

Logistics

Announcements, Assignments, and Reminders

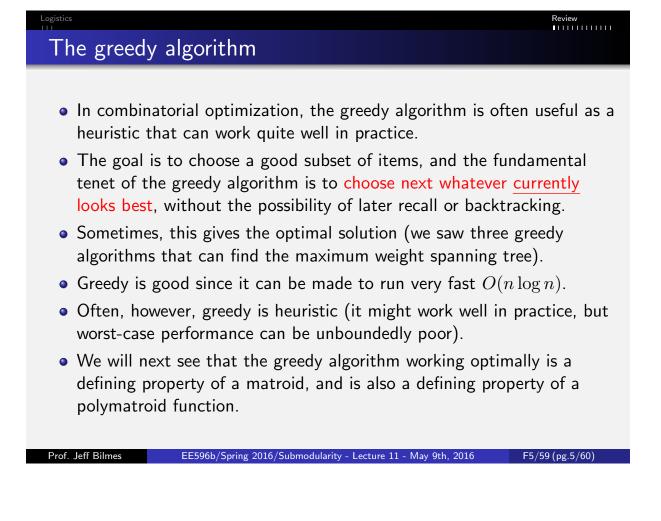
- Homework 4, soon available at our assignment dropbox (https://canvas.uw.edu/courses/1039754/assignments)
- Homework 3, available at our assignment dropbox (https://canvas.uw.edu/courses/1039754/assignments), due (electronically) Monday (5/2) at 11:55pm.
- Homework 2, available at our assignment dropbox (https://canvas.uw.edu/courses/1039754/assignments), due (electronically) Monday (4/18) at 11:55pm.
- Homework 1, available at our assignment dropbox (https://canvas.uw.edu/courses/1039754/assignments), due (electronically) Friday (4/8) at 11:55pm.
- Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google hangout (set up meeting via our our discussion board (https: //canvas.uw.edu/courses/1039754/discussion_topics)).

EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016

Logistics Review Class Road Map - IT-I • L1(3/28): Motivation, Applications, & • L11(5/2): From Matroids to Polymatroids, Polymatroids **Basic Definitions** • L2(3/30): Machine Learning Apps • L12(5/4): (diversity, complexity, parameter, learning • L13(5/9): target, surrogate). L14(5/11): • L3(4/4): Info theory exs, more apps, definitions, graph/combinatorial examples, L16(5/18): L15(5/16): matrix rank example, visualization L17(5/23): • L4(4/6): Graph and Combinatorial • L18(5/25): Examples, matrix rank, Venn diagrams, examples of proofs of submodularity, some • L19(6/1): • L20(6/6): Final Presentations useful properties • L5(4/11): Examples & Properties, Other maximization. Defs., Independence • L6(4/13): Independence, Matroids, Matroid Examples, matroid rank is submodular • L7(4/18): Matroid Rank, More on Partition Matroid, System of Distinct Reps, Transversals, Transversal Matroid, • L8(4/20): Transversals, Matroid and representation, Dual Matroids, • L9(4/25): Dual Matroids, Properties, Combinatorial Geometries, Matroid and Greedy L10(4/27): Matroid and Greedy, Polyhedra, Matroid Polytopes, Finals Week: June 6th-10th. 2016.

Prof. Jeff Bilmes

F3/59 (pg.3/60)



Matroid and the greedy algorithm
• Let (E, \mathcal{I}) be an independence system, and we are given a non-negative modular weight function $w : E \to \mathbb{R}_+$.
Algorithm 1: The Matroid Greedy Algorithm
1 Set $X \leftarrow \emptyset$; 2 while $\exists v \in E \setminus X \text{ s.t. } X \cup \{v\} \in \mathcal{I} \text{ do}$ 3 $\downarrow v \in \operatorname{argmax} \{w(v) : v \in E \setminus X, \ X \cup \{v\} \in \mathcal{I}\};$ 4 $\downarrow X \leftarrow X \cup \{v\};$
• Same as sorting items by decreasing weight w , and then choosing items in that order that retain independence.
Theorem 11.2.7
Let (E,\mathcal{I}) be an independence system. Then the pair (E,\mathcal{I}) is a matroid if

Let (E, \mathcal{I}) be an independence system. Then the pair (E, \mathcal{I}) is a matroid if and only if for each weight function $w \in \mathcal{R}^E_+$, Algorithm 1 leads to a set $I \in \mathcal{I}$ of maximum weight w(I).

Summary of Important (for us) Matroid Definitions

Given an independence system, matroids are defined equivalently by any of the following:

- All maximally independent sets have the same size.
- A monotone non-decreasing submodular integral rank function with unit increments.
- The greedy algorithm achieves the maximum weight independent set for all weight functions.

EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016

Matroid Polyhedron in 2D

$$P_r^+ = \left\{ x \in \mathbb{R}^E : x \ge 0, x(A) \le r(A), \forall A \subseteq E \right\}$$
(11.10)

• Consider this in two dimensions. We have equations of the form:

$$x_1 \ge 0 \text{ and } x_2 \ge 0 \tag{11.11}$$

$$x_1 \le r(\{v_1\}) \in \{0, 1\}$$
(11.12)

$$x_2 \le r(\{v_2\}) \in \{0, 1\}$$
(11.13)

$$x_1 + x_2 \le r(\{v_1, v_2\}) \in \{0, 1, 2\}$$
(11.14)

• Because r is submodular, we have

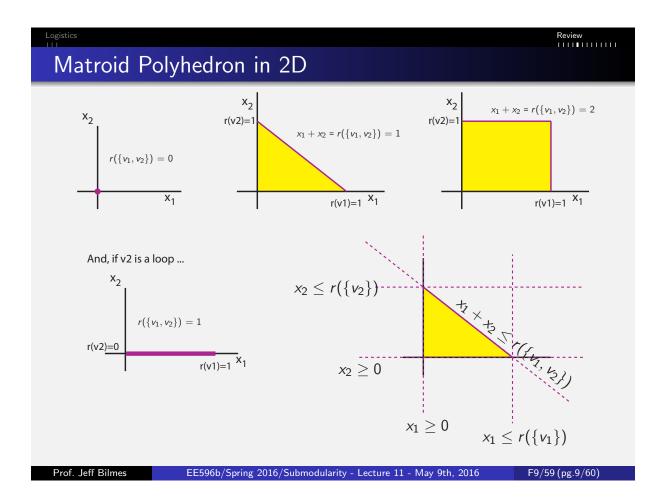
$$r(\{v_1\}) + r(\{v_2\}) \ge r(\{v_1, v_2\}) + r(\emptyset)$$
(11.15)

so since $r(\{v_1, v_2\}) \le r(\{v_1\}) + r(\{v_2\})$, the last inequality is either touching (so inactive) or active.

