

Review

F3/58 (pg.3/70)

Logistics

Announcements, Assignments, and Reminders

- Homework 4, soon available at our assignment dropbox (https://canvas.uw.edu/courses/1039754/assignments)
- Homework 3, available at our assignment dropbox (https://canvas.uw.edu/courses/1039754/assignments), due (electronically) Monday (5/2) at 11:55pm.
- Homework 2, available at our assignment dropbox (https://canvas.uw.edu/courses/1039754/assignments), due (electronically) Monday (4/18) at 11:55pm.
- Homework 1, available at our assignment dropbox (https://canvas.uw.edu/courses/1039754/assignments), due (electronically) Friday (4/8) at 11:55pm.
- Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google hangout (set up meeting via our our discussion board (https: //canvas.uw.edu/courses/1039754/discussion_topics)).

EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016

Logistics Review Class Road Map - IT-I • L1(3/28): Motivation, Applications, & • L11(5/2): From Matroids to **Basic Definitions** Polymatroids, Polymatroids • L2(3/30): Machine Learning Apps • L12(5/4): Polymatroids, Polymatroids and Greedy, Possible Polytopes, Extreme (diversity, complexity, parameter, learning target, surrogate). Points • L3(4/4): Info theory exs, more apps, • L13(5/9): definitions, graph/combinatorial examples, • L14(5/11): matrix rank example, visualization • L15(5/16): • L4(4/6): Graph and Combinatorial • L16(5/18): Examples, matrix rank, Venn diagrams, L17(5/23): examples of proofs of submodularity, some L18(5/25): useful properties • L19(6/1): • L5(4/11): Examples & Properties, Other • L20(6/6): Final Presentations Defs., Independence maximization. • L6(4/13): Independence, Matroids, Matroid Examples, matroid rank is submodular • L7(4/18): Matroid Rank, More on Partition Matroid, System of Distinct Reps, Transversals, Transversal Matroid, • L8(4/20): Transversals, Matroid and representation, Dual Matroids, • L9(4/25): Dual Matroids, Properties, Combinatorial Geometries, Matroid and Greedy L10(4/27): Matroid and Greedy, Polyhedra, Matroid Polytopes, Finals Week: June 6th-10th. 2016.

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016

Review

Review

P-basis of x given compact set $P \subseteq \mathbb{R}^E_+$

Definition 12.2.1 (subvector)

y is a subvector of x if $y \leq x$ (meaning $y(e) \leq x(e)$ for all $e \in E$).

Definition 12.2.2 (P-basis)

Given a compact set $P \subseteq \mathcal{R}^E_+$, for any $x \in \mathbb{R}^E_+$, a subvector y of x is called a *P*-basis of x if y maximal in P.

In other words, y is a P-basis of x if y is a maximal P-contained subvector of x.

Here, by y being "maximal", we mean that there exists no z > y (more precisely, no $z \ge y + \epsilon \mathbf{1}_e$ for some $e \in E$ and $\epsilon > 0$) having the properties of y (the properties of y being: in P, and a subvector of x). In still other words: y is a P-basis of x if:

- $y \leq x$ (y is a subvector of x); and
- 2 $y \in P$ and $y + \epsilon \mathbf{1}_e \notin P$ for all $e \in E$ where y(e) < x(e) and $\forall \epsilon > 0$ (y is maximal P-contained).

EE596b/Spring 2016/Submodularity - Lecture 12 - May

Prof. Jeff Biln

Logistics

A vector form of rank

• Recall the definition of rank from a matroid $M = (E, \mathcal{I})$.

$$\operatorname{\mathsf{rank}}(A) = \max\left\{|I| : I \subseteq A, I \in \mathcal{I}\right\} = \max_{I \in \mathcal{I}} |A \cap I|$$
(12.1)

 vector rank: Given a compact set P ⊆ ℝ^E₊, we can define a form of "vector rank" relative to this P in the following way: Given an x ∈ ℝ^E, we define the vector rank, relative to P, as:

$$\operatorname{rank}(x) = \max(y(E) : y \le x, y \in P) = \max_{y \in P} (x \land y)(E)$$
 (12.2)

where $y \leq x$ is componentwise inequality $(y_i \leq x_i, \forall i)$, and where $(x \wedge y) \in \mathbb{R}^E_+$ has $(x \wedge y)(i) = \min(x(i), y(i))$.

- If \mathcal{B}_x is the set of *P*-bases of *x*, than $\operatorname{rank}(x) = \max_{y \in \mathcal{B}_x} y(E)$.
- If $x \in P$, then rank(x) = x(E) (x is its own unique self P-basis).
- If $x_{\min} = \min_{x \in P} x(E)$, and $x \le x_{\min}$ what then? $-\infty$?
- In general, might be hard to compute and/or have ill-defined properties. Next, we look at an object that restrains and cultivates this form of rank.

