroidal polyhedron and greedy

Proof.

Next, y is also feasible for the dual constraints in Eq. 12.38 since:

Next, we check that y is dual feasible. Clearly, y ≥ 0,

and also, considering y component wise, for any i, we have that

∑
A:ei∈A

yA =
∑
j≥i

yEj =

m−1∑
j=i

(w(ej)− w(ej+1)) + w(em) = w(ei).

Now optimality for x and y follows from strong duality, i.e.:

wx =
∑
e∈E

w(e)x(e) =
m∑
i=1

w(ei)f(ei|Ei−1) =
m∑
i=1

w(ei)
(
f(Ei)− f(Ei−1)

)
=

m−1∑
i=1

f(Ei)
(
w(ei)− w(ei+1)

)
+ f(E)w(em) =

∑
A⊆E

yAf(A)

. . .
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Polymatroidal polyhedron and greedy

Proof.

The equality in prev. Eq. follows via Abel summation:

wx =

m∑
i=1

wixi (12.45)

=

m∑
i=1

wi

(
f(Ei)− f(Ei−1)

)
(12.46)

=

m∑
i=1

wif(Ei)−
m−1∑
i=1

wi+1f(Ei) (12.47)

= wmf(Em) +
m−1∑
i=1

(
wi − wi+1

)
f(Ei) (12.48)
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What about w ∈ RE

When w contains negative elements, we have x(ei) = 0 for
i = k + 1, . . . ,m, where k is the last positive element of w when it is
sorted in decreasing order.

Exercise: show a modification of the previous proof that works for
arbitrary w ∈ RE
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Polymatroidal polyhedron and greedy

Theorem 12.4.1

Conversely, suppose P+
f is a polytope of form

P+
f =

{
x ∈ RE+ : x(A) ≤ f(A), ∀A ⊆ E

}
, then the greedy solution to

max(wx : x ∈ P ) is optimum only if f is submodular.

Proof.

Choose A and B arbitrarily, and then order elements of E as
(e1, e2, . . . , em), with Ei = (e1, e2, . . . , ei), so the following is true:

For 1 ≤ p ≤ q ≤ m, define A = {e1, e2, . . . , ek, ek+1, . . . , ep} = Ep
and B = {e1, e2, . . . , ek, ep+1, . . . , eq} = Ek ∪ (Eq \ Ep)
Note, then we have A ∩B = {e1, . . . , ek} = Ek, and A ∪B = Eq.

Define w ∈ {0, 1}m as:

w
def
=

q∑
i=1

1ei = 1A∪B (12.49)

Suppose optimum solution x is given by the greedy procedure.

. . .
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Polymatroidal polyhedron and greedy
Proof.

Then

k∑
i=1

xi = f(E1) +

k∑
i=2

(f(Ei)− f(Ei−1)) = f(Ek) = f(A ∩B)

(12.50)

and

p∑
i=1

xi = f(E1) +

p∑
i=2

(f(Ei)− f(Ei−1)) = f(Ep) = f(A) (12.51)

and

q∑
i=1

xi = f(E1) +

q∑
i=2

(f(Ei)− f(Ei−1)) = f(Eq) = f(A ∪B)

(12.52)
. . .
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Polymatroidal polyhedron and greedy
Proof.

Thus, we have

x(B) =
∑

i∈1,...,k,p+1,...,q

xi =
∑
i:ei∈B

xi = f(A ∪B) + f(A ∩B)− f(A)

(12.53)

But given that the greedy algorithm gives the optimal solution to
max(wx : x ∈ P+

f ), we have that x ∈ P+
f and thus x(B) ≤ f(B).

Thus,

x(B) = f(A ∪B) + f(A ∩B)− f(A) =
∑
i:ei∈B

xi ≤ f(B) (12.54)

ensuring the submodularity of f , since A and B are arbitrary.
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Review from Lecture 9

The next slide comes from lecture 9.
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Matroid and the greedy algorithm

Let (E, I) be an independence system, and we are given a
non-negative modular weight function w : E → R+.

