

Class	Road	Map -	EE563

- L1(3/26): Motivation, Applications, & Basic Definitions,
 L2(3/28): Machine Learning Apps
- (diversity, complexity, parameter, learning target, surrogate).
- L3(4/2): Info theory exs, more apps, definitions, graph/combinatorial examples
- L4(4/4): Graph and Combinatorial Examples, Matrix Rank, Examples and Properties, visualizations
- L5(4/9): More Examples/Properties/ Other Submodular Defs., Independence,
- L6(4/11): Matroids, Matroid Examples, Matroid Rank, Partition/Laminar Matroids
- L7(4/16): Laminar Matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid Representation, Dual Matroids
- L8(4/18): Dual Matroids, Other Matroid Properties, Combinatorial Geometries, Matroids and Greedy.
- L9(4/23): Polyhedra, Matroid Polytopes, Matroids \rightarrow Polymatroids
- L10(4/29): Matroids \rightarrow Polymatroids, Polymatroids, Polymatroids and Greedy,

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.

L11(4/30):

• L12(5/2):

• L13(5/7):

• L14(5/9):

• L15(5/14):

• L16(5/16):

• L17(5/21):

• L18(5/23):

• L19(5/30):

maximization.

• L-(5/28): Memorial Day (holiday)

L21(6/4): Final Presentations

||||

System of Distinct Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V} = (V_i : i \in I)$ where $V_i \subseteq V$ for all i), and I is an index set. Hence, $|I| = |\mathcal{V}|$.
- A family $(v_i : i \in I)$ with $v_i \in V$ is said to be a system of <u>distinct</u> representatives of \mathcal{V} if \exists a bijection $\pi : I \leftrightarrow I$ such that $v_i \in V_{\pi(i)}$ and $v_i \neq v_j$ for all $i \neq j$.
- In a system of distinct representatives, there is a requirement for the representatives to be distinct. We can re-state (and rename) this as a:

Definition 8.2.1 (transversal)

Given a set system (V, \mathcal{V}) and index set I for \mathcal{V} as defined above, a set $T \subseteq V$ is a transversal of \mathcal{V} if there is a bijection $\pi : T \leftrightarrow I$ such that

$$x \in V_{\pi(x)}$$
 for all $x \in T$ (8.2)

 Note that due to π : T ↔ I being a bijection, all of I and T are "covered" (so this makes things distinct automatically).

Logistics

When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V} = (V_i : i \in I)$, and $V_i \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$V(J) = \cup_{j \in J} V_j \tag{8.2}$$

so $|V(J)|:2^I\to \mathbb{Z}_+$ is the set cover func. (we know is submodular). $\bullet\,$ We have

Theorem 8.2.1 (Hall's theorem)

Given a set system (V, \mathcal{V}) , the family of subsets $\mathcal{V} = (V_i : i \in I)$ has a transversal $(v_i : i \in I)$ iff for all $J \subseteq I$

$$|V(J)| \ge |J| \tag{8.3}$$

Review

Review

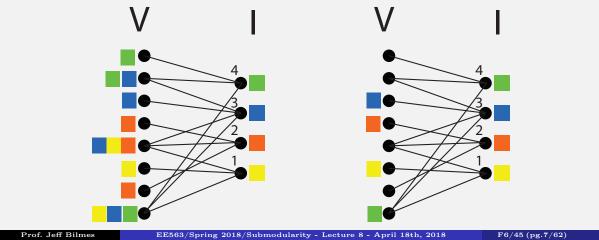
Logistics

When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V} = (V_i : i \in I)$, and $V_i \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$V(J) = \cup_{j \in J} V_j \tag{8.2}$$

so $|V(J)|: 2^I \to \mathbb{Z}_+$ is the set cover func. (we know is submodular). • Hall's theorem $(\forall J \subseteq I, |V(J)| \ge |J|)$ as a bipartite graph.



Logistics

When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V} = (V_i : i \in I)$, and $V_i \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$V(J) = \bigcup_{j \in J} V_j \tag{8.2}$$

so $|V(J)|: 2^I \to \mathbb{Z}_+$ is the set cover func. (we know is submodular). • Moreover, we have

Theorem 8.2.2 (Rado's theorem (1942))

If M = (V, r) is a matroid on V with rank function r, then the family of subsets $(V_i : i \in I)$ of V has a transversal $(v_i : i \in I)$ that is independent in \underline{M} iff for all $J \subseteq I$

$$r(V(J)) \ge |J| \tag{8.4}$$

• Note, a transversal T independent in M means that r(T) = |T|.

Review

Review

Application's of Hall's theorem

- Consider a set of jobs I and a set of applicants V to the jobs. If an applicant v ∈ V is qualified for job i ∈ I, we add edge (v, i) to the bipartite graph G = (V, I, E).
- We wish all jobs to be filled, and hence Hall's condition
 (∀J ⊆ I, |V(J)| ≥ |J|) is a necessary and sufficient condition for this
 to be possible.
- Note if |V| = |I|, then Hall's theorem is the Marriage Theorem (Frobenious 1917), where an edge (v, i) in the graph indicate compatibility between two individuals v ∈ V and i ∈ I coming from two separate groups V and I.
- If $\forall J \subseteq I, |V(J)| \ge |J|$, then all individuals in each group can be matched with a compatible mate.

More general conditions for existence of transversals

Theorem 8.2.1 (Polymatroid transversal theorem)

If $\mathcal{V} = (V_i : i \in I)$ is a finite family of non-empty subsets of V, and $f : 2^V \to \mathbb{Z}_+$ is a non-negative, integral, monotone non-decreasing, and submodular function, then \mathcal{V} has a system of representatives $(v_i : i \in I)$ such that

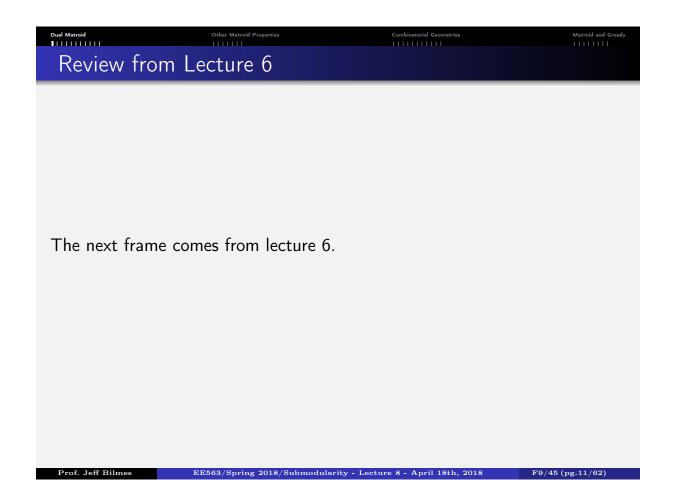
$$f(\bigcup_{i \in J} \{v_i\}) \ge |J| \text{ for all } J \subseteq I$$
(8.2)

if and only if

$$f(V(J)) \ge |J|$$
 for all $J \subseteq I$ (8.3)

- Given Theorem 8.2.1, we immediately get Theorem 8.2.1 by taking f(S) = |S| for $S \subseteq V$. In which case, Eq. 8.2 requires the system of representatives to be distinct.
- We get Theorem 8.2.2 by taking f(S) = r(S) for $S \subseteq V$, the rank function of the matroid. where, Eq. 8.2 insists the system of representatives is independent in M, and hence also distinct.