Polymatroidal polyhedron (or a "polymatroid")

F7/58 (pg.7/70)

Review

Definition 12.2.1 (polymatroid)

A polymatroid is a compact set $P \subseteq \mathbb{R}^E_+$ satisfying

- $\mathbf{0} \quad 0 \in P$
- **2** If $y \le x \in P$ then $y \in P$ (called down monotone).
- So For every $x \in \mathbb{R}^E_+$, any maximal vector $y \in P$ with $y \leq x$ (i.e., any P-basis of x), has the same component sum y(E)

EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016

Matroid and Polymatroid: side-by-side

A Matroid is:

Prof. Jeff Bilmes

- **1** a set system (E, \mathcal{I})
- 2 empty-set containing $\emptyset \in \mathcal{I}$
- $\textbf{3} \text{ down closed, } \emptyset \subseteq I' \subseteq I \in \mathcal{I} \Rightarrow I' \in \mathcal{I}.$
- any maximal set I in I, bounded by another set A, has the same matroid rank (any maximal independent subset I ⊆ A has same size |I|).

A Polymatroid is:

- **1** a compact set $P \subseteq \mathbb{R}^E_+$
- 2 zero containing, $\mathbf{0} \in P$
- $\textbf{ own monotone, } 0 \leq y \leq x \in P \Rightarrow y \in P$
- (any maximal vector y in P, bounded by another vector x, has the same vector rank (any maximal independent subvector $y \le x$ has same sum y(E)).

Definition 12.2.1

A polymatroid function is a real-valued function f defined on subsets of E which is normalized, non-decreasing, and submodular. That is we have

• $f(\emptyset) = 0$ (normalized)

2 $f(A) \leq f(B)$ for any $A \subseteq B \subseteq E$ (monotone non-decreasing)

● $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$ for any $A, B \subseteq E$ (submodular)

We can define the polyhedron ${\cal P}_f^+$ associated with a polymatroid function as follows

$$P_f^+ = \left\{ y \in \mathbb{R}^E_+ : y(A) \le f(A) \text{ for all } A \subseteq E \right\}$$
(12.1)

$$= \left\{ y \in \mathbb{R}^E : y \ge 0, y(A) \le f(A) \text{ for all } A \subseteq E \right\}$$
(12.2)

```
Prof. Jeff Bilmes
```

EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016

```
F9/58 (pg.9/70)
```

Review

Review

A polymatroid vs. a polymatroid function's polyhedron

- Summarizing the above, we have:
 - Given a polymatroid function f, its associated polytope is given as

$$P_f^+ = \left\{ y \in \mathbb{R}^E_+ : y(A) \le f(A) \text{ for all } A \subseteq E \right\}$$
(12.10)

- We also have the definition of a polymatroidal polytope P (compact subset, zero containing, down-monotone, and $\forall x$ any maximal independent subvector $y \leq x$ has same component sum y(E)).
- Is there any relationship between these two polytopes?
- In the next theorem, we show that any P⁺_f-basis has the same component sum, when f is a polymatroid function, and P⁺_f satisfies the other properties so that P⁺_f is a polymatroid.

A polymatroid function's polyhedron is a polymatroid.

Theorem 12.2.1

Let f be a polymatroid function defined on subsets of E. For any $x \in \mathbb{R}^E_+$, and any P_f^+ -basis $y^x \in \mathbb{R}^E_+$ of x, the component sum of y^x is

$$y^{x}(E) = \operatorname{rank}(x) = \max\left(y(E) : y \le x, y \in P_{f}^{+}\right)$$
$$= \min\left(x(A) + f(E \setminus A) : A \subseteq E\right)$$
(12.10)

As a consequence, P_f^+ is a polymatroid, since r.h.s. is constant w.r.t. y^x .

Taking $E \setminus B = \operatorname{supp}(x)$ (so elements B are all zeros in x), and for $b \notin B$ we make x(b) is big enough, the r.h.s. min has solution $A^* = B$. We recover submodular function from the polymatroid polyhedron via the following:

$$\operatorname{\mathsf{rank}}\left(\frac{1}{\epsilon}\mathbf{1}_{E\setminus B}\right) = f(B) = \max\left\{y(B) : y \in P_f^+\right\}$$
(12.11)

In fact, we will ultimately see a number of important consequences of this theorem (other than just that P_f^+ is a polymatroid) Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016 E11/58 (pg.11/70)

Logistics

Review

A polymatroid function's polyhedron is a polymatroid.

Proof.

- Clearly $0 \in P_f^+$ since f is non-negative.
- Also, for any $y \in P_f^+$ then any x <= y is also such that $x \in P_f^+$. So, P_f^+ is down-monotone.
- Now suppose that we are given an $x \in \mathbb{R}^E_+$, and maximal $y^x \in P_f^+$ with $y^x \leq x$ (i.e., y^x is a P_f^+ -basis of x).
- Goal is to show that any such y^x has $y^x(E) = \text{const}$, dependent only on x and also f (which defines the polytope) but not dependent on y^x , the particular P_f^+ -basis.
- Doing so will thus establish that P_f^+ is a polymatroid.

Logistics

A polymatroid function's polyhedron is a polymatroid.

... proof continued.