Prof. Jeff Bilmes

F7/59 (pg.7/60)

Review



Logistics

Review

Independence Polyhedra

- For each I ∈ I of a matroid M = (E, I), we can form the incidence vector 1_I.
- Taking the convex hull, we get the independent set polytope, that is

$$P_{\mathsf{ind. set}} = \operatorname{conv}\left\{\bigcup_{I \in \mathcal{I}} \{\mathbf{1}_I\}\right\} \subseteq [0, 1]^E$$
 (11.10)

- Since $\{\mathbf{1}_I : I \in \mathcal{I}\} \subseteq P_{\text{ind. set}} \subseteq P_r^+$, we have $\max\{w(I) : I \in \mathcal{I}\} \leq \max\{w^{\intercal}x : x \in P_{\text{ind. set}}\} \leq \max\{w^{\intercal}x : x \in P_r^+\}$
- Now take the rank function r of M, and define the following polyhedron:

$$P_r^+ \triangleq \left\{ x \in \mathbb{R}^E : x \ge 0, x(A) \le r(A), \forall A \subseteq E \right\}$$
(11.11)

• Now, take any $x \in P_{\text{ind. set}}$, then we have that $x \in P_r^+$ (or $P_{\text{ind. set}} \subseteq P_r^+$). We show this next.

 $P_{\mathsf{ind.\ set}} \subseteq P_r^+$

• If $x \in P_{\text{ind. set}}$, then

$$x = \sum_{i} \lambda_i \mathbf{1}_{I_i} \tag{11.10}$$

for some appropriate vector $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n).$

- Clearly, for such x, $x \ge 0$.
- Now, for any $A \subseteq E$,

$$x(A) = x^{\mathsf{T}} \mathbf{1}_A = \sum_i \lambda_i \mathbf{1}_{I_i}^{\mathsf{T}} \mathbf{1}_A$$
(11.11)

$$\leq \sum_{i} \lambda_{i} \max_{j:I_{j} \subseteq A} \mathbf{1}_{I_{j}}(E)$$
(11.12)

$$= \max_{j:I_j \subseteq A} \mathbf{1}_{I_j}(E) = \max_{I \in \mathcal{I}} |A \cap I|$$
(11.13)

$$= r(A) \tag{11.14}$$

• Thus, $x \in P_r^+$ and hence $P_{\text{ind. set}} \subseteq P_r^+$. Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016 F11/59 (pg.11/60)

• So recall from a moment ago, that we have that $P_{\text{ind. set}} = \operatorname{conv} \{ \bigcup_{I \in \mathcal{I}} \{ \mathbf{1}_I \} \}$ $\subseteq P_r^+ = \{ x \in \mathbb{R}^E : x \ge 0, x(A) \le r(A), \forall A \subseteq E \} \quad (11.19)$ • In fact, the two polyhedra are identical (and thus both are polytopes). • We'll show this in the next few theorems.

Maximum weight independent set via greedy weighted rank

Theorem 11.2.5

Let $M = (V, \mathcal{I})$ be a matroid, with rank function r, then for any weight function $w \in \mathbb{R}^{V}_{+}$, there exists a chain of sets $U_1 \subset U_2 \subset \cdots \subset U_n \subseteq V$ such that

EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016

$$\max\left\{w(I)|I \in \mathcal{I}\right\} = \sum_{i=1}^{n} \lambda_i r(U_i)$$
(11.19)

where $\lambda_i \geq 0$ satisfy

Prof. Jeff Bilmes

$$w = \sum_{i=1}^{n} \lambda_i \mathbf{1}_{U_i} \tag{11.20}$$

Linear Program LP

Consider the linear programming primal problem

maximize
$$w^{\mathsf{T}}x$$

subject to $x_v \ge 0$ $(v \in V)$ (11.19)
 $x(U) \le r(U)$ $(\forall U \subseteq V)$

And its convex dual (note $y \in \mathbb{R}^{2^n}_+$, y_U is a scalar element within this exponentially big vector):

minimize
$$\sum_{U \subseteq V} y_U r(U),$$

subject to $y_U \ge 0$ $(\forall U \subseteq V)$ (11.20)
$$\sum_{U \subseteq V} y_U \mathbf{1}_U \ge w$$

Thanks to strong duality, the solutions to these are equal to each other.

Prof. Jeff Bilmes

F13/59 (pg.13/60)

Review

Review

Polytope equivalence

• Hence, we have the following relations:

$$\max \{ w(I) : I \in \mathcal{I} \} = \max \{ w^{\mathsf{T}} x : x \in P_{\mathsf{ind. set}} \}$$
(11.22)
$$= \max \{ w^{\mathsf{T}} x : x \in P_r^+ \}$$
(11.23)

$$\stackrel{\text{def}}{=} \alpha_{\min} = \min\left\{\sum_{U \subseteq V} y_U r(U) : \forall U, y_U \ge 0; \sum_{U \subseteq V} y_U \mathbf{1}_U \ge w\right\}$$
(11.24)

Polytope Equivalence (Summarizing the above)

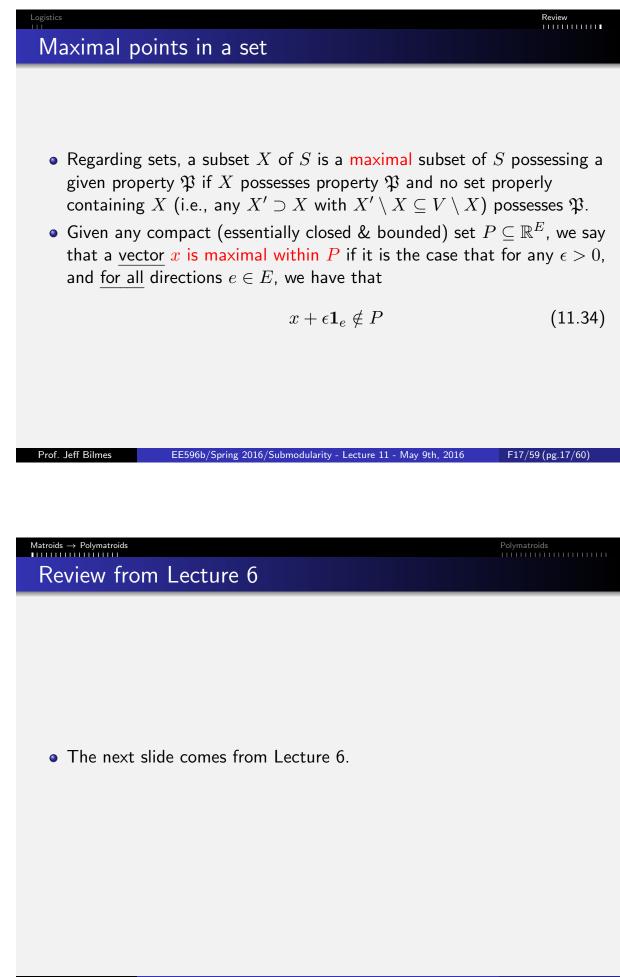
- For each $I \in \mathcal{I}$ of a matroid $M = (E, \mathcal{I})$, we can form the incidence vector $\mathbf{1}_{I}$.
- Taking the convex hull, we get the independent set polytope, that is

