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Logistics Review

Cumulative Outstanding Reading

Read chapter 1 from Fujishige’s book.
Read chapter 2 from Fujishige’s book.
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Logistics Review

Announcements, Assignments, and Reminders

If you have any questions about anything, please ask then via our
discussion board
(https://canvas.uw.edu/courses/1216339/discussion_topics).
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Class Road Map - EE563
L1(3/26): Motivation, Applications, &
Basic Definitions,
L2(3/28): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).
L3(4/2): Info theory exs, more apps,
definitions, graph/combinatorial examples
L4(4/4): Graph and Combinatorial
Examples, Matrix Rank, Examples and
Properties, visualizations
L5(4/9): More Examples/Properties/
Other Submodular Defs., Independence,
L6(4/11): Matroids, Matroid Examples,
Matroid Rank, Partition/Laminar
Matroids
L7(4/16): Laminar Matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid Representation, Dual
Matroids
L8(4/18): Dual Matroids, Other Matroid
Properties, Combinatorial Geometries,
Matroids and Greedy.
L9(4/23): Polyhedra, Matroid Polytopes,
Matroids → Polymatroids
L10(4/29): Matroids → Polymatroids,
Polymatroids, Polymatroids and Greedy,

L11(4/30):
L12(5/2):
L13(5/7):
L14(5/9):
L15(5/14):
L16(5/16):
L17(5/21):
L18(5/23):
L–(5/28): Memorial Day (holiday)
L19(5/30):
L21(6/4): Final Presentations
maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.
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Logistics Review

System of Distinct Representatives

Let (V,V) be a set system (i.e., V = (Vi : i ∈ I) where Vi ⊆ V for all
i), and I is an index set. Hence, |I| = |V|.
A family (vi : i ∈ I) with vi ∈ V is said to be a system of distinct
representatives of V if ∃ a bijection π : I ↔ I such that vi ∈ Vπ(i) and
vi 6= vj for all i 6= j.
In a system of distinct representatives, there is a requirement for the
representatives to be distinct. We can re-state (and rename) this as a:

Definition 8.2.1 (transversal)

Given a set system (V,V) and index set I for V as defined above, a set
T ⊆ V is a transversal of V if there is a bijection π : T ↔ I such that

x ∈ Vπ(x) for all x ∈ T (8.2)

Note that due to π : T ↔ I being a bijection, all of I and T are
“covered” (so this makes things distinct automatically).
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When do transversals exist?
As we saw, a transversal might not always exist. How to tell?
Given a set system (V,V) with V = (Vi : i ∈ I), and Vi ⊆ V for all i.
Then, for any J ⊆ I, let

V (J) = ∪j∈JVj (8.2)

so |V (J)| : 2I → Z+ is the set cover func. (we know is submodular).
We have

Theorem 8.2.1 (Hall’s theorem)

Given a set system (V,V), the family of subsets V = (Vi : i ∈ I) has a
transversal (vi : i ∈ I) iff for all J ⊆ I

|V (J)| ≥ |J | (8.3)
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Logistics Review

When do transversals exist?
As we saw, a transversal might not always exist. How to tell?
Given a set system (V,V) with V = (Vi : i ∈ I), and Vi ⊆ V for all i.
Then, for any J ⊆ I, let

V (J) = ∪j∈JVj (8.2)

so |V (J)| : 2I → Z+ is the set cover func. (we know is submodular).
Hall’s theorem (∀J ⊆ I, |V (J)| ≥ |J |) as a bipartite graph.
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When do transversals exist?
As we saw, a transversal might not always exist. How to tell?
Given a set system (V,V) with V = (Vi : i ∈ I), and Vi ⊆ V for all i.
Then, for any J ⊆ I, let

V (J) = ∪j∈JVj (8.2)

so |V (J)| : 2I → Z+ is the set cover func. (we know is submodular).
Moreover, we have

Theorem 8.2.2 (Rado’s theorem (1942))

If M = (V, r) is a matroid on V with rank function r, then the family of
subsets (Vi : i ∈ I) of V has a transversal (vi : i ∈ I) that is independent in
M iff for all J ⊆ I

r(V (J)) ≥ |J | (8.4)

Note, a transversal T independent in M means that r(T ) = |T |.
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Application’s of Hall’s theorem

