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Cumulative Outstanding Reading

Read chapters 2 and 3 from Fujishige’s book.

Read chapter 1 from Fujishige’s book.
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Announcements, Assignments, and Reminders

Homework 4, soon available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments)

Homework 3, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (5/2) at 11:55pm.

Homework 2, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (4/18) at 11:55pm.

Homework 1, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Friday (4/8) at 11:55pm.

Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google
hangout (set up meeting via our our discussion board (https:
//canvas.uw.edu/courses/1039754/discussion_topics)).
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Class Road Map - IT-I
L1(3/28): Motivation, Applications, &
Basic Definitions

L2(3/30): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).

L3(4/4): Info theory exs, more apps,
definitions, graph/combinatorial examples,
matrix rank example, visualization

L4(4/6): Graph and Combinatorial
Examples, matrix rank, Venn diagrams,
examples of proofs of submodularity, some
useful properties

L5(4/11): Examples & Properties, Other
Defs., Independence

L6(4/13): Independence, Matroids,
Matroid Examples, matroid rank is
submodular

L7(4/18): Matroid Rank, More on
Partition Matroid, System of Distinct
Reps, Transversals, Transversal Matroid,

L8(4/20): Transversals, Matroid and
representation, Dual Matroids,

L9(4/25): Dual Matroids, Properties,
Combinatorial Geometries, Matroid and
Greedy

L10(4/27): Matroid and Greedy,
Polyhedra, Matroid Polytopes,

L11(5/2): From Matroids to
Polymatroids, Polymatroids

L12(5/4):

L13(5/9):

L14(5/11):

L15(5/16):

L16(5/18):

L17(5/23):

L18(5/25):

L19(6/1):

L20(6/6): Final Presentations
maximization.

Finals Week: June 6th-10th, 2016.
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The greedy algorithm

In combinatorial optimization, the greedy algorithm is often useful as a
heuristic that can work quite well in practice.

The goal is to choose a good subset of items, and the fundamental
tenet of the greedy algorithm is to choose next whatever currently
looks best, without the possibility of later recall or backtracking.

Sometimes, this gives the optimal solution (we saw three greedy
algorithms that can find the maximum weight spanning tree).

Greedy is good since it can be made to run very fast O(n log n).

Often, however, greedy is heuristic (it might work well in practice, but
worst-case performance can be unboundedly poor).

We will next see that the greedy algorithm working optimally is a
defining property of a matroid, and is also a defining property of a
polymatroid function.
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Matroid and the greedy algorithm

Let (E, I) be an independence system, and we are given a
non-negative modular weight function w : E → R+.

Algorithm 1: The Matroid Greedy Algorithm

1 Set X ← ∅ ;
2 while ∃v ∈ E \X s.t. X ∪ {v} ∈ I do
3 v ∈ argmax {w(v) : v ∈ E \X, X ∪ {v} ∈ I} ;
4 X ← X ∪ {v} ;

Same as sorting items by decreasing weight w, and then choosing
items in that order that retain independence.

Theorem 11.2.7

Let (E, I) be an independence system. Then the pair (E, I) is a matroid if
and only if for each weight function w ∈ RE+, Algorithm 1 leads to a set
I ∈ I of maximum weight w(I).

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016 F6/59 (pg.6/60)



Logistics Review

Summary of Important (for us) Matroid Definitions

Given an independence system, matroids are defined equivalently by any of
the following:

All maximally independent sets have the same size.

A monotone non-decreasing submodular integral rank function with
unit increments.

The greedy algorithm achieves the maximum weight independent set
for all weight functions.
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Matroid Polyhedron in 2D

P+
r =

{
x ∈ RE : x ≥ 0, x(A) ≤ r(A), ∀A ⊆ E

}
(11.10)

Consider this in two dimensions. We have equations of the form:

x1 ≥ 0 and x2 ≥ 0 (11.11)

x1 ≤ r({v1}) ∈ {0, 1} (11.12)

x2 ≤ r({v2}) ∈ {0, 1} (11.13)

x1 + x2 ≤ r({v1, v2}) ∈ {0, 1, 2} (11.14)

Because r is submodular, we have

r({v1}) + r({v2}) ≥ r({v1, v2}) + r(∅) (11.15)

so since r({v1, v2}) ≤ r({v1}) + r({v2}), the last inequality is either
touching (so inactive) or active.
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Matroid Polyhedron in 2D
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And, if v2 is a loop ...
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Independence Polyhedra

For each I ∈ I of a matroid M = (E, I), we can form the incidence
vector 1I .

