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Cumulative Outstanding Reading

@ Read chapters 2 and 3 from Fujishige's book.
@ Read chapter 1 from Fujishige's book.
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Announcements, Assignments, and Reminders

@ Homework 4, soon available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments)

@ Homework 3, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (5/2) at 11:55pm.

Homework 2, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Monday (4/18) at 11:55pm.

Homework 1, available at our assignment dropbox
(https://canvas.uw.edu/courses/1039754/assignments), due
(electronically) Friday (4/8) at 11:55pm.

Weekly Office Hours: Mondays, 3:30-4:30, or by skype or google
hangout (set up meeting via our our discussion board (https:
//canvas.uw.edu/courses/1039754/discussion_topics)).
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Class Road Map - IT-

L1(3/28): Motivation, Applications, & @ L11(5/2): From Matroids to
Basic Definitions Polymatroids, Polymatroids
L2(3/30): Machine Learning Apps L12(5/4):

(diversity, complexity, parameter, learning L13
target, surrogate).

L3(4/4): Info theory exs, more apps,
definitions, graph/combinatorial examples,
matrix rank example, visualization
L4(4/6): Graph and Combinatorial
Examples, matrix rank, Venn diagrams,
examples of proofs of submodularity, some L19i
useful properties L20(6/6): Final Presentations
L5(4/11): Examples & Properties, Other maximization.

Defs., Independence

L6(4/13): Independence, Matroids,

Matroid Examples, matroid rank is

submodular

L7(4/18): Matroid Rank, More on

Partition Matroid, System of Distinct

Reps, Transversals, Transversal Matroid,

L8(4/20): Transversals, Matroid and

representation, Dual Matroids,

L9(4/25): Dual Matroids, Properties,

Combinatorial Geometries, Matroid and

Greedy

L10(4/27): Matroid and Greedy,

Polyhedra, Matroid Polytopes,
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Finals Week: June 6th-10th, 2016.
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The greedy algorithm

@ In combinatorial optimization, the greedy algorithm is often useful as a
heuristic that can work quite well in practice.

@ The goal is to choose a good subset of items, and the fundamental
tenet of the greedy algorithm is to choose next whatever currently
looks best, without the possibility of later recall or backtracking.

@ Sometimes, this gives the optimal solution (we saw three greedy
algorithms that can find the maximum weight spanning tree).

o Greedy is good since it can be made to run very fast O(nlogn).

e Often, however, greedy is heuristic (it might work well in practice, but
worst-case performance can be unboundedly poor).

@ We will next see that the greedy algorithm working optimally is a
defining property of a matroid, and is also a defining property of a
polymatroid function.
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Matroid and the greedy algorithm

@ Let (F,Z) be an independence system, and we are given a
non-negative modular weight function w : £ — R,..

Algorithm 1: The Matroid Greedy Algorithm
1 Set X «0;
2 while v € E\ X s.t. XU {v} €7 do
3 v € argmax {w(v) :ve B\ X, XU{v}eZ};
4 X +— X U{v};

@ Same as sorting items by decreasing weight w, and then choosing
items in that order that retain independence.

Theorem 11.2.7

Let (E,Z) be an independence system. Then the pair (E,ZT) is a matroid if
and only if for each weight function w € RY, Algorithm ?? leads to a set
I € T of maximum weight w(I).
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Summary of Important (for us) Matroid Definitions

Given an independence system, matroids are defined equivalently by any of
the following:
o All maximally independent sets have the same size.

@ A monotone non-decreasing submodular integral rank function with
unit increments.

@ The greedy algorithm achieves the maximum weight independent set
for all weight functions.
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Matroid Polyhedron in 2D

Pr={zeR¥:2>0,2(A4) <r(A),YAC E} (11.10)

@ Consider this in two dimensions. We have equations of the form:

1> 0and 22 >0
x1 < r({un}) € {0,1}
zg < r({vz}) € {0, 1}
x1 + x2 < r({vi,ve}) € {0,1,2}

@ Because r is submodular, we have

r(fvi}) + r({v2}) = r({vr, v2}) +7(0) (11.15)

so since r({v1,v2}) < r({v1}) + r({v2}), the last inequality is either
touching (so inactive) or active.
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Matroid Polyhedron in 2D

x1+x=r({v,w}) =2

) r(v2)=1 r(v2)=1

r({vi,»}) =0

X X rv)=1 X1

And, if v2is aloop ... o
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Independence Polyhedra

e For each I € Z of a matroid M = (E,Z), we can form the incidence
vector 1;.

@ Taking the convex hull, we get the independent set polytope, that is

Ping. set = conv { U {1[}} c[0,1)7 (11.10)

1€l

@ Since {17 : I € Z} C Ppy. set € P, we have max{wglg :I1el} <
max {wTx : T € Ppg. set} < max{wTz:x € PI¥

o Now take the rank function  of M, and define the following
polyhedron:

Pre{zeR?:2>0,2(4) <r(A),VACE} (11.11)

@ Now, take any = € Pq. set, then we have that = € P (or
Ping. set € PT—F) We show this next.
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Pind. set g P7+

o If x € Ppy et, then

r =Y A\ly, (11.10)
for some appropriate vector A = (A1, A2, ..., \p).
@ Clearly, for such x, x > 0.
@ Now, forany A C F,
z(A) :leA:ZAmﬁA (11.11)
<
Z)\ jr?z&h E) (11.12)
:]r?aﬁlf (E) :I?Q%\AQH (11.13)
=r(A) (11.14)

@ Thus, x € P and hence Py st C Pt
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Matroid Independence Polyhedron

@ So recall from a moment ago, that we have that

Pind. set = conv {Urez{11}}
CPr={reRF:2>0,2(4) <r(A),VACE} (11.19)

@ In fact, the two polyhedra are identical (and thus both are polytopes).
@ We'll show this in the next few theorems.
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Maximum weight independent set via greedy weighted rank

Theorem 11.2.5

Let M = (V,Z) be a matroid, with rank function r, then for any weight
function w € RY, there exists a chain of sets Uy C Uy C --- C U, CV
such that

max {w(I)|I € I} = zn:)\ir(Ui) (11.19)
i=1

where \; > 0 satisfy

w=> A\l (11.20)
=1
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Linear Program LP

Consider the linear programming primal problem

maximize wTx
subject to  x, >0 (veV) (11.19)
z(U)<r(U) NWUCV)

And its convex dual (note y € IR{?:, yu is a scalar element within this
exponentially big vector):

minimize iy yor(U),
subject to yy >0 (VU CV) (11.20)

ZUg/ ywly > w

Thanks to strong duality, the solutions to these are equal to each other.
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Polytope equivalence
@ Hence, we have the following relations:
max{w(I): I € T} = max{w'z : © € Py, set} (11.22)
=max{w'z:z € P} (11.23)

= amin = min ¢ Y~ yor(U) :VU,yu > 0; Y yoly > w
Ucv Ucv
(11.24)
@ Therefore, all the inequalities above are equalities.

@ And since w € Rf is an arbitrary direction into the positive orthant, we
see that P.F = Py, set

@ That is, we have just proven:

Theorem 11.2.5

Pt = Pipg. set (11.27)

T
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Polytope Equivalence (Summarizing the above)

e For each I € 7 of a matroid M = (E,T), we can form the incidence

vector 1;.
@ Taking the convex hull, we get the independent set polytope, that is

Ping. set = conv {UIEZ{II}} (11.22)
@ Now take the rank function r of M, and define the following polytope:

Pr={zeR¥:2>0,2(4) <r(A),VAC E} (11.23)

Theorem 11.2.5

Pt = Pipg. set (11.24)

T
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Maximal points in a set

@ Regarding sets, a subset X of S is a maximal subset of S possessing a
given property B if X possesses property 3 and no set properly
containing X (i.e., any X’ D X with X\ X C V' \ X) possesses 3.

o Given any compact (essentially closed & bounded) set P C R¥, we say
that a vector x is maximal within P if it is the case that for any € > 0,
and for all directions e € E, we have that

r+el. ¢ P (11.34)

@ Examples of maximal regions (in red)

P ¢ f ?
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Maximal points in a set

@ Regarding sets, a subset X of .S is a maximal subset of S possessing a
given property B if X possesses property 3 and no set properly
containing X (i.e., any X’ D X with X'\ X C V' \ X) possesses 3.

@ Given any compact (essentially closed & bounded) set P C R¥, we say
that a vector x is maximal within P if it is the case that for any € > 0,
and for all directions e € E, we have that

z+el, ¢ P (11.34)

@ Examples of non-maximal regions (in green)

N OOy
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Review from Lecture 6

@ The next slide comes from Lecture 6.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 11 - May 9th, 2016 F18/59 (pg.19/178)



Matroids — Polymatroids
(LNANRARNARNRRRNRRN

Matroids, independent sets, and bases

@ Independent sets: Given a matroid M = (E,Z), a subset A C E'is
called independent if A € Z and otherwise A is called dependent.

@ A base of U C E: For U C FE, a subset B C U is called a base of U if
B is inclusionwise maximally independent subset of U. Thatis, B € Z
and thereisno Z € Z with BC Z CU.

@ A base of a matroid: If U = F, then a “base of E" is just called a
base of the matroid M (this corresponds to a basis in a linear space, or
a spanning forest in a graph, or a spanning tree in a connected graph).
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P-basis of x given compact set P C Rf

Definition 11.3.1 (subvector)

y is a subvector of z if y < x (meaning y(e) < z(e) for all e € E).
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P-basis of x given compact set P C RE

Definition 11.3.1 (subvector)
y is a subvector of z if y <z (meaning y(e) < z(e) for all e € E).