Consider a set of jobs I and a set of applicants V to the jobs. If an
applicant v ∈ V is qualified for job i ∈ I, we add edge (v, i) to the
bipartite graph G = (V, I, E).
We wish all jobs to be filled, and hence Hall’s condition
(∀J ⊆ I, |V (J)| ≥ |J |) is a necessary and sufficient condition for this
to be possible.
Note if |V | = |I|, then Hall’s theorem is the Marriage Theorem
(Frobenious 1917), where an edge (v, i) in the graph indicate
compatibility between two individuals v ∈ V and i ∈ I coming from
two separate groups V and I.
If ∀J ⊆ I, |V (J)| ≥ |J |, then all individuals in each group can be
matched with a compatible mate.
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More general conditions for existence of transversals

Theorem 8.2.1 (Polymatroid transversal theorem)

If V = (Vi : i ∈ I) is a finite family of non-empty subsets of V , and
f : 2V → Z+ is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (vi : i ∈ I)
such that

f(∪i∈J{vi}) ≥ |J | for all J ⊆ I (8.2)

if and only if

f(V (J)) ≥ |J | for all J ⊆ I (8.3)

Given Theorem 8.2.1, we immediately get Theorem 8.2.1 by taking
f(S) = |S| for S ⊆ V . In which case, Eq. 8.2 requires the system of
representatives to be distinct.
We get Theorem 8.2.2 by taking f(S) = r(S) for S ⊆ V , the rank
function of the matroid. where, Eq. 8.2 insists the system of representatives is
independent in M , and hence also distinct.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 8 - April 18th, 2018 F8/45 (pg.10/62)



Dual Matroid Other Matroid Properties Combinatorial Geometries Matroid and Greedy

Review from Lecture 6

The next frame comes from lecture 6.
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Dual Matroid Other Matroid Properties Combinatorial Geometries Matroid and Greedy

Matroids, other definitions using matroid rank r : 2V → Z+

Definition 8.3.3 (closed/flat/subspace)

A subset A ⊆ E is closed (equivalently, a flat or a subspace) of matroid M
if for all x ∈ E \A, r(A ∪ {x}) = r(A) + 1.

Definition: A hyperplane is a flat of rank r(M)− 1.

Definition 8.3.4 (closure)

Given A ⊆ E, the closure (or span) of A, is defined by
span(A) = {b ∈ E : r(A ∪ {b}) = r(A)}.

Therefore, a closed set A has span(A) = A.

Definition 8.3.5 (circuit)

A subset A ⊆ E is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if r(A) < |A| and for any a ∈ A, r(A \ {a}) = |A| − 1).
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Spanning Sets

We have the following definitions:

Definition 8.3.1 (spanning set of a set)

Given a matroidM = (V, I), and a set Y ⊆ V , then any set X ⊆ Y such
that r(X) = r(Y ) is called a spanning set of Y .

Definition 8.3.2 (spanning set of a matroid)

Given a matroidM = (V, I), any set A ⊆ V such that r(A) = r(V ) is
called a spanning set of the matroid.

A base of a matroid is a minimal spanning set (and it is independent)
but supersets of a base are also spanning.
V is always trivially spanning.
Consider the terminology: “spanning tree in a graph”, comes from
spanning in a matroid sense.
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Dual of a Matroid

Given a matroid M = (V, I), a dual matroid M∗ = (V, I∗) can be
defined on the same ground set V , but using a very different set of
independent sets I∗.
We define the set of sets I∗ for M∗ as follows:

I∗ = {A ⊆ V : V \A is a spanning set of M} (8.1)
= {V \ S : S ⊆ V is a spanning set of M} (8.2)

i.e., I∗ are complements of spanning sets of M .
That is, a set A is independent in the dual matroid M∗ if removal of A
from V does not decrease the rank in M :

I∗ = {A ⊆ V : rankM (V \A) = rankM (V )} (8.3)

In other words, a set A ⊆ V is independent in the dual M∗ (i.e.,
A ∈ I∗) if A’s complement is spanning in M (residual V \A must
contain a base in M).
Dual of the dual: Note, we have that (M∗)∗ = M .
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Dual of a Matroid: Bases

The smallest spanning sets are bases. Hence, a base B of M (where
B = V \B∗ is as small as possible while still spanning) is the
complement of a base B∗ of M∗ (where B∗ = V \B is as large as
possible while still being independent).
In fact, we have that

Theorem 8.3.3 (Dual matroid bases)

Let M = (V, I) be a matroid and B(M) be the set of bases of M . Then
define

B∗(M) = {V \B : B ∈ B(M)}. (8.4)

Then B∗(M) is the set of basis of M∗ (that is, B∗(M) = B(M∗).
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An exercise in duality Terminology

B∗(M), the bases of M∗, are called cobases of M .
The circuits of M∗ are called cocircuits of M .
The hyperplanes of M∗ are called cohyperplanes of M .
The independent sets of M∗ are called coindependent sets of M .
The spanning sets of M∗ are called cospanning sets of M .

