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Logistics Review

Cumulative Outstanding Reading

Read chapter 1 from Fujishige’s book.
Read chapter 2 from Fujishige’s book.
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Logistics Review

Announcements, Assignments, and Reminders

If you have any questions about anything, please ask then via our
discussion board
(https://canvas.uw.edu/courses/1216339/discussion_topics).
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Logistics Review

Class Road Map - EE563

L1(3/26): Motivation, Applications, &

Basic Definitions,

L2(3/28): Machine Learning Apps

(diversity, complexity, parameter, learning

target, surrogate).

L3(4/2): Info theory exs, more apps,

definitions, graph/combinatorial examples

L4(4/4): Graph and Combinatorial

Examples, Matrix Rank, Examples and

Properties, visualizations

L5(4/9): More Examples/Properties/

Other Submodular Defs., Independence,

L6(4/11): Matroids, Matroid Examples,

Matroid Rank, Partition/Laminar

Matroids

L7(4/16): Laminar Matroids, System of

Distinct Reps, Transversals, Transversal

Matroid, Matroid Representation, Dual

Matroids

L8(4/18): Dual Matroids, Other Matroid

Properties, Combinatorial Geometries,

Matroids and Greedy.

L9(4/23): Polyhedra, Matroid Polytopes,

Matroids ! Polymatroids

L10(4/25):

L11(4/30):

L12(5/2):

L13(5/7):

L14(5/9):

L15(5/14):

L16(5/16):

L17(5/21):

L18(5/23):

L–(5/28): Memorial Day (holiday)

L19(5/30):

L21(6/4): Final Presentations

maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.
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Logistics Review

The greedy algorithm

In combinatorial optimization, the greedy algorithm is often useful as a
heuristic that can work quite well in practice.
The goal is to choose a good subset of items, and the fundamental
tenet of the greedy algorithm is to choose next whatever currently
looks best, without the possibility of later recall or backtracking.
Sometimes, this gives the optimal solution (we saw three greedy
algorithms that can find the maximum weight spanning tree).
Greedy is good since it can be made to run very fast O(n log n).
Often, however, greedy is heuristic (it might work well in practice, but
worst-case performance can be unboundedly poor).
We will next see that the greedy algorithm working optimally is a
defining property of a matroid, and is also a defining property of a
polymatroid function.
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Logistics Review

Matroid and the greedy algorithm

Let (E, I) be an independence system, and we are given a non-negative
modular weight function w : E ! R+.
Algorithm 1: The Matroid Greedy Algorithm

1 Set X  ; ;
2 while 9v 2 E \X s.t. X [ {v} 2 I do
3 v 2 argmax {w(v) : v 2 E \X, X [ {v} 2 I} ;
4 X  X [ {v} ;

Same as sorting items by decreasing weight w, and then choosing items
in that order that retain independence.

Theorem 9.2.8

Let (E, I) be an independence system. Then the pair (E, I) is a matroid if

and only if for each weight function w 2 RE
+, Algorithm ?? above leads to a

set I 2 I of maximum weight w(I).
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Logistics Review

Summary of Important (for us) Matroid Definitions

Given an independence system, matroids are defined equivalently by any of
the following:

All maximally independent sets have the same size.
A monotone non-decreasing submodular integral rank function with
unit increments.
The greedy algorithm achieves the maximum weight independent set
for all weight functions.
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Polyhedra Matroid Polytopes Matroids ! Polymatroids

Convex Polyhedra

Convex polyhedra a rich topic, we will only draw what we need.

Definition 9.3.1
A subset P ✓ RE = Rm is a polyhedron if there exists an `⇥m matrix A

and vector b 2 R` (for some ` � 0) such that

P =
�
x 2 RE : Ax  b

 
(9.1)

Thus, P is intersection of finitely many (`) affine halfspaces, which are
of the form aix  bi where ai is a row vector and bi a real scalar.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 9 - April 23rd, 2018 F8/58 (pg.8/178)



Polyhedra Matroid Polytopes Matroids ! Polymatroids

Convex Polyhedra

Convex polyhedra a rich topic, we will only draw what we need.

Definition 9.3.1
A subset P ✓ RE = Rm is a polyhedron if there exists an `⇥m matrix A

and vector b 2 R` (for some ` � 0) such that

P =
�
x 2 RE : Ax  b

 
(9.1)

Thus, P is intersection of finitely many (`) affine halfspaces, which are
of the form aix  bi where ai is a row vector and bi a real scalar.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 9 - April 23rd, 2018 F8/58 (pg.9/178)

IEKM



Polyhedra Matroid Polytopes Matroids ! Polymatroids

Convex Polyhedra

Convex polyhedra a rich topic, we will only draw what we need.

Definition 9.3.1
A subset P ✓ RE = Rm is a polyhedron if there exists an `⇥m matrix A

and vector b 2 R` (for some ` � 0) such that

P =
�
x 2 RE : Ax  b

 
(9.1)

Thus, P is intersection of finitely many (`) affine halfspaces, which are
of the form aix  bi where ai is a row vector and bi a real scalar.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 9 - April 23rd, 2018 F8/58 (pg.10/178)

*



Polyhedra Matroid Polytopes Matroids ! Polymatroids

Convex Polytope

A polytope is defined as follows

Definition 9.3.2
A subset P ✓ RE = Rm is a polytope if it is the convex hull of finitely many
vectors in RE . That is, if 9, x1, x2, . . . , xk 2 RE such that for all x 2 P ,
there exits {�i} with

P
i �i = 1 and �i � 0 8i with x =

P
i �ixi.

We define the convex hull operator as follows:

conv(x1, x2, . . . , xk)
def
=

(
kX

i=1

�ixi : 8i, �i � 0, and
X

i

�i = 1

)

(9.2)
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Polyhedra Matroid Polytopes Matroids ! Polymatroids

Convex Polytope - key representation theorem

A polytope can be defined in a number of ways, two of which include

Theorem 9.3.3
A subset P ✓ RE

is a polytope if‌f it can be described in either of the

following (equivalent) ways:

P is the convex hull of a finite set of points.