Review



Definition 8.3.3 (closed/flat/subspace)

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \setminus A$, $r(A \cup \{x\}) = r(A) + 1$.

Definition: A hyperplane is a flat of rank r(M) - 1.

Definition 8.3.4 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by $\operatorname{span}(A) = \{b \in E : r(A \cup \{b\}) = r(A)\}.$

Therefore, a closed set A has span(A) = A.

Definition 8.3.5 (circuit)

A subset $A \subseteq E$ is circuit or a cycle if it is an inclusionwise-minimal dependent set (i.e., if r(A) < |A| and for any $a \in A$, $r(A \setminus \{a\}) = |A| - 1$).

Spanning Sets

• We have the following definitions:

Definition 8.3.1 (spanning set of a set)

Given a matroid $\mathcal{M} = (V, \mathcal{I})$, and a set $Y \subseteq V$, then any set $X \subseteq Y$ such that r(X) = r(Y) is called a spanning set of Y.

Definition 8.3.2 (spanning set of a matroid)

Given a matroid $\mathcal{M} = (V, \mathcal{I})$, any set $A \subseteq V$ such that r(A) = r(V) is called a spanning set of the matroid.

- A base of a matroid is a minimal spanning set (and it is independent) but supersets of a base are also spanning.
- V is always trivially spanning.
- Consider the terminology: "spanning tree in a graph", comes from spanning in a matroid sense.

Dual Matroid Other Matroid Properties Combinatorial Geometries Matroid and Greedy Dual of a Matroid Matroid International Commentation of the second se

- Given a matroid M = (V, I), a dual matroid M* = (V, I*) can be defined on the same ground set V, but using a very different set of independent sets I*.
- We define the set of sets \mathcal{I}^* for M^* as follows:

 $\mathcal{I}^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \}$ (8.1)

$$= \{V \setminus S : S \subseteq V \text{ is a spanning set of } M\}$$
(8.2)

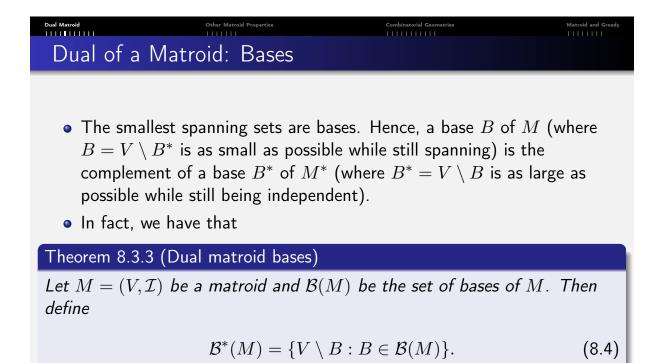
i.e., \mathcal{I}^* are complements of spanning sets of M.

• That is, a set A is independent in the dual matroid M^* if removal of A from V does not decrease the rank in M:

$$\mathcal{I}^* = \{A \subseteq V : \mathsf{rank}_M(V \setminus A) = \mathsf{rank}_M(V)\}$$
(8.3)

 In other words, a set A ⊆ V is independent in the dual M* (i.e., A ∈ I*) if A's complement is spanning in M (residual V \ A must contain a base in M).

• Dual of the dual: Note, we have that $(M^*)^* = M$.



Then $\mathcal{B}^*(M)$ is the set of basis of M^* (that is, $\mathcal{B}^*(M) = \mathcal{B}(M^*)$.

Dual Matroid Properties Combinatorial Connections Matroid and Greedy An exercise in duality Terminology B*(M), the bases of M*, are called cobases of M. The circuits of M* are called cocircuits of M.

- The hyperplanes of M^* are called cohyperplanes of M.
- The independent sets of M^* are called coindependent sets of M.
- The spanning sets of M^* are called cospanning sets of M.

Proposition 8.3.4 (from Oxley 2011)

Let $M = (V, \mathcal{I})$ be a matroid, and let $X \subseteq V$. Then

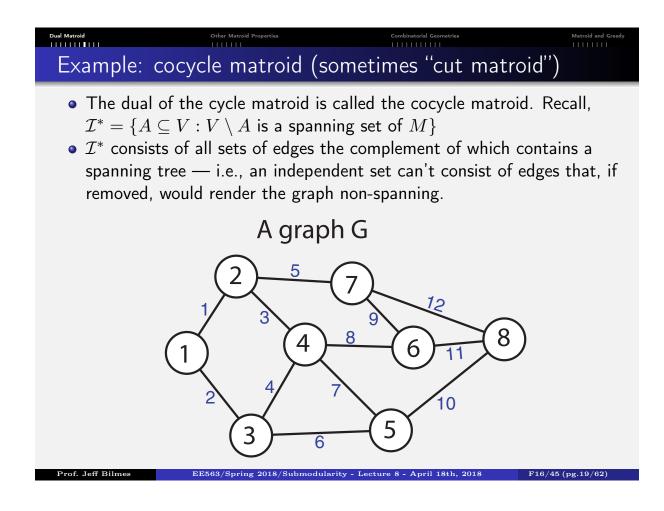
- X is independent in M iff $V \setminus X$ is cospanning in M (spanning in M^*).
- 2 X is spanning in M iff $V \setminus X$ is coindependent in M (independent in M^*).
- **③** X is a hyperplane in M iff $V \setminus X$ is a cocircuit in M (circuit in M^*).
- X is a circuit in M iff $V \setminus X$ is a cohyperplane in M (hyperplane in M^*).

Example duality: graphic matroid

- Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrates the extraordinary flexibility and power that a matroid can have.
- Recall, in cycle matroid, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest), a minimal spanning set is a spanning tree (or forest), and a circuit has a nice visual interpretation (a cycle in the graph).
- A cut in a graph G is a set of edges, the removal of which increases the number of connected components. I.e., $X \subseteq E(G)$ is a cut in G if $k(G) < k(G \setminus X).$
- A minimal cut in G is a cut $X \subseteq E(G)$ such that $X \setminus \{x\}$ is not a cut for any $x \in X$.
- A cocycle (cocircuit) in a graphic matroid is a minimal graph cut.
- A mincut is a circuit in the dual "cocycle" (or "cut") matroid.
- All dependent sets in a cocycle matroid are cuts (i.e., a dependent set is a minimal cut or contains one).