Taking the convex hull, we get the independent set polytope, that is

Pind. set = conv

{⋃
I∈I
{1I}

}
⊆ [0, 1]E (11.10)

Since {1I : I ∈ I} ⊆ Pind. set ⊆ P+
r , we have max {w(I) : I ∈ I} ≤

max {wᵀx : x ∈ Pind. set} ≤ max {wᵀx : x ∈ P+
r }

Now take the rank function r of M , and define the following
polyhedron:

P+
r ,

{
x ∈ RE : x ≥ 0, x(A) ≤ r(A), ∀A ⊆ E

}
(11.11)

Now, take any x ∈ Pind. set, then we have that x ∈ P+
r (or

Pind. set ⊆ P+
r ). We show this next.
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Pind. set ⊆ P+
r

If x ∈ Pind. set, then

x =
∑
i

λi1Ii (11.10)

for some appropriate vector λ = (λ1, λ2, . . . , λn).

Clearly, for such x, x ≥ 0.

Now, for any A ⊆ E,

x(A) = xᵀ1A =
∑
i

λi1Ii
ᵀ1A (11.11)

≤
∑
i

λi max
j:Ij⊆A

1Ij (E) (11.12)

= max
j:Ij⊆A

1Ij (E) = max
I∈I
|A ∩ I| (11.13)

= r(A) (11.14)

Thus, x ∈ P+
r and hence Pind. set ⊆ P+

r .
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Matroid Independence Polyhedron

So recall from a moment ago, that we have that

Pind. set = conv {∪I∈I{1I}}
⊆ P+

r =
{
x ∈ RE : x ≥ 0, x(A) ≤ r(A), ∀A ⊆ E

}
(11.19)

In fact, the two polyhedra are identical (and thus both are polytopes).

We’ll show this in the next few theorems.
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Maximum weight independent set via greedy weighted rank

Theorem 11.2.5

Let M = (V, I) be a matroid, with rank function r, then for any weight
function w ∈ RV+, there exists a chain of sets U1 ⊂ U2 ⊂ · · · ⊂ Un ⊆ V
such that

max {w(I)|I ∈ I} =
n∑
i=1

λir(Ui) (11.19)

where λi ≥ 0 satisfy

w =
n∑
i=1

λi1Ui (11.20)
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Linear Program LP

Consider the linear programming primal problem

maximize wᵀx

subject to xv ≥ 0 (v ∈ V )

x(U) ≤ r(U) (∀U ⊆ V )

(11.19)

And its convex dual (note y ∈ R2n
+ , yU is a scalar element within this

exponentially big vector):

minimize
∑

U⊆V yUr(U),

subject to yU ≥ 0 (∀U ⊆ V )∑
U⊆V yU1U ≥ w

(11.20)

Thanks to strong duality, the solutions to these are equal to each other.
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Polytope equivalence
Hence, we have the following relations:

max {w(I) : I ∈ I} = max {wᵀx : x ∈ Pind. set} (11.22)

= max
{
wᵀx : x ∈ P+

r

}
(11.23)

def
= αmin = min

∑
U⊆V

yUr(U) : ∀U, yU ≥ 0;
∑
U⊆V

yU1U ≥ w


(11.24)
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Polytope Equivalence (Summarizing the above)

For each I ∈ I of a matroid M = (E, I), we can form the incidence
vector 1I .

Taking the convex hull, we get the independent set polytope, that is

Pind. set = conv {∪I∈I{1I}} (11.22)

Now take the rank function r of M , and define the following polytope:

P+
r =

{
x ∈ RE : x ≥ 0, x(A) ≤ r(A), ∀A ⊆ E

}
(11.23)

Theorem 11.2.5

P+
r = Pind. set (11.24)
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Maximal points in a set

Regarding sets, a subset X of S is a maximal subset of S possessing a
given property P if X possesses property P and no set properly
containing X (i.e., any X ′ ⊃ X with X ′ \X ⊆ V \X) possesses P.

Given any compact (essentially closed & bounded) set P ⊆ RE , we say
that a vector x is maximal within P if it is the case that for any ε > 0,
and for all directions e ∈ E, we have that

x+ ε1e /∈ P (11.34)
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Matroids → Polymatroids Polymatroids

Review from Lecture 6

The next slide comes from Lecture 6.
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Matroids, independent sets, and bases

Independent sets: Given a matroid M = (E, I), a subset A ⊆ E is
called independent if A ∈ I and otherwise A is called dependent.