If it is a bounded intersection of halfspaces, that is there exits matrix A and
vector b such that

P = {x : Ax  b} (9.3)

This result follows directly from results proven by Fourier, Motzkin,
Farkas, and Carátheodory.
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Polyhedra Matroid Polytopes Matroids ! Polymatroids

Linear Programming

Theorem 9.3.4 (weak duality)
Let A be a matrix and b and c vectors, then

max {c|x|Ax  b}  min {y|b : y � 0, y|A = c
|} (9.4)

Theorem 9.3.5 (strong duality)
Let A be a matrix and b and c vectors, then

max {c|x|Ax  b} = min {y|b : y � 0, y|A = c
|} (9.5)
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Polyhedra Matroid Polytopes Matroids ! Polymatroids

Linear Programming duality forms

There are many ways to construct the dual. For example,

max {c|x|x � 0, Ax  b} = min {y|b|y � 0, y|A � c
|} (9.6)

max {c|x|x � 0, Ax = b} = min {y|b|y|A � c
|} (9.7)

min {c|x|x � 0, Ax � b} = max {y|b|y � 0, y|A  c
|} (9.8)

min {c|x|Ax � b} = max {y|b|y � 0, y|A = c
|} (9.9)
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Polyhedra Matroid Polytopes Matroids ! Polymatroids

Linear Programming duality forms

How to form the dual in general? We quote V. Vazirani (2001)

Intuitively, why is [one set of equations] the dual of [another quite

different set of equations]? In our experience, this is not the right

question to be asked. As stated in Section 12.1, there is a purely

mechanical procedure for obtaining the dual of a linear program.

Once the dual is obtained, one can devise intuitive, and possibly

physical meaningful, ways of thinking about it. Using this mechani-

cal procedure, one can obtain the dual of a complex linear program

in a fairly straightforward manner. Indeed, the LP-duality-based

approach derives its wide applicability from this fact.

Also see the text “Convex Optimization” by Boyd and Vandenberghe,
chapter 5, for a great discussion on duality and easy mechanical ways to
construct it.
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Polyhedra Matroid Polytopes Matroids ! Polymatroids

Vector, modular, incidence

Recall, any vector x 2 RE can be seen as a normalized modular
function, as for any A ✓ E, we have

x(A) =
X

a2A
xa (9.10)

Given an A ✓ E, define the incidence vector 1A 2 {0, 1}E on the unit
hypercube as follows:

1A
def
=

n
x 2 {0, 1}E : xi = 1 if‌f i 2 A

o
(9.11)

equivalently,

1A(j)
def
=

(
1 if j 2 A

0 if j /2 A
(9.12)
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Polyhedra Matroid Polytopes Matroids ! Polymatroids

Review from Lecture 6

The next slide is review from lecture 6.
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Polyhedra Matroid Polytopes Matroids ! Polymatroids

Matroid

Slight modification (non unit increment) that is equivalent.

Definition 9.4.3 (Matroid-II)

A set system (E, I) is a Matroid if
(I1’) ; 2 I
(I2’) 8I 2 I, J ⇢ I ) J 2 I (down-closed or subclusive)
(I3’) 8I, J 2 I, with |I| > |J |, then there exists x 2 I \ J such that

J [ {x} 2 I

Note (I1)=(I1’), (I2)=(I2’), and we get (I3)⌘(I3’) using induction.
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Polyhedra Matroid Polytopes Matroids ! Polymatroids

Independence Polyhedra

For each I 2 I of a matroid M = (E, I), we can form the incidence
vector 1I .

Taking the convex hull, we get the independent set polytope, that is

Pind. set = conv

(
[

I2I
{1I}

)
✓ [0, 1]E (9.13)

Since {1I : I 2 I} ✓ Pind. set ✓ P
+
r , we have max {w(I) : I 2 I} 

max {w|
x : x 2 Pind. set}  max {w|

x : x 2 P
+
r }

Now take the rank function r of M , and define the following
polyhedron:

P
+
r ,

�
x 2 RE : x � 0, x(A)  r(A), 8A ✓ E

 
(9.14)

Now, take any x 2 Pind. set, then we have that x 2 P
+
r (or

Pind. set ✓ P
+
r ). We show this next.
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Polyhedra Matroid Polytopes Matroids ! Polymatroids

Pind. set ✓ P+
r

If x 2 Pind. set, then

x =
X

i

�i1Ii (9.15)

for some appropriate vector � = (�1,�2, . . . ,�n).

Clearly, for such x, x � 0.
Now, for any A ✓ E,

x(A) = x
|1A =

X

i

�i1Ii
|1A (9.16)


X

i

�i max
j:Ij✓A

1Ij (E) (9.17)

= max
j:Ij✓A

1Ij (E) = max
I2I

|A \ I| (9.18)

= r(A) (9.19)

Thus, x 2 P
+
r and hence Pind. set ✓ P

+
r .
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+
r .
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Matroid Polyhedron in 2D

P
+
r =

�
x 2 RE : x � 0, x(A)  r(A), 8A ✓ E

 
(9.20)

Consider this in two dimensions. We have equations of the form:

x1 � 0 and x2 � 0 (9.21)
x1  r({v1}) 2 {0, 1} (9.22)
x2  r({v2}) 2 {0, 1} (9.23)

x1 + x2  r({v1, v2}) 2 {0, 1, 2} (9.24)

Because r is submodular, we have

r({v1}) + r({v2}) � r({v1, v2}) + r(;) (9.25)

so since r({v1, v2})  r({v1}) + r({v2}), the last inequality is either
touching (r(v1, v2) = r(v1) + r(v2), inactive) or active.
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Matroid Polyhedron in 2D
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Matroid Polyhedron in 2D

x1 � 0

x2 � 0

x1  r({v1})

x2  r({v2})
x
1 +

x
2 

r({v
1 , v

2 })
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Matroid Polyhedron in 2D

x1

x2

r(v1)=1

r(v2)=1
x1 + = 1x2 = r({v1, v2})
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Matroid Polyhedron in 2D

x1

x2

= 0r({v1, v2})
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Matroid Polyhedron in 2D

x1 + = 2x2 = r({v1, v2})

x1

x2

r(v1)=1

r(v2)=1
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Matroid Polyhedron in 2D

r(v1)=1

r(v2)=0

= 1r({v1, v2})

x1

x2

And, if v2 is a loop ...
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Matroid Polyhedron in 2D

x1

x2

x1

x2

r(v1)=1

r(v1)=1

r(v2)=1

r(v2)=0

x1 + = 2x2 = r({v1, v2})

x1 + = 1x2 = r({v1, v2})

= 1r({v1, v2})

= 0r({v1, v2})

x1

x2

x1

x2

r(v1)=1

r(v2)=1

x1 � 0

x2 � 0

x1  r({v1})

x2  r({v2})
x
1 +

x
2 

r({v
1 , v

2 })

And, if v2 is a loop ...
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Matroid Polyhedron in 2D

x1 � 0

x2 � 0

x1  r({v1})

x2  r({v2})

x1 + x2  r({v1, v2})
Poss

ible

N
ot
Possible

Not
Possible
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Matroid Polyhedron in 3D

P
+
r =

�
x 2 RE : x � 0, x(A)  r(A), 8A ✓ E

 
(9.26)

Consider this in three dimensions. We have equations of the form:

x1 � 0 and x2 � 0 and x3 � 0 (9.27)
x1  r({v1}) (9.28)
x2  r({v2}) (9.29)
x3  r({v3}) (9.30)

x1 + x2  r({v1, v2}) (9.31)
x2 + x3  r({v2, v3}) (9.32)
x1 + x3  r({v1, v3}) (9.33)

x1 + x2 + x3  r({v1, v2, v3}) (9.34)
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Matroid Polyhedron in 3D

Consider the simple cycle matroid on a graph consisting of a 3-cycle,
G = (V,E) with matroid M = (E, I) where I 2 I is a forest.

