Submodular Functions, Optimization, and Applications to Machine Learning

— Spring Quarter, Lecture 8 —

http://www.ee.washington.edu/people/faculty/bilmes/classes/ee563_spring_2018/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes

April 18th, 2018

Cumulative Outstanding Reading

- Read chapter 1 from Fujishige's book.
- Read chapter 2 from Fujishige's book.

Announcements, Assignments, and Reminders

 If you have any questions about anything, please ask then via our discussion board (https://canvas.uw.edu/courses/1216339/discussion_topics).

- L1(3/26): Motivation, Applications, & Basic Definitions.
- L2(3/28): Machine Learning Apps (diversity, complexity, parameter, learning target, surrogate).
- L3(4/2): Info theory exs, more apps, definitions, graph/combinatorial examples
- L4(4/4): Graph and Combinatorial Examples, Matrix Rank, Examples and Properties, visualizations
- L5(4/9): More Examples/Properties/ Other Submodular Defs., Independence,
- L6(4/11): Matroids, Matroid Examples, Matroid Rank, Partition/Laminar Matroids
- L7(4/16): Laminar Matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid Representation, Dual Matroids
- L8(4/18): Dual Matroids, Other Matroid Properties, Combinatorial Geometries, Matroids and Greedy.
- L9(4/23):
- L10(4/25):

- L11(4/30):
- L12(5/2):
- L13(5/7):L14(5/9):
- L15(5/14):
- L16(5/16):
- L17(5/21):
- L18(5/23):
- L-(5/28): Memorial Day (holiday)
- L19(5/30):
- L21(6/4): Final Presentations maximization.

System of Distinct Representatives

- Let (V, V) be a set system (i.e., $V = (V_i) : i \in I$) where $V_i \subseteq V$ for all i), and I is an index set. Hence, |I| = |V|.
- A family $(v_i:i\in I)$ with $v_i\in V$ is said to be a system of distinct representatives of $\mathcal V$ if \exists a bijection $\pi:I\leftrightarrow I$ such that $v_i\in V_{\pi(i)}$ and $v_i\neq v_j$ for all $i\neq j$.
- In a system of distinct representatives, there is a requirement for the representatives to be distinct. We can re-state (and rename) this as a:

Definition 8.2.1 (transversal)

Given a set system (V, \mathcal{V}) and index set I for \mathcal{V} as defined above, a set $T \subseteq V$ is a transversal of \mathcal{V} if there is a bijection $\pi: T \leftrightarrow I$ such that

$$x \in V_{\pi(x)}$$
 for all $x \in T$ (8.2)

• Note that due to $\pi: T \leftrightarrow I$ being a bijection, all of I and T are "covered" (so this makes things distinct automatically).

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V} = (V_i : i \in I)$, and $V_i \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$V(J) = \cup_{j \in J} V_j \tag{8.2}$$

so $|V(J)|:2^I \to \mathbb{Z}_+$ is the set cover func. (we know is submodular).

We have

Theorem 8.2.1 (Hall's theorem)

Given a set system (V, \mathcal{V}) , the family of subsets $\mathcal{V} = (V_i : i \in I)$ has a transversal $(v_i : i \in I)$ iff for all $J \subseteq I$

$$|V(J)| \ge |J| \tag{8.3}$$

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V} = (V_i : i \in I)$, and $V_i \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$V(J) = \cup_{j \in J} V_j \tag{8.2}$$

so $|V(J)|: 2^I \to \mathbb{Z}_+$ is the set cover func. (we know is submodular).

• Hall's theorem $(\forall J \subseteq I, |V(J)| \ge |J|)$ as a bipartite graph.

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V} = (V_i : i \in I)$, and $V_i \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$V(J) = \cup_{j \in J} V_j \tag{8.2}$$

so $|V(J)|: 2^I \to \mathbb{Z}_+$ is the set cover func. (we know is submodular).

• Hall's theorem $(\forall J \subseteq I, |V(J)| \ge |J|)$ as a bipartite graph.

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V} = (V_i : i \in I)$, and $V_i \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$V(J) = \cup_{j \in J} V_j \tag{8.2}$$

so $|V(J)|: 2^I \to \mathbb{Z}_+$ is the set cover func. (we know is submodular).

Moreovér, we have

Theorem 8.2.2 (Rado's theorem (1942))

If M=(V,r) is a matroid on V with rank function r, then the family of subsets $(V_i:i\in I)$ of V has a transversal $(v_i:i\in I)$ that is independent in \underline{M} iff for all $J\subseteq I$

$$r(V(J)) \ge |J| \tag{8.4}$$

• Note, a transversal T independent in M means that r(T) = |T|.

ullet Consider a set of jobs I and a set of applicants V to the jobs. If an applicant $v \in V$ is qualified for job $i \in I$, we add edge (v,i) to the bipartite graph G = (V,I,E).

- Consider a set of jobs I and a set of applicants V to the jobs. If an applicant $v \in V$ is qualified for job $i \in I$, we add edge (v,i) to the bipartite graph G = (V,I,E).
- We wish all jobs to be filled, and hence Hall's condition $(\forall J\subseteq I, |V(J)|\geq |J|)$ is a necessary and sufficient condition for this to be possible.

- Consider a set of jobs I and a set of applicants V to the jobs. If an applicant $v \in V$ is qualified for job $i \in I$, we add edge (v,i) to the bipartite graph G = (V,I,E).
- We wish all jobs to be filled, and hence Hall's condition $(\forall J\subseteq I, |V(J)|\geq |J|)$ is a necessary and sufficient condition for this to be possible.
- Note if |V|=|I|, then Hall's theorem is the Marriage Theorem (Frobenious 1917), where an edge (v,i) in the graph indicate compatibility between two individuals $v\in V$ and $i\in I$ coming from two separate groups V and I.

- Consider a set of jobs I and a set of applicants V to the jobs. If an applicant $v \in V$ is qualified for job $i \in I$, we add edge (v,i) to the bipartite graph G = (V,I,E).
- We wish all jobs to be filled, and hence Hall's condition $(\forall J\subseteq I, |V(J)|\geq |J|)$ is a necessary and sufficient condition for this to be possible.
- Note if |V|=|I|, then Hall's theorem is the Marriage Theorem (Frobenious 1917), where an edge (v,i) in the graph indicate compatibility between two individuals $v\in V$ and $i\in I$ coming from two separate groups V and I.
- If $\forall J \subseteq I, |V(J)| \ge |J|$, then all individuals in each group can be matched with a compatible mate.

More general conditions for existence of transversals

Theorem 8.2.1 (Polymatroid transversal theorem)

If $\mathcal{V}=(V_i:i\in I)$ is a finite family of non-empty subsets of V, and $f:2^V\to\mathbb{Z}_+$ is a non-negative, integral, monotone non-decreasing, and submodular function, then \mathcal{V} has a system of representatives $(v_i:i\in I)$ such that

$$f(\cup_{i\in J}\{v_i\}) \ge |J| \text{ for all } J \subseteq I$$
 (8.2)

if and only if

$$f(V(J)) \ge |J| \text{ for all } J \subseteq I$$
 (8.3)

- Given Theorem ??, we immediately get Theorem 8.2.1 by taking f(S) = |S| for $S \subseteq V$.
- We get Theorem ?? by taking f(S) = r(S) for $S \subseteq V$, the rank function of the matroid.