A base of U ⊆ E: For U ⊆ E, a subset B ⊆ U is called a base of U if
B is inclusionwise maximally independent subset of U . That is, B ∈ I
and there is no Z ∈ I with B ⊂ Z ⊆ U .

A base of a matroid: If U = E, then a “base of E” is just called a
base of the matroid M (this corresponds to a basis in a linear space, or
a spanning forest in a graph, or a spanning tree in a connected graph).
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P -basis of x given compact set P ⊆ RE
+

Definition 11.3.1 (subvector)

y is a subvector of x if y ≤ x (meaning y(e) ≤ x(e) for all e ∈ E).

Definition 11.3.2 (P -basis)

Given a compact set P ⊆ RE+, for any x ∈ RE+, a subvector y of x is called
a P -basis of x if y maximal in P .
In other words, y is a P -basis of x if y is a maximal P -contained subvector
of x.

Here, by y being “maximal”, we mean that there exists no z > y (more
precisely, no z ≥ y + ε1e for some e ∈ E and ε > 0) having the properties
of y (the properties of y being: in P , and a subvector of x).
In still other words: y is a P -basis of x if:

1 y ≤ x (y is a subvector of x); and
2 y ∈ P and y + ε1e /∈ P for all e ∈ E where y(e) < x(e) and ∀ε > 0 (y

is maximal P -contained).
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A vector form of rank

Recall the definition of rank from a matroid M = (E, I).
rank(A) = max {|I| : I ⊆ A, I ∈ I} = max

I∈I
|A ∩ I| (11.1)

vector rank: Given a compact set P ⊆ RE+, we can define a form of
“vector rank” relative to this P in the following way: Given an x ∈ RE ,
we define the vector rank, relative to P , as:

rank(x) = max (y(E) : y ≤ x, y ∈ P ) = max
y∈P

(x ∧ y)(E) (11.2)

where y ≤ x is componentwise inequality (yi ≤ xi,∀i), and where
(x ∧ y) ∈ RE+ has (x ∧ y)(i) = min(x(i), y(i)).

If Bx is the set of P -bases of x, than rank(x) = maxy∈Bx y(E).

If x ∈ P , then rank(x) = x(E) (x is its own unique self P -basis).

If xmin = minx∈P x(E), and x ≤ xmin what then? −∞?

In general, might be hard to compute and/or have ill-defined properties.
Next, we look at an object that restrains and cultivates this form of rank.
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Polymatroidal polyhedron (or a “polymatroid”)

Definition 11.3.3 (polymatroid)

A polymatroid is a compact set P ⊆ RE+ satisfying

1 0 ∈ P
2 If y ≤ x ∈ P then y ∈ P (called down monotone).

3 For every x ∈ RE+, any maximal vector y ∈ P with y ≤ x (i.e., any
P -basis of x), has the same component sum y(E)

Condition 3 restated: That is for any two distinct maximal vectors
y1, y2 ∈ P , with y1 ≤ x & y2 ≤ x, with y1 6= y2, we must have
y1(E) = y2(E).

Condition 3 restated (again): For every vector x ∈ RE+, every maximal
independent subvector y of x has the same component sum
y(E) = rank(x).

Condition 3 restated (yet again): All P -bases of x have the same
component sum.
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Polymatroidal polyhedron (or a “polymatroid”)

Definition 11.3.3 (polymatroid)

A polymatroid is a compact set P ⊆ RE+ satisfying

1 0 ∈ P
2 If y ≤ x ∈ P then y ∈ P (called down monotone).

3 For every x ∈ RE+, any maximal vector y ∈ P with y ≤ x (i.e., any
P -basis of x), has the same component sum y(E)

Vectors within P (i.e., any y ∈ P ) are called independent, and any
vector outside of P is called dependent.

Since all P -bases of x have the same component sum, if Bx is the set
of P -bases of x, than rank(x) = y(E) for any y ∈ Bx.

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016 F22/59 (pg.23/60)

Matroids → Polymatroids Polymatroids

Matroid and Polymatroid: side-by-side

A Matroid is:

1 a set system (E, I)
2 empty-set containing ∅ ∈ I
3 down closed, ∅ ⊆ I ′ ⊆ I ∈ I ⇒ I ′ ∈ I.

4 any maximal set I in I, bounded by another set A, has the same
matroid rank (any maximal independent subset I ⊆ A has same size
|I|).