So any set of either one or two edges is independent, and has rank
equal to cardinality.
The set of three edges is dependent, and has rank 2.
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Matroid Polyhedron in 3D

Consider the simple cycle matroid on a graph consisting of a 3-cycle,
G = (V,E) with matroid M = (E, I) where I 2 I is a forest.
So any set of either one or two edges is independent, and has rank
equal to cardinality.

The set of three edges is dependent, and has rank 2.
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Matroid Polyhedron in 3D
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So any set of either one or two edges is independent, and has rank
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Matroid Polyhedron in 3D

Two view of P+
r associated with a matroid

({e1, e2, e3}, {;, {e1}, {e2}, {e3}, {e1, e2}, {e1, e3}, {e2, e3}}).
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Matroid Polyhedron in 3D

P
+
r associated with the “free” matroid in 3D.
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Matroid Polyhedron in 3D

P
+
r associated with the “free” matroid in 3D.

0
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Another Polytope in 3D

Thought question: what kind of polytope might this be?
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Another Polytope in 3D

Thought question: what kind of polytope might this be?
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Matroid Independence Polyhedron

So recall from a moment ago, that we have that

Pind. set = conv {[I2I{1I}}
✓ P

+
r =

�
x 2 RE : x � 0, x(A)  r(A), 8A ✓ E

 
(9.35)

In fact, the two polyhedra are identical (and thus both are polytopes).
We’ll show this in the next few theorems.
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Maximum weight independent set via greedy weighted rank

Theorem 9.4.1

Let M = (V, I) be a matroid, with rank function r, then for any weight

function w 2 RV
+, there exists a chain of sets U1 ⇢ U2 ⇢ · · · ⇢ Un ✓ V

such that

max {w(I)|I 2 I} =
nX

i=1

�ir(Ui) (9.36)

where �i � 0 satisfy

w =
nX

i=1

�i1Ui (9.37)
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Maximum weight independent set via weighted rank

Proof.
Firstly, note that for any such w 2 RE , we have

0

BBB@

w1

w2
...
wn

1

CCCA
=
�
w1 � w2

�

0

BBB@

1
0
...
0

1

CCCA
+
�
w2 � w3

�

0

BBBBB@

1
1
0
...
0

1

CCCCCA
+

· · ·+
�
wn�1 � wn

�

0

BBBBB@

1
1
...
1
0

1

CCCCCA
+
�
wn

�

0

BBBBB@

1
1
...
1
1

1

CCCCCA
(9.38)

If we can take w in decreasing order (w1 � w2 � · · · � wn), then each
coefficient of the vectors is non-negative (except possibly the last one,
wn).

. . .
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Maximum weight independent set via weighted rank
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wn).
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Maximum weight independent set via weighted rank

Proof.
Now, again assuming w 2 RE

+, order the elements of V non-increasing
by w so (v1, v2, . . . , vn) such that w(v1) � w(v2) � · · · � w(vn)

Define the sets Ui based on this order as follows, for i = 0, . . . , n

Ui
def
= {v1, v2, . . . , vi} (9.39)

Define the set I as those elements where the rank increases, i.e.:

I
def
= {vi|r(Ui) > r(Ui�1)}. (9.40)

Hence, given an i with vi /2 I, r(Ui) = r(Ui�1).
Therefore, I is the output of the greedy algorithm for
max {w(I)|I 2 I}.
And therefore, I is a maximum weight independent set (can even be a
base, actually).

. . .
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Maximum weight independent set via weighted rank

Proof.
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+, order the elements of V non-increasing
by w so (v1, v2, . . . , vn) such that w(v1) � w(v2) � · · · � w(vn)

Define the sets Ui based on this order as follows, for i = 0, . . . , n

Ui
def
= {v1, v2, . . . , vi} (9.39)

Note that U0 = ; and

1U0 =

0

BBB@

0
0
...
0

1

CCCA
,1U1 =

0

BBBBB@

1
0
0
...
0

1

CCCCCA
, . . . ,1U` =

0

BBBBBBBBBBBBBB@

1
9
>>=

>>;
`⇥1

...
1
0

9
>>>>=

>>>>;

(n� `)⇥0
...
0

1

CCCCCCCCCCCCCCA

, etc.

(9.40)

Define the set I as those elements where the rank increases, i.e.:

I
def
= {vi|r(Ui) > r(Ui�1)}. (9.41)

Hence, given an i with vi /2 I, r(Ui) = r(Ui�1).
Therefore, I is the output of the greedy algorithm for
max {w(I)|I 2 I}.
And therefore, I is a maximum weight independent set (can even be a
base, actually).

. . .
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Maximum weight independent set via weighted rank

Proof.
Now, again assuming w 2 RE

+, order the elements of V non-increasing
by w so (v1, v2, . . . , vn) such that w(v1) � w(v2) � · · · � w(vn)

Define the sets Ui based on this order as follows, for i = 0, . . . , n

Ui
def
= {v1, v2, . . . , vi} (9.39)

Define the set I as those elements where the rank increases, i.e.:

I
def
= {vi|r(Ui) > r(Ui�1)}. (9.40)

Hence, given an i with vi /2 I, r(Ui) = r(Ui�1).
Therefore, I is the output of the greedy algorithm for
max {w(I)|I 2 I}. since items vi are ordered decreasing by w(vi), and we only
choose the ones that increase the rank, which means they don’t violate
independence.

And therefore, I is a maximum weight independent set (can even be a
base, actually).

. . .
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Maximum weight independent set via weighted rank

Proof.
Now, we define �i as follows

0  �i
def
= w(vi)� w(vi+1) for i = 1, . . . , n� 1 (9.41)

�n
def
= w(vn) (9.42)

And the weight of the independent set w(I) is given by

w(I) =
X

v2I
w(v) =

nX

i=1

w(vi)
�
r(Ui)� r(Ui�1)

�
(9.43)

= w(vn)r(Un) +
n�1X

i=1

�
w(vi)� w(vi+1)

�
r(Ui) =

nX

i=1

�ir(Ui)

(9.44)

Since we ordered v1, v2, . . . non-increasing by w, for all i, and since
w 2 RE

+, we have �i � 0

. . .
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w 2 RE

+, we have �i � 0
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Linear Program LP

Consider the linear programming primal problem

maximize w
|
x

subject to xv � 0 (v 2 V )

x(U)  r(U) (8U ✓ V )

(9.45)

And its convex dual (note y 2 R2n
+ , yU is a scalar element within this

exponentially big vector):

minimize
P

U✓V yUr(U),

subject to yU � 0 (8U ✓ V )
P

U✓V yU1U � w

(9.46)

Thanks to strong duality, the solutions to these are equal to each other.
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Linear Program LP

Consider the linear programming primal problem

maximize w
|
x

s.t. xv � 0 (v 2 V )
x(U)  r(U) (8U ✓ V )

(9.47)

This is identical to the problem

maxw|
x such that x 2 P

+
r (9.48)

where, again, P+
r =

�
x 2 RE : x � 0, x(A)  r(A), 8A ✓ E

 
.