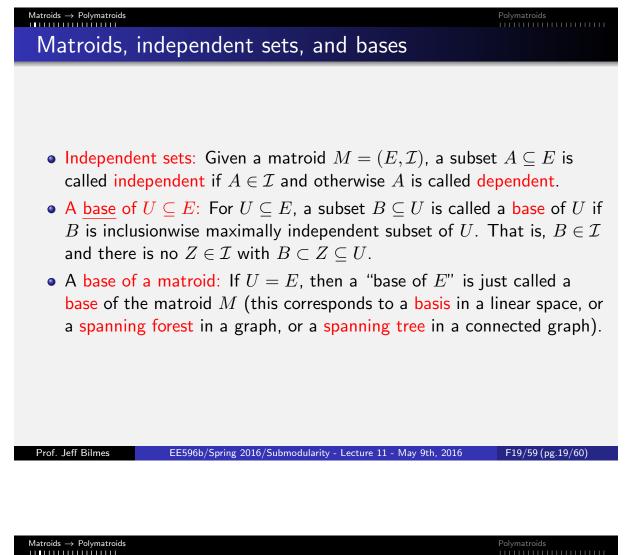
$$P_{\mathsf{ind. set}} = \operatorname{conv} \left\{ \bigcup_{I \in \mathcal{I}} \{ \mathbf{1}_I \} \right\}$$
(11.22)

• Now take the rank function r of M, and define the following polytope:

$$P_r^+ = \left\{ x \in \mathbb{R}^E : x \ge 0, x(A) \le r(A), \forall A \subseteq E \right\}$$
(11.23)

Theorem 11.2.5 $P_r^+ = P_{ind. set}$ (11.24)





P-basis of x given compact set $P \subseteq \mathbb{R}^E_+$

Polymatroids

Definition 11.3.1 (subvector)

y is a subvector of x if $y \leq x$ (meaning $y(e) \leq x(e)$ for all $e \in E$).

Definition 11.3.2 (P-basis)

Given a compact set $P \subseteq \mathcal{R}^E_+$, for any $x \in \mathbb{R}^E_+$, a subvector y of x is called a *P*-basis of x if y maximal in *P*.

In other words, y is a P-basis of x if y is a maximal P-contained subvector of x.

Here, by y being "maximal", we mean that there exists no z > y (more precisely, no $z \ge y + \epsilon \mathbf{1}_e$ for some $e \in E$ and $\epsilon > 0$) having the properties of y (the properties of y being: in P, and a subvector of x). In still other words: y is a P-basis of x if:

- **1** y < x (y is a subvector of x); and
- 2 $y \in P$ and $y + \epsilon \mathbf{1}_e \notin P$ for all $e \in E$ where y(e) < x(e) and $\forall \epsilon > 0$ (y is maximal *P*-contained).

$\mathsf{Matroids} \to \mathsf{Polymatroids}$

A vector form of rank

• Recall the definition of rank from a matroid $M = (E, \mathcal{I})$.

$$\operatorname{\mathsf{rank}}(A) = \max\left\{|I| : I \subseteq A, I \in \mathcal{I}\right\} = \max_{I \in \mathcal{I}} |A \cap I|$$
(11.1)

 vector rank: Given a compact set P ⊆ ℝ^E₊, we can define a form of "vector rank" relative to this P in the following way: Given an x ∈ ℝ^E, we define the vector rank, relative to P, as:

$$\operatorname{rank}(x) = \max(y(E) : y \le x, y \in P) = \max_{y \in P} (x \land y)(E)$$
 (11.2)

where $y \leq x$ is componentwise inequality $(y_i \leq x_i, \forall i)$, and where $(x \wedge y) \in \mathbb{R}^E_+$ has $(x \wedge y)(i) = \min(x(i), y(i))$.

- If \mathcal{B}_x is the set of *P*-bases of *x*, than $\operatorname{rank}(x) = \max_{y \in \mathcal{B}_x} y(E)$.
- If $x \in P$, then rank(x) = x(E) (x is its own unique self P-basis).
- If $x_{\min} = \min_{x \in P} x(E)$, and $x \le x_{\min}$ what then? $-\infty$?
- In general, might be hard to compute and/or have ill-defined properties. Next, we look at an object that restrains and cultivates this form of rank.

Prof. Jeff Bilme

EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016 F21/59 (pg.2

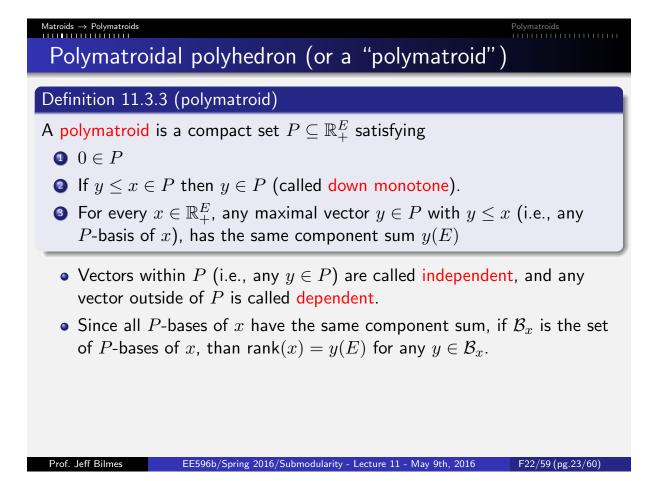
Matroids → Polymatroids

Polymatroidal polyhedron (or a "polymatroid")

Definition 11.3.3 (polymatroid)

A polymatroid is a compact set $P \subseteq \mathbb{R}^E_+$ satisfying

- $0 \in P$
- **2** If $y \le x \in P$ then $y \in P$ (called down monotone).
- So For every $x \in \mathbb{R}^E_+$, any maximal vector $y \in P$ with $y \leq x$ (i.e., any P-basis of x), has the same component sum y(E)
- Condition 3 restated: That is for any two distinct maximal vectors $y^1, y^2 \in P$, with $y^1 \leq x \& y^2 \leq x$, with $y^1 \neq y^2$, we must have $y^1(E) = y^2(E)$.
- Condition 3 restated (again): For every vector x ∈ ℝ^E₊, every maximal independent subvector y of x has the same component sum y(E) = rank(x).
- Condition 3 restated (yet again): All P-bases of x have the same component sum.