First trivial case: could have y^x = x, which happens if x(A) ≤ f(A), ∀A ⊆ E (i.e., x ∈ P_f⁺ strictly). In such case,
min (x(A) + f(E \ A) : A ⊆ E) (12.10) = x(E) + min (f(E \ A) - x(E \ A) : A ⊆ E) (12.11) = x(E) + min (f(A) - x(A) : A ⊆ E) (12.12) = x(E) (12.13)
When x ∈ P_f⁺, y = x is clearly the solution to max (y(E) : y ≤ x, y ∈ P_f⁺), so this is tight, and rank(x) = x(E).
This is a value dependent only on x and not on any of its P_f⁺-bases.

Review A polymatroid function's polyhedron is a polymatroid. . . . proof continued. • 2nd trivial case: $x(A) > f(A), \forall A \subseteq E$ (i.e., $x \notin P_f^+$ every direction), • Then for any order (a_1, a_2, \dots) of the elements and $A_i \triangleq (a_1, a_2, \dots, a_i)$, we have $x(a_i) \ge f(a_i) \ge f(a_i|A_{i-1})$, the second inequality by submodularity. This gives $\min\left(x(A) + f(E \setminus A) : A \subseteq E\right)$ (12.10) $= x(E) + \min\left(f(A) - x(A) : A \subseteq E\right)$ (12.11) $= x(E) + \min\left(\sum_{i} f(a_i|A_{i-1}) - \sum_{i} x(a_i) : A \subseteq E\right)$ (12.12) $= x(E) + \min\left(\sum_{i} \underbrace{\left(f(a_i|A_{i-1}) - x(a_i)\right)}_{\leq 0} : A \subseteq E\right)$ (12.13) $= x(E) + f(E) - x(E) = f(E) = \max(y(E) : y \in P_f^+).$ EE596b/Spring 2016/Submodularity - Lecture <u>12 - May 11th</u>,

Polymatroids

Polymatroids and Greed

A polymatroid function's polyhedron is a polymatroid.

... proof continued.

- Assume neither trivial case. Because $y^x \in P_f^+$, we have that $y^x(A) \leq f(A)$ for all $A \subseteq E$.
- We show that the constant is given by

$$x(E) = \min(x(A) + f(E \setminus A) : A \subseteq E)$$
(12.1)

• For any P_f^+ -basis y^x of x, and any $A \subseteq E$, we have weak relationship:

$$y^{x}(E) = y^{x}(A) + y^{x}(E \setminus A)$$
(12.2)

$$\leq x(A) + f(E \setminus A). \tag{12.3}$$

This follows since $y^x \leq x$ and since $y^x \in P_f^+$.

- This ensures $\max\left(y(E): y \le x, y \in P_f^+\right) \le \min\left(x(A) + f(E \setminus A): A \subseteq E\right) \quad (12.4)$
- Given an A where equality in Eqn. (12.3) holds, above min result follows.

```
Prof. Jeff Bilm
```

EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016

-15/58 (pg.15/70

PolymatroidsPolymatroids and GreedyPossible PolytopesExtreme PointsA polymatroid function's polyhedron is a polymatroid.

... proof continued.

• For any $y \in P_f^+$, call a set $B \subseteq E$ tight if y(B) = f(B). The union (and intersection) of tight sets B, C is again tight, since

$$f(B) + f(C) = y(B) + y(C)$$
(12.5)

$$= y(B \cap C) + y(B \cup C)$$
 (12.6)

 $\leq f(B \cap C) + f(B \cup C) \tag{12.7}$

$$\leq f(B) + f(C) \tag{12.8}$$

which requires equality everywhere above.

- Because $y(A) \leq f(A), \forall A$, this means $y(B \cap C) = f(B \cap C)$ and $y(B \cup C) = f(B \cup C)$, so both also are tight.
- For y ∈ P⁺_f, it will be ultimately useful to define this lattice family of tight sets: D(y) ≜ {A : A ⊆ E, y(A) = f(A)}.

A polymatroid function's polyhedron is a polymatroid.

... proof continued.

- Also, we define $\operatorname{sat}(y) \stackrel{\text{def}}{=} \bigcup \{T : T \in \mathcal{D}(y)\}.$
- Consider again a P_f^+ -basis y^x (so maximal).
- Given a e ∈ E, either y^x(e) is cut off due to x (so y^x(e) = x(e)) or e is saturated by f, meaning it is an element of some tight set and e ∈ sat(y^x).
- Let E \ A = sat(y^x) be the union of all such tight sets (which is also tight, so y^x(E \ A) = f(E \ A)).
- Hence, we have

$$y^{x}(E) = y^{x}(A) + y^{x}(E \setminus A) = x(A) + f(E \setminus A)$$
(12.9)

 \bullet So we identified the A to be the elements that are non-tight, and achieved the min, as desired.

```
Prof. Jeff Bilm
```

EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2

A polymatroid is a polymatroid function's polytope

- So, when f is a polymatroid function, P_f^+ is a polymatroid.
- Is it the case that, conversely, for any polymatroid P, there is an associated polymatroidal function f such that $P = P_f^+$?