Therefore, since Pind. set ✓ P
+
r , the above problem can only have a

larger solution. I.e.,

maxw|
x s.t. x 2 Pind. set  maxw|

x s.t. x 2 P
+
r . (9.49)
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Polytope equivalence

Hence, we have the following relations:
max {w(I) : I 2 I}  max {w|

x : x 2 Pind. set} (9.50)
 max

�
w

|
x : x 2 P

+
r

 
(9.51)

def
= ↵min = min

8
<

:
X

U✓V

yUr(U) : 8U, yU � 0;
X

U✓V

yU1U � w

9
=

;

(9.52)
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Polytope equivalence

Hence, we have the following relations:
max {w(I) : I 2 I}  max {w|

x : x 2 Pind. set} (9.50)
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�
w

|
x : x 2 P

+
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(9.51)
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= ↵min = min

8
<

:
X

U✓V

yUr(U) : 8U, yU � 0;
X

U✓V

yU1U � w

9
=

;

(9.52)Theorem 9.4.1 states that

max {w(I) : I 2 I} =
nX

i=1

�ir(Ui) (9.53)

for the chain of Ui’s and �i � 0 that satisfies w =
Pn

i=1 �i1Ui (i.e., the
r.h.s. of Eq. 9.53 is feasible w.r.t. the dual LP).

Therefore, we also have max {w(I) : I 2 I}  ↵min and

max {w(I) : I 2 I} =
nX

i=1

�ir(Ui) � ↵min (9.54)
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9
=
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(9.52)
Therefore, all the inequalities above are equalities.

And since w 2 RE
+ is an arbitrary direction into the positive orthant, we see

that P+
r = Pind. set

That is, we have just proven:

Theorem 9.4.2

P
+
r = Pind. set (9.55)
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Polytope Equivalence (Summarizing the above)

For each I 2 I of a matroid M = (E, I), we can form the incidence
vector 1I .

Taking the convex hull, we get the independent set polytope, that is

Pind. set = conv {[I2I{1I}} (9.56)

Now take the rank function r of M , and define the following polytope:

P
+
r =

�
x 2 RE : x � 0, x(A)  r(A), 8A ✓ E

 
(9.57)

Theorem 9.4.3

P
+
r = Pind. set (9.58)
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Greedy solves a linear programming problem

So we can describe the independence polytope of a matroid using the
set of inequalities (an exponential number of them).

In fact, considering equations starting at Eq 9.50, the LP problem with
exponential number of constraints max {w|

x : x 2 P
+
r } is identical to

the maximum weight independent set problem in a matroid, and since
greedy solves the latter problem exactly, we have also proven:

Theorem 9.4.4
The LP problem max {w|

x : x 2 P
+
r } can be solved exactly using the

greedy algorithm.

Note that this LP problem has an exponential number of constraints
(since P

+
r is described as the intersection of an exponential number of

half spaces).

This means that if LP problems have certain structure, they can be
solved much easier than immediately implied by the equations.
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Base Polytope Equivalence

Consider convex hull of indicator vectors just of the bases of a matroid,
rather than all of the independent sets.

Consider a polytope defined by the following constraints:

x � 0 (9.59)
x(A)  r(A) 8A ✓ V (9.60)
x(V ) = r(V ) (9.61)

Note the third requirement, x(V ) = r(V ).
By essentially the same argument as above (Exercise:), we can shown
that the convex hull of the incidence vectors of the bases of a matroid
is a polytope that can be described by Eq. 9.59- 9.61 above.
What does this look like?
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Base Polytope Equivalence

Consider convex hull of indicator vectors just of the bases of a matroid,
rather than all of the independent sets.
Consider a polytope defined by the following constraints:

x � 0 (9.59)
x(A)  r(A) 8A ✓ V (9.60)
x(V ) = r(V ) (9.61)

Note the third requirement, x(V ) = r(V ).
By essentially the same argument as above (Exercise:), we can shown
that the convex hull of the incidence vectors of the bases of a matroid
is a polytope that can be described by Eq. 9.59- 9.61 above.
What does this look like?
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Spanning set polytope

Recall, a set A is spanning in a matroid M = (E, I) if r(A) = r(E).

Consider convex hull of incidence vectors of spanning sets of a matroid
M , and call this Pspanning(M).

Theorem 9.4.5
The spanning set polytope is determined by the following equations:

0  xe  1 for e 2 E (9.62)
x(A) � r(E)� r(E \A) for A ✓ E (9.63)

Example of spanning set
polytope in 2D.
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Spanning set polytope

Recall, a set A is spanning in a matroid M = (E, I) if r(A) = r(E).
Consider convex hull of incidence vectors of spanning sets of a matroid
M , and call this Pspanning(M).

Theorem 9.4.5
The spanning set polytope is determined by the following equations:

0  xe  1 for e 2 E (9.62)
x(A) � r(E)� r(E \A) for A ✓ E (9.63)

Example of spanning set
polytope in 2D.
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Spanning set polytope

Recall, a set A is spanning in a matroid M = (E, I) if r(A) = r(E).
Consider convex hull of incidence vectors of spanning sets of a matroid
M , and call this Pspanning(M).

Theorem 9.4.5
The spanning set polytope is determined by the following equations:

0  xe  1 for e 2 E (9.62)
x(A) � r(E)� r(E \A) for A ✓ E (9.63)

Example of spanning set
polytope in 2D.

x1

x2

r(v1)=1

r(v2)=1

x1 + = 1x2 = r({v1, v2})
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Spanning set polytope

Proof.
Recall that any A is spanning in M if‌f E \A is independent in M

⇤ (the
dual matroid).

For any x 2 RE , we have that

x 2 Pspanning(M), 1� x 2 Pind. set(M
⇤) (9.64)

as we show next . . .

. . .
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Spanning set polytope

Proof.
Recall that any A is spanning in M if‌f E \A is independent in M

⇤ (the
dual matroid).
For any x 2 RE , we have that

x 2 Pspanning(M), 1� x 2 Pind. set(M
⇤) (9.64)

as we show next . . .