A Polymatroid is:

1 a compact set P ⊆ RE+
2 zero containing, 0 ∈ P
3 down monotone, 0 ≤ y ≤ x ∈ P ⇒ y ∈ P
4 any maximal vector y in P , bounded by another vector x, has the

same vector rank (any maximal independent subvector y ≤ x has same
sum y(E)).
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Polymatroidal polyhedron (or a “polymatroid”)

x

{ xpossible y possible y
y1

y2

y1

y2P P

Left: ∃ multiple maximal y ≤ x Right: ∃ only one maximal y ≤ x,

Polymatroid condition here: ∀ maximal y ∈ P, with y ≤ x (which here
means y1 ≤ x1 and y2 ≤ x2), we just have y(E) = y1 + y2 = const.

On the left, we see there are multiple possible maximal y ∈ P such
that y ≤ x. Each such y must have the same value y(E).

On the right, there is only one maximal y ∈ P . Since there is only one,
the condition on the same value of y(E),∀y is vacuous.
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Polymatroidal polyhedron (or a “polymatroid”)

x
possible y

y1

y2 P

∃ only one maximal y ≤ x.

If x ∈ P already, then x is its own P -basis, i.e., it is a self P -basis.

In a matroid, a base of A is the maximally contained independent set.
If A is already independent, then A is a self-base of A (as we saw in
Lecture 5)
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Polymatroid as well? no

x

possible y

y1

y2
P

{
x

possible y

y1

y2
P

{

Left and right: ∃ multiple maximal y ≤ x as indicated.

On the left, we see there are multiple possible maximal such y ∈ P
that are y ≤ x. Each such y must have the same value y(E), but since
the equation for the curve is y21 + y22 = const. 6= y1 + y2, we see this
is not a polymatroid.

On the right, we have a similar situation, just the set of potential
values that must have the y(E) condition changes, but the values of
course are still not constant.
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Other examples: Polymatroid or not?

x x
x

x x x

x x x
x

x

x
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Some possible polymatroid forms in 2D

independent
vectors

dependent
vectors

dependent
vectors

P-base

P-bases

P-bases

dependent

vectors

dependent

vectors

independent

vectors

independent

vectors

45˚

45˚

It appears that we have three possible forms of polymatroid in 2D, when
neither of the elements {v1, v2} are self-dependent.

1 On the left: full dependence between v1 and v2
2 In the middle: full independence between v1 and v2
3 On the right: partial independence between v1 and v2
- The P -bases (or single P -base in the middle case) are as indicated.
- Independent vectors are those within or on the boundary of the

polytope. Dependent vectors are exterior to the polytope.
- The set of P -bases for a polytope is called the base polytope.
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Polymatroidal polyhedron (or a “polymatroid”)

Note that if x contains any zeros (i.e., suppose that x ∈ RE+ has E \ S
s.t. x(E \ S) = 0, so S indicates the non-zero elements, or
S = supp(x)), then this also forces y(E \ S) = 0, so that
y(E) = y(S). This is true either for x ∈ P or x /∈ P .
Therefore, in this case, it is the non-zero elements of x, corresponding
to elements S (i.e., the support supp(x) of x), determine the common
component sum.
For the case of either x /∈ P or right at the boundary of P , we might
give a “name” to this component sum, lets say f(S) for any given set
S of non-zero elements of x. We could name rank(1ε1S) , f(S) for ε
very small. What kind of function might f be?

x
possible y

y1

y2 P

 = f(1)
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Polymatroid function and its polyhedron.

Definition 11.3.4

A polymatroid function is a real-valued function f defined on subsets of E
which is normalized, non-decreasing, and submodular. That is we have

1 f(∅) = 0 (normalized)

2 f(A) ≤ f(B) for any A ⊆ B ⊆ E (monotone non-decreasing)

3 f(A ∪B) + f(A ∩B) ≤ f(A) + f(B) for any A,B ⊆ E (submodular)

We can define the polyhedron P+
f associated with a polymatroid function

as follows

P+
f =

{
y ∈ RE+ : y(A) ≤ f(A) for all A ⊆ E

}
(11.3)

=
{
y ∈ RE : y ≥ 0, y(A) ≤ f(A) for all A ⊆ E

}
(11.4)
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Associated polyhedron with a polymatroid function

P+
f =

{
x ∈ RE : x ≥ 0, x(A) ≤ f(A), ∀A ⊆ E

}
(11.5)