Algorithm 1: The Matroid Greedy Algorithm

1 Set X ← ∅ ;
2 while ∃v ∈ E \X s.t. X ∪ {v} ∈ I do
3 v ∈ argmax {w(v) : v ∈ E \X, X ∪ {v} ∈ I} ;
4 X ← X ∪ {v} ;

Same as sorting items by decreasing weight w, and then choosing
items in that order that retain independence.

Theorem 12.4.7

Let (E, I) be an independence system. Then the pair (E, I) is a matroid if
and only if for each weight function w ∈ RE+, Algorithm 1 above leads to a
set I ∈ I of maximum weight w(I).
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Polymatroidal polyhedron and greedy

Thus, restating the above results into a single complete theorem, we
have a result very similar to what we saw for matroids (i.e.,
Theorem 10.5.1)

Theorem 12.4.1

If f : 2E → R+ is given, and P is a polytope in RE+ of the form
P =

{
x ∈ RE+ : x(A) ≤ f(A), ∀A ⊆ E

}
, then the greedy solution to the

problem max(wx : x ∈ P ) is ∀w optimum iff f is monotone non-decreasing
submodular (i.e., iff P is a polymatroid).
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Multiple Polytopes associated with arbitrary f

Given an arbitrary submodular function f : 2V → R (not necessarily a
polymatroid function, so it need not be positive, monotone, etc.).
If f(∅) 6= 0, we can set f ′(A) = f(A)− f(∅) without destroying
submodularity. This also does not change any minima, so we assume
all functions are normalized f(∅) = 0.
Note that due to constraint x(∅) ≤ f(∅), we must have f(∅) ≥ 0 since if not (i.e., if
f(∅) < 0), then P+

f doesn’t exist.
Another form of normalization can do is:

f ′(A) =

{
f(A) if A 6= ∅
0 if A = ∅

(12.55)

This preserves submodularity due to f(A) + f(B) ≥ f(A ∪B) + f(A ∩B), and if
A ∩B = ∅ then r.h.s. only gets smaller when f(∅) ≥ 0.

We can define several polytopes:

Pf =
{
x ∈ RE : x(S) ≤ f(S),∀S ⊆ E

}
(12.56)

P+
f = Pf ∩

{
x ∈ RE : x ≥ 0

}
(12.57)

Bf = Pf ∩
{
x ∈ RE : x(E) = f(E)

}
(12.58)

Pf is what is sometimes called the extended polytope (sometimes
notated as EPf .
P+
f is Pf restricted to the positive orthant.
Bf is called the base polytope
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Multiple Polytopes associated with f

PfP+
f

Bf

P+
f = Pf ∩

{
x ∈ RE : x ≥ 0

}
(12.59)

Pf =
{
x ∈ RE : x(S) ≤ f(S),∀S ⊆ E

}
(12.60)

Bf = Pf ∩
{
x ∈ RE : x(E) = f(E)

}
(12.61)
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Base Polytope in 3D
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Pf =
{
x ∈ RE : x(S) ≤ f(S),∀S ⊆ E

}
(12.62)

Bf = Pf ∩
{
x ∈ RE : x(E) = f(E)

}
(12.63)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016 F52/58 (pg.57/70)

Polymatroids Polymatroids and Greedy Possible Polytopes Extreme Points

A polymatroid function’s polyhedron is a polymatroid.

Theorem 12.5.1

Let f be a submodular function defined on subsets of E. For any x ∈ RE ,
we have:

rank(x) = max (y(E) : y ≤ x, y ∈ Pf ) = min (x(A) + f(E \A) : A ⊆ E)
(12.64)

Essentially the same theorem as Theorem 11.4.1. Taking x = 0 we get:

Corollary 12.5.2

Let f be a submodular function defined on subsets of E. x ∈ RE , we have:

rank(0) = max (y(E) : y ≤ 0, y ∈ Pf ) = min (f(A) : A ⊆ E) (12.65)
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Proof of Theorem 12.5.1

Proof of Theorem 12.5.1.

Let y∗ be the optimal solution of the l.h.s. and let A ⊆ E be any
subset.

Then y∗(E) = y∗(A) + y∗(E \A) ≤ f(A) + x(E \A) since if y∗ ∈ Pf ,
y∗(A) ≤ f(A) and since y∗ ≤ x, y∗(E \A) ≤ x(E \A). This is a form
of weak duality.