. . .
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Spanning set polytope

. . . proof continued.
This follows since if x 2 Pspanning(M), we can represent x as a convex
combination:

x =
X

i

�i1Ai (9.65)

where Ai is spanning in M .

Consider

1� x = 1E � x = 1E �
X

i

�i1Ai =
X

i

�i1E\Ai
, (9.66)

which follows since
P

i �i1 = 1E , so 1� x is a convex combination of
independent sets in M

⇤ and so 1� x 2 Pind. set(M
⇤).

. . .
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Spanning set polytope

. . . proof continued.
This follows since if x 2 Pspanning(M), we can represent x as a convex
combination:

x =
X

i

�i1Ai (9.65)

where Ai is spanning in M .
Consider

1� x = 1E � x = 1E �
X

i

�i1Ai =
X

i

�i1E\Ai
, (9.66)

which follows since
P

i �i1 = 1E , so 1� x is a convex combination of
independent sets in M

⇤ and so 1� x 2 Pind. set(M
⇤).

. . .
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Spanning set polytope

. . . proof continued.
which means, from the definition of Pind. set(M

⇤), that

1� x � 0 (9.67)
1A � x(A) = |A|� x(A)  rM⇤(A) for A ✓ E (9.68)

And we know the dual rank function is

rM⇤(A) = |A|+ rM (E \A)� rM (E) (9.69)

giving

x(A) � rM (E)� rM (E \A) for all A ✓ E (9.70)

. . .
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Spanning set polytope

. . . proof continued.
which means, from the definition of Pind. set(M

⇤), that

1� x � 0 (9.67)
1A � x(A) = |A|� x(A)  rM⇤(A) for A ✓ E (9.68)

And we know the dual rank function is

rM⇤(A) = |A|+ rM (E \A)� rM (E) (9.69)

giving

x(A) � rM (E)� rM (E \A) for all A ✓ E (9.70)
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Matroids
where are we going with this?

We’ve been discussing results about matroids (independence polytope,
etc.).

By now, it is clear that matroid rank functions are special cases of
submodular functions. We ultimately will be reviewing submodular
function minimization procedures, but in some cases it it worth showing
a result for a general submodular function first.
Henceforth, we will skip between submodular functions and matroids,
each lecture talking less about matroids specifically and taking more
about submodular functions more generally ...

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 9 - April 23rd, 2018 F38/58 (pg.108/178)



Polyhedra Matroid Polytopes Matroids ! Polymatroids
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function minimization procedures, but in some cases it it worth showing
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Matroids
where are we going with this?

We’ve been discussing results about matroids (independence polytope,
etc.).
By now, it is clear that matroid rank functions are special cases of
submodular functions. We ultimately will be reviewing submodular
function minimization procedures, but in some cases it it worth showing
a result for a general submodular function first.
Henceforth, we will skip between submodular functions and matroids,
each lecture talking less about matroids specifically and taking more
about submodular functions more generally ...
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Maximal points in a set

Regarding sets, a subset X of S is a maximal subset of S possessing a
given property P if X possesses property P and no set properly
containing X (i.e., any X

0 � X with X
0 \X ✓ V \X) possesses P.

Given any compact (essentially closed & bounded) set P ✓ RE , we say
that a vector x is maximal within P if it is the case that for any ✏ > 0,
and for all directions e 2 E, we have that

x+ ✏1e /2 P (9.71)
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Maximal points in a set

Regarding sets, a subset X of S is a maximal subset of S possessing a
given property P if X possesses property P and no set properly
containing X (i.e., any X

0 � X with X
0 \X ✓ V \X) possesses P.

Given any compact (essentially closed & bounded) set P ✓ RE , we say
that a vector x is maximal within P if it is the case that for any ✏ > 0,
and for all directions e 2 E, we have that
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Maximal points in a set

Regarding sets, a subset X of S is a maximal subset of S possessing a
given property P if X possesses property P and no set properly
containing X (i.e., any X

0 � X with X
0 \X ✓ V \X) possesses P.

Given any compact (essentially closed & bounded) set P ✓ RE , we say
that a vector x is maximal within P if it is the case that for any ✏ > 0,
and for all directions e 2 E, we have that

x+ ✏1e /2 P (9.71)

Examples of maximal regions (in red)
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Maximal points in a set

Regarding sets, a subset X of S is a maximal subset of S possessing a
given property P if X possesses property P and no set properly
containing X (i.e., any X

0 � X with X
0 \X ✓ V \X) possesses P.

Given any compact (essentially closed & bounded) set P ✓ RE , we say
that a vector x is maximal within P if it is the case that for any ✏ > 0,
and for all directions e 2 E, we have that

x+ ✏1e /2 P (9.71)

Examples of non-maximal regions (in green)
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Review from Lecture 6

The next slide comes from Lecture 6.
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Matroids, independent sets, and bases

Independent sets: Given a matroid M = (E, I), a subset A ✓ E is
called independent if A 2 I and otherwise A is called dependent.
A base of U ✓ E: For U ✓ E, a subset B ✓ U is called a base of U if
B is inclusionwise maximally independent subset of U . That is, B 2 I
and there is no Z 2 I with B ⇢ Z ✓ U .
A base of a matroid: If U = E, then a “base of E” is just called a base
of the matroid M (this corresponds to a basis in a linear space, or a
spanning forest in a graph, or a spanning tree in a connected graph).
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P -basis of x given compact set P ✓ RE
+

Definition 9.5.1 (subvector)
y is a subvector of x if y  x (meaning y(e)  x(e) for all e 2 E).

Definition 9.5.2 (P -basis)

Given a compact set P ✓ RE
+, for any x 2 RE

+, a subvector y of x is called
a P -basis of x if y maximal in P .
In other words, y is a P -basis of x if y is a maximal P -contained subvector
of x.

Here, by y being “maximal”, we mean that there exists no z > y (more
precisely, no z � y+ ✏1e for some e 2 E and ✏ > 0) having the properties of
y (the properties of y being: in P , and a subvector of x).
In still other words: y is a P -basis of x if:

1 y  x (y is a subvector of x); and
2 y 2 P and y + ✏1e /2 P for all e 2 E where y(e) < x(e) and 8✏ > 0 (y

is maximal P -contained).
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P -basis of x given compact set P ✓ RE
+

Definition 9.5.1 (subvector)
y is a subvector of x if y  x (meaning y(e)  x(e) for all e 2 E).

Definition 9.5.2 (P -basis)

Given a compact set P ✓ RE
+, for any x 2 RE

+, a subvector y of x is called
a P -basis of x if y maximal in P .
In other words, y is a P -basis of x if y is a maximal P -contained subvector
of x.