Other Matroid P Matroid and Example: cocycle matroid (sometimes "cut matroid")

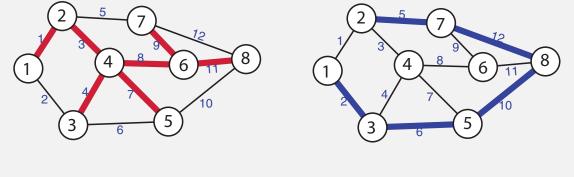
- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \}$
- \mathcal{I}^* consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.



- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{A \subseteq V : V \setminus A \text{ is a spanning set of } M\}$
- \mathcal{I}^* consists of all sets of edges the complement of which contains a spanning tree i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Minimally spanning in M (and thus a base (maximally independent) in M)

Maximally independent in M* (thus a base, minimally spanning, in M*)



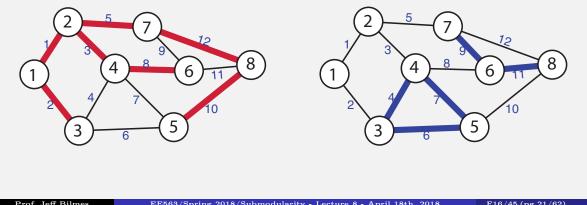
Example: cocycle matroid (sometimes "cut matroid")

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{A \subseteq V : V \setminus A \text{ is a spanning set of } M\}$
- \mathcal{I}^* consists of all sets of edges the complement of which contains a spanning tree i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Minimally spanning in M (and thus a base (maximally independent) in M)

Maximally independent in M* (thus a base, minimally spanning, in M*)

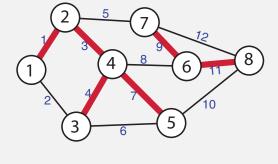
Matroid and



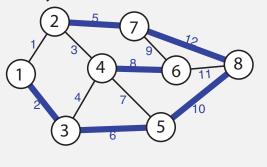
Dual Matroid Other Matroid Properties Combinatorial Geometries Matroid Example: cocycle matroid (sometimes "cut matroid")

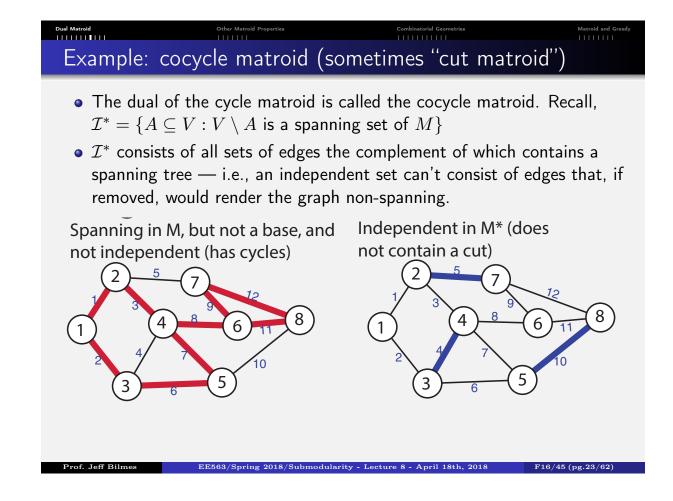
- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{A \subseteq V : V \setminus A \text{ is a spanning set of } M\}$
- *I*^{*} consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Independent but not spanning in M, and not closed in M.



Dependent in M* (contains a cocycle, is a nonminimal cut)

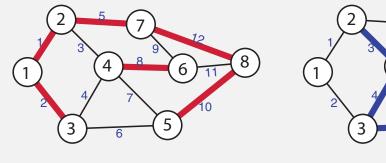




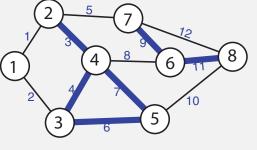
Dual Matroid Other Matroid Properties Combinatorial Geometries Matroid and Greedy Example: cocycle matroid (sometimes "cut matroid") "

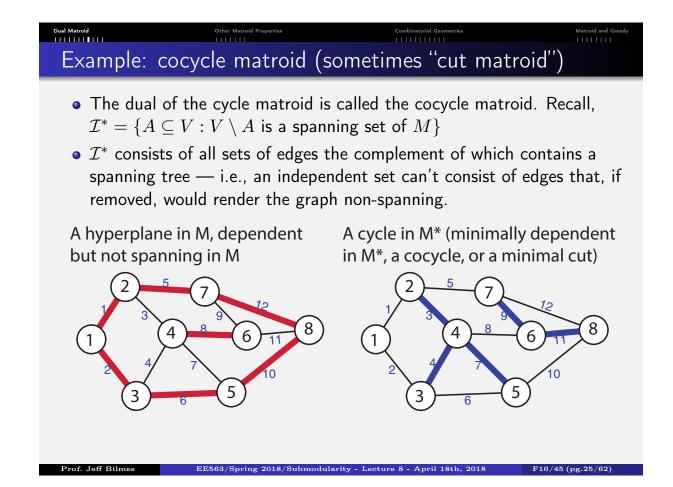
- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{A \subseteq V : V \setminus A \text{ is a spanning set of } M\}$
- \mathcal{I}^* consists of all sets of edges the complement of which contains a spanning tree i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Independent but not spanning in M, and not closed in M.



Dependent in M* (contains a cocycle, is a nonminimal cut)





Control (1997) Contr

Matroid and Example: cocycle matroid (sometimes "cut matroid") • The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \}$ • \mathcal{I}^* consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning. Cocycle matroid, independent Cycle Matroid - independent sets contain no cuts. sets have no cycles. 2 5 2 8 8

The dual of a matroid is (indeed) a matroid

Theorem 8.3.5

Given matroid $M = (V, \mathcal{I})$, let $M^* = (V, \mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.

Proof.

- Since $V \setminus \emptyset$ is spanning in primal, clearly $\emptyset \in \mathcal{I}^*$, so (I1') holds.
- Also, if I ⊆ J ∈ I^{*}, then clearly also I ∈ I^{*} since if V \ J is spanning in M, so must V \ I. Therefore, (I2') holds.
- Next, given $I, J \in \mathcal{I}^*$ with |I| < |J|, it must be the case that $\overline{I} = V \setminus I$ and $\overline{J} = V \setminus J$ are both spanning in M with $|\overline{I}| > |\overline{J}|$.

The dual of a matroid is (indeed) a matroid

Matroid and Greed

Matroid and G

Theorem 8.3.5

Given matroid $M = (V, \mathcal{I})$, let $M^* = (V, \mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.

Proof.