Also, for any e ∈ E, if y∗(e) < x(e) then there must be some reason
for this other than the constraint y∗ ≤ x, namely it must be that
∃T ∈ D(x) with e ∈ T (i.e., e is a member of at least one of the tight
sets).

Hence, for all e /∈ sat(y∗) we have y∗(e) = x(e), and moreover
y∗(sat(y∗)) = f(sat(y∗)) by definition.

Thus we have that
y∗(sat(y∗)) + y∗(E \ sat(y∗)) = f(sat(y∗)) + x(E \ sat(y∗)), strong
duality, showing that the two sides are equal for y∗.
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Greedy and Pf

In Theorem 12.4.1, we can relax P+
f to Pf .

If ∃e such that w(e) < 0 then max(wx : x ∈ Pf ) =∞ since we can let
xe →∞, unless we ignore the negative elements or assume w ≥ 0.

The proof, moreover, showed also that x ∈ Pf , not just P+
f .

Moreover, in polymatroidal case, since the greedy constructed x has
x(E) = f(E), we have that the greedy x ∈ Bf .

In fact, we next will see that the greedy x is a vertex of Bf .
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Polymatroid extreme points
The greedy algorithm does more than solve max(wx : x ∈ P+

f ). We
can use it to generate vertices of polymatroidal polytopes.

Consider P+
f and also C+

f
def
=
{
x : x ∈ RE+, x(e) ≤ f(e),∀e ∈ E

}
Then ordering A = (a1, . . . , a|A|) arbitrarily with Ai = {a1, . . . , ai},
f(A) =

∑
i f(ai|Ai−1) ≤

∑
i f(ai), and hence P+

f ⊆ C+
f .
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Polymatroid extreme points
Since w ∈ RE+ is arbitrary, it may be that any e ∈ E is max (i.e., is
such that w(e) > w(e′) for e′ ∈ E \ {e}).

Thus, intuitively, any first vertex of the polytope away from the origin
might be obtained by advancing along the corresponding axis.

Recall, base polytope defined as the extreme face of Pf . I.e.,

Bf = Pf ∩
{
x ∈ RE+ : x(E) = f(E)

}
(12.66)

Also, intuitively, we can continue advancing along the skeletal edges of
the polytope to reach any other vertex, given the appropriate ordering.
If we advance in all dimensions, we’ll reach a vertex in Bf , and if we
advance only in some dimensions, we’ll reach a vertex in Pf \Bf .

We formalize this next:
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Polymatroid extreme points
Given any arbitrary order of E = (e1, e2, . . . , em), define
Ei = (e1, e2, . . . , ei).

As before, a vector x is generated by Ei using the greedy procedure as
follows

x(e1) = f(E1) = f(e1) (12.67)

x(ej) = f(Ej)− f(Ej−1) = f(ej |Ej−1) for 2 ≤ j ≤ i (12.68)

x(e) = 0 for e ∈ E \ Ei (12.69)

An extreme point of Pf is a point that is not a convex combination of
two other distinct points in Pf . Equivalently, an extreme point
corresponds to setting certain inequalities in the specification of Pf to
be equalities, so that there is a unique single point solution.
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Polymatroid extreme points

Theorem 12.6.1

For a given ordering E = (e1, . . . , em) of E and a given Ei = (e1, . . . , ei)
and x generated by Ei using the greedy procedure (x(ei) = f(ei|Ei−1)),
then x is an extreme point of Pf

Proof.

We already saw that x ∈ Pf (Theorem 12.4.1).

To show that x is an extreme point of Pf , note that it is the unique
solution of the following system of equations

x(Ej) = f(Ej) for 1 ≤ j ≤ i ≤ m (12.70)

x(e) = 0 for e ∈ E \ Ei (12.71)

There are i ≤ m equations and i ≤ m unknowns, and simple Gaussian
elimination gives us back the x constructed via the Greedy algorithm!!
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Polymatroid extreme points
As an example, we have x(E1) = x(e1) = f(e1)

x(E2) = x(e1) + x(e2) = f(e1, e2) so
x(e2) = f(e1, e2)− x(e1) = f(e1, e2)− f(e1) = f(e2|e1).
x(E3) = x(e1) + x(e2) + x(e3) = f(e1, e2, e3) so x(e3) =
f(e1, e2, e3)− x(e2)− x(e1) = f(e1, e2, e3)− f(e1, e2) = f(e3|e1, e2)
And so on . . . , but we see that this is just Gaussian elimination.