Consider this in three dimensions. We have equations of the form:

x1 ≥ 0 and x2 ≥ 0 and x3 ≥ 0 (11.6)

x1 ≤ f({v1}) (11.7)

x2 ≤ f({v2}) (11.8)

x3 ≤ f({v3}) (11.9)

x1 + x2 ≤ f({v1, v2}) (11.10)

x2 + x3 ≤ f({v2, v3}) (11.11)

x1 + x3 ≤ f({v1, v3}) (11.12)

x1 + x2 + x3 ≤ f({v1, v2, v3}) (11.13)
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Associated polyhedron with a polymatroid function

Consider the asymmetric graph cut function on the simple chain graph
v1 − v2 − v3. That is, f(S) = |{(v, s) ∈ E(G) : v ∈ V, s ∈ S}| is count
of any edges within S or between S and V \ S, so that
δ(S) = f(S) + f(V \ S)− f(V ) is the standard graph cut.

Observe: P+
f (at two views):
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Associated polyhedron with a polymatroid function

Consider: f(∅) = 0, f({v1}) = 1.5, f({v2}) = 2, f({v1, v2}) = 2.5,
f({v3}) = 3, f({v3, v1}) = 3.5, f({v3, v2}) = 4, f({v3, v2, v1}) = 4.3.

Observe: P+
f (at two views):
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Associated polyhedron with a polymatroid function

Consider modular function w : V → R+ as w = (1, 1.5, 2)ᵀ, and then
the submodular function f(S) =

√
w(S).

Observe: P+
f (at two views):
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Associated polytope with a non-submodular function

Consider function on integers: g(0) = 0, g(1) = 3, g(2) = 4, and
g(3) = 5.5. Is f(S) = g(|S|) submodular? f(S) = g(|S|) is not
submodular since f({e1, e3}) + f({e1, e2}) = 4 + 4 = 8 but
f({e1, e2, e3}) + f({e1}) = 5.5 + 3 = 8.5. Alternatively, consider
concavity violation, 1 = g(1 + 1)− g(1) < g(2 + 1)− g(2) = 1.5.
Observe: P+

f (at two views), maximal independent subvectors not
constant rank, hence not a polymatroid.
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A polymatroid vs. a polymatroid function’s polyhedron

Summarizing the above, we have:

Given a polymatroid function f , its associated polytope is given as

P+
f =

{
y ∈ RE

+ : y(A) ≤ f(A) for all A ⊆ E
}

(11.14)

We also have the definition of a polymatroidal polytope P (compact
subset, zero containing, down-monotone, and ∀x any maximal
independent subvector y ≤ x has same component sum y(E)).

Is there any relationship between these two polytopes?

In the next theorem, we show that any P+
f -basis has the same

component sum, when f is a polymatroid function, and P+
f satisfies

the other properties so that P+
f is a polymatroid.
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A polymatroid function’s polyhedron is a polymatroid.

Theorem 11.4.1

Let f be a polymatroid function defined on subsets of E. For any x ∈ RE+,
and any P+

f -basis yx ∈ RE+ of x, the component sum of yx is

yx(E) = rank(x) = max
(
y(E) : y ≤ x, y ∈ P+

f

)
= min (x(A) + f(E \A) : A ⊆ E) (11.15)

As a consequence, P+
f is a polymatroid, since r.h.s. is constant w.r.t. yx.

Taking E \B = supp(x) (so elements B are all zeros in x), and for b /∈ B
we make x(b) is big enough, the r.h.s. min has solution A∗ = B. We recover
submodular function from the polymatroid polyhedron via the following:

rank

(
1

ε
1E\B

)
= f(B) = max

{
y(B) : y ∈ P+

f

}
(11.16)

In fact, we will ultimately see a number of important consequences of this
theorem (other than just that P+

f is a polymatroid)
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A polymatroid function’s polyhedron is a polymatroid.

Proof.

Clearly 0 ∈ P+
f since f is non-negative.

Also, for any y ∈ P+
f then any x <= y is also such that x ∈ P+

f . So,

P+
f is down-monotone.

Now suppose that we are given an x ∈ RE+, and maximal yx ∈ P+
f

with yx ≤ x (i.e., yx is a P+
f -basis of x).

Goal is to show that any such yx has yx(E) = const, dependent only
on x and also f (which defines the polytope) but not dependent on
yx, the particular P -basis.

Doing so will thus establish that P+
f is a polymatroid.

