
EE596A Submodular Functions University of Washington
Spring 2016 Dept. of Electrical Engineering

Homework 4. Due May 25th, 11:59pm Electronically

Prof: J. Bilmes <bilmes@ee.washington.edu> Monday, May 2 2016
TA: K. Wei <kaiwei@uw.edu>

All homework is due electronically via the link https://canvas.uw.edu/courses/1039754/
assignments. Note that the due dates and times might be in the evening. Please submit a PDF file. Do-
ing your homework by hand and then converting to a PDF file (by say taking high quality photos using a
digital camera and then converting that to a PDF file) is fine, as there are many jpg to pdf converters on the
web. Some of the problems below will require that you look at some of the lecture slides at our web page
(http://j.ee.washington.edu/˜bilmes/classes/ee596b_spring_2016/).

Problem 1. From non-submodular to submodular
Let h : 2V → R be an arbitrary real-valued set function. Consider the functions g : 2V → R and

f : 2V → R obtained from h (recursively in the case of g) as follows. For S ⊆ V ,

g(S) =

{
minA⊂S,B⊂S:A∪B=S

(
min[h(S), g(A) + g(B)− g(A ∩B)]

)
if |S| ≥ 2

h(S) else .
(1)

Note that g(∅) = h(∅) and g(a) = h(a) for all a ∈ V . We also define f as follows:

f(S) = min
A⊇S

g(A). (2)

Problem 1(a). submodular Prove that for any h, then g as defined above is submodular.
Problem 1(b). monotone-nondecreasing Prove that for any h, then f as defined above is submodular

and monotone non-decreasing.
Problem 1(c). identity Prove that if h is submodular, then g = h.
Problem 1(d). monotone identity Prove that if h is submodular and monotone non-decreasing, then

f = h.

Problem 2. k-medoids clustering Given a ground set of data points V = {v1, . . . , vn}, let dvi,vj ≥ 0
denote the distance measure between data point vi and vj (e.g., squared Euclidean distance between the
feature representation of vi and vj). Assume that the distance measure is symmetric, i.e., dvi,vj = dvj ,vi .
The goal of k-medoids clustering is to identify a set A ⊆ V of k medoids such that, by using each point in
A as a cluster center, the total within cluster scatter is minimized. Mathematically, the k-medoid clustering
problem is formulated as below:

min
A⊆V,|A|=k

c(A), (3)

where c(A) =
∑

v∈V mina∈A da,v is the clustering cost for choosing the set A as the medoids.
Problem 2(a). Monotonicity Determine the monotonicity of the objective function c(A). Note that a set

function c(A) is monotonically non-decreasing if c(A) ≤ c(B) for any A ⊆ B, and c(A) is monotonically
non-increasing if the reverse always holds.

Problem 2(b). Supermodularity Prove that the objective function c(A) is supermodular.
Problem 2(c). Connection to submodular maximization Let d∗ = maxv∈V,v′∈V dv,v′ be the maxi-

mum distance between any pair of points in V . We define the similarity measure between any pair of points
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vi and vj as svi,vj = d∗ − dvi,vj ≥ 0. Define a utility function f(A) =
∑

v∈V maxa∈A sv,a. Prove that the
following optimization problem:

max
A⊆V,|A|=k

f(A) (4)

is equivalent to Problem 3. By equivalence, we mean: any solutionA∗ for Problem 3 (i.e.,A∗ ∈ argminA⊆V,|A|=k c(A))
is also a solution for Problem 4 (i.e.,A∗ ∈ argmaxA⊆V,|A|=k f(A)), and the same holds for the converse.

Problem 3. Matroid constrained submodular maximization In the lecture, we have proved that
greedy algorithm solves the matroid constrained modular maximization problem. Given a normalized mod-
ular function m : V → R+, and a matroid M(V, I), the greedy heuristic exactly solves the following
optimization problem:

max
A∈I

m(A). (5)

In this problem, we investigate the same greedy algorithm in the case of the objective being polymatroid
function f : 2V → R+. The pseudo code for such algorithm is shown below:

Algorithm 1: Greedy algorithm
Input: A polymatroid function f and a matroid M(V, I).
A0 ← ∅.
i = 0.
while A is not a base of M do

i← i+ 1.
ai ∈ argmaxa∈V \Ai−1:Ai−1+a∈I f(a|Ai−1).
Ai ← Ai−1 + ai.

Output Â← Ai.

We will prove that such algorithm always yields a solution with an approximation factor 1/2, namely,
the following holds:

f(Â) ≥ 1

2
max
A∈I

f(A). (6)

Problem 3(a). Please first show that the following statement is true: Given any base B = {b1, . . . , bk}
of the matroid M (assuming the rank of the matroid M is k), the elements in the base B can be ordered such
that f(bi|Ai−1) ≤ f(ai|Ai−1) for all i = 1, . . . , k.

Problem 3(b). Define A∗ to be the optimal solution, i.e., A∗ ∈ argmaxA∈I f(A). Show that the
following always holds:

f(A∗) ≤ f(Ak) +
∑

i:ai∈A∗∩Ak

f(ai|Ai−1) +
∑

a∈A∗\Ak

f(a|Ak). (7)

Problem 3(c). Prove the 1/2 approximation guarantee, i.e.,

f(Â) ≥ 1

2
max
A∈I

f(A) (8)
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Problem 4. Visualize the facility location function
You are provided with four sets of 2-dimensional data points V = {(xi, yi)}i (see the files “data set{1,2,3,4}.txt”

for the data). Each data file is formatted such that each line represents a data point. For each line of the file,
the first entry is the value for the x-axis, and the second entry defines the y-axis value.