Definition 11.3.2 (P-basis)

Given a compact set P C Rf for any € R¥, a subvector y of z is called
a P-basis of x if y maximal in P.

In other words, y is a P-basis of x if y is a maximal P-contained subvector
of z.

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 11 - May 9th, 2016 F20/59 (pg.22/178)



Matroids — Polymatroids
(NLRNRARNARNRRRNRRN

P-basis of x given compact set P C RE

Definition 11.3.1 (subvector)
y is a subvector of z if y <z (meaning y(e) < z(e) for all e € E).

Definition 11.3.2 (P-basis)

Given a compact set P C Rf for any € R¥, a subvector y of z is called
a P-basis of x if y maximal in P.

In other words, y is a P-basis of x if y is a maximal P-contained subvector
of z.

Here, by y being “maximal”, we mean that there exists no z > y (more
precisely, no z > y + €1, for some e € E and € > 0) having the properties
of y (the properties of y being: in P, and a subvector of x).
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P-basis of x given compact set P C RE

Definition 11.3.1 (subvector)
y is a subvector of z if y <z (meaning y(e) < z(e) for all e € E).

Definition 11.3.2 (P-basis)

Given a compact set P C Rf for any € R¥, a subvector y of z is called
a P-basis of x if y maximal in P.

In other words, y is a P-basis of x if y is a maximal P-contained subvector
of z.

Here, by y being “maximal”, we mean that there exists no z > y (more
precisely, no z > y + €1, for some e € E and € > 0) having the properties
of y (the properties of y being: in P, and a subvector of ).

In still other words: ¥ is a P-basis of z if:
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P-basis of x given compact set P C RE

Definition 11.3.1 (subvector)
y is a subvector of z if y <z (meaning y(e) < z(e) for all e € E).

Definition 11.3.2 (P-basis)

Given a compact set P C Rf for any € R¥, a subvector y of z is called
a P-basis of x if y maximal in P.

In other words, y is a P-basis of x if y is a maximal P-contained subvector
of z.

Here, by y being “maximal”, we mean that there exists no z > y (more
precisely, no z > y + €1, for some e € E and € > 0) having the properties
of y (the properties of y being: in P, and a subvector of ).
In still other words: y is a P-basis of z if:

Q@ y <z (y is a subvector of z); and
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P-basis of x given compact set P C RE

Definition 11.3.1 (subvector)
y is a subvector of z if y <z (meaning y(e) < z(e) for all e € E).

Definition 11.3.2 (P-basis)

Given a compact set P C Rf for any € R¥, a subvector y of z is called
a P-basis of x if y maximal in P.

In other words, y is a P-basis of x if y is a maximal P-contained subvector
of z.

Here, by y being “maximal”, we mean that there exists no z > y (more
precisely, no z > y + €l. for some e € E and € > 0) having_the properties
of y (the properties of y being: in P, and a subvector of ).
In still other words: y is a P-basis of z if:
Q@ y <z (y is a subvector of z); and
@ yc Pandy+el. ¢ P for all e € E where y(e) < xz(e) and Ve'>'0 (y
is maximal P-contained).
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A vector form of rank

@ Recall the definition of rank from a matroid M = (E,7).
rank(A) = max {|/| :IQA,IGI}:l}laIxMﬂI] (11.1)
€
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A vector form of rank

@ Recall the definition of rank from a matroid M = (E,Z).

rank(A) =max{|/| : I C A I €T} =max|ANI| (11.1)
1, IeT
o/ vector rank:Given a compact set P C R, we can define a form of
“vector rank” relative to this P in the following way: Given an'z € R?,
we define the vector rank, relative to P, as:

rank(z) = max (y(E) :y < z,y € P) = max (z ANy)(E) (11.2)
ye

where y < x is componentwise inequality (y; < x;, Vi), and where

(z Ay) € RE has (z Ay)(i) = min(z(i), y(i)).
L/\(\/ \_/'\/

m—
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A vector form of rank

@ Recall the definition of rank from a matroid M = (E,Z).
rank(A) = max {|/| :IQA,IEI}:I?&IXMHI] (11.1)
€
@ vector rank: Given a compact set P C R¥ we can define a form of

“vector rank” relative to this P in the following way: Given an z € R?,
we define the vector rank, relative to P, as:

rank(z) = max (y(F):y <z,y € P) = max (x ANy)(E) (11.2)
ye
where y < x is componentwise inequality (y; < x;, Vi), and where

(z Ay) € RE has (z Ay)(i) = min(z(i), y(i)).
o If B, is the set of P-bases of x, than rank(z) = maxyep, y(E).
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A vector form of rank

@ Recall the definition of rank from a matroid M = (E,Z).
rank(A) = max {|/| :IQA,IEI}:I?&IXMHI] (11.1)
€

vector rank: Given a compact set P C Rf, we can define a form of

“vector rank” relative to this P in the following way: Given an z € R?,
we define the vector rank, relative to P, as:

rank(z) = max (y(F):y <z,y € P) = Iyneag (x ANy)(E) (11.2)

where y < x is componentwise inequality (y; < x;, Vi), and where
(z Ay) € RE has (z Ay)(i) = min(z(i), y(i)).

o If B, is the set of P-bases of z, than rank(z) = max,cp, y(E).
If 2 € P, then rank(xz) = z(E) (x is its own unique self P-basis).

Prof. Jeff Bilmes
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A vector form of rank

@ Recall the definition of rank from a matroid M = (E,Z).

rank(A) = max {|/| 2I§A,I€I}ZI}1&1}_(|AQI’ (11.1)
€

@ vector rank: Given a compact set P C R¥ we can define a form of

“vector rank” relative to this P in the following way: Given an z € R?,
we define the vector rank, relative to P, as:

rank(z) = max (y(F):y <z,y € P) = Iyneag (x ANy)(E) (11.2)

where y < x is componentwise inequality (y; < x;, Vi), and where
(z Ay) € RE has (z Ay)(i) = min(z(i), y(i)).

o If B, is the set of P-bases of z, than rank(z) = max,cp, y(E).

o If z € P, then rank(z) = z(E) (« is its own unique self P-basis).
If Zmin = mingep (F), and = < Tmin what then? —o0?

x 1@
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A vector form of rank

Recall the definition of rank from a matroid M = (E,Z).
rank(A) = max {|/| :IQA,IEI}:I?&IXMHI] (11.1)
€

vector rank: Given a compact set P C RE, we can define a form of
“vector rank” relative to this P in the following way: Given an z € R?,
we define the vector rank, relative to P, as:

rank(z) = max (y(F):y <z,y € P) = Iyneag (x ANy)(E) (11.2)

where y < x is componentwise inequality (y; < x;, Vi), and where

(z Ay) € RE has (z Ay)(i) = min(z(i), y(i)).

If B, is the set of P-bases of z, than rank(z) = maxycp, y(E).

If 2 € P, then rank(x) = z(E) (x is its own unique self P-basis).

If Zmin = mingep x(EF), and z < zmi, what then? —oo0?

In general, might be hard to compute and/or have ill-defined properties.
Next, we look at an object that restrains and cultivates this form of rank.
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Polymatroidal polyhedron (or a “polymatroid™)

Definition 11.3.3 (polymatroid)

A polymatroid is a compact set P C Rf satisfying
Q0eP
@ If y <z € P then y € P (called down monotone).

© For every z € Rf, any maximal vector y € P with y < z (i.e., any
P-basis of x), has the same component sum y(E)

Prof. Jeff Bilmes
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Polymatroidal polyhedron (or a “polymatroid™)

Definition 11.3.3 (polymatroid)

A polymatroid is a compact set P C Rf satisfying
Q0ecP
@ If y <z € P then y € P (called down monotone).

© For every xz € Rf, any maximal vector y € P with y < z (i.e., any
P-basis of x), has the same component sum y(E)

@ Condition 3 restated: That is for any two distinct maximal vectors
yt, y? € P, with y! <z & y? < z, with y' # 2, we must have
y'(E) = y*(E).
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Polymatroidal polyhedron (or a “polymatroid™)

Definition 11.3.3 (polymatroid)

A polymatroid is a compact set P C Rf satisfying
Q0ecP
@ If y <z € P then y € P (called down monotone).

© For every xz € Rf, any maximal vector y € P with y < z (i.e., any
P-basis of x), has the same component sum y(E)

o Condition 3 restated: That is for any two distinct maximal vectors
yt,y? € P, with y' <z & y? <z, with y' # 32, we must have
y (E) = y*(E).

e Condition 3 restated (again): For every vector x € Rf, every maximal
independent esj?)vector y of x has the same component sum

y(E) = rank(x).

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 11 - May 9th, 2016 F22/59 (pg.35/178)



Matroids — Polymatroids
(NN NRRNARNRRRNRRN

Polymatroidal polyhedron (or a “polymatroid™)

Definition 11.3.3 (polymatroid)

A polymatroid is a compact set P C Rf satisfying
Q0ecP
@ If y <z € P then y € P (called down monotone).