. . .
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

First trivial case: could have yx = x, which happens if
x(A) ≤ f(A),∀A ⊆ E (i.e., x ∈ P+

f strictly). In such case,

min (x(A) + f(E \A) : A ⊆ E) (11.17)

= x(E) + min (f(E \A)− x(E \A) : A ⊆ E) (11.18)

= x(E) + min (f(A)− x(A) : A ⊆ E) (11.19)

= x(E) (11.20)

. . .
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

2nd trivial case: when x(A) > f(A),∀A ⊆ E (i.e., x /∈ P+
f strictly),

Then for any order (a1, a2, . . . ) of the elements and
Ai , (a1, a2, . . . , ai), we have x(ai) ≥ f(ai) ≥ f(ai|Ai−1), the second
inequality by submodularity. This gives

min (x(A) + f(E \A) : A ⊆ E) (11.21)

= x(E) + min (f(A)− x(A) : A ⊆ E) (11.22)

= x(E) + min

(∑
i

f(ai|Ai−1)−
∑
i

x(ai) : A ⊆ E
)

(11.23)

= x(E) + min

∑
i

(
f(ai|Ai−1)− x(ai)

)
︸ ︷︷ ︸

≤0

: A ⊆ E

 (11.24)

= x(E) + f(E)− x(E) = f(E) (11.25)

. . .

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016 F40/59 (pg.41/60)

Matroids → Polymatroids Polymatroids

A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

Assume neither trivial case. Because yx ∈ P+
f , we have that

yx(A) ≤ f(A) for all A ⊆ E.

We show that the constant is given by

yx(E) = min (x(A) + f(E \A) : A ⊆ E) (11.26)

For any P+
f -basis yx of x, and any A ⊆ E, we have that

yx(E) = yx(A) + yx(E \A) (11.27)

≤ x(A) + f(E \A). (11.28)

This follows since yx ≤ x and since yx ∈ P+
f .

Given one A where equality holds, the above min result follows.
. . .
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

For any y ∈ P+
f , call a set B ⊆ E tight if y(B) = f(B). The union

(and intersection) of tight sets B,C is again tight, since

f(B) + f(C) = y(B) + y(C) (11.29)

= y(B ∩ C) + y(B ∪ C) (11.30)

≤ f(B ∩ C) + f(B ∪ C) (11.31)

≤ f(B) + f(C) (11.32)

which requires equality everywhere above.

Because y(A) ≤ f(A), ∀A, this means y(B ∩ C) = f(B ∩ C) and
y(B ∪ C) = f(B ∪ C), so both also are tight.

For y ∈ P+
f , it will be ultimately useful to define this lattice family of

tight sets: D(y) , {A : A ⊆ E, y(A) = f(A)}.
. . .
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A polymatroid function’s polyhedron is a polymatroid.

. . . proof continued.

Also, define sat(y)
def
=
⋃ {T : T ∈ D(y)}

Consider again a P+
f -basis yx (so maximal).

Given a e ∈ E, either yx(e) is cut off due to x (so yx(e) = x(e)) or e
is saturated by f , meaning it is an element of some tight set and
e ∈ sat(yx).

Let E \A = sat(yx) be the union of all such tight sets (which is also
tight, so yx(E \A) = f(E \A)).

Hence, we have

yx(E) = yx(A) + yx(E \A) = x(A) + f(E \A) (11.33)

So we identified the A to be the elements that are non-tight, and
achieved the min, as desired.
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A polymatroid is a polymatroid function’s polytope

So, when f is a polymatroid function, P+
f is a polymatroid.

Is it the case that, conversely, for any polymatroid P , there is an
associated polymatroidal function f such that P = P+

f ?

Theorem 11.4.2

For any polymatroid P (compact subset of RE
+, zero containing, down-monotone,

and ∀x ∈ RE
+ any maximal independent subvector y ≤ x has same component sum

y(E) = rank(x)), there is a polymatroid function f : 2E → R (normalized,

monotone non-decreasing, submodular) such that P = P+
f where

P+
f =

{
x ∈ RE : x ≥ 0, x(A) ≤ f(A), ∀A ⊆ E

}
.
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Tight sets D(y) are closed, and max tight set sat(y)

Recall the definition of the set of tight sets at y ∈ P+
f :

D(y) , {A : A ⊆ E, y(A) = f(A)} (11.34)

Theorem 11.4.3

For any y ∈ P+
f , with f a polymatroid function, then D(y) is closed under

union and intersection.