Review from Lecture 6

The next frame comes from lecture 6.

Matroids, other definitions using matroid rank $r: 2^V \to \mathbb{Z}_+$

Definition 8.3.3 (closed/flat/subspace)

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \setminus A$, $r(A \cup \{x\}) = r(A) + 1$. (may be a given cond.)

Definition: A hyperplane is a flat of rank r(M) - 1.

Definition 8.3.4 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by b, ,62 $span(A) = \{b \in E : r(A \cup \{b\}) = r(A)\}.$ Therefore, a closed set A has $\operatorname{span}(A) = A$. c(A+31+h)

Definition 8.3.5 (circuit)

A subset $A \subseteq E$ is circuit or a cycle if it is an inclusionwise-minimal dependent set (i.e., if r(A) < |A| and for any $a \in A$, $r(A \setminus \{a\}) = |A| - 1$).

• We have the following definitions:

 Dual Matroid
 Other Matroid Properties
 Combinatorial Geometries
 Matroid and Greedy

Spanning Sets

• We have the following definitions:

Definition 8.3.1 (spanning set of a set)

Given a matroid $\mathcal{M}=(V,\mathcal{I})$, and a set $Y\subseteq V$, then any set $X\subseteq Y$ such that r(X)=r(Y) is called a spanning set of Y.

Matroid Other Matroid Properties Combinatorial Geometries Matroid and Gree

Spanning Sets

• We have the following definitions:

Definition 8.3.1 (spanning set of a set)

Given a matroid $\mathcal{M}=(V,\mathcal{I})$, and a set $Y\subseteq V$, then any set $X\subseteq Y$ such that r(X)=r(Y) is called a spanning set of Y.

Definition 8.3.2 (spanning set of a matroid)

Given a matroid $\mathcal{M}=(V,\mathcal{I})$, any set $A\subseteq V$ such that r(A)=r(V) is called a spanning set of the matroid.

• We have the following definitions:

Definition 8.3.1 (spanning set of a set)

Given a matroid $\mathcal{M}=(V,\mathcal{I})$, and a set $Y\subseteq V$, then any set $X\subseteq Y$ such that r(X)=r(Y) is called a spanning set of Y.

Definition 8.3.2 (spanning set of a matroid)

Given a matroid $\mathcal{M}=(V,\mathcal{I})$, any set $A\subseteq V$ such that r(A)=r(V) is called a spanning set of the matroid.

• A base of a matroid is a minimal spanning set (and it is independent) but supersets of a base are also spanning.

• We have the following definitions:

Definition 8.3.1 (spanning set of a set)

Given a matroid $\mathcal{M}=(V,\mathcal{I})$, and a set $Y\subseteq V$, then any set $X\subseteq Y$ such that r(X)=r(Y) is called a spanning set of Y.

Definition 8.3.2 (spanning set of a matroid)

Given a matroid $\mathcal{M}=(V,\mathcal{I})$, any set $A\subseteq V$ such that r(A)=r(V) is called a spanning set of the matroid.

- A base of a matroid is a minimal spanning set (and it is independent) but supersets of a base are also spanning.
- ullet V is always trivially spanning.

• We have the following definitions:

Definition 8.3.1 (spanning set of a set)

Given a matroid $\mathcal{M}=(V,\mathcal{I})$, and a set $Y\subseteq V$, then any set $X\subseteq Y$ such that r(X)=r(Y) is called a spanning set of Y.

Definition 8.3.2 (spanning set of a matroid)

Given a matroid $\mathcal{M}=(V,\mathcal{I})$, any set $A\subseteq V$ such that r(A)=r(V) is called a spanning set of the matroid.

- A base of a matroid is a minimal spanning set (and it is independent) but supersets of a base are also spanning.
- ullet V is always trivially spanning.
- Consider the terminology: "spanning tree in a graph", comes from spanning in a matroid sense.

atroid Other Matroid Properties Combinatorial Geometries Matroid and Gree

Dual of a Matroid

ullet Given a matroid $M=(V,\mathcal{I})$, a dual matroid $M^*=(V,\mathcal{I}^*)$ can be defined on the same ground set V, but using a very different set of independent sets \mathcal{I}^* .

- Given a matroid $M=(V,\mathcal{I})$, a dual matroid $M^*=(V,\mathcal{I}^*)$ can be defined on the same ground set V, but using a very different set of independent sets \mathcal{I}^* .
- We define the set of sets \mathcal{I}^* for M^* as follows:

$$\mathcal{I}^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \}$$
 (8.1)

$$= \{V \setminus S : S \subseteq V \text{ is a spanning set of } M\}$$
 (8.2)

i.e., \mathcal{I}^* are complements of spanning sets of M.

it VIA is spaning a m

- ullet Given a matroid $M=(V,\mathcal{I})$, a dual matroid $M^*=(V,\mathcal{I}^*)$ can be defined on the same ground set V, but using a very different set of independent sets \mathcal{I}^* .
- We define the set of sets \mathcal{T}^* for M^* as follows:

$$\mathcal{I}^* = \{A \subseteq V : V \setminus A \text{ is a spanning set of } M\} \tag{8.1}$$

$$= \{V \setminus S : S \subseteq V \text{ is a spanning set of } M\}$$
 (8.2)

i.e., \mathcal{I}^* are complements of spanning sets of M.

 That is, a set A is independent in the dual matroid M* if removal of A from V does not decrease the rank in M:

$$\mathcal{I}^* = \{ A \subseteq V : \operatorname{rank}_M(V \setminus A) = \operatorname{rank}_M(V) \}$$
 (8.3)

- ullet Given a matroid $M=(V,\mathcal{I})$, a dual matroid $M^*=(V,\mathcal{I}^*)$ can be defined on the same ground set V, but using a very different set of independent sets \mathcal{I}^* .
- We define the set of sets \mathcal{I}^* for M^* as follows:

$$\mathcal{I}^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \}$$
 (8.1)

$$= \{V \setminus S : S \subseteq V \text{ is a spanning set of } M\}$$
 (8.2)

i.e., \mathcal{I}^* are complements of spanning sets of M.

 That is, a set A is independent in the dual matroid M* if removal of A from V does not decrease the rank in M:

$$\mathcal{I}^* = \{ A \subseteq V : \mathsf{rank}_M(V \setminus A) = \mathsf{rank}_M(V) \} \tag{8.3}$$

• In other words, a set $A \subseteq V$ is independent in the dual M^* (i.e., $A \in \mathcal{I}^*$) if A's complement is spanning in M (residual $V \setminus A$ must contain a base in M). 子 ben of orm st. O'ENA

- Given a matroid $M=(V,\mathcal{I})$, a dual matroid $M^*=(V,\mathcal{I}^*)$ can be defined on the same ground set V, but using a very different set of independent sets \mathcal{I}^* .
- We define the set of sets \mathcal{I}^* for M^* as follows:

$$\mathcal{I}^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \}$$

$$= \{ V \setminus S : S \subseteq V \text{ is a spanning set of } M \}$$
(8.1)

i.e., \mathcal{I}^* are complements of spanning sets of M.