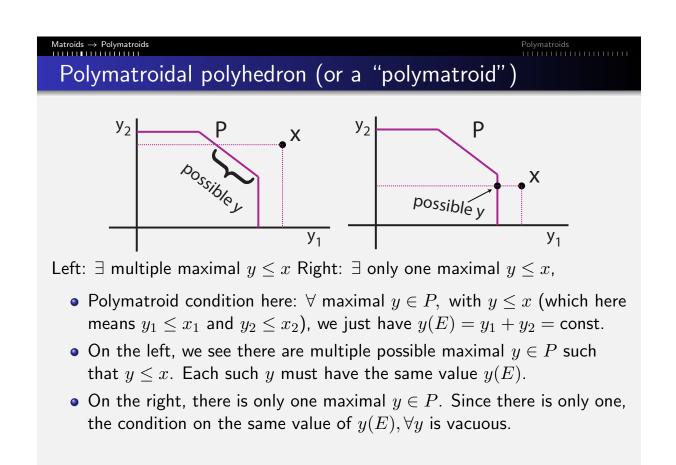
Matroids → Polymatroids Polymatroids Matroid and Polymatroid: side-by-side Polymatroids

A Matroid is:

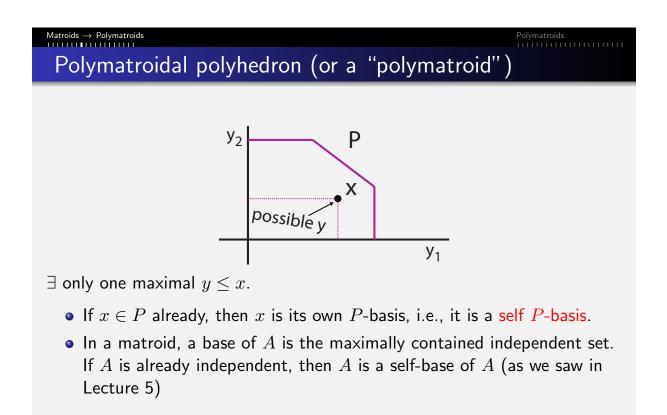
- **1** a set system (E, \mathcal{I})
- 2 empty-set containing $\emptyset \in \mathcal{I}$
- $\textbf{ own closed, } \emptyset \subseteq I' \subseteq I \in \mathcal{I} \Rightarrow I' \in \mathcal{I}.$
- any maximal set I in I, bounded by another set A, has the same matroid rank (any maximal independent subset I ⊆ A has same size |I|).

A Polymatroid is:

- a compact set $P \subseteq \mathbb{R}^E_+$
- 2 zero containing, $\mathbf{0} \in P$
- $\textbf{ own monotone, } 0 \leq y \leq x \in P \Rightarrow y \in P$
- (any maximal vector y in P, bounded by another vector x, has the same vector rank (any maximal independent subvector $y \le x$ has same sum y(E)).

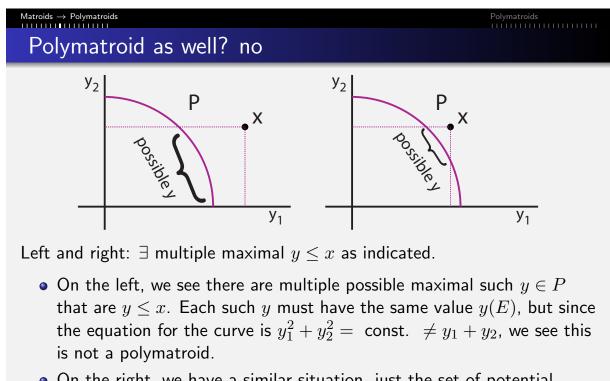


EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016



Prof. Jeff Bilmes

F24/59 (pg.25/60)

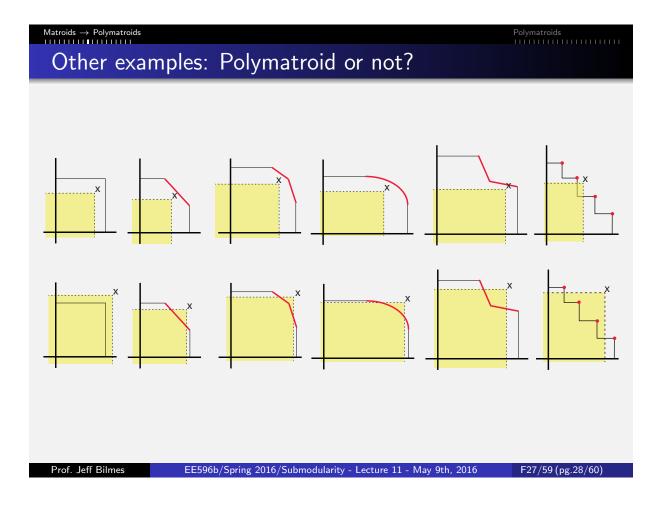


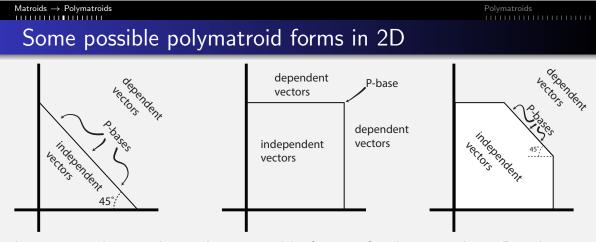
• On the right, we have a similar situation, just the set of potential values that must have the y(E) condition changes, but the values of course are still not constant.

```
Prof. Jeff Bilmes
```

EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016

F26/59 (pg.27/60)





It appears that we have three possible forms of polymatroid in 2D, when neither of the elements $\{v_1, v_2\}$ are self-dependent.

- **①** On the left: full dependence between v_1 and v_2
- **2** In the middle: full independence between v_1 and v_2
- ${f 0}$ On the right: partial independence between v_1 and v_2
- The *P*-bases (or single *P*-base in the middle case) are as indicated.
- Independent vectors are those within or on the boundary of the polytope. Dependent vectors are exterior to the polytope.

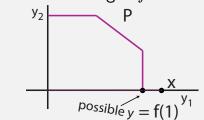
- The set of *P*-bases for a polytope is called the base polytope. Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016 F28/59 (pg.29/60)

$Matroids \rightarrow Polymatroids$

olymatroids

Polymatroidal polyhedron (or a "polymatroid")

- Note that if x contains any zeros (i.e., suppose that x ∈ ℝ^E₊ has E \ S s.t. x(E \ S) = 0, so S indicates the non-zero elements, or S = supp(x)), then this also forces y(E \ S) = 0, so that y(E) = y(S). This is true either for x ∈ P or x ∉ P.
- Therefore, in this case, it is the non-zero elements of x, corresponding to elements S (i.e., the support supp(x) of x), determine the common component sum.
- For the case of either x ∉ P or right at the boundary of P, we might give a "name" to this component sum, lets say f(S) for any given set S of non-zero elements of x. We could name rank(¹/_ϵ 1_S) ≜ f(S) for ϵ very small. What kind of function might f be?