© For every xz € Rf, any maximal vector y € P with y < z (i.e., any
P-basis of x), has the same component sum y(E)

o Condition 3 restated: That is for any two distinct maximal vectors
yt,y? € P, with y' <z & y? <z, with y' # 32, we must have
y'(E) = y*(B).

o Condition 3 restated (again): For every vector x € Rf, every maximal
independent subvector y of x has the same component sum
y(E) = rank(x).

e Condition 3 restated (yet again): All P-bases of = have the same
component sum.
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Polymatroidal polyhedron (or a “polymatroid™)

Definition 11.3.3 (polymatroid)

A polymatroid is a compact set P C Rf satisfying
Q0ecP
@ If y <z € P then y € P (called down monotone).

© For every xz € Rf, any maximal vector y € P with y < z (i.e., any
P-basis of x), has the same component sum y(E)

@ Vectors within P (i.e., any y € P) are called independent, and any
vector outside of P is called dependent.
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Polymatroidal polyhedron (or a “polymatroid™)

Definition 11.3.3 (polymatroid)

A polymatroid is a compact set P C Rf satisfying
Q0ecP
@ If y <z € P then y € P (called down monotone).

© For every xz € Rf, any maximal vector y € P with y < z (i.e., any
P-basis of x), has the same component sum y(E)

e Vectors within P (i.e., any y € P) are called independent, and any
vector outside of P is called dependent.

@ Since all P-bases of x have the same component sum, if 3, is the set
of P-bases of z, than rank(z) = y(E) for any y € B,.
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Matroid and Polymatroid: side-by-side

A Matroid is:

A Polymatroid is:
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Matroid and Polymatroid: side-by-side

A Matroid is:
Q a set system (£,7)

A Polymatroid is:
© a compact set P C Rf
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Matroid and Polymatroid: side-by-side

A Matroid is:
Q a set system (E,7)
@ empty-set containing ) € Z

A Polymatroid is:
© a compact set P C Rf
@ zero containing, 0 € P
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Matroid and Polymatroid: side-by-side

A Matroid is:
Q a set system (E,7)
@ empty-set containing ) € 7
© downclosed, 0 CI'CTeZ=1 €T

A Polymatroid is:
© a compact set P C Rf
@ zero containing, 0 € P
© down monotone, 0 <y<zecP=yecP
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Matroid and Polymatroid: side-by-side

A Matroid is:

a set system (E,7)

empty-set containing ) € Z
downclosed, ) CI'CI eI =1 cT.

any maximal set I in Z, bounded by another set A, has the same
matroid rank (any maximal independent subset I C A has same size

I71)-

A Polymatroid is:

©0 00

a compact set P C Rf
zero containing, 0 € P

down monotone, 0 <y<zxreP=yecP

©0 00

any maximal vector y in P, bounded by another vector x, has the
same vector rank (any maximal independent subvector y < x has same
sum y(E)).
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Polymatroidal polyhedron (or a “polymatroid™)

y] y]
Left: 3 multiple maximal y < x Right: 3 only one maximal y < z,

@ Polymatroid condition here: ¥ maximal y € P, with y < x (which here
means y; < x1 and y2 < x3), we just have y(E) = y; + y2 = const.
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Polymatroidal polyhedron (or a “polymatroid™)

Yo

Yo

—

pOssiblgv

Y1

Y1

Left: 3 multiple maximal y < x Right: 3 only one maximal y < z,

@ Polymatroid condition here: ¥V maximal y € P, with y < = (which here
means y; < x1 and yy < x3), we just have y(E) = y; + y2 = const.

@ On the left, we see there are multiple possible maximal y € P such
that y < 2. Each such y must have the same value y(E).
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Polymatroidal polyhedron (or a “polymatroid™)

Yo——P X y2—\P
0 S y

ey pOssiblgv

Y1

Y1

Left: 3 multiple maximal y < x Right: 3 only one maximal y < z,

@ Polymatroid condition here: ¥V maximal y € P, with y < = (which here
means y; < x1 and yy < x3), we just have y(E) = y; + y2 = const.

@ On the left, we see there are multiple possible maximal y € P such

that y < 2. Each such y must have the same value y(E).

@ On the right, there is only one maximal yy € P. Since there is only one,

the condition on the same value of y(F), Vy is vacuous.
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Polymatroidal polyhedron (or a “polymatroid™)

7

pOSSibIe y

Y1

3 only one maximal y < z.

o If z € P already, then z is its own P-basis, i.e., it is a self P-basis.
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Polymatroidal polyhedron (or a “polymatroid™)

7

poSSible y

Y1
3 only one maximal y < z.

o If z € P already, then z is its own P-basis, i.e., it is a self P-basis.

@ In a matroid, a base of A is the maximally contained independent set.
If A is already independent, then A is a self-base of A (as we saw in
Lecture 5)

Prof. Jeff Bilmes EE596b/Spring 2016 /Submodularity - Lecture 11 - May 9th, 2016 F25/59 (pg.48/178)



Matroids — Polymatroids
(NNANRARY RRNRRRNRRN

Polymatroid as well?

5) Y2
'\ P « ‘\ P «
N

%
£

Y1 Y1

Left and right: 3 multiple maximal y < x as indicated.

@ On the left, we see there are multiple possible maximal such y € P
that are y < z. Each such y must have the same value y(E), but since
the equation for the curve is ¥ 4+ y5 = const. # yi + Y2, we see this
is not a polymatroid.
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Polymatroid as well? no

Y) Y)
X X
o)
£ o)
A
Y1 Y1

Left and right: 3 multiple maximal y < x as indicated.

@ On the left, we see there are multiple possible maximal such y € P
that are y < z. Each such y must have the same value y(E), but since
the equation for the curve is y? 4+ y5 = const. # yi + Y2, we see this
is not a polymatroid.

@ On the right, we have a similar situation, just the set of potential

values that must have the y(E) condition changes, but the values of
course are still not constant.
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Other examples: Polymatroid or not?
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Some possible polymatroid forms in 2D

dependent P-base
vectors
dependent
independent vectors
vectors

It appears that we have three possible forms of polymatroid in 2D, when
neither of the elements {v1,v9} are self-dependent.

© On the left: full dependence between v1 and v
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Some possible polymatroid forms in 2D

dependent P-base
vectors
dependent
independent vectors
vectors

It appears that we have three possible forms of polymatroid in 2D, when
neither of the elements {v1,v9} are self-dependent.

© On the left: full dependence between v; and v9
@ In the middle: full independence between v{ and vo
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Some possible polymatroid forms in 2D

dependent P-base
vectors
dependent
independent vectors

vectors

It appears that we have three possible forms of polymatroid in 2D, when
neither of the elements {v1,v9} are self-dependent.
© On the left: full dependence between v; and v9

@ In the middle: full independence between v1 and vo
© On the right: partial independence between vy and vy
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Some possible polymatroid forms in 2D

dependent P-base
vectors
dependent
independent vectors
vectors

It appears that we have three possible forms of polymatroid in 2D, when
neither of the elements {v1,v9} are self-dependent.
© On the left: full dependence between v; and v9
@ In the middle: full independence between v1 and vo
© On the right: partial independence between v and v
- The P-bases (or single P-base in the middle case) are as indicated.
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Some possible polymatroid forms in 2D

dependent P-base
vectors
dependent
independent vectors

vectors

It appears that we have three possible forms of polymatroid in 2D, when
neither of the elements {v1,v9} are self-dependent.

© On the left: full dependence between v; and v9
@ In the middle: full independence between v1 and vo
© On the right: partial independence between v and v
- The P-bases (or single P-base in the middle case) are as indicated.
- Independent vectors are those within or on the boundary of the
polytope. Dependent vectors are exterior to the polytope.
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Some possible polymatroid forms in 2D

dependent P-base
vectors
dependent
independent vectors

vectors

It appears that we have three possible forms of polymatroid in 2D, when
neither of the elements {v1,v9} are self-dependent.

© On the left: full dependence between v; and v9
@ In the middle: full independence between v1 and vo
© On the right: partial independence between v and v
- The P-bases (or single P-base in the middle case) are as indicated.
- Independent vectors are those within or on the boundary of the
polytope. Dependent vectors are exterlor to the pontope

ne Q ne bgd D e
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Polymatroidal polyhedron (or a “polymatroid™)

o Note that if z contains any zeros (i.e., suppose that z € R¥ has E\ S
s.t. z(E\ S) =0, so S indicates the non-zero elements, or
S = supp(z)), then this also forces y(E'\ S) = 0, so that
y(E) = y(S). This is true either for x € P or = ¢ P.

%(El &U//z(nc)7 = 5
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Polymatroidal polyhedron (or a “polymatroid™)

o Note that if z contains any zeros (i.e., suppose that z € R¥ has E\ S
s.t. z(E'\ S) =0, so S indicates the non-zero elements, or
S = supp(z)), then this also forces y(E \ S) = 0, so that
y(E) = y(S). This is true either for x € P or = ¢ P.

@ Therefore, in this case, it is the non-zero elements of x, corresponding
to elements S (i.e., the support supp(z) of x), determine the common

4(g)= b (3
Ve = Qk(gu//(ﬂ()>
79 = a7(s)
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Polymatroidal polyhedron (or a “polymatroid™)

o Note that if z contains any zeros (i.e., suppose that z € R¥ has E\ S
s.t. z(E'\ S) =0, so S indicates the non-zero elements, or
S = supp(z)), then this also forces y(E \ S) = 0, so that
y(E) = y(S). This is true either for x € P or = ¢ P.

@ Therefore, in this case, it is the non-zero elements of x, corresponding
to elements S (i.e., the support supp(z) of x), determine the common
component sum.