• That is, a set A is independent in the dual matroid M^* if removal of A from V does not decrease the rank in M:

$$\mathcal{I}^* = \{ A \subseteq V : \mathsf{rank}_M(V \setminus A) = \mathsf{rank}_M(V) \}$$
 (8.3)

- In other words, a set $A\subseteq V$ is independent in the dual M^* (i.e., $A\in \mathcal{I}^*$) if A's complement is spanning in M (residual $V\setminus A$ must contain a base in M).
- Dual of the dual: Note, we have that $(M^*)^* = M$.

• The smallest spanning sets are bases.

Dual of a Matroid: Bases

• The smallest spanning sets are bases. Hence, a base B of M (where $B = V \setminus B^*$ is as small as possible while still spanning) is the complement of a base B^* of M^* (where $B^* = V \setminus B$ is as large as possible while still being independent).

Dual Matroid

Dual of a Matroid: Bases

- ullet The smallest spanning sets are bases. Hence, a base B of M (where $B = V \setminus B^*$ is as small as possible while still spanning) is the complement of a base B^* of M^* (where $B^* = V \setminus B$ is as large as possible while still being independent).
- In fact, we have that

Dual Matroid

Dual of a Matroid: Bases

- The smallest spanning sets are bases. Hence, a base B of M (where $B=V\setminus B^*$ is as small as possible while still spanning) is the complement of a base B^* of M^* (where $B^*=V\setminus B$ is as large as possible while still being independent).
- In fact, we have that

Theorem 8.3.3 (Dual matroid bases)

Let $M=(V,\mathcal{I})$ be a matroid and $\mathcal{B}(M)$ be the set of bases of M . Then define

$$\mathcal{B}^*(M) = \{V \setminus B : B \in \mathcal{B}(M)\}. \tag{8.4}$$

Then $\mathcal{B}^*(M)$ is the set of basis of M^* (that is, $\mathcal{B}^*(M) = \mathcal{B}(M^*)$.

• $\mathcal{B}^*(M)$, the bases of M^* , are called <u>cobases of M.</u>

- $\mathcal{B}^*(M)$, the bases of M^* , are called cobases of M.
- The circuits of M^* are called cocircuits of M.

Dual Matroid

- $\mathcal{B}^*(M)$, the bases of M^* , are called cobases of M.
- The circuits of M^* are called cocircuits of M.
- The hyperplanes of M^* are called cohyperplanes of M.

- $\mathcal{B}^*(M)$, the bases of M^* , are called cobases of M.
- The circuits of M^* are called cocircuits of M.
- The hyperplanes of M^* are called cohyperplanes of M.
- The independent sets of M^* are called coindependent sets of M.

- $\mathcal{B}^*(M)$, the bases of M^* , are called cobases of M.
- The circuits of M^* are called cocircuits of M.
- The hyperplanes of M^* are called cohyperplanes of M.
- The independent sets of M^* are called coindependent sets of M.
- The spanning sets of M^* are called cospanning sets of M.

- $\mathcal{B}^*(M)$, the bases of M^* , are called cobases of M.
- The circuits of M^* are called cocircuits of M.
- The hyperplanes of M^* are called cohyperplanes of M.
- The independent sets of M^* are called coindependent sets of M.
- The spanning sets of M^* are called cospanning sets of M.

Proposition 8.3.4 (from Oxley 2011)

Let $M=(V,\mathcal{I})$ be a matroid, and let $X\subseteq V$. Then

- $\mathcal{B}^*(M)$, the bases of M^* , are called cobases of M.
- The circuits of M^* are called cocircuits of M.
- The hyperplanes of M^* are called cohyperplanes of M.
- The independent sets of M^* are called coindependent sets of M.
- The spanning sets of M^* are called cospanning sets of M.

Proposition 8.3.4 (from Oxley 2011)

Let $M = (V, \mathcal{I})$ be a matroid, and let $X \subseteq V$. Then

• X is independent in M iff $V \setminus X$ is cospanning in M (spanning in M^*).

- $\mathcal{B}^*(M)$, the bases of M^* , are called cobases of M.
- The circuits of M^* are called cocircuits of M.
- The hyperplanes of M^* are called cohyperplanes of M.
- The independent sets of M^* are called coindependent sets of M.
- The spanning sets of M^* are called cospanning sets of M.

Proposition 8.3.4 (from Oxley 2011)

Let $M = (V, \mathcal{I})$ be a matroid, and let $X \subseteq V$. Then

- lacktriangledown X is independent in M iff $V \setminus X$ is cospanning in M (spanning in M^*).
- $oldsymbol{Q}$ X is spanning in M iff $V\setminus X$ is coindependent in M (independent in M^*).

- $\mathcal{B}^*(M)$, the bases of M^* , are called cobases of M.
- The circuits of M^* are called cocircuits of M.
- The hyperplanes of M^* are called cohyperplanes of M.
- The independent sets of M^* are called coindependent sets of M.
- The spanning sets of M^* are called cospanning sets of M.

Proposition 8.3.4 (from Oxley 2011)

Let $M = (V, \mathcal{I})$ be a matroid, and let $X \subseteq V$. Then

- lacktriangledown X is independent in M iff $V \setminus X$ is cospanning in M (spanning in M^*).
- $oldsymbol{Q} X$ is spanning in M iff $V \setminus X$ is coindependent in M (independent in M^*).
- **3** X is a hyperplane in M iff $V \setminus X$ is a cocircuit in M (circuit in M^*).

- $\mathcal{B}^*(M)$, the bases of M^* , are called cobases of M.
- The circuits of M^* are called cocircuits of M.
- The hyperplanes of M^* are called cohyperplanes of M.
- The independent sets of M^* are called coindependent sets of M.
- The spanning sets of M^* are called cospanning sets of M.

Proposition 8.3.4 (from Oxley 2011)

Let $M = (V, \mathcal{I})$ be a matroid, and let $X \subseteq V$. Then

- **①** X is independent in M iff $V \setminus X$ is cospanning in M (spanning in M^*).
- **2** X is spanning in M iff $V \setminus X$ is coindependent in M (independent in M^*).
- **3** X is a hyperplane in M <u>iff</u> $V \setminus X$ is a cocircuit in M (circuit in M^*).
- **3** X is a circuit in M <u>iff</u> $V \setminus X$ is a cohyperplane in M (hyperplane in M^*).

 Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrates the extraordinary flexibility and power that a matroid can have.

- Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrates the extraordinary flexibility and power that a matroid can have.
- Recall, in cycle matroid, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest), a minimal spanning set is a spanning tree (or forest), and a circuit has a nice visual interpretation (a cycle in the graph).

- Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrates the extraordinary flexibility and power that a matroid can have.
- ullet Recall, in cycle matroid, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest), a minimal spanning set is a spanning tree (or forest), and a circuit has a nice visual interpretation (a cycle in the graph).
- A cut in a graph G is a set of edges, the removal of which increases the number of connected components. I.e., $X \subseteq E(G)$ is a cut in G if $k(G) < k(G \setminus X)$.

- Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrates the extraordinary flexibility and power that a matroid can have.
- Recall, in cycle matroid, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest), a minimal spanning set is a spanning tree (or forest), and a circuit has a nice visual interpretation (a cycle in the graph).
- A cut in a graph G is a set of edges, the removal of which increases the number of connected components. I.e., $X\subseteq E(G)$ is a cut in G if $k(G)< k(G\setminus X)$.
- ullet A minimal cut in G is a cut $X\subseteq E(G)$ such that $X\setminus\{x\}$ is not a cut for any $x\in X$.

- Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrates the extraordinary flexibility and power that a matroid can have.
- Recall, in cycle matroid, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest), a minimal spanning set is a spanning tree (or forest), and a circuit has a nice visual interpretation (a cycle in the graph).
- A cut in a graph G is a set of edges, the removal of which increases the number of connected components. I.e., $X\subseteq E(G)$ is a cut in G if $k(G)< k(G\setminus X)$.
- A minimal cut in G is a cut $X \subseteq E(G)$ such that $X \setminus \{x\}$ is not a cut for any $x \in X$.
- A cocycle (cocircuit) in a graphic matroid is a minimal graph cut.

- Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrates the extraordinary flexibility and power that a matroid can have.
- ullet Recall, in cycle matroid, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest), a minimal spanning set is a spanning tree (or forest), and a circuit has a nice visual interpretation (a cycle in the graph).
- A cut in a graph G is a set of edges, the removal of which increases the number of connected components. I.e., $X \subseteq E(G)$ is a cut in G if $k(G) < k(G \setminus X)$.
- A minimal cut in G is a cut $X \subseteq E(G)$ such that $X \setminus \{x\}$ is not a cut for any $x \in X$.
- A cocycle (cocircuit) in a graphic matroid is a minimal graph cut.
- A mincut is a circuit in the dual "cocycle" (or "cut") matroid.

Other Matroid Properties

- Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrates the extraordinary flexibility and power that a matroid can have.
- Recall, in cycle matroid, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest), a minimal spanning set is a spanning tree (or forest), and a circuit has a nice visual interpretation (a cycle in the graph).
- A cut in a graph G is a set of edges, the removal of which increases the number of connected components. I.e., $X \subseteq E(G)$ is a cut in G if $k(G) < k(G \setminus X)$.
- A minimal cut in G is a cut $X \subseteq E(G)$ such that $X \setminus \{x\}$ is not a cut for any $x \in X$.
- A cocycle (cocircuit) in a graphic matroid is a minimal graph cut.
- A mincut is a circuit in the dual "cocycle" (or "cut") matroid.
- All dependent sets in a cocycle matroid are cuts (i.e., a dependent set is a minimal cut or contains one).

• The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{ A \subseteq V : V \setminus A \text{ is a spanning set of } M \}$

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{A \subseteq V : V \setminus A \text{ is a spanning set of } M\}$
- \bullet \mathcal{I}^* consists of all sets of edges the complement of which contains a spanning tree — i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{A \subseteq V : V \setminus A \text{ is a spanning set of } M\}$
- \mathcal{I}^* consists of all sets of edges the complement of which contains a spanning tree i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

A graph G

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{A \subseteq V : V \setminus A \text{ is a spanning set of } M\}$
- \mathcal{I}^* consists of all sets of edges the complement of which contains a spanning tree i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Minimally spanning in M (and thus a base (maximally independent) in M)

Maximally independent in M* (thus a base, minimally spanning, in M*)

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{A \subseteq V : V \setminus A \text{ is a spanning set of } M\}$
- \mathcal{I}^* consists of all sets of edges the complement of which contains a spanning tree i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Minimally spanning in M (and thus a base (maximally independent) in M)

Maximally independent in M* (thus a base, minimally spanning, in M*)

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{A \subseteq V : V \setminus A \text{ is a spanning set of } M\}$
- \mathcal{I}^* consists of all sets of edges the complement of which contains a spanning tree i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Independent but not spanning in M, and not closed in M.

Dependent in M* (contains a cocycle, is a nonminimal cut)

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{A \subseteq V : V \setminus A \text{ is a spanning set of } M\}$
- ullet \mathcal{I}^* consists of all sets of edges the complement of which contains a spanning tree i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Spanning in M, but not a base, and not independent (has cycles)

Independent in M* (does not contain a cut)

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{A \subseteq V : V \setminus A \text{ is a spanning set of } M\}$
- \mathcal{I}^* consists of all sets of edges the complement of which contains a spanning tree i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Independent but not spanning in M, and not closed in M.

Dependent in M* (contains a cocycle, is a nonminimal cut)

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{A \subseteq V : V \setminus A \text{ is a spanning set of } M\}$
- \mathcal{I}^* consists of all sets of edges the complement of which contains a spanning tree i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

A hyperplane in M, dependent but not spanning in M

A cycle in M* (minimally dependent in M*, a cocycle, or a minimal cut)

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{A \subseteq V : V \setminus A \text{ is a spanning set of } M\}$
- \mathcal{I}^* consists of all sets of edges the complement of which contains a spanning tree i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

A hyperplane in M, dependent but not spanning in M

A cycle in M* (minimally dependent in M*, a cocycle, or a minimal cut)

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^* = \{A \subseteq V : V \setminus A \text{ is a spanning set of } M\}$
- $m{\mathcal{I}}^*$ consists of all sets of edges the complement of which contains a spanning tree i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Cycle Matroid - independent sets have no cycles.

Cocycle matroid, independent sets contain no cuts.

Theorem 8.3.5

Given matroid $M=(V,\mathcal{I})$, let $M^*=(V,\mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.

Proof.

• Since $V\setminus\emptyset$ is spanning in primal, clearly $\emptyset\in\mathcal{I}^*$, so (I1') holds.

Theorem 8.3.5

Given matroid $M=(V,\mathcal{I})$, let $M^*=(V,\mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.

- Since $V \setminus \emptyset$ is spanning in primal, clearly $\emptyset \in \mathcal{I}^*$, so (I1') holds.
- Also, if $I \subseteq J \in \mathcal{I}^*$, then clearly also $I \in \mathcal{I}^*$ since if $V \setminus J$ is spanning in M, so must $V \setminus I$. Therefore, (I2') holds. (V) \mathcal{I} \subseteq (V) \mathcal{I})
- Next, given $I,J\in\mathcal{I}^*$ with |I|<|J|, it must be the case that $\bar{I}=V\setminus I$ and $\bar{J}=V\setminus J$ are both spanning in M with $|\bar{I}|>|\bar{J}|$.