Proposition 8.3.4 (from Oxley 2011)

Let M = (V, I) be a matroid, and let X ⊆ V . Then
1 X is independent in M iff V \X is cospanning in M (spanning in M∗).
2 X is spanning in M iff V \X is coindependent in M (independent in
M∗).

3 X is a hyperplane in M iff V \X is a cocircuit in M (circuit in M∗).
4 X is a circuit in M iff V \X is a cohyperplane in M (hyperplane in M∗).
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Example duality: graphic matroid

Using a graphic/cycle matroid, we can already see how dual matroid
concepts demonstrates the extraordinary flexibility and power that a
matroid can have.
Recall, in cycle matroid, a spanning set of G is any set of edges that are
incident to all nodes (i.e., any superset of a spanning forest), a minimal
spanning set is a spanning tree (or forest), and a circuit has a nice visual
interpretation (a cycle in the graph).
A cut in a graph G is a set of edges, the removal of which increases the
number of connected components. I.e., X ⊆ E(G) is a cut in G if
k(G) < k(G \X).
A minimal cut in G is a cut X ⊆ E(G) such that X \ {x} is not a cut for
any x ∈ X.
A cocycle (cocircuit) in a graphic matroid is a minimal graph cut.
A mincut is a circuit in the dual “cocycle” (or “cut”) matroid.
All dependent sets in a cocycle matroid are cuts (i.e., a dependent set is a
minimal cut or contains one).
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Example: cocycle matroid (sometimes “cut matroid”)

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {A ⊆ V : V \A is a spanning set of M}
I∗ consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that, if
removed, would render the graph non-spanning.
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Example: cocycle matroid (sometimes “cut matroid”)

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {A ⊆ V : V \A is a spanning set of M}
I∗ consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that, if
removed, would render the graph non-spanning.
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Example: cocycle matroid (sometimes “cut matroid”)

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {A ⊆ V : V \A is a spanning set of M}
I∗ consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that, if
removed, would render the graph non-spanning.
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Example: cocycle matroid (sometimes “cut matroid”)

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {A ⊆ V : V \A is a spanning set of M}
I∗ consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that, if
removed, would render the graph non-spanning.
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Example: cocycle matroid (sometimes “cut matroid”)

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {A ⊆ V : V \A is a spanning set of M}
I∗ consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that, if
removed, would render the graph non-spanning.
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Example: cocycle matroid (sometimes “cut matroid”)

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {A ⊆ V : V \A is a spanning set of M}
I∗ consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that, if
removed, would render the graph non-spanning.

Spanning in M, but not a base, and
not independent (has cycles)
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Example: cocycle matroid (sometimes “cut matroid”)

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {A ⊆ V : V \A is a spanning set of M}
I∗ consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that, if
removed, would render the graph non-spanning.
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Example: cocycle matroid (sometimes “cut matroid”)

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {A ⊆ V : V \A is a spanning set of M}
I∗ consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that, if
removed, would render the graph non-spanning.
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Example: cocycle matroid (sometimes “cut matroid”)

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {A ⊆ V : V \A is a spanning set of M}
I∗ consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that, if
removed, would render the graph non-spanning.
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Example: cocycle matroid (sometimes “cut matroid”)

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {A ⊆ V : V \A is a spanning set of M}
I∗ consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that, if
removed, would render the graph non-spanning.
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The dual of a matroid is (indeed) a matroid

Theorem 8.3.5
Given matroid M = (V, I), let M∗ = (V, I∗) be as previously defined. Then
M∗ is a matroid.

Proof.
Since V \ ∅ is spanning in primal, clearly ∅ ∈ I∗, so (I1’) holds.
Also, if I ⊆ J ∈ I∗, then clearly also I ∈ I∗ since if V \ J is spanning
in M , so must V \ I. Therefore, (I2’) holds.
Next, given I, J ∈ I∗ with |I| < |J |, it must be the case that
Ī = V \ I and J̄ = V \ J are both spanning in M with |Ī| > |J̄ |.

. . .
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The dual of a matroid is (indeed) a matroid

Theorem 8.3.5
Given matroid M = (V, I), let M∗ = (V, I∗) be as previously defined. Then
M∗ is a matroid.