Also, since x ∈ Pf , for each i, we see that,

x(Ej) = f(Ej) for 1 ≤ j ≤ i (12.72)

x(A) ≤ f(A),∀A ⊆ E (12.73)

Thus, the greedy procedure provides a modular function lower bound
on f that is tight on all points Ei in the order. This can be useful in
its own right.
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Polymatroid extreme points
some examples

0

0.5

1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0
0.5

1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016 F56/58 (pg.66/70)



Polymatroids Polymatroids and Greedy Possible Polytopes Extreme Points

Polymatroid extreme points
Moreover, we have (and will ultimately prove)

Corollary 12.6.2

If x is an extreme point of Pf and B ⊆ E is given such that
supp(x) = {e ∈ E : x(e) 6= 0} ⊆ B ⊆ ∪(A : x(A) = f(A)) = sat(x), then
x is generated using greedy by some ordering of B.

Note, sat(x) = cl(x) = ∪(A : x(A) = f(A)) is also called the closure
of x (recall that sets A such that x(A) = f(A) are called tight, and
such sets are closed under union and intersection, as seen in Lecture 8,
Theorem 12.3.2)

Thus, cl(x) is a tight set.

Also, supp(x) = {e ∈ E : x(e) 6= 0} is called the support of x.

For arbitrary x, supp(x) is not necessarily tight, but for an extreme
point, supp(x) is.
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Polymatroid with labeled edge lengths
Recall
f(e|A) = f(A+e)−f(A)
Notice how
submodularity,
f(e|B) ≤ f(e|A) for
A ⊆ B, defines the
shape of the polytope.

In fact, we have
strictness here
f(e|B) < f(e|A) for
A ⊂ B.

Also, consider how the
greedy algorithm
proceeds along the edges
of the polytope.

e1

e2

f(e1)

f(e1|e2)

f(e
2)

f(e
2|e

1)
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Polymatroid with labeled edge lengths

Recall
f(e|A) = f(A+e)−f(A)
Notice how
submodularity,
f(e|B) ≤ f(e|A) for
A ⊆ B, defines the
shape of the polytope.

In fact, we have
strictness here
f(e|B) < f(e|A) for
A ⊂ B.

Also, consider how the
greedy algorithm
proceeds along the edges
of the polytope.

e1
e2

e 3

f(e1
|e2

)

f(e1
|e3

)

f(e1
)

f(e
2 |e

1 )

f(e
2 )

f(e
3 )

f(e
3 |e

2 )

f(e
2 |e

3 )

f(e
3 |e

1 )

f(e
3 |{e

1 ,e
2 })

f(e
3 |{e

1 ,e
2 })

f(e
2 |{e

1 ,e
3 })

f(e
2 |{e

1 ,e
3 })

f(e1
|{e2

,e3
})

f(e1
|{e2

,e3
})

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016 F57/58 (pg.69/70)

Polymatroids Polymatroids and Greedy Possible Polytopes Extreme Points

Intuition: why greedy works with polymatroids

Given w, the goal is
to find
x = (x(e1), x(e2))
that maximizes
xᵀw = x(e1)w(e1) +
x(e2)w(e2).

If w(e2) > w(e1) the
upper extreme point
indicated maximizes
xᵀw over x ∈ P+

f .

If w(e2) < w(e1) the
lower extreme point
indicated maximizes
xᵀw over x ∈ P+

f . e1

e2

f(e1)

f(e1|e2)

f(e
2)

f(e
2|e

1)

45°

w(e 2
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w(e 1
)

w(e 2
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w(e 1
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M
axim

al point in 

for w
 in this region.

P
+f

45°

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016 F58/58 (pg.70/70)


	Logistics & Review
	Logistics
	Review  

	Current Lecture
	Polymatroids
	Polymatroids and Greedy
	Possible Polytopes
	Extreme Points
	Polymatroids, Greedy, and Cardinality Constrained Maximization