- Consider I, J ∈ I* with |I| < |J|. We need to show that there is some member v ∈ J \ I such that I + v is independent in M*, which means that V \ (I + v) = (V \ I) \ v = Ī v is still spanning in M. That is, removing v from V \ I doesn't make (V \ I) \ v not spanning in M.
- Since $V \setminus J$ is spanning in M, $V \setminus J$ contains some base (say $B_{\overline{J}} \subseteq V \setminus J$) of M. Also, $V \setminus I$ contains a base of M, say $B_{\overline{I}} \subseteq V \setminus I$.
- Since $B_{\bar{J}} \setminus I \subseteq V \setminus I$, and $B_{\bar{J}} \setminus I$ is independent in M, we can choose the base $B_{\bar{I}}$ of M s.t. $B_{\bar{J}} \setminus I \subseteq B_{\bar{I}} \subseteq V \setminus I$.
- Since $B_{\bar{J}}$ and J are disjoint, we have both: 1) $B_{\bar{J}} \setminus I$ and $J \setminus I$ are disjoint; and 2) $B_{\bar{J}} \cap I \subseteq I \setminus J$. Also note, $B_{\bar{I}}$ and I are disjoint.

EE563/Spring 2018/Submodularity - Lecture 8 - April 18th

The dual of a matroid is (indeed) a matroid

Theorem 8.3.5

Prof. Jeff Bilmes

Given matroid $M = (V, \mathcal{I})$, let $M^* = (V, \mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.

Proof.

• Now $J \setminus I \not\subseteq B_{\overline{I}}$, since otherwise (i.e., assuming $J \setminus I \subseteq B_{\overline{I}}$):

$$|B_{\bar{J}}| = |B_{\bar{J}} \cap I| + |B_{\bar{J}} \setminus I|$$
(8.5)

$$\leq |I \setminus J| + |B_{\bar{J}} \setminus I| \tag{8.6}$$

$$<|J\setminus I|+|B_{\bar{J}}\setminus I|\le |B_{\bar{I}}|$$
(8.7)

which is a contradiction. The last inequality on the right follows since $J \setminus I \subseteq B_{\bar{I}}$ (by assumption) and $B_{\bar{J}} \setminus I \subseteq B_{\bar{I}}$ implies that $(J \setminus I) \cup (B_{\bar{J}} \setminus I) \subseteq B_{\bar{I}}$, but since J and $B_{\bar{J}}$ are disjoint, we have that $|J \setminus I| + |B_{\bar{J}} \setminus I| \le |B_{\bar{I}}|$.

- Therefore, $J \setminus I \not\subseteq B_{\overline{I}}$, and there is a $v \in J \setminus I$ s.t. $v \notin B_{\overline{I}}$.
- So $B_{\bar{I}}$ is disjoint with $I \cup \{v\}$, means $B_{\bar{I}} \subseteq V \setminus (I \cup \{v\})$, or

 T7
 T4
 <thT4</th>
 T4
 T4
 T4</

Combinatorial Geometrie

Matroid and Greed

Matroid Duals and Representability

Theorem 8.3.6

Let M be an \mathbb{F} -representable matroid (i.e., one that can be represented by a finite sized matrix over field \mathbb{F}). Then M^* is also \mathbb{F} -representable.

Hence, for matroids as general as matric matroids, duality does not extend the space of matroids that can be used.

Theorem 8.3.7

Let M be a graphic matroid (i.e., one that can be represented by a graph G = (V, E)). Then M^* is not necessarily also graphic.

Hence, for graphic matroids, duality can increase the space and power of matroids, and since they are based on a graph, they are relatively easy to use: 1) all cuts are dependent sets; 2) minimal cuts are cycles; 3) bases of a cut are any one edge removed from minimal cuts; 4) independent sets are edges that are not cuts (minimal or otherwise); 5) bases of matroid are maximal non-cuts (non-cut containing edge sets).

Put MatrixOther Matrix d PropertiesCombinatorial GeometriesMatrix d and GreedyDual Matroid RankTheorem 8.3.8The rank function r_{M^*} of the dual matroid M^* may be specified in terms of
the rank r_M in matroid M as follows. For $X \subseteq V$: $r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V)$ (8.8)• Note, we again immediately see that this is submodular by the

- Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2. *I.e.*, |X| is modular, complement $f(V \setminus X)$ is submodular if f is submodular, $r_M(V)$ is a constant, and summing submodular functions and a constant preserves submodularity.
- Non-negativity integral follows since $|X| + r_M(V \setminus X) \ge r_M(X) + r_M(V \setminus X) \ge r_M(V)$. The right inequality follows since r_M is submodular.
- Monotone non-decreasing follows since, as X increases by one, |X| always increases by 1, while $r_M(V \setminus X)$ decreases by one or zero.
- Therefore, r_{M^*} is the rank function of a matroid. That it is the dual

Dual Matroid Rank

Theorem 8.3.8

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V)$$
 (8.8)

Proof.

A set X is independent in (V, r_{M^*}) if and only if

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V) = |X|$$
(8.9)

or

Prof. Jeff Bilmes

$$r_M(V \setminus X) = r_M(V) \tag{8.10}$$

F19/45 (pg.33/62)

Matroid and G

But a subset X is independent in M^* only if $V \setminus X$ is spanning in M (by the definition of the dual matroid).

EE563/Spring 2018/Submodularity - Lecture 8 - April 18th

Matroid restriction/deletion

• Let $M = (V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$\mathcal{I}_Y = \{ Z : Z \subseteq Y, Z \in \mathcal{I} \}$$
(8.11)

Combinatorial Geom

is such that $M_Y = (Y, \mathcal{I}_Y)$ is a matroid with rank $r(M_Y) = r(Y)$.

- This is called the restriction of M to Y, and is often written M|Y.
- If $Y = V \setminus X$, then we have that M|Y has the form:

$$\mathcal{I}_Y = \{ Z : Z \cap X = \emptyset, Z \in \mathcal{I} \}$$
(8.12)

is considered a deletion of X from M, and is often written $M \setminus X$.

- Hence, $M|Y = M \setminus (V \setminus Y)$, and $M|(V \setminus X) = M \setminus X$.
- The rank function is of the same form. I.e., $r_Y : 2^Y \to \mathbb{Z}_+$, where $r_Y(Z) = r(Z)$ for $Z \subseteq Y$, $Y = V \setminus X$.

Matroid contraction M/Z

- Contraction by Z is dual to deletion, and is like a forced inclusion of a contained base B_Z of Z, but with a similar ground set removal by Z. Contracting Z is written M/Z. Updated ground set in M/Z is V \ Z.
- Let Z ⊆ V and let B_Z be a base of Z. Then a subset I ⊆ V \ Z is independent in M/Z iff I ∪ B_Z is independent in M.
- The rank function takes the form

$$r_{M/Z}(Y) = r(Y \cup Z) - r(Z) = r(Y|Z)$$
(8.13)

$$= r(Y \cup B_Z) - r(B_Z) = r(Y|B_Z)$$
(8.14)

- So given $I \subseteq V \setminus Z$ and B_Z is a base of Z, $r_{M/Z}(I) = |I|$ is identical to $r(I \cup Z) = |I| + r(Z) = |I| + |B_Z|$. Since $r(I \cup Z) = r(I \cup B_Z)$, this implies $r(I \cup B_Z) = |I| + |B_Z|$, or $I \cup B_Z$ is independent in M.
- A minor of a matroid is any matroid obtained via a series of deletions and contractions of some matroid.
- In fact, it is the case $M/Z = (M^* \setminus Z)^*$ (Exercise: show why).