Here, by y being “maximal”, we mean that there exists no z > y (more
precisely, no z � y+ ✏1e for some e 2 E and ✏ > 0) having the properties of
y (the properties of y being: in P , and a subvector of x).
In still other words: y is a P -basis of x if:

1 y  x (y is a subvector of x); and
2 y 2 P and y + ✏1e /2 P for all e 2 E where y(e) < x(e) and 8✏ > 0 (y

is maximal P -contained).
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P -basis of x given compact set P ✓ RE
+

Definition 9.5.1 (subvector)
y is a subvector of x if y  x (meaning y(e)  x(e) for all e 2 E).

Definition 9.5.2 (P -basis)

Given a compact set P ✓ RE
+, for any x 2 RE

+, a subvector y of x is called
a P -basis of x if y maximal in P .
In other words, y is a P -basis of x if y is a maximal P -contained subvector
of x.

Here, by y being “maximal”, we mean that there exists no z > y (more
precisely, no z � y+ ✏1e for some e 2 E and ✏ > 0) having the properties of
y (the properties of y being: in P , and a subvector of x).

In still other words: y is a P -basis of x if:

1 y  x (y is a subvector of x); and
2 y 2 P and y + ✏1e /2 P for all e 2 E where y(e) < x(e) and 8✏ > 0 (y

is maximal P -contained).
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y is a subvector of x if y  x (meaning y(e)  x(e) for all e 2 E).

Definition 9.5.2 (P -basis)

Given a compact set P ✓ RE
+, for any x 2 RE

+, a subvector y of x is called
a P -basis of x if y maximal in P .
In other words, y is a P -basis of x if y is a maximal P -contained subvector
of x.

Here, by y being “maximal”, we mean that there exists no z > y (more
precisely, no z � y+ ✏1e for some e 2 E and ✏ > 0) having the properties of
y (the properties of y being: in P , and a subvector of x).
In still other words: y is a P -basis of x if:

1 y  x (y is a subvector of x); and
2 y 2 P and y + ✏1e /2 P for all e 2 E where y(e) < x(e) and 8✏ > 0 (y

is maximal P -contained).
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P -basis of x given compact set P ✓ RE
+

Definition 9.5.1 (subvector)
y is a subvector of x if y  x (meaning y(e)  x(e) for all e 2 E).

Definition 9.5.2 (P -basis)

Given a compact set P ✓ RE
+, for any x 2 RE

+, a subvector y of x is called
a P -basis of x if y maximal in P .
In other words, y is a P -basis of x if y is a maximal P -contained subvector
of x.

Here, by y being “maximal”, we mean that there exists no z > y (more
precisely, no z � y+ ✏1e for some e 2 E and ✏ > 0) having the properties of
y (the properties of y being: in P , and a subvector of x).
In still other words: y is a P -basis of x if:

1 y  x (y is a subvector of x); and

2 y 2 P and y + ✏1e /2 P for all e 2 E where y(e) < x(e) and 8✏ > 0 (y
is maximal P -contained).
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P -basis of x given compact set P ✓ RE
+

Definition 9.5.1 (subvector)
y is a subvector of x if y  x (meaning y(e)  x(e) for all e 2 E).

Definition 9.5.2 (P -basis)

Given a compact set P ✓ RE
+, for any x 2 RE

+, a subvector y of x is called
a P -basis of x if y maximal in P .
In other words, y is a P -basis of x if y is a maximal P -contained subvector
of x.

Here, by y being “maximal”, we mean that there exists no z > y (more
precisely, no z � y+ ✏1e for some e 2 E and ✏ > 0) having the properties of
y (the properties of y being: in P , and a subvector of x).
In still other words: y is a P -basis of x if:

1 y  x (y is a subvector of x); and
2 y 2 P and y + ✏1e /2 P for all e 2 E where y(e) < x(e) and 8✏ > 0 (y

is maximal P -contained).
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A vector form of rank

Recall the definition of rank from a matroid M = (E, I).

rank(A) = max {|I| : I ✓ A, I 2 I} = max
I2I

|A \ I| (9.72)

vector rank: Given a compact set P ✓ RE
+, we can define a form of

“vector rank” relative to this P in the following way: Given an x 2 RE ,
we define the vector rank, relative to P , as:

rank(x) = max (y(E) : y  x, y 2 P ) = max
y2P

(x ^ y)(E) (9.73)

where y  x is componentwise inequality (yi  xi, 8i), and where
(x ^ y) 2 RE

+ has (x ^ y)(i) = min(x(i), y(i)).
If Bx is the set of P -bases of x, than rank(x) = maxy2Bx y(E).
If x 2 P , then rank(x) = x(E) (x is its own unique self P -basis).
If xmin = minx2P x(E), and x  xmin what then? �1?
In general, might be hard to compute and/or have ill-defined properties.
Next, we look at an object that restrains and cultivates this form of rank.
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If xmin = minx2P x(E), and x  xmin what then? �1?
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A vector form of rank

Recall the definition of rank from a matroid M = (E, I).
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|A \ I| (9.72)

vector rank: Given a compact set P ✓ RE
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we define the vector rank, relative to P , as:
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+ has (x ^ y)(i) = min(x(i), y(i)).
If Bx is the set of P -bases of x, than rank(x) = maxy2Bx y(E).
If x 2 P , then rank(x) = x(E) (x is its own unique self P -basis).
If xmin = minx2P x(E), and x  xmin what then? �1?

In general, might be hard to compute and/or have ill-defined properties.
Next, we look at an object that restrains and cultivates this form of rank.
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If xmin = minx2P x(E), and x  xmin what then? �1?
In general, might be hard to compute and/or have ill-defined properties.
Next, we look at an object that restrains and cultivates this form of rank.
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Polymatroidal polyhedron (or a “polymatroid”)

Definition 9.5.3 (polymatroid)

A polymatroid is a compact set P ✓ RE
+ satisfying

1 0 2 P

2 If y  x 2 P then y 2 P (called down monotone).
3 For every x 2 RE

+, any maximal vector y 2 P with y  x (i.e., any
P -basis of x), has the same component sum y(E)
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Polymatroidal polyhedron (or a “polymatroid”)

Definition 9.5.3 (polymatroid)

A polymatroid is a compact set P ✓ RE
+ satisfying

1 0 2 P

2 If y  x 2 P then y 2 P (called down monotone).
3 For every x 2 RE

+, any maximal vector y 2 P with y  x (i.e., any
P -basis of x), has the same component sum y(E)

Condition 3 restated: That is for any two distinct maximal vectors
y
1
, y

2 2 P , with y
1  x & y

2  x, with y
1 6= y

2, we must have
y
1(E) = y

2(E).