Proof.
Consider I, J ∈ I∗ with |I| < |J |. We need to show that there is some
member v ∈ J \ I such that I + v is independent in M∗, which means
that V \ (I + v) = (V \ I) \ v = Ī − v is still spanning in M . That is,
removing v from V \ I doesn’t make (V \ I) \ v not spanning in M .
Since V \ J is spanning in M , V \ J contains some base (say
BJ̄ ⊆ V \ J) of M . Also, V \ I contains a base of M , say BĪ ⊆ V \ I.
Since BJ̄ \ I ⊆ V \ I, and BJ̄ \ I is independent in M , we can choose
the base BĪ of M s.t. BJ̄ \ I ⊆ BĪ ⊆ V \ I.
Since BJ̄ and J are disjoint, we have both: 1) BJ̄ \ I and J \ I are
disjoint; and 2) BJ̄ ∩ I ⊆ I \ J . Also note, BĪ and I are disjoint.

. . .
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The dual of a matroid is (indeed) a matroid

Theorem 8.3.5
Given matroid M = (V, I), let M∗ = (V, I∗) be as previously defined. Then
M∗ is a matroid.

Proof.
Now J \ I 6⊆ BĪ , since otherwise (i.e., assuming J \ I ⊆ BĪ):

|BJ̄ | = |BJ̄ ∩ I|+ |BJ̄ \ I| (8.5)
≤ |I \ J |+ |BJ̄ \ I| (8.6)
< |J \ I|+ |BJ̄ \ I| ≤ |BĪ | (8.7)

which is a contradiction. The last inequality on the right follows since
J \ I ⊆ BĪ (by assumption) and BJ̄ \ I ⊆ BĪ implies that (J \ I) ∪ (BJ̄ \ I) ⊆ BĪ ,
but since J and BJ̄ are disjoint, we have that |J \ I|+ |BJ̄ \ I| ≤ |BĪ |.

Therefore, J \ I 6⊆ BĪ , and there is a v ∈ J \ I s.t. v /∈ BĪ .
So BĪ is disjoint with I ∪ {v}, means BĪ ⊆ V \ (I ∪ {v}), or
V \ (I ∪ {v}) is spanning in M , and therefore I ∪ {v} ∈ I∗.Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 8 - April 18th, 2018 F17/45 (pg.30/62)
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Matroid Duals and Representability

Theorem 8.3.6
Let M be an F-representable matroid (i.e., one that can be represented by a
finite sized matrix over field F). Then M∗ is also F-representable.

Hence, for matroids as general as matric matroids, duality does not extend
the space of matroids that can be used.

Theorem 8.3.7
Let M be a graphic matroid (i.e., one that can be represented by a graph
G = (V,E)). Then M∗ is not necessarily also graphic.

Hence, for graphic matroids, duality can increase the space and power of
matroids, and since they are based on a graph, they are relatively easy to
use: 1) all cuts are dependent sets; 2) minimal cuts are cycles; 3) bases of a
cut are any one edge removed from minimal cuts; 4) independent sets are
edges that are not cuts (minimal or otherwise); 5) bases of matroid are
maximal non-cuts (non-cut containing edge sets).
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Dual Matroid Rank
Theorem 8.3.8
The rank function rM∗ of the dual matroid M∗ may be specified in terms of
the rank rM in matroid M as follows. For X ⊆ V :

rM∗(X) = |X|+ rM (V \X)− rM (V ) (8.8)

Note, we again immediately see that this is submodular by the
properties of submodular functions we saw in lectures 1 and 2. I.e., |X|
is modular, complement f(V \X) is submodular if f is submodular, rM (V ) is a
constant, and summing submodular functions and a constant preserves
submodularity.

Non-negativity integral follows since
|X|+ rM (V \X) ≥ rM (X) + rM (V \X) ≥ rM (V ). The right inequality
follows since rM is submodular.

Monotone non-decreasing follows since, as X increases by one, |X|
always increases by 1, while rM (V \X) decreases by one or zero.
Therefore, rM∗ is the rank function of a matroid. That it is the dual
matroid rank function is shown in the next proof.Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 8 - April 18th, 2018 F19/45 (pg.32/62)
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Dual Matroid Rank
Theorem 8.3.8
The rank function rM∗ of the dual matroid M∗ may be specified in terms of
the rank rM in matroid M as follows. For X ⊆ V :

rM∗(X) = |X|+ rM (V \X)− rM (V ) (8.8)

Proof.
A set X is independent in (V, rM∗) if and only if

rM∗(X) = |X|+ rM (V \X)− rM (V ) = |X| (8.9)

or

rM (V \X) = rM (V ) (8.10)

But a subset X is independent in M∗ only if V \X is spanning in M (by
the definition of the dual matroid).
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Matroid restriction/deletion