Dual Matroid Other Matroid Properties Combinatorial Geometries Matroid and Geometries Matroid Intersection Intersection

- Let $M_1 = (V, \mathcal{I}_1)$ and $M_2 = (V, \mathcal{I}_2)$ be two matroids. Consider their common independent sets $\mathcal{I}_1 \cap \mathcal{I}_2$.
- While (V, I₁ ∩ I₂) is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find max |X| such that both X ∈ I₁ and X ∈ I₂.

Theorem 8.4.1

Let M_1 and M_2 be given as above, with rank functions r_1 and r_2 . Then the size of the maximum size set in $\mathcal{I}_1 \cap \mathcal{I}_2$ is given by

$$(r_1 * r_2)(V) \triangleq \min_{X \subseteq V} \left(r_1(X) + r_2(V \setminus X) \right)$$
(8.15)

This is an instance of the convolution of two submodular functions, f_1 and f_2 that, evaluated at $Y \subseteq V$, is written as:

$$(f_1 * f_2)(Y) = \min_{X \subseteq Y} \Big(f_1(X) + f_2(Y \setminus X) \Big)$$
 (8.16)

Convolution and Hall's Theorem

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \ge |X|$.
- $\bullet \ \Leftrightarrow \ \ |\Gamma(X)| |X| \ge 0, \forall X$
- $\Leftrightarrow \quad \min_X |\Gamma(X)| |X| \ge 0$
- $\Leftrightarrow \quad \min_X |\Gamma(X)| + |V| |X| \ge |V|$
- $\Leftrightarrow \quad \min_X \Big(|\Gamma(X)| + |V \setminus X| \Big) \ge |V|$
- $\bullet \ \Leftrightarrow \quad [\Gamma(\cdot)*|\cdot|](V) \geq |V|$
- So Hall's theorem can be expressed as convolution. Exercise: define $g(A) = [\Gamma(\cdot) * | \cdot |](A)$, prove that g is submodular.
- Note, in general, convolution of two submodular functions does not preserve submodularity (but in certain special cases it does).

Dual Matroid	Other Matroid Properties	Combinatorial Geometries	Matroid and Greedy	
Matroid Uni	on			
Definition 8.4.2				
Let $M_1 = (V_1, \mathcal{I}_1)$, $M_2 = (V_2, \mathcal{I}_2)$,, $M_k = (V_k, \mathcal{I}_k)$ be matroids. We define the union of matroids as				
$M_1 \lor M_2 \lor \cdots \lor M_k = (V_1 \uplus V_2 \uplus \cdots \uplus V_k, \mathcal{I}_1 \lor \mathcal{I}_2 \lor \cdots \lor \mathcal{I}_k)$, where				
$I_1 \lor \mathcal{I}_2 \lor \cdots$	$\vee \mathcal{I}_k = \{I_1 \uplus I_2 \uplus \cdots$	$\cdot \uplus I_k I_1 \in \mathcal{I}_1, \dots, I_k \in \mathcal{I}_k \}$	} (8.17)	

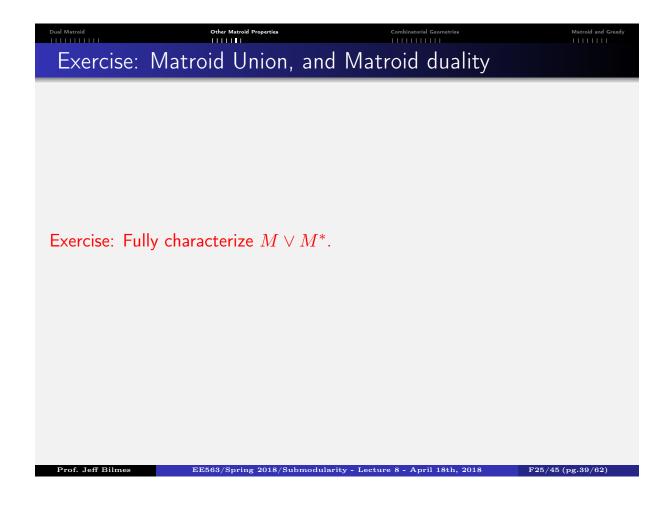
Note $A \uplus B$ designates the disjoint union of A and B.

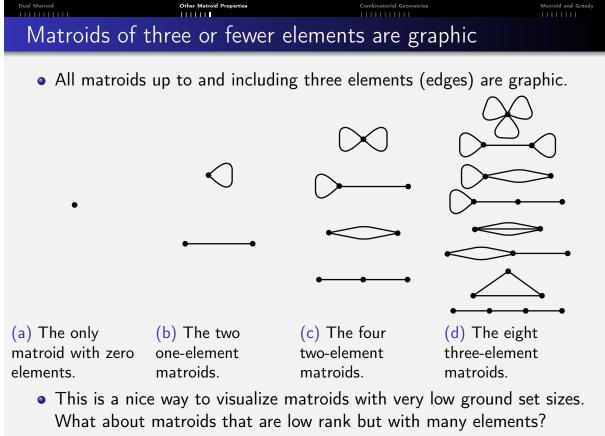
Theorem 8.4.3

Let $M_1 = (V_1, \mathcal{I}_1)$, $M_2 = (V_2, \mathcal{I}_2)$, ..., $M_k = (V_k, \mathcal{I}_k)$ be matroids, with rank functions r_1, \ldots, r_k . Then the union of these matroids is still a matroid, having rank function

$$r(Y) = \min_{X \subseteq Y} \left(|Y \setminus X| + r_1(X \cap V_1) + \dots + r_k(X \cap V_k) \right)$$
(8.18)

for any $Y \subseteq V_1 \uplus \ldots V_2 \uplus \cdots \uplus V_k$.





perties

Affine Matroids

- Given an $n \times m$ matrix with entries over some field \mathbb{F} , we say that a subset $S \subseteq \{1, \ldots, m\}$ of indices (with corresponding column vectors $\{v_i : i \in S\}$, with $|S| = k \le m$) is affinely dependent if $m \ge 1$ and there exists elements $\{a_1, \ldots, a_k\} \in \mathbb{F}$, not all zero with $\sum_{i=1}^k a_i = 0$, such that $\sum_{i=1}^k a_i v_i = 0$.
- Otherwise, the set is called affinely independent.
- Concisely: points $\{v_1, v_2, \dots, v_k\}$ are affinely independent if $v_2 v_1, v_3 v_1, \dots, v_k v_1$ are linearly independent.
- Example: in 2D, three collinear points are affinely <u>dependent</u>, three non-collear points are affinely <u>independent</u>, and ≥ 4 collinear or non-collinear points are affinely dependent.