@ For the case of either ¢ P or right at the boundary of P, we might
give a “name” to this component sum, lets say f(,S) for any given set
S of non-zero elements of z. We could name raﬁ(—{ls.é f(S) for e

very small. What kind of function might f be? o
y2' ?((’ZL*)'_ (G(\)

possbie, =f(1)"
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Polymatroid function and its polyhedron.

Definition 11.3.4

A polymatroid function is a real-valued function f defined on subsets of
which is normalized, non-decreasing, and submodular. That is we have

@ f(0) =0 (normalized)
Q@ f(A) < f(B) for any A C B C E (monotone non-decreasing)
Q@ f(AUB)+ f(ANB) < f(A) + f(B) for any A, B C E (submodular)

We can define the polyhedron P;r associated with a polymatroid function
as follows

P} ={y eRY :y(4) < f(A) forall AC E} (11.3)
={yeR¥ :y>0,y(A) < f(A) forall AC E} (11.4)
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Associated polyhedron with a polymatroid function

Pt ={zeR"”:2>0,2(4) < f(4),YAC E} (11.5)

@ Consider this in three dimensions. We have equations of the form:

z1>0and z9 >0 and z3 >0 (11.6)
< f({or)) (11.7)

2 < f({02}) (11.8)

v < f({us}) (11.9)

z1 + x2 < f({v1,v2}) (11.10)

zo + x3 < f({ve,v3}) (11.11)

z1 + 23 < f({v1,v3}) (11.12)
1+ xo + x3 < f({v1,v2,v3}) (11.13)
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Associated polyhedron with a polymatroid function

o Consider the asymmetric graph cut function on the simple chain graph
vy — vy —w3. Thatis, f(S) = [{(v,s) € E(G) : v € V,s € S}| is count
of any edges within S or between S and V' \ S, so that
3(S) = f(S) + f(V\ S) = f(V) is the standard graph cut.

£(n)= | [ -y
’@(Vb>: )
L(v),0.)= O 54/’ —V1— Vs

(V) =
£( Vg, v,) = -
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Associated polyhedron with a polymatroid function

o Consider the asymmetric graph cut function on the simple chain graph
vy —vy —ws3. Thatis, f(S) =|{(v,s) € E(G):v € V,s e S} is count
of any edges within S or between S and V' \ S, so that
0(S)=f(S)+ f(V\S)— f(V) is the standard graph cut.

@ Observe: P;r (at two views):
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Associated polyhedron with a polymatroid function

o Consider the asymmetric graph cut function on the simple chain graph
vy —vy —ws3. Thatis, f(S) =|{(v,s) € E(G):v € V,s e S} is count
of any edges within S or between S and V' \ S, so that
3(S)=f(S)+ f(V\S)— (V) is the standard graph cut.

@ Observe: Pf (at two views) _ %\/M) /F/?E ') —

’f://)

Ub 05 ‘ ‘VL

@ which axis is which?
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Associated polyhedron with a polymatroid function

o Consider: f(0) =0, f({vi}) = 1.5, f({v2}) =2, f({v1,v2}) = 2.5,

F{us}) =3, f({vs,v1}) = 3.5, f({vs,va}) =4, f({vs,v2,1}) = 4.3,
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Associated polyhedron with a polymatroid function

e Consider: f(0) =0, f({v1}) = 1.5, f({ve}) =2, f({v1,v2}) = 2.5,
f({vs}) =3, f({vs,v1}) = 3.5, f({vs, v2}) =4, f({vs,v2,v1}) = 4.3.

@ Observe: PJZF (at two views):
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Associated polyhedron with a polymatroid function

e Consider: f(0) =0, f({v1}) = 1.5, f({ve}) =2, f({v1,v2}) = 2.5,
f({vs}) =3, f({vs,v1}) = 3.5, f({vs, v2}) =4, f({vs,v2,v1}) = 4.3.

@ Observe: PJZF (at two views):

@ which axis is which?
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Associated polyhedron with a polymatroid function

e Consider modular function w: V — Ry as w = (1,1.5,2)7, and then
the submodular function f(S) = \/w(S5).
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Associated polyhedron with a polymatroid function

e Consider modular function w: V — Ry as w = (1,1.5,2)7, and then
the submodular function f(S) = \/w(S5).

o Observe: P;r (at two views):
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Associated polyhedron with a polymatroid function

e Consider modular function w: V — Ry as w = (1,1.5,2)7, and then
the submodular function f(S) = \/w(S5).
o Observe: P;r (at two views):

1.4
ky:
1

0.8

0.6

0.4

0.2

@ which axis is which?
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Associated polytope with a non-submodular function

e Consider function on integers: g(0) =0, g(1) =3, g(2) =4, and
g(3) =5.5.
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Associated polytope with a non-submodular function

e Consider function on integers: g(0) =0, g(1) =3, ¢g(2) =4, and
g9(3) =5.5. Is f(S) = ¢g(|S|) submodular?

p)

{ 4
> 4

1

—

Prof. Jeff Bilmes
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Associated polytope with a non-submodular function

e Consider function on integers: g(0) =0, g(1) =3, ¢g(2) =4, and
9(3) =5.5. Is f(S) = g(|S|) submodular? f(S) = g(|S]|) is not
submodular since f({e1,e3}) + f({e1,e2}) =4 +4 =8 but
f({e1,e2,e3}) + f({er}) = 5.5+ 3 = 8.5.
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Associated polytope with a non-submodular function

e Consider function on integers: g(0) =0, g(1) =3, ¢g(2) =4, and
9(3) =5.5. Is f(S) = g(|S|) submodular? f(S) = g(|S|) is not
submodular since f({e1,e3}) + f({e1,e2}) =4 +4 =8 but
f({e1,e2,e3}) + f({e1}) = 5.5 + 3 = 8.5. Alternatively, consider
concavity violation, 1 = g(14+ 1) —g(1) < g(2+ 1) — g(2) = 1.5.
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Associated polytope with a non-submodular function

e Consider function on integers: ¢g(0) =0, g(1) =3, ¢g(2) =4, and
9(3) =5.5. Is f(S) = g(|S|) submodular? f(S) = g(|S|) is not
submodular since f({e1,e3}) + f({e1,e2}) =4 +4 =8 but
f({e1,e2,e3}) + f({e1}) = 5.5 + 3 = 8.5. Alternatively, consider
concavity violation, 1 = g(1+1) —g(1) < g(2+1) — g(2) = 1.5.

@ Observe: P]T (at two views), maximal independent subvectors not
constant rank, hence not a polymatroid.
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A polymatroid vs. a polymatroid function’s polyhedron

@ Summarizing the above, we have:
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A polymatroid vs. a polymatroid function’s polyhedron

@ Summarizing the above, we have:

e Given a polymatroid function f , its associated polytope is given as

Pl ={yeR}:y(A) < f(A) forall AC E} (11.14)
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A polymatroid vs. a polymatroid function’s polyhedron

@ Summarizing the above, we have:

e Given a polymatroid function f , its associated polytope is given as
Pl ={y e Ry :y(A) < f(A) forall AC E} (11.14)
o We also have the definition of a polymatroidal polytope P (compact

subset, zero containing, down-monotone, and Vx any maximal
independent subvector y < x has same component sum y(E)).
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A polymatroid vs. a polymatroid function’s polyhedron

@ Summarizing the above, we have:

e Given a polymatroid function f , its associated polytope is given as
Pl ={y e Ry :y(A) < f(A) forall AC E} (11.14)

o We also have the definition of a polymatroidal polytope P (compact
subset, zero containing, down-monotone, and Vx any maximal
independent subvector y < x has same component sum y(E)).

@ Is there any relationship between these two polytopes?
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A polymatroid vs. a polymatroid function’s polyhedron

@ Summarizing the above, we have:

e Given a polymatroid function f , its associated polytope is given as
Pf = {y e Ry :y(A) < f(A) forall AC E} (11.14)

o We also have the definition of a polymatroidal polytope P (compact
subset, zero containing, down-monotone, and Vx any maximal
independent subvector y < x has same component sum y(E)).

@ Is there any relationship between these two polytopes?
@ In the next theorem, we show that any P;r—basis has the same
component sum, when f is a polymatroid function, and PJT satisfies

the other properties so that P;r is a polymatroid.

F36/59 (pg.81/178)
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A polymatroid function's polyhedron is a polymatroid.

Theorem 11.4.1

Let f be a polymatroid function defined on subsets of E. For any x € Rf,
and any P}"-basis y* € RY of z, the component sum of y is

TN

y*(F) = rank(x) :/max <y(E) tysaz,y € P;r)

=min (z(A)+ f(E\A): ACE) (11.15)
I

As a consequence, PJT is a polymatroid, since r.h.s. is constant w.r.t. y*.
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A polymatroid function's polyhedron is a polymatroid.

Theorem 11.4.1

Let f be a polymatroid function defined on subsets of E. For any x € ]Rf,
and any P;r—basis y* e Rf of x, the component sum of y* is

y*(E) = rank(z) = max <y(E) ry<uz,y€ P}F)
=min (z(A)+ f(E\A): ACE) (11.15)

As a consequence, PJT is a polymatroid, since r.h.s. is constant w.r.t. y*.

Taking E \ B = supp(z) (so elements B are all zeros in x), and for b ¢ B
we make z(b) is big enough, the r.h.s. min has solutionlA* = B. We recover
submodular function from the polymatroid polyhedron via the following:

rank (%113\3) — f(B) = max {y(B) Ly e Pf+} (11.16)
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A polymatroid function's polyhedron is a polymatroid.