Stated Other Matroid Properties Combinatorial Geometries Matroid and Gre

The dual of a matroid is (indeed) a matroid

Theorem 8.3.5

Given matroid $M=(V,\mathcal{I})$, let $M^*=(V,\mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.

Proof.

• Consider $I,J\in\mathcal{I}^*$ with |I|<|J|. We need to show that there is some member $v\in J\setminus I$ such that I+v is independent in M^* , which means that $V\setminus (I+v)=(V\setminus I)\setminus v=\bar{I}-v$ is still spanning in M. That is, removing v from $V\setminus I$ doesn't make $(V\setminus I)\setminus v$ not spanning in M.

Theorem 8.3.5

Given matroid $M=(V,\mathcal{I})$, let $M^*=(V,\mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.

- Consider $I,J\in\mathcal{I}^*$ with |I|<|J|. We need to show that there is some member $v\in J\setminus I$ such that I+v is independent in M^* , which means that $V\setminus (I+v)=(V\setminus I)\setminus v=\bar{I}-v$ is still spanning in M. That is, removing v from $V\setminus I$ doesn't make $(V\setminus I)\setminus v$ not spanning in M.
- Since $V\setminus J$ is spanning in M, $V\setminus J$ contains some base (say $B_{\bar{J}}\subseteq V\setminus J$) of M. Also, $V\setminus I$ contains a base of M, say $B_{\bar{I}}\subseteq V\setminus I$.

Theorem 8.3.5

Given matroid $M=(V,\mathcal{I})$, let $M^*=(V,\mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.

- Consider $I,J\in\mathcal{I}^*$ with |I|<|J|. We need to show that there is some member $v\in J\setminus I$ such that I+v is independent in M^* , which means that $V\setminus (I+v)=(V\setminus I)\setminus v=\bar{I}-v$ is still spanning in M. That is, removing v from $V\setminus I$ doesn't make $(V\setminus I)\setminus v$ not spanning in M.
- Since $V\setminus J$ is spanning in M, $V\setminus J$ contains some base (say $B_{\bar{J}}\subseteq V\setminus J$) of M. Also, $V\setminus I$ contains a base of M, say $B_{\bar{I}}\subseteq V\setminus I$.
- Since $B_{\bar{J}} \setminus I \subseteq V \setminus I$, and $B_{\bar{J}} \setminus I$ is independent in M, we can choose the base $B_{\bar{I}}$ of M s.t. $B_{\bar{I}} \setminus I \subseteq B_{\bar{I}} \subseteq V \setminus I$.

Theorem 8.3.5

Given matroid $M=(V,\mathcal{I})$, let $M^*=(V,\mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.

- Consider $I,J\in\mathcal{I}^*$ with |I|<|J|. We need to show that there is some member $v\in J\setminus I$ such that I+v is independent in M^* , which means that $V\setminus (I+v)=(V\setminus I)\setminus v=\bar{I}-v$ is still spanning in M. That is, removing v from $V\setminus I$ doesn't make $(V\setminus I)\setminus v$ not spanning in M.
- Since $V\setminus J$ is spanning in M, $V\setminus J$ contains some base (say $B_{\bar{J}}\subseteq V\setminus J$) of M. Also, $V\setminus I$ contains a base of M, say $B_{\bar{I}}\subseteq V\setminus I$.
- Since $B_{\bar{J}} \setminus I \subseteq V \setminus I$, and $B_{\bar{J}} \setminus I$ is independent in M, we can choose the base $B_{\bar{I}}$ of M s.t. $B_{\bar{J}} \setminus I \subseteq B_{\bar{I}} \subseteq V \setminus I$.
- Since $B_{\bar{J}}$ and J are disjoint, we have both: 1) $B_{\bar{J}} \setminus I$ and $J \setminus I$ are disjoint; and 2) $B_{\bar{J}} \cap I \subseteq I \setminus J$. Also note, $B_{\bar{I}}$ and I are disjoint.

Theorem 8.3.5

Given matroid $M=(V,\mathcal{I})$, let $M^*=(V,\mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.

Proof.

• Now $J \setminus I \not\subseteq B_{\bar{I}}$, since otherwise (i.e., assuming $J \setminus I \subseteq B_{\bar{I}}$):

$$|\mathcal{J}| \supset |\mathcal{J}| \qquad |B_{\bar{J}}| = |B_{\bar{J}} \cap I| + |B_{\bar{J}} \setminus I| \tag{8.5}$$

$$\leq |I \setminus J| + |B_{\bar{J}} \setminus \bar{I}| \tag{8.6}$$

$$<|J\setminus I|+|B_{\bar{J}}\setminus I|\leq |B_{\bar{I}}| \tag{8.7}$$

which is a contradiction. The last inequality on the right follows since $J \setminus I \subseteq B_{\overline{I}}$ (by assumption) and $B_{\overline{J}} \setminus I \subseteq B_{\overline{I}}$ implies that $J \setminus I \cup (B_{\overline{J}} \setminus I) \subseteq B_{\overline{I}}$, but since J and $B_{\overline{J}}$ are disjoint, we have that $|J \setminus I| + |B_{\overline{J}} \setminus I| \leq |B_{\overline{I}}|$.

Theorem 8.3.5

Given matroid $M=(V,\mathcal{I})$, let $M^*=(V,\mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.

Proof.

• Now $J \setminus I \not\subseteq B_{\bar{I}}$, since otherwise (i.e., assuming $J \setminus I \subseteq B_{\bar{I}}$):

$$|B_{\bar{J}}| = |B_{\bar{J}} \cap I| + |B_{\bar{J}} \setminus I| \tag{8.5}$$

$$\leq |I \setminus J| + |B_{\bar{J}} \setminus I| \tag{8.6}$$

$$<|J\setminus I|+|B_{\bar{J}}\setminus I|\leq |B_{\bar{I}}|\tag{8.7}$$

which is a contradiction.

• Therefore, $J \setminus I \not\subseteq B_{\overline{I}}$, and there is a $v \in J \setminus I$ s.t. $v \notin B_{\overline{I}}$.

Theorem 8.3.5

Given matroid $M=(V,\mathcal{I})$, let $M^*=(V,\mathcal{I}^*)$ be as previously defined. Then M^* is a matroid.

Proof.

• Now $J \setminus I \not\subseteq B_{\bar{I}}$, since otherwise (i.e., assuming $J \setminus I \subseteq B_{\bar{I}}$):

$$|B_{\bar{J}}| = |B_{\bar{J}} \cap I| + |B_{\bar{J}} \setminus I| \tag{8.5}$$

$$\leq |I \setminus J| + |B_{\bar{J}} \setminus I| \tag{8.6}$$

$$<|J\setminus I|+|B_{\bar{J}}\setminus I|\leq |B_{\bar{I}}|\tag{8.7}$$

which is a contradiction.