Theorem 12.3.1

For any polymatroid P (compact subset of \mathbb{R}^E_+ , zero containing, down-monotone, and $\forall x \in \mathbb{R}^E_+$ any maximal independent subvector $y \leq x$ has same component sum $y(E) = \operatorname{rank}(x)$), there is a polymatroid function $f: 2^E \to \mathbb{R}$ (normalized, monotone non-decreasing, submodular) such that $P = P_f^+$ where $P_f^+ = \{x \in \mathbb{R}^E : x \geq 0, x(A) \leq f(A), \forall A \subseteq E\}.$

F17/58 (pg.

PolymatroidsPolymatroids and GreedyPossible PolytopesExtreme PointsTight sets $\mathcal{D}(y)$ are closed, and max tight set sat(y)

Recall the definition of the set of tight sets at $y \in P_f^+$:

$$\mathcal{D}(y) \triangleq \{A : A \subseteq E, \ y(A) = f(A)\}$$
(12.10)

Theorem 12.3.2

For any $y \in P_f^+$, with f a polymatroid function, then $\mathcal{D}(y)$ is closed under union and intersection.

Proof.

We have already proven this as part of Theorem 11.4.1

Also recall the definition of sat(y), the maximal set of tight elements relative to $y \in \mathbb{R}^E_+$.

$$\operatorname{sat}(y) \stackrel{\text{def}}{=} \bigcup \{T : T \in \mathcal{D}(y)\}$$
(12.11)

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016

F19/58 (pg.19/70)

Polymatroids	Polymatroids and Greedy	Possible Polytopes	Extreme Points
Join \lor and meet	\wedge for $x, y \in \mathbb{R}^E_+$		

• For $x, y \in \mathbb{R}^E_+$, define vectors $x \wedge y \in \mathbb{R}^E_+$ and $x \vee y \in \mathbb{R}^E_+$ such that, for all $e \in E$

$$(x \lor y)(e) = \max(x(e), y(e))$$
 (12.12)

$$(x \wedge y)(e) = \min(x(e), y(e))$$
 (12.13)

Hence,

$$x \lor y \triangleq \left(\max\left(x(e_1), y(e_1)\right), \max\left(x(e_2), y(e_2)\right), \dots, \max\left(x(e_n), y(e_n)\right) \right)$$

and similarly

$$x \wedge y \triangleq \left(\min(x(e_1), y(e_1)), \min(x(e_2), y(e_2)), \dots, \min(x(e_n), y(e_n))\right)$$

• From this, we can define things like an lattices, and other constructs.

- Note the remarkable similarity between the proof of Theorem 12.3.3 and the proof of Theorem 6.6.1 that the standard matroid rank function is submodular.
- Next, we prove Theorem 12.3.1, that any polymatroid polytope P has a polymatroid function f such that $P = P_f^+$.
- Given this result, we can conclude that a polymatroid is really an extremely natural polyhedral generalization of a matroid. This was all realized by Jack Edmonds in the mid 1960s (and published in 1969 in his landmark paper "Submodular Functions, Matroids, and Certain Polyhedra").

Polymatroids	Polymatroids and Greedy	Possible Polytopes	Extreme Points
Proof of Theorem	12.3.1		

Proof of Theorem 12.3.1.

- Moreover, we have that f is non-negative, normalized with $f(\emptyset) = 0$, and monotone non-decreasing (since rank is monotone).
- Hence, f is a polymatroid function.
- Consider the polytope P_f^+ defined as:

$$P_f^+ = \left\{ x \in \mathbb{R}_+^E : x(A) \le f(A), \ \forall A \subseteq E \right\}$$
(12.24)

• Given an $x \in P$, then for any $A \subseteq E$, $x \leq \alpha_{\max} \mathbf{1}_A$, so $x(A) \leq \max \{z(E) : z \in P, z \leq \alpha_{\max} \mathbf{1}_A\} = \operatorname{rank}(\alpha_{\max} \mathbf{1}_A) = f(A)$, therefore $x \in P_f^+$.

• Hence,
$$P \subseteq P_f^+$$
.

• We will next show that $P_f^+ \subseteq P$ to complete the proof.

• • •

Polymatroids

Proof of Theorem 12.3.1

Proof of Theorem 12.3.1.

- Let $x \in P_f^+$ be chosen arbitrarily (goal is to show that $x \in P$).
- Suppose x ∉ P. Then, choose y to be a P-basis of x that maximizes the number of y elements strictly less than the corresponding x element. I.e., that maximizes |N(y)|, where

$$N(y) = \{e \in E : y(e) < x(e)\}$$
(12.25)

• Choose \boldsymbol{w} between \boldsymbol{y} and $\boldsymbol{x}\text{, so that}$

$$y \le w \triangleq (y+x)/2 \le x \tag{12.26}$$

so y is also a P-basis of w.

• Hence, $\operatorname{rank}(x) = \operatorname{rank}(w) = y(E)$, and the set of P-bases of w are also P-bases of x.

EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016

Prof. Jeff Bilr

 Polymatroids
 Polymatroids and Greedy
 Possible Polytopes
 Extreme Points

 Proof of Theorem 12.3.1
 12.3.1
 11
 11

Proof of Theorem 12.3.1.