Theorem 11.4.1

Let f be a polymatroid function defined on subsets of E. ?-'br any x € RY,
and any P;r—basis y* e Rf of x, the component sum of y* is \2,(57_ E)

Mnaxy y<a:y€P+

@m A)+ f(B\ A): ACE (11/15)

As a consequence, PJT is a polymatroid, since r.h.s. is constant w.r.t. y*.

Taking E \ B = supp(z) (so elements B are all zeros in x), and for b ¢ B
we make z(b) is big enough, the r.h.s. min has solution A* = B. We recover
submodular function from the polymatroid polyhedron via the following:

rank (11E\B> — f(B) = max {y(B) Ly € Pf+} (11.16)

In fact, we will ultimately see a number of important consequences of this
theorem (other than just that P} is a polymatroid
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A polymatroid function's polyhedron is a polymatroid.

o Clearly 0 € P;r since f is non-negative.
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A polymatroid function's polyhedron is a polymatroid.

o Clearly 0 € P} since f is non-negative.

@ Also, for any y € Pf+ then any © <=y is also such that x € P;r. So,
PJT is down-monotone.
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A polymatroid function's polyhedron is a polymatroid.

o Clearly 0 € P} since f is non-negative.

@ Also, for any y € Pf+ then any © <=y is also such that x € P;r. So,
PJT is down-monotone.

@ Now suppose that we are given an = € R¥, and maximal y* € P;r
with y* < z (i.e., y* is a P]T—basis of x).
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A polymatroid function's polyhedron is a polymatroid.

o Clearly 0 € P} since f is non-negative.

@ Also, for any y € Pf+ then any © <=y is also such that x € P;r. So,
PJT is down-monotone.

o Now suppose that we are given an = € R¥, and maximal y* € P}T
with y* < z (i.e., y* is a P]?L—basis of ).

@ Goal is to show that any such y* has y*(E) = const, dependent only
on x and also f (which defines the polytope) but not dependent on
y*, the particular P-basis.
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A polymatroid function's polyhedron is a polymatroid.

o Clearly 0 € P} since f is non-negative.

@ Also, for any y € Pf+ then any © <=y is also such that x € P;r. So,
PJT is down-monotone.

o Now suppose that we are given an = € R¥, and maximal y* € P}T
with y* < z (i.e., y* is a P]?L—basis of ).

@ Goal is to show that any such y* has y*(FE) = const, dependent only

on z and also f (which defines the polytope) but not dependent on
y*, the particular P-basis.

@ Doing so will thus establish that P;r is a polymatroid.
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A polymatroid function's polyhedron is a polymatroid.

... proof continued.

@ First trivial case: could have y* = x, which happens if
z(A) < f(A),YAC E (i.e, x € P strictly). In such case,
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A polymatroid function's polyhedron is a polymatroid.

. proof continued.
@ 2nd trivial case: when z(A) > f(A),YACE (i.e., z ¢ PJr strictly),

e~ - - L e X
.
.
.
.

F40/59 (pg.91/178)
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A polymatroid function's polyhedron is a polymatroid.

... proof continued.

@ 2nd trivial case: when z(A4) > f(A),YACE (i.e, x ¢ ij strictly),

@ Then for any order (aj,as,...) of the elements and
A; = (a1, a9, ...,a;), we have x(a;) > f(a;) > f(ai]A;_1), the second
inequality by submodularity.
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A polymatroid function's polyhedron is a polymatroid.

... proof continued.

@ 2nd trivial case: when z(A4) > f(A),YACE (i.e, x ¢ ij strictly),
@ Then for any order (ai,as,...) of the elements and
A; = (a1, a9, ...,a;), we have x(a;) > f(a;) > f(ai]A;_1), the second
inequality by submodularity. This gives
min (z(A) + f(E\A): ACE) (11.21)
= z(E) 4+ min (f(4) —&(A) : ACE) (11.22)

= z(E) 4+ min <Z fla;|4;-1) — Z:c(ai) A C E) (11.23)

@

= 2(E) +min | Y (f(ai|Ai_1) = x(ai)) CACE| (126

<0

— 2(E) + f(B) - 2(E) = f(E) (11.25)
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A polymatroid function's polyhedron is a polymatroid.

. proof continued.

ither tr|V|a| case. Bec('ause yr e PJr we have that
Bor all A CE.

X

(

(
{
f
[

N\
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A polymatroid function's polyhedron is a polymatroid.

... proof continued.

@ Assume neither trivial case. Because y* € PJT, we have that
y*(A) < f(A) forall AC E.

@ We show that the constant is given by

y*(E) =min (z(A) + f(E\A): ACE) (11.26)
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A polymatroid function's polyhedron is a polymatroid.

... proof continued.

@ Assume neither trivial case. Because y* € PJT, we have that
y*(A) < f(A) forall AC E.

@ We show that the constant is given by
y*(F) =min (z(A) + f(E\A): ACE) (11.26)
@ For any P]f—basis y* of z, and any A C E, we have that

v (B) = (A)+y*(B\ 4) (11.27)

(AY+ F(B\ A). (11.28)
s o

- N
This follows since y* < x and since y* € P;".
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A polymatroid function's polyhedron is a polymatroid.

... proof continued.

@ Assume neither trivial case. Because y* € PJT, we have that
y*(A) < f(A) forall AC E.

@ We show that the constant is given by

y*(E) = min (z(A) + f(E\ A) : A C E) (11.26)
[ B

@ For any P]T—basis y* of z, and any A C E, we have that

y*(E) =y (A) +y*(E\ A) (11.27)
< 2(A) + f(E\ A). (11.28)
This follows since y* < x and since y* € P;r.

@ Given one A where equality holds, the above min result follows.
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A polymatroid function's polyhedron is a polymatroid.

.. proof continued.

o For any @&P; \call a set BICHEGighD if@(B) = f(B):)The union
(and intersection) of tight sets B, C' is again tight, since

f(B)+f(C)

|
3())4%/')
3(1) —GC

?(7 Sl 54(""7
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A polymatroid function's polyhedron is a polymatroid.

... proof continued.

o Forany y € P/, call a set B C E tight if y(B) = f(B). The union
(and intersection) of tight sets B, C is again tight, since

f(B) + f(C) = y(B) +y(C) (11.29)
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A polymatroid function's polyhedron is a polymatroid.

... proof continued.

o Forany y € P/, call a set B C E tight if y(B) = f(B). The union
(and intersection) of tight sets B, C is again tight, since

f(B)+ f(C) =y(B) +y(C) (11.29)
y(BNC)+y(BUC) (11.30)
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A polymatroid function's polyhedron is a polymatroid.

... proof continued.

o Forany y € P/, call a set B C E tight if y(B) = f(B). The union
(and intersection) of tight sets B, C is again tight, since

f(B) + f(C) = y(B) +y(C) (11.29)
=y(BNC)+y(BUC) (11.30)
< f(BNC)+ f(BUC) (11.31)

9 (tnc) 2 £loc)
5[ e) & FLEVC)
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A polymatroid function's polyhedron is a polymatroid.

... proof continued.

o Forany y € P/, call a set B C E tight if y(B) = f(B). The union
(and intersection) of tight sets B, C is again tight, since

F(B) + £(C) = y(B) + y(C) (11.29)
—y(B m0)+y( uQ) (11.30)
< f(BNC) + f(BUC) (11.31)
SJ(B) #(C) (11.32)
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A polymatroid function's polyhedron is a polymatroid.

... proof continued.

o Forany y € P/, call a set B C E tight if y(B) = f(B). The union
(and intersection) of tight sets B, C is again tight, since

F(B) + f(C) = y(B) +y(C) (11.29)
=y(B m0)+y( uC) (11.30)
< f(BNC)+ f(BUC) (11.31)
gf(B) F(©) (11.32)

which requires equality everywhere above.
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A polymatroid function's polyhedron is a polymatroid.

... proof continued.

o Forany y € P/, call a set B C E tight if y(B) = f(B). The union
(and intersection) of tight sets B, C is again tight, since

F(B) + f(C) = y(B) +y(C) (11.29)
=y(B m0)+y( uC) (11.30)
< f(BNC)+ f(BUC) (11.31)
gf(B) F(©) (11.32)

which requires equality everywhere above.

@ Because y(A) < f(A),VA, this means y(BNC) = f(BNC) and
y(BUC) = f(BUC), so both also are tight.
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A polymatroid function's polyhedron is a polymatroid.

... proof continued.

o Forany y € P/, call a set B C E tight if y(B) = f(B). The union
(and intersection) of tight sets B, C is again tight, since

F(B) + f(C) = y(B) +y(C) (11.29)
=y(B m0)+y( uC) (11.30)
< f(BNC)+ f(BUC) (11.31)
gf(B) F(©) (11.32)

which requires equality everywhere above.

@ Because y(A) < f(A),VA, this means y(BNC) = f(BNC) and
y(BUC) = f(BUC), so both also are tight.

@ Fory e Pf+, it will be ultimately useful to define this lattice family of
tight sets: D(y) 2 {A: ACE, y(A4) = f(A)}.
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A polymatroid function's polyhedron is a polymatroid.

... proof continued.

@ Also, define sat(y) & U{T:T €Dy}

Ol

——————————————————.,
Prof. Jeff Bilmes EE596b/Spring 2016/Submodularity - Lecture 11 - May 9th, 2016 F43/59 (pg.106/178



Polymatroids
(NRRNN RN R NN NN

A polymatroid function's polyhedron is a polymatroid.