Let M = (V, I) be a matroid and let Y ⊆ V , then

IY = {Z : Z ⊆ Y, Z ∈ I} (8.11)

is such that MY = (Y, IY ) is a matroid with rank r(MY ) = r(Y ).
This is called the restriction of M to Y , and is often written M |Y .
If Y = V \X, then we have that M |Y has the form:

IY = {Z : Z ∩X = ∅, Z ∈ I} (8.12)

is considered a deletion of X from M , and is often written M \X.
Hence, M |Y = M \ (V \ Y ), and M |(V \X) = M \X.
The rank function is of the same form. I.e., rY : 2Y → Z+, where
rY (Z) = r(Z) for Z ⊆ Y , Y = V \X.
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Matroid contraction M/Z

Contraction by Z is dual to deletion, and is like a forced inclusion of a
contained base BZ of Z, but with a similar ground set removal by Z.
Contracting Z is written M/Z. Updated ground set in M/Z is V \ Z.
Let Z ⊆ V and let BZ be a base of Z. Then a subset I ⊆ V \ Z is
independent in M/Z iff I ∪BZ is independent in M .
The rank function takes the form

rM/Z(Y ) = r(Y ∪ Z)− r(Z) = r(Y |Z) (8.13)

= r(Y ∪BZ)− r(BZ) = r(Y |BZ) (8.14)

So given I ⊆ V \ Z and BZ is a base of Z, rM/Z(I) = |I| is identical
to r(I ∪ Z) = |I|+ r(Z) = |I|+ |BZ |. Since r(I ∪ Z) = r(I ∪BZ),
this implies r(I ∪BZ) = |I|+ |BZ |, or I ∪BZ is independent in M .
A minor of a matroid is any matroid obtained via a series of deletions
and contractions of some matroid.
In fact, it is the case M/Z = (M∗ \ Z)∗ (Exercise: show why).
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Matroid Intersection
Let M1 = (V, I1) and M2 = (V, I2) be two matroids. Consider their
common independent sets I1 ∩ I2.
While (V, I1 ∩ I2) is typically not a matroid (Exercise: show graphical
example.), we might be interested in finding the maximum size
common independent set. That is, find max |X| such that both
X ∈ I1 and X ∈ I2.

Theorem 8.4.1
Let M1 and M2 be given as above, with rank functions r1 and r2. Then the
size of the maximum size set in I1 ∩ I2 is given by

(r1 ∗ r2)(V ) , min
X⊆V

(
r1(X) + r2(V \X)

)
(8.15)

This is an instance of the convolution of two submodular functions, f1

and f2 that, evaluated at Y ⊆ V , is written as:

(f1 ∗ f2)(Y ) = min
X⊆Y

(
f1(X) + f2(Y \X)

)
(8.16)
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Convolution and Hall’s Theorem

Recall Hall’s theorem, that a transversal exists iff for all X ⊆ V , we
have |Γ(X)| ≥ |X|.
⇔ |Γ(X)| − |X| ≥ 0, ∀X
⇔ minX |Γ(X)| − |X| ≥ 0

⇔ minX |Γ(X)|+ |V | − |X| ≥ |V |
⇔ minX

(
|Γ(X)|+ |V \X|

)
≥ |V |

⇔ [Γ(·) ∗ | · |](V ) ≥ |V |
So Hall’s theorem can be expressed as convolution. Exercise: define
g(A) = [Γ(·) ∗ | · |](A), prove that g is submodular.
Note, in general, convolution of two submodular functions does not
preserve submodularity (but in certain special cases it does).
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Matroid Union
Definition 8.4.2
Let M1 = (V1, I1), M2 = (V2, I2), . . . , Mk = (Vk, Ik) be matroids. We
define the union of matroids as
M1 ∨M2 ∨ · · · ∨Mk = (V1 ] V2 ] · · · ] Vk, I1 ∨ I2 ∨ · · · ∨ Ik), where

I1 ∨ I2 ∨ · · · ∨ Ik = {I1 ] I2 ] · · · ] Ik|I1 ∈ I1, . . . , Ik ∈ Ik} (8.17)

Note A ]B designates the disjoint union of A and B.

Theorem 8.4.3
Let M1 = (V1, I1), M2 = (V2, I2), . . . , Mk = (Vk, Ik) be matroids, with
rank functions r1, . . . , rk. Then the union of these matroids is still a
matroid, having rank function

r(Y ) = min
X⊆Y

(
|Y \X|+ r1(X ∩ V1) + · · ·+ rk(X ∩ Vk)

)
(8.18)

for any Y ⊆ V1 ] . . . V2 ] · · · ] Vk.
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Exercise: Matroid Union, and Matroid duality

Exercise: Fully characterize M ∨M∗.
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Matroids of three or fewer elements are graphic

All matroids up to and including three elements (edges) are graphic.