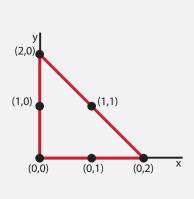
Proposition 8.5.1 (affine matroid)

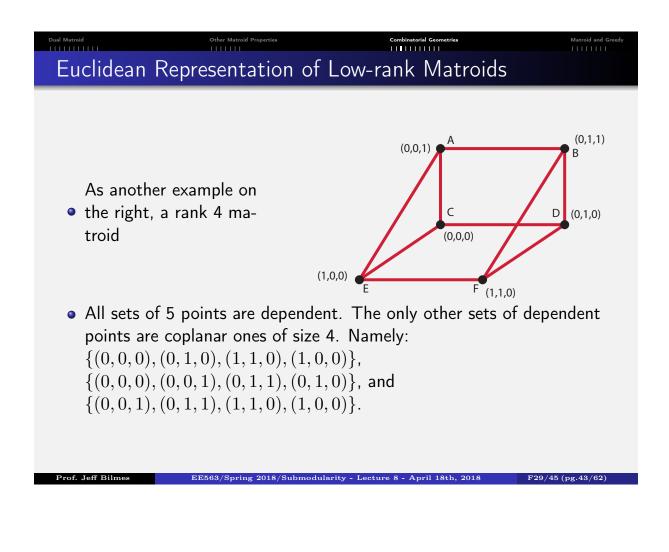
Let ground set $E = \{1, ..., m\}$ index column vectors of a matrix, and let \mathcal{I} be the set of subsets X of E such that X indices affinely independent vectors. Then (E, \mathcal{I}) is a matroid.

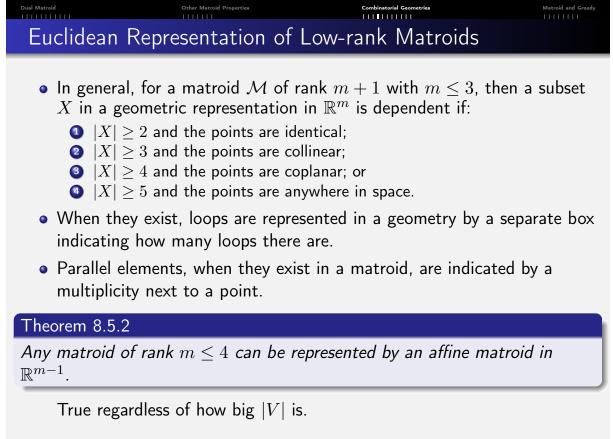
Exercise: prove this.

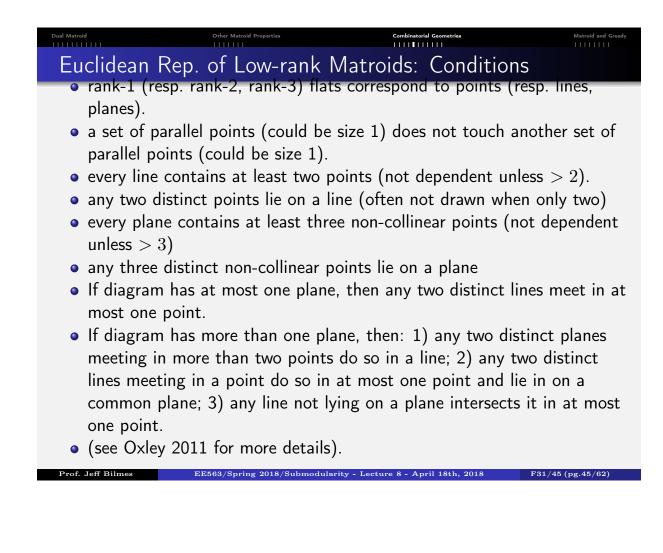
Euclidean Representation of Low-rank Matroids

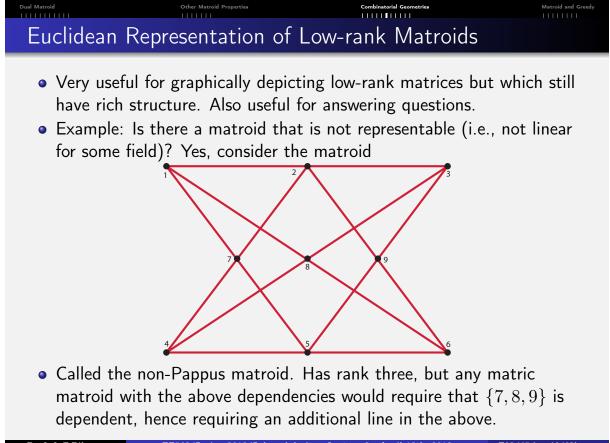
- Consider the affine matroid with $n \times m = 2 \times 6$ matrix on the field $\mathbb{F} = \mathbb{R}$, and let the elements be $\{(0,0), (1,0), (2,0), (0,1), (0,2), (1,1)\}$.
- We can plot the points in \mathbb{R}^2 as on the right:
- A point has rank 1, points that comprise a line have rank 2, points that comprise a plane have rank 3.
- Flats (points, lines, planes, etc.) have rank equal to one more than their geometric dimension.
- Any two distinct points constitute a line, but lines with only two points are not drawn.
- Lines indicate collinear sets with ≥ 3 points, while any two points have rank 2.
- Dependent sets consist of all subsets with ≥ 4 elements (rank 3), or 3 collinear elements (rank 2). Any two points have rank 2.