... proof continued.

@ Also, define sat(y) o U{T: T eD(y)}
@ Consider again a Pj’—basis y* (so maximal).

Ol

———————————————————————,
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A polymatroid function's polyhedron is a polymatroid.

... proof continued.

@ Also, define sat(y) o U{T: T eD(y)}
o Consider again a P;“-basis y* (so maximal).

e Given a e € FE, either y®(e) is cut off due to z (so y*(e) = x(e)) or e

is saturated by f, meaning it is an element of some tight set and
e € sat(y”).

Ol

———————————————————,
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A polymatroid function's polyhedron is a polymatroid.

... proof continued.

@ Also, define sat(y) o U{T: T eD(y)}

o Consider again a P;“-basis y* (so maximal).

o Given a e € E, either y®(e) is cut off due to = (so y*(e) = x(e)) or e
is saturated by f, meaning it is an element of some tight set and
e € sat(y").

o Let F'\ A =sat(y”) be the union of all such tight sets (which is also
tight, so y*(E \ A) = f(E'\ A)).

Ol

————————————————————,
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A polymatroid function's polyhedron is a polymatroid.

... proof continued.

@ Also, define sat(y) o U{T: T eD(y)}
o Consider again a P;“-basis y* (so maximal).

o Given a e € E, either y®(e) is cut off due to = (so y*(e) = x(e)) or e
is saturated by f, meaning it is an element of some tight set and
e € sat(y").

o Let £\ A =sat(y”) be the union of all such tight sets (which is also
tight, so y*(E \ A) = f(E'\ A)).

@ Hence, we have

yo(B) = y*(A) +y*(E\ A) = z(A) + f(E\ A) (11.33)

Ol

———————————————————,
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A polymatroid function's polyhedron is a polymatroid.

... proof continued.

@ Also, define sat(y) o U{T: T eD(y)}
o Consider again a P;“-basis y* (so maximal).

o Given a e € E, either y®(e) is cut off due to = (so y*(e) = x(e)) or e
is saturated by f, meaning it is an element of some tight set and
e € sat(y").

o Let £\ A =sat(y”) be the union of all such tight sets (which is also
tight, so y*(E \ A) = f(E'\ A)).

@ Hence, we have
v (B) =y (A) + " (E\ A) = 2(A) + f(E\ 4)  (11.33)

@ So we identified the A to be the elements that are non-tight, and
achieved the min, as desired.

Ol

—————————————————————,
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A polymatroid is a polymatroid function’s polytope

@ So, when f is a polymatroid function, P;r is a polymatroid.
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A polymatroid is a polymatroid function’s polytope

@ So, when f is a polymatroid function, P;r is a polymatroid.

@ Is it the case that, conversely, for any polymatroid P, there is an
associated polymatroidal function f such that P = Pf?
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A polymatroid is a polymatroid function’s polytope

@ So, when f is a polymatroid function, P;r is a polymatroid.

@ Is it the case that, conversely, for any polymatroid P, there is an
associated polymatroidal function f such that P = P}“?

Theorem 11.4.2

For any polymatroid P (compact subset of R, zero containing, down-monotone,
and Vx € Rf any maximal independent subvector y < x has same component sum
y(E) = rank(z)), there is a polymatroid function f : 2F — R (normalized,
monotone non-decreasing, submodular) such that P = Pf+ where

Pf ={zeR”:z>0,z(A) < f(A),YA C E}.
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Tight sets D(y) are closed, and max tight set sat(y)

Recall the definition of the set of tight sets at y € P;r:

D(y) ={A: ACE, y(A) = f(A)} (11.34)

Theorem 11.4.3

For any y € P}, with f a polymatroid function, then D(y) is closed under
union and intersection.
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Tight sets D(y) are closed, and max tight set sat(y)

Recall the definition of the set of tight sets at y € P;r:

D(y) ={A: ACE, y(A) = f(A)} (11.34)

Theorem 11.4.3

For any y € P}, with f a polymatroid function, then D(y) is closed under
union and intersection.

We have already proven this as part of Theorem 11.4.1
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Tight sets D(y) are closed, and max tight set sat(y)
Recall the definition of the set of tight sets at y € P;r:

D(y) ={A: ACE, y(A) = f(A)} (11.34)

Theorem 11.4.3

For any y € P}, with f a polymatroid function, then D(y) is closed under
union and intersection.

We have already proven this as part of Theorem 11.4.1

Also recall the definition of sat(y), the maximal set of tight elements
relative to y € Rf.

sat(y) € | J{T: T € D(y)} (11.35)
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Join V and meet A for z,y € R”

@ Forx,y € ]Rf, define vectors x Ay € Rf and x Vy € Rf such that, for
allee F

(x Vy)(e) = max(z(e),y(e)) (11.36)
(x Ay)(e) = min(x(e),y(e)) (11.37)

Hence,

zVy= (max(x(el), y(el)) ,max (:L‘(eg)7 y(62)>, . ,max(x(en), y(en)>>

and similarly

TNy = (min (;1:(61), y(el)> , min <:L‘(62), y(@)), . ,min(a;(e,,,), y(en)>>
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Join V and meet A for z,y € R”

@ Forx,y € ]Rf, define vectors x Ay € Rf and x Vy € Rf such that, for
alee E

(x Vy)(e) = max(z(e),y(e)) (11.36)
(& A y)(e) = minz(e), y(c)) (11.37)

Hence,

zVy= (max(:v(e1), y(61)) ) max(:r,(eg), 9(62)>7 ce ,max(a;(en), y(en)>>

and similarly

xAyé(mm@@ﬁw@n)mm@@ww@ayuwmm@w0w@mﬁ

@ From this, we can define things like an lattices, and other constructs.
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Vector rank, rank(x), is submodular

@ Recall that the matroid rank function is submodular.
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Vector rank, rank(x), is submodular

@ Recall that the matroid rank function is submodular.

@ The vector rank function rank(z) also satisfies a form of submodularity.
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Vector rank, rank(x), is submodular

@ Recall that the matroid rank function is submodular.

@ The vector rank function rank(z) also satisfies a form of submodularity.

Theorem 11.4.4 (vector rank and submodularity)

Let P be a polymatroid polytope. The vector rank function rank : ]Rf — R
with rank(z) = max (y(E) : y < x,y € P) satisfies, for all u,v € R¥

rank(u) + rank(v) > rank(u V v) + rank(u A v) (11.38)
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Vector rank rank(z) is submodular, proof

Proof of Theorem 11.4.4.

@ Let a be a P-basis of u A v, so rank(u A v) = a(E).
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Vector rank rank(z) is submodular, proof

Proof of Theorem 11.4.4.

o Let a be a P-basis of u A v, so rank(u A v) = a(E).

@ By the polymatroid property, 9 an independent b € P such that:
a<b<uVo
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Vector rank rank(z) is submodular, proof

Proof of Theorem 11.4.4.

o Let a be a P-basis of u A v, so rank(u A v) = a(E).

@ By the polymatroid property, 3 an independent b € P such that:
a < b < wuVwv and also such that rank(b) = b(E) = rank(u V v), so b is
a P-basis of u V v.
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Vector rank rank(z) is submodular, proof

Proof of Theorem 11.4.4.

o Let a be a P-basis of u A v, so rank(u A v) = a(E).

@ By the polymatroid property, 3 an independent b € P such that:
a < b <wuVwv and also such that rank(b) = b(E) = rank(u V v), so b is
a P-basis of u V v.

@ Given e € E, if a(e) is maximal due to P, then a(e) = b(e)
< min(u(e),v(e)).
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Vector rank rank(z) is submodular, proof

Proof of Theorem 11.4.4.

o Let a be a P-basis of u A v, so rank(u A v) = a(E).

@ By the polymatroid property, 3 an independent b € P such that:
a < b <wuVwv and also such that rank(b) = b(E) = rank(u V v), so b is
a P-basis of u V v.

@ Given e € E, if a(e) is maximal due to P, then a(e) = b(e)
< min(u(e),v(e)).

e If a(e) is maximal due to (u A v)(e), then
a(e) = min(u(e),v(e)) < b(e).
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Vector rank rank(z) is submodular, proof

Proof of Theorem 11.4.4.

o Let a be a P-basis of u A v, so rank(u A v) = a(E).

@ By the polymatroid property, 3 an independent b € P such that:
a < b <wuVwv and also such that rank(b) = b(E) = rank(u V v), so b is
a P-basis of u V v.

@ Given e € E, if a(e) is maximal due to P, then a(e) = b(e)
< min(u(e),v(e)).

o If a(e) is maximal due to (u A v)(e), then
a(e) = min(u(e),v(e)) < b(e).

@ Therefore, a =bA (uAv) ...
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Vector rank rank(z) is submodular, proof

Proof of Theorem 11.4.4.

o Let a be a P-basis of u A v, so rank(u A v) = a(E).

@ By the polymatroid property, 3 an independent b € P such that:
a < b <wuVwv and also such that rank(b) = b(E) = rank(u V v), so b is
a P-basis of u V v.

@ Given e € E, if a(e) is maximal due to P, then a(e) = b(e)
< min(u(e),v(e)).

o If a(e) is maximal due to (u A v)(e), then
a(e) = min(u(e),v(e)) < b(e).

@ Therefore, a =bA (uAv) ...