- Therefore, $J\setminus I\not\subseteq B_{\bar{I}}$, and there is a $v\in J\setminus I$ s.t. $v\notin B_{\bar{I}}$.
- So $B_{\bar{I}}$ is disjoint with $I \cup \{v\}$, means $B_{\bar{I}} \subseteq V \setminus (I \cup \{v\})$, or $V \setminus (I \cup \{v\})$ is spanning in M, and therefore $I \cup \{v\} \in \mathcal{I}^*$.

atroid Other Matroid Properties Combinatorial Geometries Matroid and Gree

Matroid Duals and Representability

Theorem 8.3.6

Let M be an \mathbb{F} -representable matroid (i.e., one that can be represented by a finite sized matrix over field \mathbb{F}). Then M^* is also \mathbb{F} -representable.

Hence, for matroids as general as matric matroids, duality does not extend the space of matroids that can be used. roid Other Matroid Properties Combinatorial Geometries Matroid and Gree

Matroid Duals and Representability

Theorem 8.3.6

Let M be an \mathbb{F} -representable matroid (i.e., one that can be represented by a finite sized matrix over field \mathbb{F}). Then M^* is also \mathbb{F} -representable.

Hence, for matroids as general as matric matroids, duality does not extend the space of matroids that can be used.

Theorem 8.3.7

Let M be a graphic matroid (i.e., one that can be represented by a graph G=(V,E)). Then M^* is not necessarily also graphic.

Hence, for graphic matroids, duality can increase the space and power of matroids, and since they are based on a graph, they are relatively easy to use: 1) all cuts are dependent sets; 2) minimal cuts are cycles; 3) bases of a cut are any one edge removed from minimal cuts; 4) independent sets are edges that are not cuts (minimal or otherwise); 5) bases of matroid are maximal non-cuts (non-cut containing edge sets).

Dual Matroid Other Matroid Properties Combinatorial Geometries Matroid and Gree

Dual Matroid Rank

Theorem 8.3.8

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V)$$
 (8.8)

• Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2. *I.e.*, |X| is modular, complement $f(V \setminus X)$ is submodular if f is submodular, $r_M(V)$ is a constant, and summing submodular functions and a constant preserves submodularity.

Dual Matroid Other Matroid Properties Combinatorial Geometries Matroid and Gree

Dual Matroid Rank

Theorem 8.3.8

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V) \geqslant 0 \tag{8.8}$$

- Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2.
- Non-negativity integral follows since $|X| + r_M(V \setminus X) \ge r_M(X) + r_M(V \setminus X) \ge r_M(V)$. The right inequality follows since r_M is submodular.

roid Other Matroid Properties Combinatorial Geometries Matroid and Gree

Dual Matroid Rank

Theorem 8.3.8

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V)$$
 (8.8)

- Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2.
- Non-negativity integral follows since $|X| + r_M(V \setminus X) \ge r_M(X) + r_M(V \setminus X) \ge r_M(V)$.
- Monotone non-decreasing follows since, as X increases by one, |X| always increases by 1, while $r_M(V\setminus X)$ decreases by one or zero.

Dual Matroid Rank

Theorem 8.3.8

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V)$$
(8.8)

- Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2.
- Non-negativity integral follows since $|X| + r_M(V \setminus X) \ge r_M(X) + r_M(V \setminus X) \ge r_M(V)$.
- Monotone non-decreasing follows since, as X increases by one, |X| always increases by 1, while $r_M(V\setminus X)$ decreases by one or zero.
- ullet Therefore, r_{M^*} is the rank function of a matroid. That it is the dual matroid rank function is shown in the next proof.

Dual Matroid Other Matroid Properties Combinatorial Geometries Matroid and Gree

Dual Matroid Rank

Theorem 8.3.8

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V)$$
(8.8)

Proof.

A set X is independent in (V, r_{M^*}) if and only if

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V) = |X|$$
 (8.9)

Dual Matroid Other Matroid Properties Combinatorial Geometries Matroid and Gree

Dual Matroid Rank

Theorem 8.3.8

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V)$$
(8.8)

Proof.

A set X is independent in (V, r_{M^*}) if and only if

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V) = |X|$$
 (8.9)

or

$$r_M(V \setminus X) = r_M(V) \tag{8.10}$$

troid Other Matroid Properties Combinatorial Geometries Matroid and Gree

Dual Matroid Rank

Theorem 8.3.8

The rank function r_{M^*} of the dual matroid M^* may be specified in terms of the rank r_M in matroid M as follows. For $X \subseteq V$:

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V)$$
 (8.8)

Proof.

A set X is independent in (V, r_{M^*}) if and only if

$$r_{M^*}(X) = |X| + r_M(V \setminus X) - r_M(V) = |X|$$
 (8.9)

or

$$r_M(V \setminus X) = r_M(V) \tag{8.10}$$

But a subset X is independent in M^* only if $V \setminus X$ is spanning in M (by the definition of the dual matroid).

ullet Let $M=(V,\mathcal{I})$ be a matroid and let $Y\subseteq V$, then

$$\mathcal{I}_Y = \{Z : Z \subseteq Y, Z \in \mathcal{I}\}$$
(8.11)

is such that $M_Y = (Y, \mathcal{I}_Y)$ is a matroid with rank $r(M_Y) = r(Y)$.

• Let $M = (V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$\mathcal{I}_Y = \{ Z : Z \subseteq Y, Z \in \mathcal{I} \}$$
 (8.11)

is such that $M_Y = (Y, \mathcal{I}_Y)$ is a matroid with rank $r(M_Y) = r(Y)$.

• This is called the restriction of M to Y, and is often written M|Y.

• Let $M = (V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$\mathcal{I}_Y = \{Z : Z \subseteq Y, Z \in \mathcal{I}\} \tag{8.11}$$

is such that $M_Y = (Y, \mathcal{I}_Y)$ is a matroid with rank $r(M_Y) = r(Y)$.

- This is called the restriction of M to Y, and is often written M|Y.
- If $Y = V \setminus X$, then we have that M|Y has the form:

is considered a deletion of X from M, and is often written $M \setminus X$.

• Let $M = (V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$\mathcal{I}_Y = \{Z : Z \subseteq Y, Z \in \mathcal{I}\} \tag{8.11}$$

is such that $M_Y=(Y,\mathcal{I}_Y)$ is a matroid with rank $r(M_Y)=r(Y)$.

- This is called the restriction of M to Y, and is often written M|Y.
- If $Y = V \setminus X$, then we have that M|Y has the form:

$$\mathcal{I}_Y = \{ Z : Z \cap X = \emptyset, Z \in \mathcal{I} \}$$
 (8.12)

is considered a deletion of X from M, and is often written $M \setminus X$.

• Hence, $M|Y = M \setminus (V \setminus Y)$, and $M|(V \setminus X) = M \setminus X$.

• Let $M = (V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$\mathcal{I}_Y = \{Z : Z \subseteq Y, Z \in \mathcal{I}\} \tag{8.11}$$

is such that $M_Y = (Y, \mathcal{I}_Y)$ is a matroid with rank $r(M_Y) = r(Y)$.