• For any $A \subseteq E$, define $x_A \in \mathbb{R}^E_+$ as

$$x_A(e) = \begin{cases} x(e) & \text{if } e \in A \\ 0 & \text{else} \end{cases}$$
(12.27)

note this is an analogous definition to $\mathbf{1}_A$ but for a non-unity vector.

• Now, we have

$$y(N(y)) < w(N(y)) \le f(N(y)) = \operatorname{rank}(\alpha_{\max} \mathbf{1}_{N(y)})$$
(12.28)

the last inequality follows since $w \leq x \in P_f^+$, and $y \leq w$.

 Thus, y ∧ x_{N(y)} is not a P-basis of w ∧ x_{N(y)} since, over N(y), it is neither tight at w nor tight at the rank (i.e., not a maximal independent subvector on N(y)).

F27/58 (pg.27/70)

Theorem 12.3.4

A polymatroid can equivalently be defined as a pair (E, P) where E is a finite ground set and $P \subseteq R^E_+$ is a compact non-empty set of independent vectors such that

- every subvector of an independent vector is independent (if $x \in P$ and $y \leq x$ then $y \in P$, i.e., down closed)
- 2 If $u, v \in P$ (i.e., are independent) and u(E) < v(E), then there exists a vector $w \in P$ such that

 $u < w \leq u \vee v$

(12.29)

●u∨v

●w ●u

Corollary 12.3.5

The independent vectors of a polymatroid form a convex polyhedron in \mathbb{R}^{E}_{+} .

Polymatroids	Polymatroids and Greedy	Possible Polytopes	Extreme Points
Matroids by bases	;		

In general, besides independent sets and rank functions, there are other equivalent ways to characterize matroids.

Theorem 12.3.3 (Matroid (by bases))

Let E be a set and \mathcal{B} be a nonempty collection of subsets of E. Then the following are equivalent.

- \mathcal{B} is the collection of bases of a matroid;
- 2 if $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B' x + y \in \mathcal{B}$ for some $y \in B \setminus B'$.

Properties 2 and 3 are called "exchange properties."

Proof here is omitted but think about this for a moment in terms of linear spaces and matrices, and (alternatively) spanning trees.

analogy would require the equivalent of only the first two).

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016

F33/58 (pg.33/70)

Another Interesting Fact: Matroids from polymatroid functions

Theorem 12.3.7

Given integral polymatroid function f, let (E, \mathcal{F}) be a set system with ground set E and set of subsets \mathcal{F} such that

$$\forall F \in \mathcal{F}, \ \forall \emptyset \subset S \subseteq F, |S| \le f(S)$$
(12.30)

Then $M = (E, \mathcal{F})$ is a matroid.

Proof.

Exercise

And its rank function is **Exercise**.

Polymatroids	Polymatroids and Greedy	Possible Polytopes	Extreme Points
Review			
• The next two slides	come respectively fr	om Lecture 11 and	d Lecture 10.

Polymatroids Polymatroids and Greedy Possible Polytopes Extreme Points Maximum weight independent set via greedy weighted rank

Theorem 12.4.5

Let $M = (V, \mathcal{I})$ be a matroid, with rank function r, then for any weight function $w \in \mathbb{R}^V_+$, there exists a chain of sets $U_1 \subset U_2 \subset \cdots \subset U_n \subseteq V$ such that

$$\max\left\{w(I)|I \in \mathcal{I}\right\} = \sum_{i=1}^{n} \lambda_i r(U_i)$$
(12.19)

where $\lambda_i \geq 0$ satisfy

$$w = \sum_{i=1}^{n} \lambda_i \mathbf{1}_{U_i} \tag{12.20}$$

Polymatroidal polyhedron and greedy

- Let (E, \mathcal{I}) be a set system and $w \in \mathbb{R}^E_+$ be a weight vector.
- Recall greedy algorithm: Set A = Ø, and repeatedly choose y ∈ E \ A such that A ∪ {y} ∈ I with w(y) as large as possible, stopping when no such y exists.
- For a matroid, we saw that set system (E, I) is a matroid iff for each weight function w ∈ ℝ^E₊, the greedy algorithm leads to a set I ∈ I of maximum weight w(I).
- Stated succinctly, considering $\max \{w(I) : I \in \mathcal{I}\}$, then (E, \mathcal{I}) is a matroid iff greedy works for this maximization.
- Can we also characterize a polymatroid in this way?
- That is, if we consider $\max \{wx : x \in P_f^+\}$, where P_f^+ represents the "independent vectors", is it the case that P_f^+ is a polymatroid iff greedy works for this maximization?
- Can we, ultimately, even relax things so that $w \in \mathbb{R}^{E}$?