Condition 3 restated (again): For every vector x 2 RE
+, every maximal

independent (i.e., 2 P ) subvector y of x has the same component sum
y(E) = rank(x).
Condition 3 restated (yet again): All P -bases of x have the same
component sum.
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Condition 3 restated (yet again): All P -bases of x have the same
component sum.
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Definition 9.5.3 (polymatroid)

A polymatroid is a compact set P ✓ RE
+ satisfying
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3 For every x 2 RE

+, any maximal vector y 2 P with y  x (i.e., any
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Polymatroidal polyhedron (or a “polymatroid”)

Definition 9.5.3 (polymatroid)

A polymatroid is a compact set P ✓ RE
+ satisfying

1 0 2 P

2 If y  x 2 P then y 2 P (called down monotone).
3 For every x 2 RE

+, any maximal vector y 2 P with y  x (i.e., any
P -basis of x), has the same component sum y(E)

Vectors within P (i.e., any y 2 P ) are called independent, and any
vector outside of P is called dependent.

Since all P -bases of x have the same component sum, if Bx is the set
of P -bases of x, than rank(x) = y(E) for any y 2 Bx.
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Polymatroidal polyhedron (or a “polymatroid”)

Definition 9.5.3 (polymatroid)

A polymatroid is a compact set P ✓ RE
+ satisfying

1 0 2 P

2 If y  x 2 P then y 2 P (called down monotone).
3 For every x 2 RE

+, any maximal vector y 2 P with y  x (i.e., any
P -basis of x), has the same component sum y(E)

Vectors within P (i.e., any y 2 P ) are called independent, and any
vector outside of P is called dependent.
Since all P -bases of x have the same component sum, if Bx is the set
of P -bases of x, than rank(x) = y(E) for any y 2 Bx.
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Matroid and Polymatroid: side-by-side

A Matroid is:

1 a set system (E, I)
2 empty-set containing ; 2 I
3 down closed, ; ✓ I

0 ✓ I 2 I ) I
0 2 I.

4 any maximal set I in I, bounded by another set A, has the same
matroid rank (any maximal independent subset I ✓ A has same size
|I|).

A Polymatroid is:

1 a compact set P ✓ RE
+

2 zero containing, 0 2 P

3 down monotone, 0  y  x 2 P ) y 2 P

4 any maximal vector y in P , bounded by another vector x, has the same
vector rank (any maximal independent subvector y  x has same sum
y(E)).
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Matroid and Polymatroid: side-by-side
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matroid rank (any maximal independent subset I ✓ A has same size
|I|).
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4 any maximal vector y in P , bounded by another vector x, has the same
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Matroid and Polymatroid: side-by-side

A Matroid is:
1 a set system (E, I)
2 empty-set containing ; 2 I

3 down closed, ; ✓ I
0 ✓ I 2 I ) I

0 2 I.
4 any maximal set I in I, bounded by another set A, has the same

matroid rank (any maximal independent subset I ✓ A has same size
|I|).

A Polymatroid is:
1 a compact set P ✓ RE

+

2 zero containing, 0 2 P

3 down monotone, 0  y  x 2 P ) y 2 P

4 any maximal vector y in P , bounded by another vector x, has the same
vector rank (any maximal independent subvector y  x has same sum
y(E)).
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Matroid and Polymatroid: side-by-side

A Matroid is:
1 a set system (E, I)
2 empty-set containing ; 2 I
3 down closed, ; ✓ I

0 ✓ I 2 I ) I
0 2 I.

4 any maximal set I in I, bounded by another set A, has the same
matroid rank (any maximal independent subset I ✓ A has same size
|I|).

A Polymatroid is:
1 a compact set P ✓ RE

+

2 zero containing, 0 2 P

3 down monotone, 0  y  x 2 P ) y 2 P

4 any maximal vector y in P , bounded by another vector x, has the same
vector rank (any maximal independent subvector y  x has same sum
y(E)).
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Matroid and Polymatroid: side-by-side

A Matroid is:
1 a set system (E, I)
2 empty-set containing ; 2 I
3 down closed, ; ✓ I

0 ✓ I 2 I ) I
0 2 I.

4 any maximal set I in I, bounded by another set A, has the same
matroid rank (any maximal independent subset I ✓ A has same size
|I|).

A Polymatroid is:
1 a compact set P ✓ RE

+

2 zero containing, 0 2 P

3 down monotone, 0  y  x 2 P ) y 2 P

4 any maximal vector y in P , bounded by another vector x, has the same
vector rank (any maximal independent subvector y  x has same sum
y(E)).
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Polymatroidal polyhedron (or a “polymatroid”)

x

{ xpossible y possible y
y1

y2

y1

y2P P

Left: 9 multiple maximal y  x Right: 9 only one maximal y  x,

Polymatroid condition here: 8 maximal y 2 P, with y  x (which here
means y1  x1 and y2  x2), we just have y(E) = y1 + y2 = const.

On the left, we see there are multiple possible maximal y 2 P such that
y  x. Each such y must have the same value y(E).
On the right, there is only one maximal y 2 P . Since there is only one,
the condition on the same value of y(E), 8y is vacuous.
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Polymatroidal polyhedron (or a “polymatroid”)
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Left: 9 multiple maximal y  x Right: 9 only one maximal y  x,

Polymatroid condition here: 8 maximal y 2 P, with y  x (which here
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On the left, we see there are multiple possible maximal y 2 P such that
y  x. Each such y must have the same value y(E).

On the right, there is only one maximal y 2 P . Since there is only one,
the condition on the same value of y(E), 8y is vacuous.
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Polymatroidal polyhedron (or a “polymatroid”)
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{ xpossible y possible y
y1

y2
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y2P P

Left: 9 multiple maximal y  x Right: 9 only one maximal y  x,

Polymatroid condition here: 8 maximal y 2 P, with y  x (which here
means y1  x1 and y2  x2), we just have y(E) = y1 + y2 = const.
On the left, we see there are multiple possible maximal y 2 P such that
y  x. Each such y must have the same value y(E).
On the right, there is only one maximal y 2 P . Since there is only one,
the condition on the same value of y(E), 8y is vacuous.
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Polymatroidal polyhedron (or a “polymatroid”)

x
possible y

y1

y2 P

9 only one maximal y  x.

If x 2 P already, then x is its own P -basis, i.e., it is a self P -basis.

In a matroid, a base of A is the maximally contained independent set.
If A is already independent, then A is a self-base of A (as we saw in
previous Lectures)
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Polymatroidal polyhedron (or a “polymatroid”)

x
possible y

y1

y2 P

9 only one maximal y  x.

If x 2 P already, then x is its own P -basis, i.e., it is a self P -basis.
In a matroid, a base of A is the maximally contained independent set.
If A is already independent, then A is a self-base of A (as we saw in
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Polymatroid as well?

x

possible y

y1

y2
P

{
x

possible y

y1

y2
P

{

Left and right: 9 multiple maximal y  x as indicated.