- This is called the restriction of M to Y, and is often written M|Y.
- If $Y = V \setminus X$, then we have that M|Y has the form:

$$\mathcal{I}_Y = \{ Z : Z \cap X = \emptyset, Z \in \mathcal{I} \}$$
 (8.12)

is considered a deletion of X from M, and is often written $M \setminus X$.

- Hence, $M|Y = M \setminus (V \setminus Y)$, and $M|(V \setminus X) = M \setminus X$.
- The rank function is of the same form. I.e., $r_Y: 2^Y \to \mathbb{Z}_+$, where $r_V(Z) = r(Z)$ for $Z \subseteq Y$, $Y = V \setminus X$.

• Contraction by Z is dual to deletion, and is like a forced inclusion of a contained base B_Z of Z, but with a similar ground set removal by Z. Contracting Z is written M/Z. Updated ground set in M/Z is $V \setminus Z$.

- Contraction by Z is dual to deletion, and is like a forced inclusion of a contained base B_Z of Z, but with a similar ground set removal by Z. Contracting Z is written M/Z. Updated ground set in M/Z is $V\setminus Z$.
- Let $Z \subseteq V$ and let B_Z be a base of Z. Then a subset $I \subseteq V \setminus Z$ is independent in M/Z iff $I \cup B_Z$ is independent in M.

- Contraction by Z is dual to deletion, and is like a forced inclusion of a contained base B_Z of Z, but with a similar ground set removal by Z. Contracting Z is written M/Z. Updated ground set in M/Z is $V\setminus Z$.
- Let $Z \subseteq V$ and let B_Z be a base of Z. Then a subset $I \subseteq V \setminus Z$ is independent in M/Z iff $I \cup B_Z$ is independent in M.
- The rank function takes the form

$$r_{M/Z}(Y) = r(Y \cup Z) - r(Z) = r(Y|Z)$$
 (8.13)

$$= r(Y \cup B_Z) - r(B_Z) = r(Y|B_Z) \tag{8.14}$$

- ullet Contraction by Z is dual to deletion, and is like a forced inclusion of a contained base B_Z of Z, but with a similar ground set removal by Z. Contracting Z is written M/Z. Updated ground set in M/Z is $V \setminus Z$.
- Let $Z \subseteq V$ and let B_Z be a base of Z. Then a subset $I \subseteq V \setminus Z$ is independent in M/Z iff $I \cup B_Z$ is independent in M.
- The rank function takes the form

$$r_{M/Z}(Y) = r(Y \cup Z) - r(Z) = r(Y|Z)$$
 (8.13)

$$= r(Y \cup B_Z) - r(B_Z) = r(Y|B_Z)$$
 (8.14)

• So given $I \subseteq V \setminus Z$ and B_Z is a base of Z, $r_{M/Z}(I) = |I|$ is identical to $r(I \cup Z) = |I| + r(Z) = |I| + |B_Z|$. Since $r(I \cup Z) = r(I \cup B_Z)$, this implies $r(I \cup B_Z) = |I| + |B_Z|$, or $I \cup B_Z$ is independent in M.

- ullet Contraction by Z is dual to deletion, and is like a forced inclusion of a contained base B_Z of Z, but with a similar ground set removal by Z. Contracting Z is written M/Z. Updated ground set in M/Z is $V \setminus Z$.
- Let $Z \subseteq V$ and let B_Z be a base of Z. Then a subset $I \subseteq V \setminus Z$ is independent in M/Z iff $I \cup B_Z$ is independent in M.
- The rank function takes the form.

$$r_{M/Z}(Y) = r(Y \cup Z) - r(Z) = r(Y|Z)$$
 (8.13)

$$= r(Y \cup B_Z) - r(B_Z) = r(Y|B_Z)$$
 (8.14)

- So given $I \subseteq V \setminus Z$ and B_Z is a base of Z, $r_{M/Z}(I) = |I|$ is identical to $r(I \cup Z) = |I| + r(Z) = |I| + |B_Z|$. Since $r(I \cup Z) = r(I \cup B_Z)$, this implies $r(I \cup B_Z) = |I| + |B_Z|$, or $I \cup B_Z$ is independent in M.
- A minor of a matroid is any matroid obtained via a series of deletions and contractions of some matroid.

- Contraction by Z is dual to deletion, and is like a forced inclusion of a contained base B_Z of Z, but with a similar ground set removal by Z. Contracting Z is written M/Z. Updated ground set in M/Z is $V \setminus Z$.
- Let $Z \subseteq V$ and let B_Z be a base of Z. Then a subset $I \subseteq V \setminus Z$ is independent in M/Z iff $I \cup B_Z$ is independent in M.
- The rank function takes the form.

$$r_{M/Z}(Y) = r(Y \cup Z) - r(Z) = r(Y|Z)$$
 (8.13)

$$= r(Y \cup B_Z) - r(B_Z) = r(Y|B_Z)$$
 (8.14)

- So given $I \subseteq V \setminus Z$ and B_Z is a base of Z, $r_{M/Z}(I) = |I|$ is identical to $r(I \cup Z) = |I| + r(Z) = |I| + |B_Z|$. Since $r(I \cup Z) = r(I \cup B_Z)$, this implies $r(I \cup B_Z) = |I| + |B_Z|$, or $I \cup B_Z$ is independent in M.
- A minor of a matroid is any matroid obtained via a series of deletions and contractions of some matroid.
- In fact, it is the case $M/Z = (M^* \setminus Z)^*$ (Exercise: show why).

• Let $M_1=(V,\mathcal{I}_1)$ and $M_2=(V,\mathcal{I}_2)$ be two matroids. Consider their common independent sets $\mathcal{I}_1\cap\mathcal{I}_2$.

- Let $M_1 = (V, \mathcal{I}_1)$ and $M_2 = (V, \mathcal{I}_2)$ be two matroids. Consider their common independent sets $\mathcal{I}_1 \cap \mathcal{I}_2$.
- While $(V, \mathcal{I}_1 \cap \mathcal{I}_2)$ is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find $\max |X|$ such that both $X \in \mathcal{I}_1$ and $X \in \mathcal{I}_2$.

- Let $M_1 = (V, \mathcal{I}_1)$ and $M_2 = (V, \mathcal{I}_2)$ be two matroids. Consider their common independent sets $\mathcal{I}_1 \cap \mathcal{I}_2$.
- While $(V, \mathcal{I}_1 \cap \mathcal{I}_2)$ is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find $\max |X|$ such that both $X \in \mathcal{I}_1$ and $X \in \mathcal{I}_2$.

Theorem 8.4.1

Let M_1 and M_2 be given as above, with rank functions r_1 and r_2 . Then the size of the maximum size set in $\mathcal{I}_1 \cap \mathcal{I}_2$ is given by

$$(r_1 * r_2)(V) \triangleq \min_{X \subseteq V} \left(r_1(X) + r_2(V \setminus X) \right)$$
(8.15)

- Let $M_1 = (V, \mathcal{I}_1)$ and $M_2 = (V, \mathcal{I}_2)$ be two matroids. Consider their common independent sets $\mathcal{I}_1 \cap \mathcal{I}_2$.
- While $(V, \mathcal{I}_1 \cap \mathcal{I}_2)$ is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find $\max |X|$ such that both $X \in \mathcal{I}_1$ and $X \in \mathcal{I}_2$.