Matroids \rightarrow Polymatroid

Polymatroid function and its polyhedron.

Definition 11.3.4

A polymatroid function is a real-valued function f defined on subsets of E which is normalized, non-decreasing, and submodular. That is we have

• $f(\emptyset) = 0$ (normalized)

- 2 $f(A) \leq f(B)$ for any $A \subseteq B \subseteq E$ (monotone non-decreasing)
- ③ $f(A \cup B) + f(A \cap B) \le f(A) + f(B)$ for any $A, B \subseteq E$ (submodular)

We can define the polyhedron ${\cal P}_f^+$ associated with a polymatroid function as follows

$$P_f^+ = \left\{ y \in \mathbb{R}^E_+ : y(A) \le f(A) \text{ for all } A \subseteq E \right\}$$
(11.3)

$$= \left\{ y \in \mathbb{R}^E : y \ge 0, y(A) \le f(A) \text{ for all } A \subseteq E \right\}$$
(11.4)

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016

F30/59 (pg.31/60)

 Matroids → Polymatroids
 Polymatroids

 Associated polyhedron with a polymatroid function

$$P_f^+ = \left\{ x \in \mathbb{R}^E : x \ge 0, x(A) \le f(A), \forall A \subseteq E \right\}$$
(11.5)

• Consider this in three dimensions. We have equations of the form:

$$x_1 \ge 0 \text{ and } x_2 \ge 0 \text{ and } x_3 \ge 0$$
 (11.6)

$$x_1 \le f(\{v_1\}) \tag{11.7}$$

$$x_2 \le f(\{v_2\}) \tag{11.8}$$

- $x_3 \le f(\{v_3\}) \tag{11.9}$
- $x_1 + x_2 \le f(\{v_1, v_2\}) \tag{11.10}$

$$x_2 + x_3 \le f(\{v_2, v_3\}) \tag{11.11}$$

$$x_1 + x_3 \le f(\{v_1, v_3\}) \tag{11.12}$$

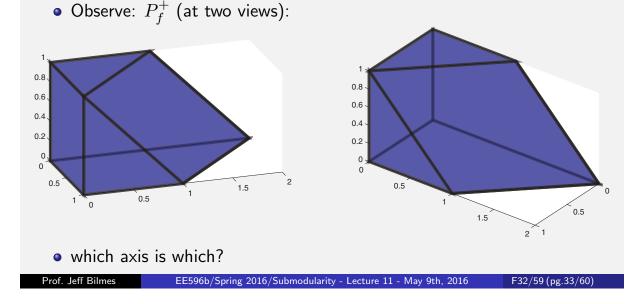
$$x_1 + x_2 + x_3 \le f(\{v_1, v_2, v_3\}) \tag{11.13}$$

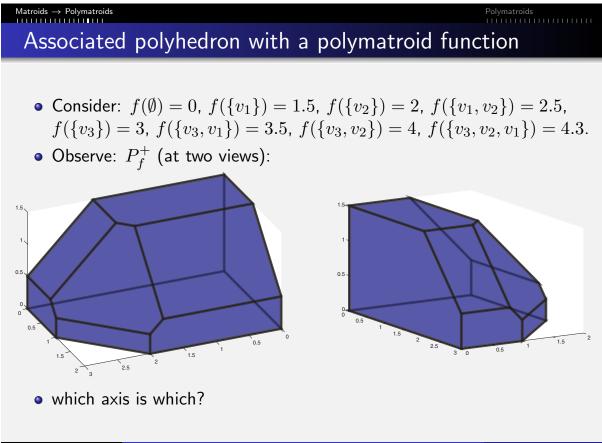
Polymatroids

Matroids \rightarrow Polymatroids

Associated polyhedron with a polymatroid function

• Consider the asymmetric graph cut function on the simple chain graph $v_1 - v_2 - v_3$. That is, $f(S) = |\{(v, s) \in E(G) : v \in V, s \in S\}|$ is count of any edges within S or between S and $V \setminus S$, so that $\delta(S) = f(S) + f(V \setminus S) - f(V)$ is the standard graph cut.

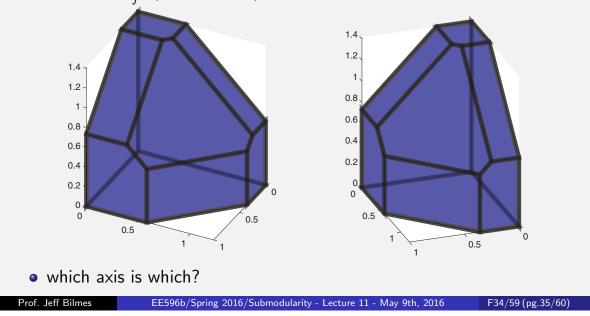




Matroids \rightarrow Polymatroids

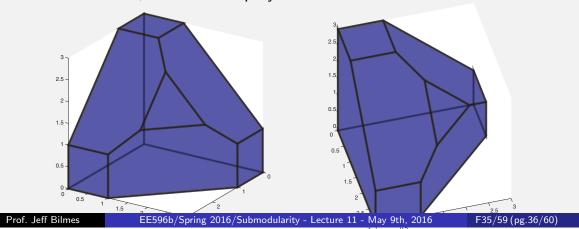
Associated polyhedron with a polymatroid function

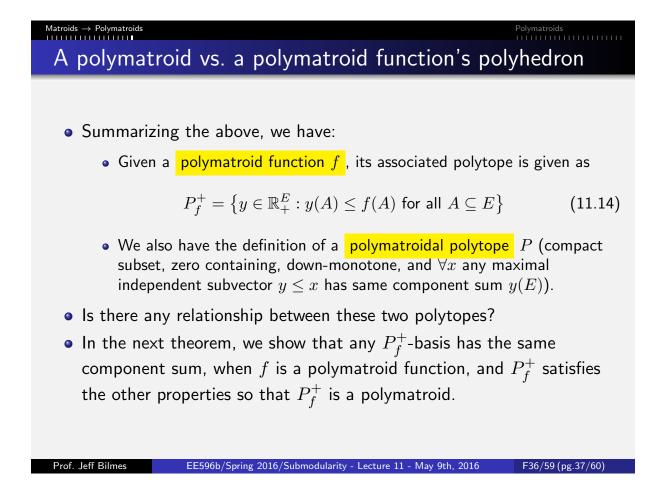
- Consider modular function $w: V \to \mathbb{R}_+$ as $w = (1, 1.5, 2)^{\mathsf{T}}$, and then the submodular function $f(S) = \sqrt{w(S)}$.
- Observe: P_f^+ (at two views):



Associated polytope with a non-submodular function

- Consider function on integers: g(0) = 0, g(1) = 3, g(2) = 4, and g(3) = 5.5. Is f(S) = g(|S|) submodular? f(S) = g(|S|) is not submodular since $f(\{e_1, e_3\}) + f(\{e_1, e_2\}) = 4 + 4 = 8$ but $f(\{e_1, e_2, e_3\}) + f(\{e_1\}) = 5.5 + 3 = 8.5$. Alternatively, consider concavity violation, 1 = g(1 + 1) g(1) < g(2 + 1) g(2) = 1.5.
- Observe: P_f^+ (at two views), maximal independent subvectors not constant rank, hence not a polymatroid.