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th,

41/58 (pg.41/7

Polymatroids	Polymatroids and Greedy	Possible Polytopes	Extreme Points
Polymatroidal	polyhedron and gr	reedy	

- What is the greedy solution in this setting, when $w \in \mathbb{R}^{E}$?
- Sort elements of E w.r.t. w so that, w.l.o.g. $E = (e_1, e_2, \ldots, e_m)$ with $w(e_1) \ge w(e_2) \ge \cdots \ge w(e_m)$.
- Let k+1 be the first point (if any) at which we are non-positive, i.e., $w(e_k) > 0$ and $0 \ge w(e_{k+1})$. That is, we have

$$w(e_1) \ge w(e_2) \ge \dots \ge w(e_k) > 0 \ge w(e_{k+1}) \ge \dots \ge w(e_m)$$
 (12.32)

• Next define partial accumulated sets E_i , for $i = 0 \dots m$, we have w.r.t. the above sorted order:

$$E_i \stackrel{\text{def}}{=} \{e_1, e_2, \dots e_i\}$$
(12.34)

(note $E_0 = \emptyset$, $f(E_0) = 0$, and \underline{E} and $\underline{E_i}$ is always sorted w.r.t w).

• The greedy solution is the vector $x \in \mathbb{R}^E_+$ with elements defined as:

$$r(e_1) \stackrel{\text{def}}{=} f(E_1) = f(e_1) = f(e_1|E_0) = f(e_1|\emptyset)$$
(12.35)

 $\frac{\text{Prof. Jeff Bilmes}}{\mathscr{L}(\mathcal{C}_{i})} = \frac{\text{EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016}}{J(\mathcal{L}_{i})} \frac{\text{F42/58 (pg.42/70)}}{J(\mathcal{L}_{i}-1)} \frac{J(\mathcal{L}_{i}-1)}{J(\mathcal{L}_{i}-1)} \frac{J(\mathcal{L}_{i})}{J(\mathcal{L}_{i}-1)} \frac{J(\mathcal{L}_{i}-1)}{J(\mathcal{L}_{i}-1)} \frac{J(\mathcal{L}_{i}-1)}{J(\mathcal{L}_{i}-1)}$

$$(e_i) \stackrel{\text{def}}{=} 0 \text{ for } i = k+1 \dots m = |E|$$
 (12.37)

Some Intuition: greedy and gain

- Note $x(e_i) = f(e_i|E_{i-1}) \le f(e_i|E')$ for any $E' \subseteq E_{i-1}$
- So $x(e_1) = f(e_1)$ and this corresponds to $w(e_1) \ge w(e_i)$ for all $i \ne 1$.
- Hence, for the largest value of w (namely $w(e_1)$), we use for $x(e_1)$ the largest possible gain value of e_1 (namely $f(e_1|\emptyset) \ge f(e_1|A)$ for any $A \subseteq E \setminus \{e_1\}$).
- For the next largest value of w (namely w(e₂)), we use for x(e₂) the next largest gain value of e₂ (namely f(e₂|e₁)), while still ensuring (as we will soon see in Theorem 12.4.1) that the resulting x ∈ P_f.
- This process continues, using the next largest possible gain of e_i for $x(e_i)$ while ensuring (as we will show) we do not leave the polytope, given the values we've already chosen for $x(e_{i'})$ for i' < i.

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016

F43/58 (pg.43/70)

Polymatroids and Greedy Possible Polytopes Extrem Polymatroidal polyhedron and greedy

Theorem 12.4.1

The vector $x \in \mathbb{R}^E_+$ as previously defined using the greedy algorithm maximizes wx over P_f^+ , with $w \in \mathbb{R}^E_+$, if f is submodular.

Proof.

• Consider the LP strong duality equation:

$$\max(wx: x \in P_f^+) = \min\left(\sum_{A \subseteq E} y_A f(A): y \in \mathbb{R}^{2^E}_+, \sum_{A \subseteq E} y_A \mathbf{1}_A \ge w\right)$$
(12.38)

• Sort E by w, and define the following vector $y \in \mathbb{R}^{2^E}_+$ as

$$y_{E_i} \leftarrow w(e_i) - w(e_{i+1}) \text{ for } i = 1 \dots (m-1),$$
 (12.39)

$$y_E \leftarrow w(e_m), \text{ and}$$
 (12.40)

 $y_A \leftarrow 0$ otherwise (12.41)

Possible Polytopes

F46/58 (pg.49/70)

Polymatroidal polyhedron and greedy

Theorem 12.4.1

Conversely, suppose P_f^+ is a polytope of form $P_f^+ = \{x \in \mathbb{R}^E_+ : x(A) \le f(A), \forall A \subseteq E\}$, then the greedy solution to $\max(wx : x \in P)$ is optimum only if f is submodular.

Proof.

- Choose A and B arbitrarily, and then order elements of E as (e_1, e_2, \ldots, e_m) , with $E_i = (e_1, e_2, \ldots, e_i)$, so the following is true:
- For $1 \le p \le q \le m$, define $A = \{e_1, e_2, \dots, e_k, e_{k+1}, \dots, e_p\} = E_p$ and $B = \{e_1, e_2, \dots, e_k, e_{p+1}, \dots, e_q\} = E_k \cup (E_q \setminus E_p)$
- Note, then we have $A \cap B = \{e_1, \ldots, e_k\} = E_k$, and $A \cup B = E_q$.
- Define $w \in \{0,1\}^m$ as:

$$w \stackrel{\text{def}}{=} \sum_{i=1}^{q} \mathbf{1}_{e_i} = \mathbf{1}_{A \cup B}$$
(12.49)

• Suppose optimum solution x is given by the greedy procedure.

EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016

Polymatroids Polymatroids and Greedy Possible Polytopes

Polymatroidal polyhedron and greedy

Proof.

• Then

Prof. Jeff Bilmes

$$\sum_{i=1}^{k} x_i = f(E_1) + \sum_{i=2}^{k} (f(E_i) - f(E_{i-1})) = f(E_k) = f(A \cap B)$$
(12.50)

and

$$\sum_{i=1}^{p} x_i = f(E_1) + \sum_{i=2}^{p} (f(E_i) - f(E_{i-1})) = f(E_p) = f(A) \quad (12.51)$$

and

$$\sum_{i=1}^{q} x_i = f(E_1) + \sum_{i=2}^{q} (f(E_i) - f(E_{i-1})) = f(E_q) = f(A \cup B)$$
...
(12.52)

Prof. Jeff Bilmes

Polymatroids	Polymatroids and Greedy	Possible Polytopes	Extreme Points
Review fro	om Lecture 9		
• The next	slide comes from lecture 9.		

Polymatroids	Polymatroids and Greedy	Possible Polytopes	Extreme Points
Polymatroidal p	olyhedron and gr	reedy	

 Thus, restating the above results into a single complete theorem, we have a result very similar to what we saw for matroids (i.e., Theorem 10.5.1)

Theorem 12.4.1

If $f: 2^E \to \mathbb{R}_+$ is given, and P is a polytope in \mathbb{R}^E_+ of the form $P = \{x \in \mathbb{R}^E_+ : x(A) \le f(A), \forall A \subseteq E\}$, then the greedy solution to the problem $\max(wx: x \in P)$ is $\forall w$ optimum iff f is monotone non-decreasing submodular (i.e., iff P is a polymatroid).

Polymatroids

Prof. Jeff Bilmes

Polymatroids and Greedy

Possible Polytop

Multiple Polytopes associated with arbitrary f

- Given an arbitrary submodular function $f: 2^V \to R$ (not necessarily a polymatroid function, so it need not be positive, monotone, etc.).
- If f(Ø) ≠ 0, we can set f'(A) = f(A) f(Ø) without destroying submodularity. This also does not change any minima, so we assume all functions are normalized f(Ø) = 0.

Note that due to constraint $x(\emptyset) \leq f(\emptyset)$, we must have $f(\emptyset) \geq 0$ since if not (i.e., if $f(\emptyset) < 0$), then P_f^+ doesn't exist.

Another form of normalization can do is:

$$f'(A) = \begin{cases} f(A) & \text{if } A \neq \emptyset \\ 0 & \text{if } A = \emptyset \end{cases}$$
(12.55)

This preserves submodularity due to $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$, and if $A \cap B = \emptyset$ then r.h.s. only gets smaller when $f(\emptyset) \ge 0$.

• We can define several polytopes:

$$P_f = \left\{ x \in \mathbb{R}^E : x(S) \le f(S), \forall S \subseteq E \right\}$$
(12.56)

$$P_{f}^{+} = P_{f} \cap \left\{ x \in \mathbb{R}^{E} : x \ge 0 \right\}$$
(12.57)

$$B_{f} = P_{f} \cap \{ x \in \mathbb{R}^{E} : x(E) = f(E) \}$$
(12.58)
E596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016 F50/58 (pg.55/70)

- P_f is what is sometimes called the extended polytope (sometimes notated as EP_f .
- P_f^+ is P_f restricted to the positive orthant.

Multiple Polytopes associated with f

$$P_f^+ = P_f \cap \left\{ x \in \mathbb{R}^E : x \ge 0 \right\}$$
 (12.59)

$$P_f = \left\{ x \in \mathbb{R}^E : x(S) \le f(S), \forall S \subseteq E \right\}$$
(12.60)

$$B_f = P_f \cap \{x \in \mathbb{R}^E : x(E) = f(E)\}$$
 (12.61)

A polymatroid function's polyhedron is a polymatroid.

Theorem 12.5.1

Let f be a submodular function defined on subsets of E. For any $x \in \mathbb{R}^E$, we have:

$$rank(x) = \max\left(y(E) : y \le x, y \in P_f\right) = \min\left(x(A) + f(E \setminus A) : A \subseteq E\right)$$
(12.64)

Essentially the same theorem as Theorem 11.4.1. Taking x = 0 we get:

Corollary 12.5.2

Let f be a submodular function defined on subsets of E. $x \in \mathbb{R}^E$, we have:

 $rank(0) = \max(y(E) : y \le 0, y \in P_f) = \min(f(A) : A \subseteq E)$ (12.65)

Polymatroids

Polymatroids and Greed

Proof of Theorem 12.5.1

Proof of Theorem 12.5.1.