(a) The only
matroid with zero
elements.

(b) The two
one-element
matroids.

(c) The four
two-element
matroids.

(d) The eight
three-element
matroids.

This is a nice way to visualize matroids with very low ground set sizes.
What about matroids that are low rank but with many elements?
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Affine Matroids
Given an n×m matrix with entries over some field F, we say that a
subset S ⊆ {1, . . . ,m} of indices (with corresponding column vectors
{vi : i ∈ S}, with |S| = k ≤ m) is affinely dependent if m ≥ 1 and
there exists elements {a1, . . . , ak} ∈ F, not all zero with

∑k
i=1 ai = 0,

such that
∑k

i=1 aivi = 0.
Otherwise, the set is called affinely independent.
Concisely: points {v1, v2, . . . , vk} are affinely independent if
v2 − v1, v3 − v1, . . . , vk − v1 are linearly independent.
Example: in 2D, three collinear points are affinely dependent, three
non-collear points are affinely independent, and ≥ 4 collinear or
non-collinear points are affinely dependent.

Proposition 8.5.1 (affine matroid)

Let ground set E = {1, . . . ,m} index column vectors of a matrix, and let I
be the set of subsets X of E such that X indices affinely independent
vectors. Then (E, I) is a matroid.

Exercise: prove this.
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Euclidean Representation of Low-rank Matroids

Consider the affine matroid with n×m = 2× 6 matrix on the field
F = R, and let the elements be {(0, 0), (1, 0), (2, 0), (0, 1), (0, 2), (1, 1)}.
We can plot the points in R2 as on the right:
A point has rank 1, points that comprise a line
have rank 2, points that comprise a plane have
rank 3.
Flats (points, lines, planes, etc.) have rank equal
to one more than their geometric dimension.
Any two distinct points constitute a line, but lines
with only two points are not drawn.
Lines indicate collinear sets with ≥ 3 points, while
any two points have rank 2.
Dependent sets consist of all subsets with ≥ 4
elements (rank 3), or 3 collinear elements (rank 2).
Any two points have rank 2.

x

y

(0,1) (0,2)

(1,1)(1,0)

(2,0)

(0,0)
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Euclidean Representation of Low-rank Matroids

As another example on
the right, a rank 4 ma-
troid (0,0,0)

(0,0,1)
(0,1,1)

(0,1,0)

(1,1,0)
(1,0,0)

A
B

C D

E F

All sets of 5 points are dependent. The only other sets of dependent
points are coplanar ones of size 4. Namely:
{(0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 0)},
{(0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 1, 0)}, and
{(0, 0, 1), (0, 1, 1), (1, 1, 0), (1, 0, 0)}.
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Euclidean Representation of Low-rank Matroids

In general, for a matroidM of rank m+ 1 with m ≤ 3, then a subset
X in a geometric representation in Rm is dependent if:

1 |X| ≥ 2 and the points are identical;
2 |X| ≥ 3 and the points are collinear;
3 |X| ≥ 4 and the points are coplanar; or
4 |X| ≥ 5 and the points are anywhere in space.

When they exist, loops are represented in a geometry by a separate box
indicating how many loops there are.
Parallel elements, when they exist in a matroid, are indicated by a
multiplicity next to a point.

Theorem 8.5.2
Any matroid of rank m ≤ 4 can be represented by an affine matroid in
Rm−1.

True regardless of how big |V | is.
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Euclidean Rep. of Low-rank Matroids: Conditions
rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines,
planes).
a set of parallel points (could be size 1) does not touch another set of
parallel points (could be size 1).
every line contains at least two points (not dependent unless > 2).
any two distinct points lie on a line (often not drawn when only two)
every plane contains at least three non-collinear points (not dependent
unless > 3)
any three distinct non-collinear points lie on a plane
If diagram has at most one plane, then any two distinct lines meet in at
most one point.
If diagram has more than one plane, then: 1) any two distinct planes
meeting in more than two points do so in a line; 2) any two distinct
lines meeting in a point do so in at most one point and lie in on a
common plane; 3) any line not lying on a plane intersects it in at most
one point.
(see Oxley 2011 for more details).
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Euclidean Representation of Low-rank Matroids

Very useful for graphically depicting low-rank matrices but which still
have rich structure. Also useful for answering questions.
Example: Is there a matroid that is not representable (i.e., not linear
for some field)? Yes, consider the matroid

1

7
8

9

2 3

654

Called the non-Pappus matroid. Has rank three, but any matric
matroid with the above dependencies would require that {7, 8, 9} is
dependent, hence requiring an additional line in the above.
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Euclidean Representation of Low-rank Matroids: A test

Is this a matroid?