A polymatroid function's polyhedron is a polymatroid.

Theorem 11.4.1

Let f be a polymatroid function defined on subsets of E. For any $x \in \mathbb{R}^E_+$, and any P_f^+ -basis $y^x \in \mathbb{R}^E_+$ of x, the component sum of y^x is

$$y^{x}(E) = \operatorname{rank}(x) = \max\left(y(E) : y \le x, y \in P_{f}^{+}\right)$$
$$= \min\left(x(A) + f(E \setminus A) : A \subseteq E\right)$$
(11.15)

As a consequence, P_f^+ is a polymatroid, since r.h.s. is constant w.r.t. y^x .

Taking $E \setminus B = \operatorname{supp}(x)$ (so elements B are all zeros in x), and for $b \notin B$ we make x(b) is big enough, the r.h.s. min has solution $A^* = B$. We recover submodular function from the polymatroid polyhedron via the following:

$$\operatorname{rank}\left(\frac{1}{\epsilon}\mathbf{1}_{E\setminus B}\right) = f(B) = \max\left\{y(B) : y \in P_f^+\right\}$$
(11.16)

In fact, we will ultimately see a number of important consequences of this theorem (other than just that P_{f}^{+} is a polymatroid)

A polymatroid function's polyhedron is a polymatroid.

Proof.

- Clearly $0 \in P_f^+$ since f is non-negative.
- Also, for any $y \in P_f^+$ then any $x \le y$ is also such that $x \in P_f^+$. So, P_f^+ is down-monotone.
- Now suppose that we are given an $x \in \mathbb{R}^E_+$, and maximal $y^x \in P_f^+$ with $y^x \leq x$ (i.e., y^x is a P_f^+ -basis of x).
- Goal is to show that any such y^x has $y^x(E) = \text{const}$, dependent <u>only</u> on x and also f (which defines the polytope) but not dependent on y^x , the particular P-basis.

EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016

• Doing so will thus establish that P_f^+ is a polymatroid.

F38/59 (pg.39/60

... proof continued.

Prof. Jeff Bilmes

• First trivial case: could have $y^x = x$, which happens if $x(A) \leq f(A), \forall A \subseteq E$ (i.e., $x \in P_f^+$ strictly). In such case,

$$\min\left(x(A) + f(E \setminus A) : A \subseteq E\right) \tag{11.17}$$

$$= x(E) + \min\left(f(E \setminus A) - x(E \setminus A) : A \subseteq E\right)$$
(11.18)

$$= x(E) + \min(f(A) - x(A) : A \subseteq E)$$
(11.19)

 $=x(E) \tag{11.20}$

A polymatroid function's polyhedron is a polymatroid.

... proof continued.

- 2nd trivial case: when $x(A) > f(A), \forall A \subseteq E$ (i.e., $x \notin P_f^+$ strictly),
- Then for any order (a₁, a₂,...) of the elements and A_i ≜ (a₁, a₂,..., a_i), we have x(a_i) ≥ f(a_i) ≥ f(a_i|A_{i-1}), the second inequality by submodularity. This gives

$$\min\left(x(A) + f(E \setminus A) : A \subseteq E\right) \tag{11.21}$$

$$= x(E) + \min(f(A) - x(A) : A \subseteq E)$$
(11.22)

$$= x(E) + \min\left(\sum_{i} f(a_{i}|A_{i-1}) - \sum_{i} x(a_{i}) : A \subseteq E\right) \quad (11.23)$$

$$= x(E) + \min\left(\sum_{i} \underbrace{\left(f(a_i|A_{i-1}) - x(a_i)\right)}_{\leq 0} : A \subseteq E\right) \quad (11.24)$$

$$= x(E) + f(E) - x(E) = f(E)$$
(11.25)

Prof. Jeff Bilme

EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016

. . .

$\mathsf{Matroids} o \mathsf{Polymatroids}$

F40/59 (pg.41/60)

A polymatroid function's polyhedron is a polymatroid.

... proof continued.

- Assume neither trivial case. Because $y^x \in P_f^+$, we have that $y^x(A) \leq f(A)$ for all $A \subseteq E$.
- We show that the constant is given by

$$y^{x}(E) = \min \left(x(A) + f(E \setminus A) : A \subseteq E \right)$$
(11.26)

• For any P_f^+ -basis y^x of x, and any $A \subseteq E$, we have that

$$y^{x}(E) = y^{x}(A) + y^{x}(E \setminus A)$$
(11.27)

$$\leq x(A) + f(E \setminus A). \tag{11.28}$$

This follows since $y^x \leq x$ and since $y^x \in P_f^+$.

• Given one A where equality holds, the above min result follows.

$\mathsf{Matroids} o \mathsf{Polymatroids}$

A polymatroid function's polyhedron is a polymatroid.

... proof continued.

For any y ∈ P⁺_f, call a set B ⊆ E tight if y(B) = f(B). The union (and intersection) of tight sets B, C is again tight, since

$$f(B) + f(C) = y(B) + y(C)$$
(11.29)

$$= y(B \cap C) + y(B \cup C) \tag{11.30}$$

$$\leq f(B \cap C) + f(B \cup C) \tag{11.31}$$

$$\leq f(B) + f(C) \tag{11.32}$$

which requires equality everywhere above.

- Because $y(A) \leq f(A), \forall A$, this means $y(B \cap C) = f(B \cap C)$ and $y(B \cup C) = f(B \cup C)$, so both also are tight.
- For y ∈ P⁺_f, it will be ultimately useful to define this lattice family of tight sets: D(y) ≜ {A : A ⊆ E, y(A) = f(A)}.