@ ...and since b < u Vv, we get
a-+b (11.39)
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Vector rank rank(z) is submodular, proof

Proof of Theorem 11.4.4.

o Let a be a P-basis of u A v, so rank(u A v) = a(E).

@ By the polymatroid property, 3 an independent b € P such that:
a < b <wuVwv and also such that rank(b) = b(E) = rank(u V v), so b is
a P-basis of u V v.

@ Given e € E, if a(e) is maximal due to P, then a(e) = b(e)
< min(u(e),v(e)).

o If a(e) is maximal due to (u A v)(e), then
a(e) = min(u(e),v(e)) < b(e).

@ Therefore, a =bA (uAv) ...

@ ...and since b < u Vv, we get
a+b=b+bAunv (11.39)
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Vector rank rank(z) is submodular, proof

Proof of Theorem 11.4.4.

o Let a be a P-basis of u A v, so rank(u A v) = a(E).

@ By the polymatroid property, 3 an independent b € P such that:
a < b <wuVwv and also such that rank(b) = b(E) = rank(u V v), so b is
a P-basis of u V v.

@ Given e € E, if a(e) is maximal due to P, then a(e) = b(e)
< min(u(e),v(e)).

o If a(e) is maximal due to (u A v)(e), then
a(e) = min(u(e),v(e)) < b(e).

@ Therefore, a =bA (uAv) ...

@ ...and since b < u Vv, we get
a+b=b+bAunNv=bAu+bAv (11.39)
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Vector rank rank(z) is submodular, proof

Proof of Theorem 11.4.4.

o Let a be a P-basis of u A v, so rank(u A v) = a(E).

@ By the polymatroid property, 3 an independent b € P such that:
a < b <wuVwv and also such that rank(b) = b(E) = rank(u V v), so b is
a P-basis of u V v.

@ Given e € E, if a(e) is maximal due to P, then a(e) = b(e)
< min(u(e),v(e)).

o If a(e) is maximal due to (u A v)(e), then
a(e) = min(u(e),v(e)) < b(e).

@ Therefore, a =bA (uAv) ...

@ ...and since b < u Vv, we get
a+b=b+bAunNv=bAu+bAv (11.39)

To see this, consider each case where either b is the minimum, or w is minimum

with b < v, or v is minimum with b < w.
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Vector rank rank(z) is submodular, proof

... proof of Theorem 11.4.4.

@ But b Aw and b Awv are independent subvectors of u and v respectively,
so (b A u)(E) < rank(u) and (bAv)(E) < rank(v).
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Vector rank rank(z) is submodular, proof

... proof of Theorem 11.4.4.

@ But bAwu and b Av are independent subvectors of u and v respectively,
so (bAu)(E) < rank(u) and (b Av)(E) < rank(v).

@ Hence,
rank(u A v) + rank(u V v)
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Vector rank rank(z) is submodular, proof

... proof of Theorem 11.4.4.

@ But bAwu and b Av are independent subvectors of u and v respectively,
so (bAw)(E) < rank(u) and (b Av)(E) < rank(v).

@ Hence,
rank(u A v) + rank(u V v) = a(E) + b(E) (11.40)
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Vector rank rank(z) is submodular, proof

... proof of Theorem 11.4.4.

@ But bAwu and b Av are independent subvectors of u and v respectively,
so (bAw)(E) < rank(u) and (b Av)(E) < rank(v).

@ Hence,
rank(u A v) + rank(u V v) = a(E) + b(E) (11.40)

= (bAu)(E)+ (BAv)(E)  (11.41)

Ol
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Vector rank rank(z) is submodular, proof

... proof of Theorem 11.4.4.

@ But bAwu and b Av are independent subvectors of u and v respectively,
so (bAw)(E) < rank(u) and (b Av)(E) < rank(v).

@ Hence,
rank(u A v) + rank(u V v) = a(E) + b(E) (11.40)
= (bAu)(E)+ (bAv)(E) (11.41)
< rank(u) + rank(v) (11.42)
[]
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A polymatroid function's polyhedron vs. a polymatroid.

@ Note the remarkable similarity between the proof of Theorem 11.4.4
and the proof of Theorem ??7 that the standard matroid rank function
is submodular.
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A polymatroid function's polyhedron vs. a polymatroid.

@ Note the remarkable similarity between the proof of Theorem 11.4.4

and the proof of Theorem ??7 that the standard matroid rank function
is submodular.

@ Next, we prove Theorem 11.4.2, that any polymatroid polytope P has
a polymatroid function f such that P = P;r.
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A polymatroid function's polyhedron vs. a polymatroid.

@ Note the remarkable similarity between the proof of Theorem 11.4.4
and the proof of Theorem ??7 that the standard matroid rank function
is submodular.

@ Next, we prove Theorem 11.4.2, that any polymatroid polytope P has
a polymatroid function f such that P = P;r.

@ Given this result, we can conclude that a polymatroid is really an
extremely natural polyhedral generalization of a matroid. This was all
realized by Jack Edmonds in the mid 1960s (and published in 1969 in
his landmark paper “Submodular Functions, Matroids, and Certain
Polyhedra™).
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

o We are given a polymatroid P.
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Proof of Theorem 11.4.2
Proof of Theorem 11.4.2.

o We are given a polymatroid P.

@ Define amax 2 max {x(E) : x € P}, and note that amax > 0 when P
is non-empty, and amax = rank(ocolp) = rank(amaxlpg).
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.
o We are given a polymatroid P.

o Define amax 2 max {x(E) : x € P}, and note that aumax > 0 when P
is non-empty, and amax = rank(ocolp) = rank(amaxlpg).

@ Hence, for any x € P, x(e) < amax, Ve € E.
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

o We are given a polymatroid P.

o Define amax 2 max {x(E) : x € P}, and note that aumax > 0 when P
is non-empty, and amax = rank(ocolp) = rank(amaxlpg).

@ Hence, for any z € P, z(e) < amax, Ve € E.

@ Define a function f: 2"V — R as, for any A C E,

f(A) £ rank(amax14) (11.43)
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

o We are given a polymatroid P.

o Define amax 2 max {x(E) : x € P}, and note that aumax > 0 when P
is non-empty, and amax = rank(ocolp) = rank(amaxlpg).

@ Hence, for any z € P, z(e) < amax, Ve € E.
@ Define a function f : 2 — R as, for any A C E,

f(A) = rank(amax14) (11.43)

@ Then f is submodular since

f(A) + f(B)
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

o We are given a polymatroid P.

o Define amax 2 max {x(E) : x € P}, and note that aumax > 0 when P
is non-empty, and amax = rank(ocolp) = rank(amaxlpg).

@ Hence, for any z € P, z(e) < amax, Ve € E.
@ Define a function f : 2 — R as, for any A C E,

f(A) = rank(amax14) (11.43)

@ Then f is submodular since

f(A) + f(B) = rank(amax14) + rank(amax1p) (11.44)
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

o We are given a polymatroid P.

o Define amax 2 max {x(E) : x € P}, and note that aumax > 0 when P
is non-empty, and amax = rank(ocolp) = rank(amaxlpg).

@ Hence, for any z € P, z(e) < amax, Ve € E.

@ Define a function f : 2V 5 R as, for any AC F,

f(A) = rank(amax14) (11.43)

@ Then f is submodular since

f(A) + f(B) = rank(amax14) + rank(amax1p) (11.44)
> rank(amax1A V amax1B) + rank(amaxla A amaxlp) (11.45)
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

o We are given a polymatroid P.

o Define amax 2 max {x(E) : x € P}, and note that aumax > 0 when P
is non-empty, and amax = rank(ocolp) = rank(amaxlpg).

@ Hence, for any z € P, z(e) < amax, Ve € E.
@ Define a function f : 2 — R as, for any A C E,

f(A) = rank(amax14) (11.43)

@ Then f is submodular since

f(A) + f(B) = rank(amax14) + rank(amax1p) (11.44)
> rank(amax1a V amax1B) + rank(amaxla A amaxlp) (11.45)
= rank(amax1aup) + rank(amax14nB) (11.46)
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

o We are given a polymatroid P.

o Define amax 2 max {x(E) : x € P}, and note that aumax > 0 when P
is non-empty, and amax = rank(ocolp) = rank(amaxlpg).

@ Hence, for any z € P, z(e) < amax, Ve € E.
@ Define a function f : 2 — R as, for any A C E,

f(A) = rank(amax14) (11.43)

@ Then f is submodular since
f(A) + f(B) = rank(amax14) + rank(amax1p) ( )
> rank(amax1A V amax1B) + rank(amaxla A amaxlp) ( )
= rank(amax14uB) + rank(amaxlanp) (11.46)
=f(AUB) + f(AN B) (11.47)
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

@ Moreover, we have that f is non-negative, normalized with f()) = 0,
and monotone non-decreasing (since rank is monotone).
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

@ Moreover, we have that f is non-negative, normalized with f()) =0,
and monotone non-decreasing (since rank is monotone).

@ Hence, f is a polymatroid function.
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

@ Moreover, we have that f is non-negative, normalized with f()) =0,
and monotone non-decreasing (since rank is monotone).

@ Hence, f is a polymatroid function.
o Consider the polytope Pf+ defined as:

Pf = {z eRY :x(4) < f(A), VA C E} (11.48)
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

@ Moreover, we have that f is non-negative, normalized with f()) =0,
and monotone non-decreasing (since rank is monotone).