Proof.

We have already proven this as part of Theorem 11.4.1

Also recall the definition of sat(y), the maximal set of tight elements
relative to y ∈ RE+.

sat(y)
def
=
⋃
{T : T ∈ D(y)} (11.35)
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Join ∨ and meet ∧ for x, y ∈ RE
+

For x, y ∈ RE+, define vectors x ∧ y ∈ RE+ and x ∨ y ∈ RE+ such that, for
all e ∈ E

(x ∨ y)(e) = max(x(e), y(e)) (11.36)

(x ∧ y)(e) = min(x(e), y(e)) (11.37)

Hence,

x ∨ y ,

(
max

(
x(e1), y(e1)

)
,max

(
x(e2), y(e2)

)
, . . . ,max

(
x(en), y(en)

))
and similarly

x ∧ y ,

(
min

(
x(e1), y(e1)

)
,min

(
x(e2), y(e2)

)
, . . . ,min

(
x(en), y(en)

))
From this, we can define things like an lattices, and other constructs.
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Vector rank, rank(x), is submodular

Recall that the matroid rank function is submodular.

The vector rank function rank(x) also satisfies a form of submodularity.

Theorem 11.4.4 (vector rank and submodularity)

Let P be a polymatroid polytope. The vector rank function rank : RE+ → R
with rank(x) = max (y(E) : y ≤ x, y ∈ P ) satisfies, for all u, v ∈ RE+

rank(u) + rank(v) ≥ rank(u ∨ v) + rank(u ∧ v) (11.38)
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Vector rank rank(x) is submodular, proof

Proof of Theorem 11.4.4.

Let a be a P -basis of u ∧ v, so rank(u ∧ v) = a(E).

By the polymatroid property, ∃ an independent b ∈ P such that:
a ≤ b ≤ u∨ v and also such that rank(b) = b(E) = rank(u∨ v), so b is
a P -basis of u ∨ v.

Given e ∈ E, if a(e) is maximal due to P , then a(e) = b(e)
≤ min(u(e), v(e)).

If a(e) is maximal due to (u ∧ v)(e), then
a(e) = min(u(e), v(e)) ≤ b(e).
Therefore, a = b ∧ (u ∧ v) . . .

. . . and since b ≤ u ∨ v, we get

a+ b = b+ b ∧ u ∧ v = b ∧ u+ b ∧ v (11.39)

To see this, consider each case where either b is the minimum, or u is minimum

with b ≤ v, or v is minimum with b ≤ u.
. . .
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Vector rank rank(x) is submodular, proof

. . . proof of Theorem 11.4.4.

But b∧ u and b∧ v are independent subvectors of u and v respectively,
so (b ∧ u)(E) ≤ rank(u) and (b ∧ v)(E) ≤ rank(v).

Hence,
rank(u ∧ v) + rank(u ∨ v) = a(E) + b(E) (11.40)

= (b ∧ u)(E) + (b ∧ v)(E) (11.41)

≤ rank(u) + rank(v) (11.42)

Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016 F49/59 (pg.50/60)



Matroids → Polymatroids Polymatroids

A polymatroid function’s polyhedron vs. a polymatroid.

Note the remarkable similarity between the proof of Theorem 11.4.4
and the proof of Theorem ?? that the standard matroid rank function
is submodular.

Next, we prove Theorem 11.4.2, that any polymatroid polytope P has
a polymatroid function f such that P = P+

f .

Given this result, we can conclude that a polymatroid is really an
extremely natural polyhedral generalization of a matroid. This was all
realized by Jack Edmonds in the mid 1960s (and published in 1969 in
his landmark paper “Submodular Functions, Matroids, and Certain
Polyhedra”).
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

We are given a polymatroid P .

Define αmax , max {x(E) : x ∈ P}, and note that αmax > 0 when P
is non-empty, and αmax = rank(∞1E) = rank(αmax1E).

Hence, for any x ∈ P , x(e) ≤ αmax, ∀e ∈ E.

Define a function f : 2V → R as, for any A ⊆ E,

f(A) , rank(αmax1A) (11.43)

Then f is submodular since

f(A) + f(B) = rank(αmax1A) + rank(αmax1B) (11.44)

≥ rank(αmax1A ∨ αmax1B) + rank(αmax1A ∧ αmax1B) (11.45)

= rank(αmax1A∪B) + rank(αmax1A∩B) (11.46)

= f(A ∪B) + f(A ∩B) (11.47)
. . .
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

Moreover, we have that f is non-negative, normalized with f(∅) = 0,
and monotone non-decreasing (since rank is monotone).