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016

$Matroids \rightarrow Polymatroids$

Polymatroids

F42/59 (pg.43/60

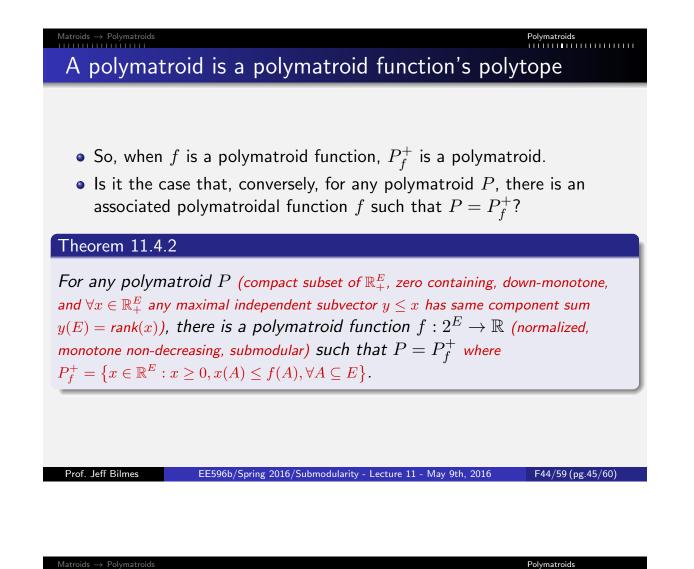
A polymatroid function's polyhedron is a polymatroid.

... proof continued.

- Also, define $\operatorname{sat}(y) \stackrel{\text{def}}{=} \bigcup \{T : T \in \mathcal{D}(y)\}$
- Consider again a P_f^+ -basis y^x (so maximal).
- Given a e ∈ E, either y^x(e) is cut off due to x (so y^x(e) = x(e)) or e is saturated by f, meaning it is an element of some tight set and e ∈ sat(y^x).
- Let E \ A = sat(y^x) be the union of all such tight sets (which is also tight, so y^x(E \ A) = f(E \ A)).
- Hence, we have

$$y^{x}(E) = y^{x}(A) + y^{x}(E \setminus A) = x(A) + f(E \setminus A)$$
(11.33)

• So we identified the A to be the elements that are non-tight, and achieved the min, as desired.



Tight sets $\mathcal{D}(y)$	are closed, and	max tight set	$\operatorname{sat}(y)$

Recall the definition of the set of tight sets at $y \in P_f^+$:

$$\mathcal{D}(y) \triangleq \{A : A \subseteq E, \ y(A) = f(A)\}$$
(11.34)

Theorem 11.4.3

For any $y \in P_f^+$, with f a polymatroid function, then $\mathcal{D}(y)$ is closed under union and intersection.

Proof.

We have already proven this as part of Theorem 11.4.1

Also recall the definition of sat(y), the maximal set of tight elements relative to $y \in \mathbb{R}^{E}_{+}$.

$$\operatorname{sat}(y) \stackrel{\text{def}}{=} \bigcup \{T : T \in \mathcal{D}(y)\}$$
(11.35)

F46/59 (pg.47/60)

Join \lor and meet \land for $x, y \in \mathbb{R}^E_+$

• For $x, y \in \mathbb{R}^E_+$, define vectors $x \wedge y \in \mathbb{R}^E_+$ and $x \vee y \in \mathbb{R}^E_+$ such that, for all $e \in E$

$$(x \lor y)(e) = \max(x(e), y(e))$$
 (11.36)

$$(x \wedge y)(e) = \min(x(e), y(e))$$
 (11.37)

Hence,

$$x \lor y \triangleq \left(\max\left(x(e_1), y(e_1)\right), \max\left(x(e_2), y(e_2)\right), \dots, \max\left(x(e_n), y(e_n)\right) \right)$$

and similarly

Prof. Jeff Bilmes

$$x \wedge y \triangleq \left(\min\left(x(e_1), y(e_1)\right), \min\left(x(e_2), y(e_2)\right), \dots, \min\left(x(e_n), y(e_n)\right)\right)$$

EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016

• From this, we can define things like an lattices, and other constructs.

- Recall that the matroid rank function is submodular.
- The vector rank function rank(x) also satisfies a form of submodularity.

Theorem 11.4.4 (vector rank and submodularity)

Let P be a polymatroid polytope. The vector rank function rank: $\mathbb{R}^E_+ \to \mathbb{R}$ with rank $(x) = \max(y(E): y \le x, y \in P)$ satisfies, for all $u, v \in \mathbb{R}^E_+$

$$rank(u) + rank(v) \ge rank(u \lor v) + rank(u \land v)$$
(11.38)

$Matroids \rightarrow Polymatroids$

Vector rank rank(x) is submodular, proof

Proof of Theorem 11.4.4.

- Let a be a P-basis of $u \wedge v$, so $rank(u \wedge v) = a(E)$.
- By the polymatroid property, \exists an independent $b \in P$ such that: $a \leq b \leq u \lor v$ and also such that $\operatorname{rank}(b) = b(E) = \operatorname{rank}(u \lor v)$, so b is a P-basis of $u \lor v$.
- Given $e \in E$, if a(e) is maximal due to P, then $a(e) = b(e) \leq \min(u(e), v(e))$.
- If a(e) is maximal due to $(u \wedge v)(e)$, then $a(e) = \min(u(e), v(e)) \le b(e).$
- Therefore, $a = b \land (u \land v) \ldots$
- ... and since $b \leq u \lor v$, we get

$$a + b = b + b \land u \land v = b \land u + b \land v$$
(11.39)

To see this, consider each case where either b is the minimum, or u is minimum with $b \le v$, or v is minimum with $b \le u$.

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016

F48/59 (pg.49/60)

Matroids → Polymatroids	Polymatroids
Vector rank rank (x) is submodular, proof	
proof of Theorem 11.4.4.	
• But $b \wedge u$ and $b \wedge v$ are independent subvectors of u so $(b \wedge u)(E) \leq \operatorname{rank}(u)$ and $(b \wedge v)(E) \leq \operatorname{rank}(v)$.	and v respectively,
• Hence, rank $(u \wedge v)$ + rank $(u \lor v) = a(E) + b(E)$	(11.40)
$= (b \wedge u)(E) + (b \wedge v)$	v)(E) (11.41)
$\leq rank(u) + rank(v)$	(11.42)

- Note the remarkable similarity between the proof of Theorem 11.4.4 and the proof of Theorem ?? that the standard matroid rank function is submodular.
- Next, we prove Theorem 11.4.2, that any polymatroid polytope P has a polymatroid function f such that $P = P_f^+$.

• Given this result, we can conclude that a polymatroid is really an extremely natural polyhedral generalization of a matroid. This was all realized by Jack Edmonds in the mid 1960s (and published in 1969 in his landmark paper "Submodular Functions, Matroids, and Certain Polyhedra").

EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016

Prof. Jeff Bilmes

Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

- We are given a polymatroid P.
- Define $\alpha_{\max} \triangleq \max \{ x(E) : x \in P \}$, and note that $\alpha_{\max} > 0$ when P is non-empty, and $\alpha_{\max} = \operatorname{rank}(\infty \mathbf{1}_E) = \operatorname{rank}(\alpha_{\max} \mathbf{1}_E)$.
- Hence, for any $x \in P$, $x(e) \leq \alpha_{\max}, \forall e \in E$.
- Define a function $f: 2^V \to \mathbb{R}$ as, for any $A \subseteq E$,

$$f(A) \triangleq \mathsf{rank}(\alpha_{\mathsf{max}} \mathbf{1}_A) \tag{11.43}$$

Then f is submodular since

$$f(A) + f(B) = \operatorname{rank}(\alpha_{\max} \mathbf{1}_A) + \operatorname{rank}(\alpha_{\max} \mathbf{1}_B)$$
(11.44)

$$\geq \operatorname{rank}(\alpha_{\max} \mathbf{1}_A \lor \alpha_{\max} \mathbf{1}_B) + \operatorname{rank}(\alpha_{\max} \mathbf{1}_A \land \alpha_{\max} \mathbf{1}_B)$$
(11.45)

$$= \operatorname{rank}(\alpha_{\max} \mathbf{1}_{A \cup B}) + \operatorname{rank}(\alpha_{\max} \mathbf{1}_{A \cap B})$$
(11.46)

$$= f(A \cup B) + f(A \cap B)$$
(11.47)

F50/59 (pg.51/60)

$Matroids \rightarrow Polymatroids$

Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

- Moreover, we have that f is non-negative, normalized with $f(\emptyset) = 0$, and monotone non-decreasing (since rank is monotone).
- Hence, *f* is a polymatroid function.
- Consider the polytope P_f^+ defined as:

$$P_f^+ = \left\{ x \in \mathbb{R}_+^E : x(A) \le f(A), \ \forall A \subseteq E \right\}$$
(11.48)

- Given an $x \in P$, then for any $A \subseteq E$, $x(A) \leq \max \{z(E) : z \in P, z \leq \alpha_{\max} \mathbf{1}_A\} = \operatorname{rank}(\alpha_{\max} \mathbf{1}_A) = f(A)$, therefore $x \in P_f^+$.
- Hence, $P \subseteq P_f^+$.
- We will next show that $P_f^+ \subseteq P$ to complete the proof.

Prof. Jeff Bilme

EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016

F52/59 (pg.53/60)

Polymatroids

$\mathsf{Matroids} \to \mathsf{Polymatroids}$

Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

- Let $x \in P_f^+$ be chosen arbitrarily (goal is to show that $x \in P$).
- Suppose x ∉ P. Then, choose y to be a P-basis of x that maximizes the number of y elements strictly less than the corresponding x element. I.e., that maximizes |N(y)|, where

$$N(y) = \{e \in E : y(e) < x(e)\}$$
(11.49)

• Choose w between y and x, so that

$$y \le w \triangleq (y+x)/2 \le x \tag{11.50}$$

so y is also a P-basis of w.

 Hence, rank(x) = rank(w), and the set of P-bases of w are also P-bases of x.

Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

• For any $A \subseteq E$, define $x_A \in \mathbb{R}^E_+$ as

$$x_A(e) = \begin{cases} x(e) & \text{if } e \in A \\ 0 & \text{else} \end{cases}$$
(11.51)

note this is an analogous definition to $\mathbf{1}_A$ but for a non-unity vector.

Now, we have

$$y(N(y)) < w(N(y)) \le f(N(y)) = \operatorname{rank}(\alpha_{\max} \mathbf{1}_{N(y)})$$
(11.52)

the last inequality follows since $w \leq x \in P_f^+$, and $y \leq w$.

• Thus, $y \wedge x_{N(y)}$ is not a *P*-basis of $w \wedge x_{N(y)}$ since, over N(y), it is neither tight at w nor tight at the rank (i.e., not a maximal independent subvector on N(y)).

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016

F54/59 (pg.55/60)

Polymatroids

 $\mathsf{Matroids} \to \mathsf{Polymatroids}$

Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

- We can extend $y \wedge x_{N(y)}$ to be a *P*-basis of $w \wedge x_{N(y)}$ since $y \wedge x_{N(y)} < w \wedge x_{N(y)}$.
- This P-basis, in turn, can be extended to be a P-basis \hat{y} of w & x.
- Now, we have $\hat{y}(N(y)) > y(N(y))$,
- and also that $\hat{y}(E) = y(E)$ (since both are *P*-bases),
- hence $\hat{y}(e) < y(e)$ for some $e \notin N(y)$.
- Thus, \hat{y} is a base of x, which violates the maximality of |N(y)|.
- This contradiction means that we must have had $x \in P$.
- Therefore, $P_f^+ = P$.

More on polymatroids

Theorem 11.4.5

A polymatroid can equivalently be defined as a pair (E, P) where E is a finite ground set and $P \subseteq R^E_+$ is a compact non-empty set of independent vectors such that

- every subvector of an independent vector is independent (if $x \in P$ and $y \leq x$ then $y \in P$, i.e., down closed)
- If u, v ∈ P (i.e., are independent) and u(E) < v(E), then there exists a vector w ∈ P such that

 $u < w \le u \lor v \tag{11.53}$

Corollary 11.4.6

The independent vectors of a polymatroid form a convex polyhedron in \mathbb{R}^{E}_{+} .

Prof. Jeff Bilmes

EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016

• The next slide comes from lecture 5.

●u∨v

•w •w

F56/59 (pg.57/60)

Matroids by bases

In general, besides independent sets and rank functions, there are other equivalent ways to characterize matroids.

Theorem 11.4.3 (Matroid (by bases))

Let E be a set and \mathcal{B} be a nonempty collection of subsets of E. Then the following are equivalent.

- \mathcal{B} is the collection of bases of a matroid;
- 2 if $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B' x + y \in \mathcal{B}$ for some $y \in B \setminus B'$.
- **③** If $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B y + x \in \mathcal{B}$ for some $y \in B \setminus B'$.

Properties 2 and 3 are called "exchange properties."

Proof here is omitted but think about this for a moment in terms of linear spaces and matrices, and (alternatively) spanning trees.

```
Prof. Jeff Bilmes
```

EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016

F58/59 (pg.59/60)

matroids

.....

$\mathsf{Matroids} \to \mathsf{Polymatroids}$

More on polymatroids

For any compact set P, b is a base of P if it is a maximal subvector within P. Recall the bases of matroids. In fact, we can define a polymatroid via vector bases (analogous to how a matroid can be defined via matroid bases).

Theorem 11.4.7

A polymatroid can equivalently be defined as a pair (E, P) where E is a finite ground set and $P \subseteq R^E_+$ is a compact non-empty set of independent vectors such that

- every subvector of an independent vector is independent (if $x \in P$ and $y \leq x$ then $y \in P$, i.e., down closed)
- 2 if b, c are bases of P and d is such that $b \wedge c < d < b$, then there exists an f, with $d \wedge c < f \le c$ such that $d \vee f$ is a base of P
- 3 All of the bases of *P* have the same rank.

Note, all three of the above are required for a polymatroid (a matroid analogy would require the equivalent of only the first two).