On the left, we see there are multiple possible maximal such y 2 P that
are y  x. Each such y must have the same value y(E), but since the
equation for the curve is y

2
1 + y

2
2 = const. 6= y1 + y2, we see this is

not a polymatroid.

On the right, we have a similar situation, just the set of potential
values that must have the y(E) condition changes, but the values of
course are still not constant.
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Polymatroid as well? no

x

possible y

y1

y2
P

{
x

possible y

y1

y2
P

{

Left and right: 9 multiple maximal y  x as indicated.

On the left, we see there are multiple possible maximal such y 2 P that
are y  x. Each such y must have the same value y(E), but since the
equation for the curve is y

2
1 + y

2
2 = const. 6= y1 + y2, we see this is

not a polymatroid.
On the right, we have a similar situation, just the set of potential
values that must have the y(E) condition changes, but the values of
course are still not constant.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 9 - April 23rd, 2018 F48/58 (pg.146/178)



Polyhedra Matroid Polytopes Matroids ! Polymatroids

Other examples: Polymatroid or not?

x x
x

x x x

x x x
x

x

x
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Some possible polymatroid forms in 2D

independent
vectors

dependent
vectors

dependent
vectors

P-base

P-bases

P-bases

dependent

vectors

dependent

vectors

independent

vectors

independent

vectors

45˚

45˚

P-bases
dependent

vectors

independent

vectors

P-bases
dependent

vectors

independent

vectors

45˚

It appears that we have five possible forms of polymatroid in 2D, when
neither of the elements {v1, v2} are self-dependent.

1 On the left: full dependence between v1 and v2

2 Next: full independence between v1 and v2

3 Next: partial independence between v1 and v2

4 Right two: other forms of partial independence between v1 and v2

- The P -bases (or single P -base in the middle case) are as indicated.
- Independent vectors are those within or on the boundary of the

polytope. Dependent vectors are exterior to the polytope.
- The set of P -bases for a polytope is called the base polytope.
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Polymatroidal polyhedron (or a “polymatroid”)

Note that if x contains any zeros (i.e., suppose that x 2 RE
+ has E \ S

s.t. x(E \ S) = 0, so S indicates the non-zero elements, or
S = supp(x)), then this also forces y(E \ S) = 0, so that
y(E) = y(S). This is true either for x 2 P or x /2 P .

Therefore, in this case, it is the non-zero elements of x, corresponding
to elements S (i.e., the support supp(x) of x), determine the common
component sum.
For the case of either x /2 P or right at the boundary of P , we might
give a “name” to this component sum, lets say f(S) for any given set S
of non-zero elements of x. We could name rank(1✏1S) , f(S) for ✏
small enough. What kind of function might f be?
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y(E) = y(S). This is true either for x 2 P or x /2 P .
Therefore, in this case, it is the non-zero elements of x, corresponding
to elements S (i.e., the support supp(x) of x), determine the common
component sum.

For the case of either x /2 P or right at the boundary of P , we might
give a “name” to this component sum, lets say f(S) for any given set S
of non-zero elements of x. We could name rank(1✏1S) , f(S) for ✏
small enough. What kind of function might f be?
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Polymatroid function and its polyhedron.

Definition 9.5.4
A polymatroid function is a real-valued function f defined on subsets of E
which is normalized, non-decreasing, and submodular. That is we have

1 f(;) = 0 (normalized)
2 f(A)  f(B) for any A ✓ B ✓ E (monotone non-decreasing)
3 f(A [B) + f(A \B)  f(A) + f(B) for any A,B ✓ E (submodular)

We can define the polyhedron P
+
f associated with a polymatroid function as

follows

P
+
f =

�
y 2 RE

+ : y(A)  f(A) for all A ✓ E
 

(9.74)

=
�
y 2 RE : y � 0, y(A)  f(A) for all A ✓ E

 
(9.75)
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Associated polyhedron with a polymatroid function

P
+
f =

�
x 2 RE : x � 0, x(A)  f(A), 8A ✓ E

 
(9.76)

Consider this in three dimensions. We have equations of the form:

x1 � 0 and x2 � 0 and x3 � 0 (9.77)
x1  f({v1}) (9.78)
x2  f({v2}) (9.79)
x3  f({v3}) (9.80)

x1 + x2  f({v1, v2}) (9.81)
x2 + x3  f({v2, v3}) (9.82)
x1 + x3  f({v1, v3}) (9.83)

x1 + x2 + x3  f({v1, v2, v3}) (9.84)
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Associated polyhedron with a polymatroid function

Consider the asymmetric graph cut function on the simple chain graph
v1 � v2 � v3. That is, f(S) = |{(v, s) 2 E(G) : v 2 V, s 2 S}| is count
of any edges within S or between S and V \ S, so that
�(S) = f(S) + f(V \ S)� f(V ) is the standard graph cut.

Observe: P
+
f (at two views):

which axis is which?
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Associated polyhedron with a polymatroid function

Consider: f(;) = 0, f({v1}) = 1.5, f({v2}) = 2, f({v1, v2}) = 2.5,
f({v3}) = 3, f({v3, v1}) = 3.5, f({v3, v2}) = 4, f({v3, v2, v1}) = 4.3.

Observe: P
+
f (at two views):

which axis is which?
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Associated polyhedron with a polymatroid function

Consider modular function w : V ! R+ as w = (1, 1.5, 2)|, and then
the submodular function f(S) =

p
w(S).

Observe: P
+
f (at two views):

which axis is which?
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Associated polytope with a non-submodular function

Consider function on integers: g(0) = 0, g(1) = 3, g(2) = 4, and
g(3) = 5.5.

Is f(S) = g(|S|) submodular? f(S) = g(|S|) is not
submodular since f({e1, e3}) + f({e1, e2}) = 4 + 4 = 8 but
f({e1, e2, e3}) + f({e1}) = 5.5 + 3 = 8.5. Alternatively, consider
concavity violation, 1 = g(1 + 1)� g(1) < g(2 + 1)� g(2) = 1.5.
Observe: P

+
f (at two views), maximal independent subvectors not

constant rank, hence not a polymatroid.
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A polymatroid vs. a polymatroid function’s polyhedron

Summarizing the above, we have:

Given a polymatroid function f , its associated polytope is given as

P
+
f =

�
y 2 RE

+ : y(A)  f(A) for all A ✓ E
 

(9.85)

We also have the definition of a polymatroidal polytope P (compact
subset, zero containing, down-monotone, and 8x any maximal
independent subvector y  x has same component sum y(E)).

Is there any relationship between these two polytopes?
In the next theorem, we show that any P

+
f -basis has the same

component sum, when f is a polymatroid function, and P
+
f satisfies

the other properties so that P+
f is a polymatroid.
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