Hence, f is a polymatroid function.

Consider the polytope P+
f defined as:

P+
f =

{
x ∈ RE+ : x(A) ≤ f(A), ∀A ⊆ E

}
(11.48)

Given an x ∈ P , then for any A ⊆ E,
x(A) ≤ max {z(E) : z ∈ P, z ≤ αmax1A} = rank(αmax1A) = f(A),
therefore x ∈ P+

f .

Hence, P ⊆ P+
f .

We will next show that P+
f ⊆ P to complete the proof.

. . .
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

Let x ∈ P+
f be chosen arbitrarily (goal is to show that x ∈ P ).

Suppose x /∈ P . Then, choose y to be a P -basis of x that maximizes
the number of y elements strictly less than the corresponding x
element. I.e., that maximizes |N(y)|, where

N(y) = {e ∈ E : y(e) < x(e)} (11.49)

Choose w between y and x, so that

y ≤ w , (y + x)/2 ≤ x (11.50)

so y is also a P -basis of w.

Hence, rank(x) = rank(w), and the set of P -bases of w are also
P -bases of x.

. . .
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

For any A ⊆ E, define xA ∈ RE+ as

xA(e) =

{
x(e) if e ∈ A
0 else

(11.51)

note this is an analogous definition to 1A but for a non-unity vector.

Now, we have

y(N(y)) < w(N(y)) ≤ f(N(y)) = rank(αmax1N(y)) (11.52)

the last inequality follows since w ≤ x ∈ P+
f , and y ≤ w.

Thus, y ∧ xN(y) is not a P -basis of w ∧ xN(y) since, over N(y), it is
neither tight at w nor tight at the rank (i.e., not a maximal
independent subvector on N(y)).
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

We can extend y ∧ xN(y) to be a P -basis of w ∧ xN(y) since
y ∧ xN(y) < w ∧ xN(y).

This P -basis, in turn, can be extended to be a P -basis ŷ of w & x.

Now, we have ŷ(N(y)) > y(N(y)),

and also that ŷ(E) = y(E) (since both are P -bases),

hence ŷ(e) < y(e) for some e /∈ N(y).

Thus, ŷ is a base of x, which violates the maximality of |N(y)|.
This contradiction means that we must have had x ∈ P .

Therefore, P+
f = P .
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More on polymatroids

Theorem 11.4.5

A polymatroid can equivalently be defined as a pair (E,P ) where E is a
finite ground set and P ⊆ RE+ is a compact non-empty set of independent
vectors such that

1 every subvector of an independent vector is independent (if x ∈ P and
y ≤ x then y ∈ P , i.e., down closed)

2 If u, v ∈ P (i.e., are independent) and u(E) <
v(E), then there exists a vector w ∈ P such
that

u < w ≤ u ∨ v (11.53)
u

v u∨v

w1

w2

Corollary 11.4.6

The independent vectors of a polymatroid form a convex polyhedron in RE+.
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Review

The next slide comes from lecture 5.
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Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 11.4.3 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then the
following are equivalent.

1 B is the collection of bases of a matroid;

2 if B,B′ ∈ B, and x ∈ B′ \B, then B′−x+ y ∈ B for some y ∈ B \B′.
3 If B,B′ ∈ B, and x ∈ B′ \B, then B− y+x ∈ B for some y ∈ B \B′.

Properties 2 and 3 are called “exchange properties.”
Proof here is omitted but think about this for a moment in terms of linear
spaces and matrices, and (alternatively) spanning trees.
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More on polymatroids
For any compact set P , b is a base of P if it is a maximal subvector
within P . Recall the bases of matroids. In fact, we can define a
polymatroid via vector bases (analogous to how a matroid can be defined
via matroid bases).

Theorem 11.4.7

A polymatroid can equivalently be defined as a pair (E,P ) where E is a
finite ground set and P ⊆ RE+ is a compact non-empty set of independent
vectors such that

1 every subvector of an independent vector is independent (if x ∈ P and
y ≤ x then y ∈ P , i.e., down closed)

2 if b, c are bases of P and d is such that b ∧ c < d < b, then there exists
an f , with d ∧ c < f ≤ c such that d ∨ f is a base of P

3 All of the bases of P have the same rank.

Note, all three of the above are required for a polymatroid (a matroid
analogy would require the equivalent of only the first two).
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