1 2 3

4

7

5

6

Check rank’s submodularity: Let X = {1, 2, 3, 6, 7}, Y = {1, 4, 5, 6, 7}.
So r(X) = 3, and r(Y ) = 3, and r(X ∪ Y ) = 4, so we must have, by
submodularity, that
r({1, 6, 7}) = r(X ∩ Y ) ≤ r(X) + r(Y )− r(X ∪ Y ) = 2.
However, from the diagram, we have that since 1, 6, 7 are distinct
non-collinear points, we have that r(X ∩ Y ) = 3

If we extend the line from 6-7 to 1, then is it a matroid?
Hence, not all 2D or 3D graphs of points and lines are matroids.
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Euclidean Representation of Low-rank Matroids: A test

Is this a matroid?

1 2 3

4

7

5

6

Check rank’s submodularity: Let X = {1, 2, 3, 6, 7}, Y = {1, 4, 5, 6, 7}.
So r(X) = 3, and r(Y ) = 3, and r(X ∪ Y ) = 4, so we must have, by
submodularity, that
r({1, 6, 7}) = r(X ∩ Y ) ≤ r(X) + r(Y )− r(X ∪ Y ) = 2.
However, from the diagram, we have that since 1, 6, 7 are distinct
non-collinear points, we have that r(X ∩ Y ) = 3

If we extend the line from 6-7 to 1, then is it a matroid?
Hence, not all 2D or 3D graphs of points and lines are matroids.
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Matroid?

Consider the following geometry on |V | = 8 points with
V = {a, b, c, d, e, f, g, h}.

a

b

c

de

f

g

hh

Note, we are given that the points {b, d, h, f} are not coplanar.
However, the following sets of points are coplanar: {a, b, e, f},
{d, c, g, h}, {a, d, h, e}, {b, c, g, f}, {b, c, d, a}, {f, g, h, e}, and
{a, c, g, e}.
Exercise: Is this a matroid? Exercise: If so, is it representable?
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Projective Geometries: Other Examples
Other examples can be more complex, consider the following two
matroids (from Oxley, 2011):

a b c

d e f

g
h i

m

j
l

k

Right: a matroid (and a 2D depiction of a geometry) over the field
GF(3) = {0, 1, 2} mod 3 and is “coordinatizable” in GF(3)3.
Hence, lines (in 2D) which are rank 2 sets may be curved; planes (in
3D) can be twisted.
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Matroids, Representation and Equivalence: Summary

Matroids with |V | ≤ 3 are graphic.
Matroids with r(V ) ≤ 4 can be geometrically represented in R3.
Not all matroids are linear (i.e., matric) matroids.
Matroids can be seen as related to projective geometries (and are
sometimes called combinatorial geometries).
Exists much research on different subclasses of matroids, and if/when
they are contained in (or isomorphic to) each other.
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Matroid Further Reading

“Matroids: A Geometric Introduction”, Gordon and McNulty, 2012.
“The Coming of the Matroids”, William Cunningham, 2012 (a nice
history)
Welsh, “Matroid Theory”, 1975.
Oxley, “Matroid Theory”, 1992 (and 2011) (perhaps best “single source”
on matroids right now).
Crapo & Rota, “On the Foundations of Combinatorial Theory:
Combinatorial Geometries”, 1970 (while this is old, it is very readable).
Lawler, “Combinatorial Optimization: Networks and Matroids”, 1976.
Schrijver, “Combinatorial Optimization”, 2003
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The greedy algorithm

In combinatorial optimization, the greedy algorithm is often useful as a
heuristic that can work quite well in practice.
The goal is to choose a good subset of items, and the fundamental
tenet of the greedy algorithm is to choose next whatever currently
looks best, without the possibility of later recall or backtracking.
Sometimes, this gives the optimal solution (we saw three greedy
algorithms that can find the maximum weight spanning tree).
Greedy is good since it can be made to run very fast O(n log n).
Often, however, greedy is heuristic (it might work well in practice, but
worst-case performance can be unboundedly poor).
We will next see that the greedy algorithm working optimally is a
defining property of a matroid, and is also a defining property of a
polymatroid function.
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Matroid and the greedy algorithm

Let (E, I) be an independence system, and we are given a non-negative
modular weight function w : E → R+.