@ Hence, f is a polymatroid function.
@ Consider the polytope P;r defined as:

Pf = {z eRY:x(A) < f(A), VAC E} (11.48)

o Given an z € P, then for any A C E,
z(A) <max{2(F): 2 € P,z < amaxla} = rank(amaxla) = f(4),
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

@ Moreover, we have that f is non-negative, normalized with f()) =0,
and monotone non-decreasing (since rank is monotone).

@ Hence, f is a polymatroid function.

@ Consider the polytope P;r defined as:
Pf = {z eRY:x(A) < f(A), VAC E} (11.48)
@ Given an z € P, then for any A C E,

z(A) <max{z(E):z € P,z < amaxla} = rank(amax1la) = f(4),
therefore z € PJﬁr.
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

@ Moreover, we have that f is non-negative, normalized with f()) =0,
and monotone non-decreasing (since rank is monotone).

@ Hence, f is a polymatroid function.

@ Consider the polytope P;r defined as:
P} = {z eRY : 2(4) < f(4), VAC E} (11.48)

@ Given an z € P, then for any A C E,
z(A) <max{z(E):z € P,z < amaxla} = rank(amax1la) = f(4),
therefore x € P;r.

@ Hence, P C Pf+.
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

@ Moreover, we have that f is non-negative, normalized with f()) =0,
and monotone non-decreasing (since rank is monotone).

@ Hence, f is a polymatroid function.

@ Consider the polytope P;r defined as:
P} = {z eRY : 2(4) < f(4), VAC E} (11.48)

@ Given an z € P, then for any A C E,
z(A) <max{z(E):z € P,z < amaxla} = rank(amax1la) = f(4),
therefore x € P;r.

@ Hence, P C P;r.
We will next show that P]T C P to complete the proof.
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

@ Letz e Pf+ be chosen arbitrarily (goal is to show that = € P).
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

o Let x € PJT be chosen arbitrarily (goal is to show that z € P).

@ Suppose x ¢ P.
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

o Let x € PJT be chosen arbitrarily (goal is to show that z € P).

@ Suppose x ¢ P. Then, choose y to be a P-basis of 2 that maximizes
the number of y elements strictly less than the corresponding x
element. l.e., that maximizes |N(y)|, where

N(y) ={e€ E:y(e) < z(e)} (11.49)
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

o Let x € PJT be chosen arbitrarily (goal is to show that z € P).

@ Suppose x ¢ P. Then, choose y to be a P-basis of 2 that maximizes
the number of y elements strictly less than the corresponding x
element. l.e., that maximizes |N(y)|, where

N(y) ={e€ E:y(e) < z(e)} (11.49)
@ Choose w between y and x, so that
y<w2(y+a)/2<a (11.50)

so y is also a P-basis of w.
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

o Let x € PJT be chosen arbitrarily (goal is to show that z € P).

@ Suppose x ¢ P. Then, choose y to be a P-basis of 2 that maximizes
the number of y elements strictly less than the corresponding x
element. l.e., that maximizes |N(y)|, where

N(y) ={e€ E:y(e) < z(e)} (11.49)
@ Choose w between y and z, so that
y<w2(y+a)/2<a (11.50)

so y is also a P-basis of w.

@ Hence, rank(z) = rank(w), and the set of P-bases of w are also
P-bases of .
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Proof of Theorem 11.4.2
Proof of Theorem 11.4.2.

@ For any A C F, define x4 € Rf as

z(e) ifecdA
xa(e) = 0 e (11.51)

note this is an analogous definition to 14 but for a non-unity vector.
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Proof of Theorem 11.4.2
Proof of Theorem 11.4.2.

@ For any A C FE, define x4 € Rf as

zale) = {x(e) ifec A (11.51)

0 else

note this is an analogous definition to 14 but for a non-unity vector.

@ Now, we have

y(N(y)) < w(N()) < F(N)) = rank(@maln)  (11.52)

the last inequality follows since w < € P}, and y < w.
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Proof of Theorem 11.4.2
Proof of Theorem 11.4.2.

@ For any A C FE, define x4 € Rf as

zale) = {x(e) ifec A (11.51)
0 else

note this is an analogous definition to 14 but for a non-unity vector.

@ Now, we have

y(N(y)) <w(N(y)) < f(N(y)) = rank(amaxlny)) (11.52)

the last inequality follows since w < z € P, and y < w.

@ Thus, y A xyy,) is not a P-basis of w A () since, over N(y), it is
neither tight at w nor tight at the rank (i.e., not a maximal
independent subvector on N(y)).
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

e We can extend y Az, to be a P-basis of w Az, since
YNTN() < WATN(y)-
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

o We can extend y Az, to be a P-basis of w Az, since
YNTN() < WATN(y)-

@ This P-basis, in turn, can be extended to be a P-basis 7 of w & x.
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

o We can extend y Az, to be a P-basis of w Az, since
YNTN() < WATN(y)-

@ This P-basis, in turn, can be extended to be a P-basis ¢ of w & x.
@ Now, we have (N (y)) > y(N(y)),
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

o We can extend y Az, to be a P-basis of w Az, since
YNTN() < WATN(y)-

@ This P-basis, in turn, can be extended to be a P-basis ¢ of w & x.
e Now, we have §(N(y)) > y(N(y)),
@ and also that §(E) = y(E) (since both are P-bases),
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

o We can extend y Az, to be a P-basis of w Az, since
YNTN() < WATN(y)-

@ This P-basis, in turn, can be extended to be a P-basis ¢ of w & x.
e Now, we have §(N(y)) > y(N(y)),

@ and also that §(E) = y(E) (since both are P-bases),

@ hence g(e) < y(e) for some e ¢ N(y).
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

o We can extend y Az, to be a P-basis of w Az, since
YNTN() < WATN(y)-

This P-basis, in turn, can be extended to be a P-basis g of w & .
Now, we have §(N(y)) > y(N(y)),

and also that §(E) = y(E) (since both are P-bases),

hence g(e) < y(e) for some e ¢ N(y).

Thus, ¢ is a base of x, which violates the maximality of | N (y)|.
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

o We can extend y Az, to be a P-basis of w Az, since
YNTN() < WATN(y)-

This P-basis, in turn, can be extended to be a P-basis g of w & .
Now, we have §(N () > y(N (y)).

and also that §(E) = y(E) (since both are P-bases),

hence g(e) < y(e) for some e ¢ N(y).

Thus, ¢ is a base of x, which violates the maximality of | N (y)|.

This contradiction means that we must have had z € P.
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Proof of Theorem 11.4.2

Proof of Theorem 11.4.2.

o We can extend y Az, to be a P-basis of w Az, since
YNTN() < WATN(y)-

This P-basis, in turn, can be extended to be a P-basis g of w & .
Now, we have §(N(y)) > y(N(y)),

and also that §(E) = y(E) (since both are P-bases),

hence g(e) < y(e) for some e ¢ N(y).

Thus, ¢ is a base of x, which violates the maximality of | N (y)|.
This contradiction means that we must have had = € P.
Therefore, Pf+ = /P,
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More on polymatroids

Theorem 11.4.5

A polymatroid can equivalently be defined as a pair (E, P) where E is a

finite ground set and P C Rf is a compact non-empty set of independent
vectors such that

@ every subvector of an independent vector is independent (if x € P and
y <z theny € P, i.e., down closed)
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More on polymatroids

Theorem 11.4.5

A polymatroid can equivalently be defined as a pair (E, P) where E is a
finite ground set and P C Rf is a compact non-empty set of independent
vectors such that

@ every subvector of an independent vector is independent (if x € P and
y < x theny € P, i.e., down closed)

@ Ifu,v € P (i.e., are independent) and u(F) <
v(E), then there exists a vector w € P such Ve euw
that W,

u<w<uVu (11.53)
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More on polymatroids

Theorem 11.4.5

A polymatroid can equivalently be defined as a pair (E, P) where E is a
finite ground set and P C Rf is a compact non-empty set of independent
vectors such that

@ every subvector of an independent vector is independent (if x € P and
y < x theny € P, i.e., down closed)

@ Ifu,v € P (ie., are independent) and u(E) <
v(E), then there exists a vector w € P such Ve euw
that v,

u<w<uVo (11.53)

Corollary 11.4.6

The independent vectors of a polymatroid form a convex polyhedron in Rf .
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Review

@ The next slide comes from lecture 5.
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Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 11.4.3 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then the
following are equivalent.

@ B is the collection of bases of a matroid;
@ ifB,B' €B,andx € B'\ B, then B'—x+y € B forsomey € B\ B'.
@ IfB,B'€B,andx € B'\ B, then B—y+x € B forsomey € B\ B'.

Properties 2 and 3 are called “exchange properties.”
Proof here is omitted but think about this for a moment in terms of linear
spaces and matrices, and (alternatively) spanning trees.
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More on polymatroids

For any compact set P, bis a base of P if it is a maximal subvector
within P. Recall the bases of matroids. In fact, we can define a
polymatroid via vector bases (analogous to how a matroid can be defined
via matroid bases).

Theorem 11.4.7

A polymatroid can equivalently be defined as a pair (E, P) where E is a
finite ground set and P C Rf is a compact non-empty set of independent
vectors such that

@ every subvector of an independent vector is independent (if z € P and
y < x theny € P, i.e., down closed)

@ ifb,c are bases of P and d is such that b A ¢ < d < b, then there exists
an f, withd A c < f <c such that dV f is a base of P

@ AIll of the bases of P have the same rank.

Note, all three of the above are required for a polymatroid (a matroid
analogy would require the equivalent of only the first two).
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