- Let y^{*} be the optimal solution of the l.h.s. and let A ⊆ E be any subset.
- Then $y^*(E) = y^*(A) + y^*(E \setminus A) \le f(A) + x(E \setminus A)$ since if $y^* \in P_f$, $y^*(A) \le f(A)$ and since $y^* \le x$, $y^*(E \setminus A) \le x(E \setminus A)$. This is a form of weak duality.
- Also, for any e ∈ E, if y*(e) < x(e) then there must be some reason for this other than the constraint y* ≤ x, namely it must be that ∃T ∈ D(x) with e ∈ T (i.e., e is a member of at least one of the tight sets).
- Hence, for all $e \notin \operatorname{sat}(y^*)$ we have $y^*(e) = x(e)$, and moreover $y^*(\operatorname{sat}(y^*)) = f(\operatorname{sat}(y^*))$ by definition.
- Thus we have that $y^*(\operatorname{sat}(y^*)) + y^*(E \setminus \operatorname{sat}(y^*)) = f(\operatorname{sat}(y^*)) + x(E \setminus \operatorname{sat}(y^*))$, strong duality, showing that the two sides are equal for y^* .

EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016

```
Prof. Jeff Bilm
```

Polymatroids and Greedy Polytopes Extreme Points III Greedy and P_f

- In Theorem 12.4.1, we can relax P_f^+ to P_f .
- If $\exists e \text{ such that } w(e) < 0$ then $\max(wx : x \in P_f) = \infty$ since we can let $x_e \to \infty$, unless we ignore the negative elements or assume $w \ge 0$.
- The proof, moreover, showed also that $x \in P_f$, not just P_f^+ .
- Moreover, in polymatroidal case, since the greedy constructed x has x(E) = f(E), we have that the greedy $x \in B_f$.
- In fact, we next will see that the greedy x is a vertex of B_f .

Polymatroids and Greedy Possible Polytopes Extreme Points Polymatroid extreme points

- Since w ∈ ℝ^E₊ is arbitrary, it may be that any e ∈ E is max (i.e., is such that w(e) > w(e') for e' ∈ E \ {e}).
- Thus, intuitively, any first vertex of the polytope away from the origin might be obtained by advancing along the corresponding axis.
- Recall, base polytope defined as the extreme face of P_f . I.e.,

$$B_f = P_f \cap \left\{ x \in \mathbb{R}^E_+ : x(E) = f(E) \right\}$$
(12.66)

- Also, intuitively, we can continue advancing along the skeletal edges of the polytope to reach any other vertex, given the appropriate ordering. If we advance in all dimensions, we'll reach a vertex in B_f , and if we advance only in some dimensions, we'll reach a vertex in $P_f \setminus B_f$.
- We formalize this next:

Polymatroids	Polymatroids and Greedy	Possible Polytopes	Extreme Points
Polymatroid ext	reme points		
Theorem 12.6.1			
For a given ordering	$E=(e_1,\ldots,e_m)$ of I	E and a given $E_i = 0$	(e_1,\ldots,e_i)
and x generated by l	\mathbb{E}_i using the greedy pr	vocedure ($x(e_i) = f($	$e_i E_{i-1})$),
then x is an extreme	point of P_f		

Proof.

- We already saw that $x \in P_f$ (Theorem 12.4.1).
- To show that x is an extreme point of P_f , note that it is the unique solution of the following system of equations

$$x(E_j) = f(E_j) \text{ for } 1 \le j \le i \le m \tag{12.70}$$

$$x(e) = 0 \text{ for } e \in E \setminus E_i \tag{12.71}$$

There are $i \leq m$ equations and $i \leq m$ unknowns, and simple Gaussian elimination gives us back the x constructed via the Greedy algorithm!!

Polymatroid extreme points

• Moreover, we have (and will ultimately prove)

Corollary 12.6.2

If x is an extreme point of P_f and $B \subseteq E$ is given such that $supp(x) = \{e \in E : x(e) \neq 0\} \subseteq B \subseteq \cup (A : x(A) = f(A)) = sat(x)$, then x is generated using greedy by some ordering of B.

- Note, sat(x) = cl(x) = ∪(A : x(A) = f(A)) is also called the closure of x (recall that sets A such that x(A) = f(A) are called tight, and such sets are closed under union and intersection, as seen in Lecture 8, Theorem 12.3.2)
- Thus, cl(x) is a tight set.
- Also, $supp(x) = \{e \in E : x(e) \neq 0\}$ is called the support of x.
- For arbitrary x, supp(x) is not necessarily tight, but for an extreme point, supp(x) is.

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 12 - May 11th, 2016

F56/58 (pg.67/70)

Extreme Points Intuition: why greedy works with polymatroids Maximal point in P_f^+ • Given w, the goal is for w in this region. Maximal point in Pf for win this region. to find $x = (x(e_1), x(e_2))$ **e**₂ $f(e_1|e_2)$ that maximizes $x^{\mathsf{T}}w = x(e_1)w(e_1) +$ mermer $x(e_2)w(e_2).$ • If $w(e_2) > w(e_1)$ the 45° mezenter upper extreme point $f(e_2)$ indicated maximizes $x^{\mathsf{T}}w$ over $x \in P_f^+$. $t(e_{2}|e_{1})$ • If $w(e_2) < w(e_1)$ the lower extreme point indicated maximizes $f(e_1)$ e₁ $x^{\mathsf{T}}w$ over $x \in P_f^+$.