In this exercise, you will understand how the facility location function can be used to choose a set of
k representative data points in the ground set V . To finish this problem, you will write the code in your
favorite programming language to implement the greedy algorithm on the facility location function. The
pseudo code for the greedy algorithm is as follows:

Algorithm 2: Greedy algorithm
Input: f , V , and k.
Initialization: A← ∅.
while |A| < k do

a∗ ∈ argmaxa∈V \A f(a|A)
A← A ∪ a∗

Output: A.

Problem 4(a). Plot the 2-D data Your task here is to plot out the data points in V on a 2 dimensional
plot for each data set separately. In your plot, please make sure to label the x-axis and y-axis clearly.

Problem 4(b). Gaussian kernel as similarity
Note that the facility location used as the objective in this problem is defined as below:

ffac(A) =
∑
i∈V

max
j∈A

wi,j , (9)

where wi,j is the similarity measure between data points i and j. It remains to define the similarity between
data points from their distance measure. In this exercise we use the simple Euclidean distance as the distance
measure, i.e., we define di,j =

√
(xi − xj)2 + (yi − yj)2. Given σ as the width parameter for the Gaussian

kernel, we define the Gaussian kernel between any pair of points i and j as wσi,j = exp(− d2i,j
2σ2 ).

For each data set, run the greedy algorithm with a size constraint k = 10 on the facility location function
whose similarity measure is computed as the Gaussian kernel with the choice of the width parameter σ2 = 1.
Mark each chosen data point in the 2-D plot with a circle and report the facility location function value of
the output of the greedy algorithm.

Repeat the previous procedure for other choices of the width parameter: σ2 = 0.1, 10, and show the plot
for each case of σ.

Problem 4(c). Linear kernel as similarity In this problem, we try out deriving the similarity measure
from the Euclidean distance in a different way. In this case, we define the similarity measure aswi,j = −di,j .
Run the greedy algorithm with k = 10 on this variant of the facility location function. Make a plot of all
data points in the 2-D space with each of the chosen items marked in a circle.

Problem 5. Stochastic Variants of Greedy algorithms Recall from the class, we have talked about
a simple greedy algorithm for solving the following problem:

max
|A|≤k

f(A), (10)

where f is monotone submodular and k is the size constraint. The algorithm is described below:



4

Algorithm 3: Greedy algorithm
Input: f and k.
Initialization: A0 ← ∅ and i = 0
while i < k do

ai+1 ∈ argmaxa∈V \A f(a|A)
Ai+1 ← Ai ∪ ai+1

i← i+ 1
Output Ak.

In this problem, we consider several stochastic variants of the greedy algorithm, and analyze their opti-
mality guarantees.

Problem 5(a). Given an instance of running a randomized algorithm ALG which produces a chain
of solutions A1 ⊂ A2 ⊂, . . . ,⊂ Ak. Denote Ak = {a1, . . . , ak} with ai being the item added in round i.
Consider any round i, denote the expected function gain conditioned on the solution Ai−1 as E[f(ai|Ai−1)].
Suppose that the following holds

E[f(ai|Ai−1)] ≥
f(OPT )− f(Ai−1)

k
(11)

for all i, where OPT ∈ argmax|A|≤k f(A).
Prove the following:

E[f(Ak)] ≥ (1− 1/e)f(OPT ). (12)

Problem 5(b). Armed with the above result, we are now ready to analyze the following three stochastic
variants of the greedy algorithm. Please show, for each algorithm below, whether the approximation factor
of (1− 1/e) on expectation can be achieved.

Algorithm 4: Stochastic Greedy 1
Input: f and k.
Initialization: A0 ← ∅ and i = 0
while i < k do

B∗ ∈ argmaxB⊆V \Ai,|B|=k
∑

b∈B f(b|Ai)
Uniformly at random sample an item ai+1 from B∗

Ai+1 ← Ai ∪ ai+1

i← i+ 1
Output Ak.

Algorithm 5: Stochastic Greedy 2
Input: f and k.
Initialization: A0 ← ∅ and i = 0
while i < k do

B∗ ∈ argmaxB⊆V \Ai,|B|=k f(B|Ai)
Uniformly at random sample an item ai+1 from B∗

Ai+1 ← Ai ∪ ai+1

i← i+ 1
Output Ak.

Problem 5(c). Lastly, we consider another variant of the stochastic greedy algorithm. Note that
the line B∗ ∈ argmaxB⊆V \Ai,|B|=k f(B|Ai) in Stochastic Greedy 2 is not feasible to solve exactly. One



5

Algorithm 6: Stochastic Greedy 3
Input: f and k.
Initialization: A0 ← ∅ and i = 0
while i < k do

B∗ ∈ argmaxB⊆V \Ai,|B|=kminb∈B f(b|Ai)
Uniformly at random sample an item ai+1 from B∗

Ai+1 ← Ai ∪ ai+1

i← i+ 1
Output Ak.

may wish to approximately solve this line with a greedy algorithm leading to Stochastic Greedy 4 described
below. Show that Stochastic Greedy 4 always attains a guarantee of (1− e−(1−1/e)) on expectation.

Algorithm 7: Stochastic Greedy 4
Input: f and k.
Initialization: A0 ← ∅ and i = 0
while i < k do

B̂ is obtained by running the greedy algorithm for solving argmaxB⊆V \Ai,|B|=k f(B|Ai)
Uniformly at random sample an item ai+1 from B̂
Ai+1 ← Ai ∪ ai+1

i← i+ 1
Output Ak.