Algorithm 1: The Matroid Greedy Algorithm
1 Set X ← ∅ ;
2 while ∃v ∈ E \X s.t. X ∪ {v} ∈ I do
3 v ∈ argmax {w(v) : v ∈ E \X, X ∪ {v} ∈ I} ;
4 X ← X ∪ {v} ;

Same as sorting items by decreasing weight w, and then choosing items
in that order that retain independence.

Theorem 8.6.1

Let (E, I) be an independence system. Then the pair (E, I) is a matroid if
and only if for each weight function w ∈ RE+, Algorithm 1 above leads to a
set I ∈ I of maximum weight w(I).
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Review from Lecture 6

The next slide is from Lecture 6.
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Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 8.6.3 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then the
following are equivalent.

1 B is the collection of bases of a matroid;
2 if B,B′ ∈ B, and x ∈ B′ \B, then B′−x+ y ∈ B for some y ∈ B \B′.
3 If B,B′ ∈ B, and x ∈ B′ \B, then B− y+ x ∈ B for some y ∈ B \B′.

Properties 2 and 3 are called “exchange properties.”
Proof here is omitted but think about this for a moment in terms of linear
spaces and matrices, and (alternatively) spanning trees.
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Matroid and the greedy algorithm

proof of Theorem 8.6.1.

Assume (E, I) is a matroid and w : E → R+ is given.
Let A = (a1, a2, . . . , ar) be the solution returned by greedy, where
r = r(M) the rank of the matroid, and we order the elements as they
were chosen (so w(a1) ≥ w(a2) ≥ · · · ≥ w(ar)).
A is a base of M , and let B = (b1, . . . , br) be any another base of M
with elements also ordered decreasing by weight, so
w(b1) ≥ w(b2) ≥ · · · ≥ w(br).
We next show that not only is w(A) ≥ w(B) but that w(ai) ≥ w(bi)
for all i. . . .
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Matroid and the greedy algorithm

proof of Theorem 8.6.1.

Assume otherwise, and let k be the first (smallest) integer such that
w(ak) < w(bk). Hence w(aj) ≥ w(bj) for j < k.
Define independent sets Ak−1 = {a1, . . . , ak−1} and
Bk = {b1, . . . , bk}.
Since |Ak−1| < |Bk|, there exists a bi ∈ Bk \Ak−1 where
Ak−1 ∪ {bi} ∈ I for some 1 ≤ i ≤ k.
But w(bi) ≥ w(bk) > w(ak), and so the greedy algorithm would have
chosen bi rather than ak, contradicting what greedy does.
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Matroid and the greedy algorithm

converse proof of Theorem 8.6.1.

Given an independence system (E, I), suppose the greedy algorithm
leads to an independent set of max weight for every non-negative
weight function. We’ll show (E, I) is a matroid.
Emptyset containing and down monotonicity already holds (since we’ve
started with an independence system).
Let I, J ∈ I with |I| < |J |. Suppose to the contrary, that I ∪ {z} /∈ I
for all z ∈ J \ I.
Define the following modular weight function w on E, and define
k = |I|.

w(v) =


k + 2 if v ∈ I,
k + 1 if v ∈ J \ I,
0 if v ∈ E \ (I ∪ J)

(8.19)

. . .
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Matroid and the greedy algorithm

converse proof of Theorem 8.6.1.
Now greedy will, after k iterations, recover I, but it cannot choose any
element in J \ I by assumption. Thus, greedy chooses a set of weight
k(k + 2) = w(I).
On the other hand, J has weight

w(J) ≥ |J |(k + 1) ≥ (k + 1)(k + 1) > k(k + 2) = w(I) (8.20)

so J has strictly larger weight but is still independent, contradicting
greedy’s optimality.
Therefore, there must be a z ∈ J \ I such that I ∪ {z} ∈ I, and since
I and J are arbitrary, (E, I) must be a matroid.
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Matroid and greedy

As given, the theorem asked for a modular function w ∈ RE+.
This will not only return an independent set, but it will return a base if
we keep going even if the weights are 0.
If we don’t want elements with weight 0, we can stop once (and if) the
weight hits zero, thus giving us a maximum weight independent set.
We don’t need non-negativity, we can use any w ∈ RE and keep going
until we have a base.
If we stop at a negative value, we’ll once again get a maximum weight
independent set.
Exercise: what if we keep going until a base even if we encounter
negative values?
We can instead do as small as possible thus giving us a minimum
weight independent set/base.
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Summary of Important (for us) Matroid Definitions

Given an independence system, matroids are defined equivalently by any of
the following:

All maximally independent sets have the same size.
A monotone non-decreasing submodular integral rank function with
unit increments.
The greedy algorithm achieves the maximum weight independent set
for all weight functions.
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