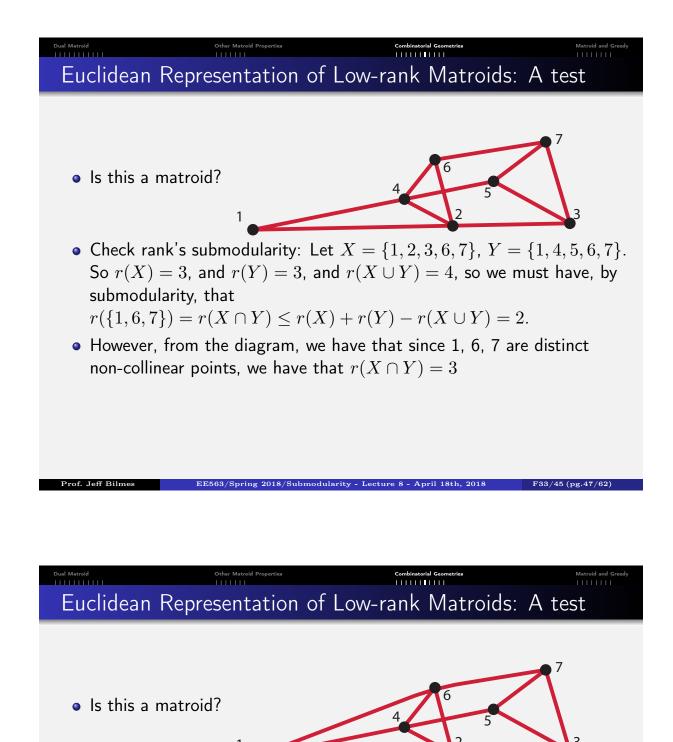




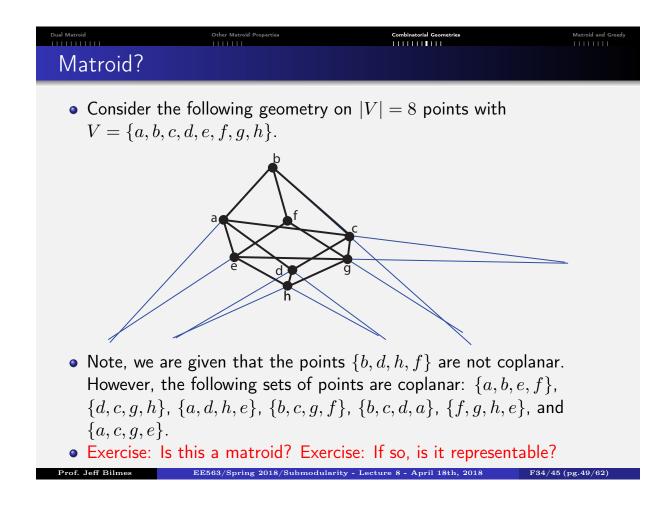


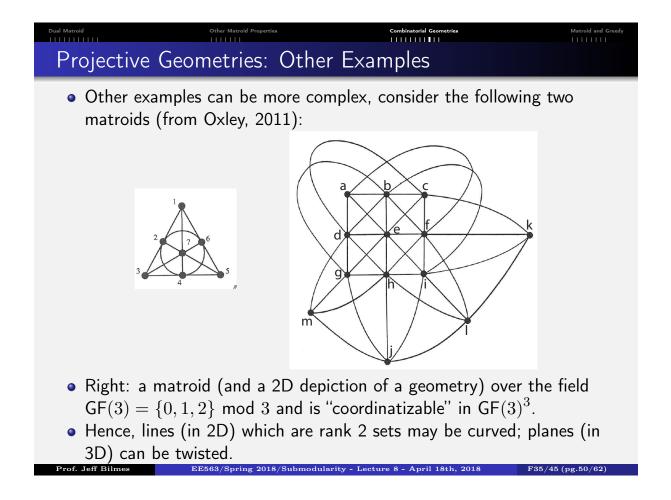


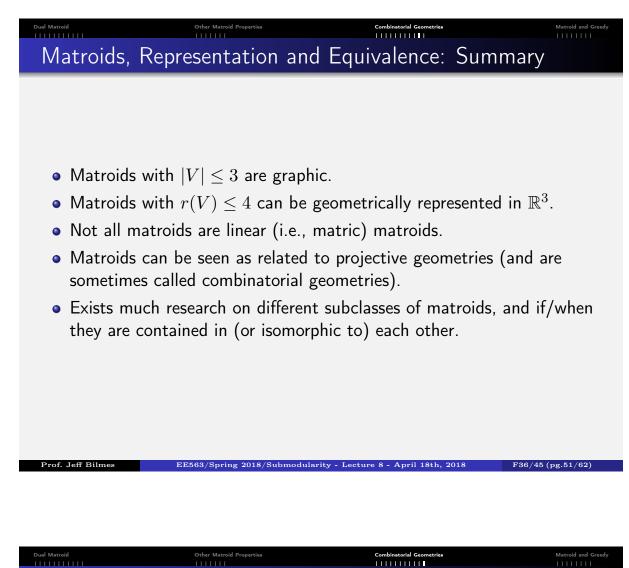




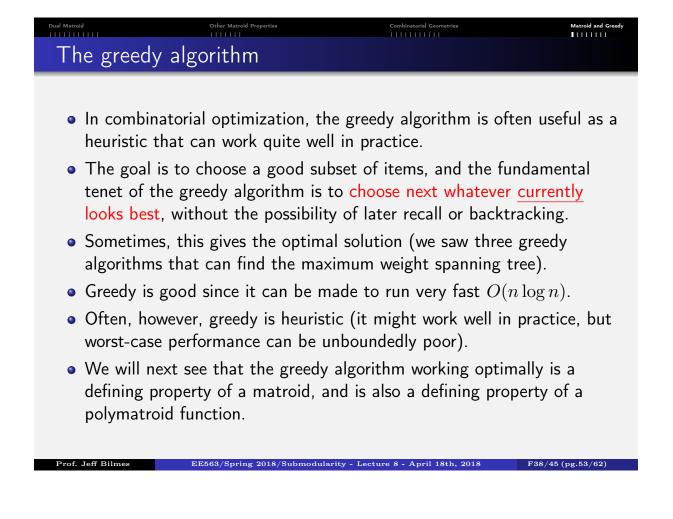
- If we extend the line from 6-7 to 1, then is it a matroid?
- Hence, not all 2D or 3D graphs of points and lines are matroids.







- "Matroids: A Geometric Introduction", Gordon and McNulty, 2012.
- "The Coming of the Matroids", William Cunningham, 2012 (a nice history)
- Welsh, "Matroid Theory", 1975.
- Oxley, "Matroid Theory", 1992 (and 2011) (perhaps best "single source" on matroids right now).
- Crapo & Rota, "On the Foundations of Combinatorial Theory: Combinatorial Geometries", 1970 (while this is old, it is very readable).
- Lawler, "Combinatorial Optimization: Networks and Matroids", 1976.
- Schrijver, "Combinatorial Optimization", 2003



Dual Matroid	Other Matroid Properties	Combinatorial Geometries	Matroid and Greedy		
Matroid a	nd the greedy algor	rithm			
• Let (E, \mathcal{I}) be an independence system, and we are given a non-negative modular weight function $w: E \to \mathbb{R}_+$.					
Algorith	m 1 : The Matroid Gree	dy Algorithm			
1 Set $X \leftarrow$	-Ø;				
2 while $\exists v$	$\in E \setminus X$ s.t. $X \cup \{v\}$	$\in \mathcal{I}$ do			

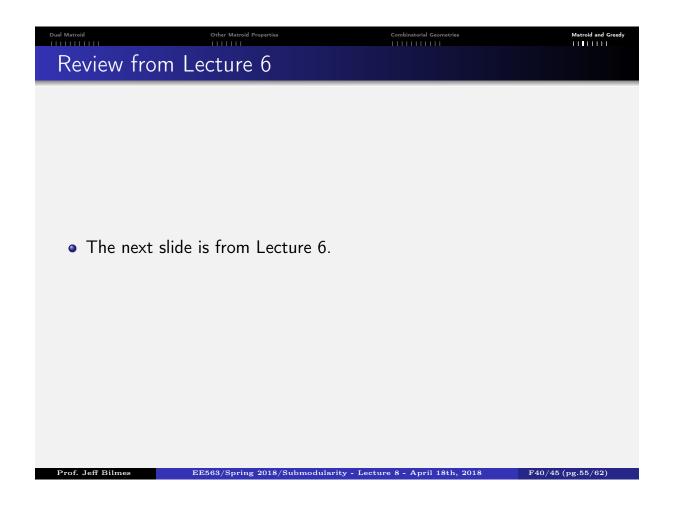
3
$$v \in \operatorname{argmax} \{w(v) : v \in E \setminus X, X \cup \{v\} \in \mathcal{I}\};$$

4
$$X \leftarrow X \cup \{v\}$$
;

• Same as sorting items by decreasing weight w, and then choosing items in that order that retain independence.

Theorem 8.6.1

Let (E, \mathcal{I}) be an independence system. Then the pair (E, \mathcal{I}) is a matroid if and only if for each weight function $w \in \mathcal{R}^E_+$, Algorithm 1 above leads to a set $I \in \mathcal{I}$ of maximum weight w(I).



Dual Matroid Other Matroid Properties Combinatorial Geometries Matroid and Greedy Matroids by bases Image: Combinatorial Commetries Image: Combinatorial Commetries Image: Combinatorial Commetries

In general, besides independent sets and rank functions, there are other equivalent ways to characterize matroids.

Theorem 8.6.3 (Matroid (by bases))

Let E be a set and \mathcal{B} be a nonempty collection of subsets of E. Then the following are equivalent.

- B is the collection of bases of a matroid;
- 2 if $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B' x + y \in \mathcal{B}$ for some $y \in B \setminus B'$.
- **3** If $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B y + x \in \mathcal{B}$ for some $y \in B \setminus B'$.

Properties 2 and 3 are called "exchange properties."

Proof here is omitted but think about this for a moment in terms of linear spaces and matrices, and (alternatively) spanning trees.

Combinatorial Geon

Matroid and Greed

Matroid and the greedy algorithm

proof of Theorem 8.6.1.

- Assume (E, \mathcal{I}) is a matroid and $w : E \to \mathcal{R}_+$ is given.
- Let $A = (a_1, a_2, \ldots, a_r)$ be the solution returned by greedy, where r = r(M) the rank of the matroid, and we order the elements as they were chosen (so $w(a_1) \ge w(a_2) \ge \cdots \ge w(a_r)$).
- A is a base of M, and let B = (b₁,...,b_r) be <u>any</u> another base of M with elements also ordered decreasing by weight, so w(b₁) ≥ w(b₂) ≥ ··· ≥ w(b_r).
- We next show that not only is w(A) ≥ w(B) but that w(a_i) ≥ w(b_i) for all i.

Matroid and the greedy algorithm

proof of Theorem 8.6.1.

• Assume otherwise, and let k be the first (smallest) integer such that $w(a_k) < w(b_k)$. Hence $w(a_j) \ge w(b_j)$ for j < k.

- Define independent sets $A_{k-1} = \{a_1, \ldots, a_{k-1}\}$ and $B_k = \{b_1, \ldots, b_k\}.$
- Since $|A_{k-1}| < |B_k|$, there exists a $b_i \in B_k \setminus A_{k-1}$ where $A_{k-1} \cup \{b_i\} \in \mathcal{I}$ for some $1 \le i \le k$.
- But $w(b_i) \ge w(b_k) > w(a_k)$, and so the greedy algorithm would have chosen b_i rather than a_k , contradicting what greedy does.

Matroid and G

Prof. Jeff Bilme

Dual Matroid

Matroid and the greedy algorithm

converse proof of Theorem 8.6.1.

- Given an independence system (E, I), suppose the greedy algorithm leads to an independent set of max weight for every non-negative weight function. We'll show (E, I) is a matroid.
- Emptyset containing and down monotonicity already holds (since we've started with an independence system).
- Let $I, J \in \mathcal{I}$ with |I| < |J|. Suppose to the contrary, that $I \cup \{z\} \notin \mathcal{I}$ for all $z \in J \setminus I$.
- Define the following modular weight function w on E, and define k = |I|.

EE563/Spring 2018/Submodularity - Lecture 8

$$w(v) = \begin{cases} k+2 & \text{if } v \in I, \\ k+1 & \text{if } v \in J \setminus I, \\ 0 & \text{if } v \in E \setminus (I \cup J) \end{cases}$$
(8.19)

Combinatorial Geon

Matroid and the greedy algorithm

converse proof of Theorem 8.6.1.

- Now greedy will, after k iterations, recover I, but it cannot choose any element in J \ I by assumption. Thus, greedy chooses a set of weight k(k+2) = w(I).
- $\bullet\,$ On the other hand, J has weight

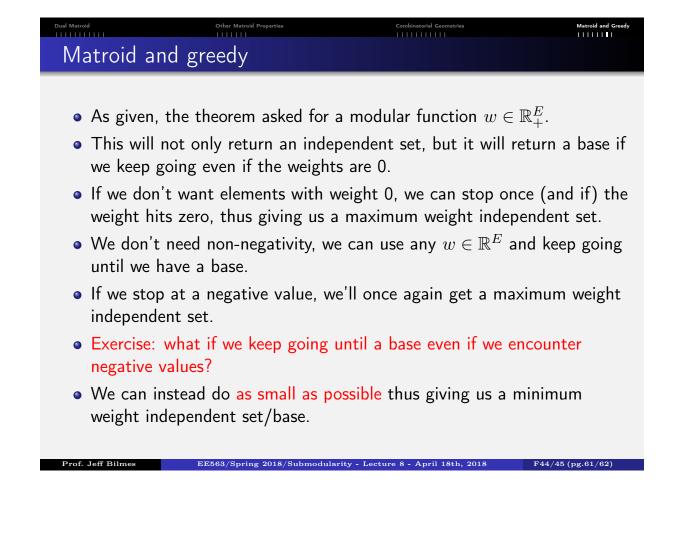
$$w(J) \ge |J|(k+1) \ge (k+1)(k+1) > k(k+2) = w(I)$$
(8.20)

so J has strictly larger weight but is still independent, contradicting greedy's optimality.

• Therefore, there must be a $z \in J \setminus I$ such that $I \cup \{z\} \in \mathcal{I}$, and since I and J are arbitrary, (E, \mathcal{I}) must be a matroid.

F43/45 (pg.59/62

Matroid and G



Summary of Important (for us) Matroid Definitions

Given an independence system, matroids are defined equivalently by any of the following:

- All maximally independent sets have the same size.
- A monotone non-decreasing submodular integral rank function with unit increments.
- The greedy algorithm achieves the maximum weight independent set for all weight functions.

Matroid and G