Theorem 8.4.1

Let M_1 and M_2 be given as above, with rank functions r_1 and r_2 . Then the size of the maximum size set in $\mathcal{I}_1 \cap \mathcal{I}_2$ is given by

$$(r_1 * r_2)(V) \triangleq \min_{X \subseteq V} \left(r_1(X) + r_2(V \setminus X) \right) \tag{8.15}$$

This is an instance of the convolution of two submodular functions, f_1 and f_2 that, evaluated at $Y \subseteq V$, is written as:

$$(f_1 * f_2)(Y) = \min_{X \subset Y} (f_1(X) + f_2(Y \setminus X))$$
 (8.16)

Convolution and Hall's Theorem

ullet Recall Hall's theorem, that a transversal exists iff for all $X\subseteq V$, we have $|\Gamma(X)| \geq |X|$.

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \ge |X|$.
- $\bullet \; \Leftrightarrow \quad |\Gamma(X)| |X| \ge 0, \forall X$

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq |X|$.
- $\bullet \Leftrightarrow |\Gamma(X)| |X| \ge 0, \forall X$
- $\bullet \Leftrightarrow \min_{X} |\Gamma(X)| |X| \ge 0$

Convolution and Train's Theorem

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \ge |X|$.
- $\bullet \Leftrightarrow |\Gamma(X)| |X| \ge 0, \forall X$
- \Leftrightarrow $\min_X |\Gamma(X)| |X| \ge 0$
- $\bullet \Leftrightarrow \min_{X} |\Gamma(X)| + |V| |X| \ge |V|$

Convolution and Hall's Theorem

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \ge |X|$.
- $\bullet \Leftrightarrow |\Gamma(X)| |X| \ge 0, \forall X$
- \Leftrightarrow $\min_X |\Gamma(X)| |X| \ge 0$
- \Leftrightarrow $\min_X |\Gamma(X)| + |V| |X| \ge |V|$
- $\bullet \Leftrightarrow \min_{X} \Big(|\Gamma(X)| + |V \setminus X| \Big) \ge |V|$

Convolution and Hall's Theorem

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \ge |X|$.
- $\bullet \Leftrightarrow |\Gamma(X)| |X| \ge 0, \forall X$
- \Leftrightarrow $\min_X |\Gamma(X)| |X| \ge 0$
- \Leftrightarrow $\min_X |\Gamma(X)| + |V| |X| \ge |V|$
- $\bullet \Leftrightarrow \min_{X} \left(|\Gamma(X)| + |V \setminus X| \right) \ge |V|$
- $\bullet \; \Leftrightarrow \; \; [\Gamma(\cdot) * |\cdot|](V) \geq |V|$

• Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \ge |X|$.

- \Leftrightarrow $|\Gamma(X)| |X| \ge 0, \forall X$
- \Leftrightarrow $\min_X |\Gamma(X)| |X| \ge 0$
- \Leftrightarrow $\min_X |\Gamma(X)| + |V| |X| \ge |V|$
- $\bullet \Leftrightarrow \min_{X} \Big(|\Gamma(X)| + |V \setminus X| \Big) \ge |V|$
- $\bullet \Leftrightarrow [\Gamma(\cdot) * |\cdot|](V) \ge |V|$
- So Hall's theorem can be expressed as convolution. Exercise: define $g(A) = [\Gamma(\cdot) * |\cdot|](A)$, prove that g is submodular.

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \ge |X|$.
- \Leftrightarrow $|\Gamma(X)| |X| \ge 0, \forall X$
- \Leftrightarrow $\min_X |\Gamma(X)| |X| \ge 0$
- \Leftrightarrow $\min_X |\Gamma(X)| + |V| |X| \ge |V|$
- \Leftrightarrow $\min_X (|\Gamma(X)| + |V \setminus X|) \ge |V|$
- $\bullet \Leftrightarrow [\Gamma(\cdot) * |\cdot|](V) \ge |V|$
- So Hall's theorem can be expressed as convolution. Exercise: define $g(A) = [\Gamma(\cdot) * |\cdot|](A)$, prove that g is submodular.
- Note, in general, convolution of two submodular functions does not preserve submodularity (but in certain special cases it does).

Matroid Union

Definition 8.4.2

Let $M_1 = (V_1, \mathcal{I}_1), M_2 = (V_2, \mathcal{I}_2), \ldots, M_k = (V_k, \mathcal{I}_k)$ be matroids. We define the union of matroids as

$$M_1 \lor M_2 \lor \cdots \lor M_k = (V_1 \uplus V_2 \uplus \cdots \uplus V_k, \mathcal{I}_1 \lor \mathcal{I}_2 \lor \cdots \lor \mathcal{I}_k), \text{ where }$$

$$I_1 \vee \mathcal{I}_2 \vee \cdots \vee \mathcal{I}_k = \{I_1 \uplus I_2 \uplus \cdots \uplus I_k | I_1 \in \mathcal{I}_1, \dots, I_k \in \mathcal{I}_k\}$$
 (8.17)

Note $A \uplus B$ designates the disjoint union of A and B.

$$V_{1} = \{a_{1}b_{1}c\} \quad V_{2} = \{a_{1}b_{2}c\}$$

$$V_{1} \forall V_{2} = \{(v_{1}i): v \in \{a_{1}b_{2}c\}\}$$

$$i \in \{i, j\}\}$$

Matroid Union

Definition 8.4.2

Let $M_1 = (V_1, \mathcal{I}_1)$, $M_2 = (V_2, \mathcal{I}_2)$, ..., $M_k = (V_k, \mathcal{I}_k)$ be matroids. We define the union of matroids as

$$M_1 \vee M_2 \vee \cdots \vee M_k = (V_1 \uplus V_2 \uplus \cdots \uplus V_k, \mathcal{I}_1 \vee \mathcal{I}_2 \vee \cdots \vee \mathcal{I}_k), \text{ where }$$

$$I_1 \vee \mathcal{I}_2 \vee \cdots \vee \mathcal{I}_k = \{I_1 \uplus I_2 \uplus \cdots \uplus I_k | I_1 \in \mathcal{I}_1, \dots, I_k \in \mathcal{I}_k\}$$
 (8.17)

Note $A \uplus B$ designates the disjoint union of A and B.

Theorem 8.4.3

Let $M_1 = (V_1, \mathcal{I}_1), M_2 = (V_2, \mathcal{I}_2), \ldots, M_k = (V_k, \mathcal{I}_k)$ be matroids, with rank functions r_1, \ldots, r_k . Then the union of these matroids is still a matroid, having rank function

$$r(Y) = \min_{X \subseteq Y} \left(|Y \setminus X| + r_1(X \cap V_1) + \dots + r_k(X \cap V_k) \right)$$
(8.18)

for any $Y \subseteq V_1 \uplus \ldots V_2 \uplus \cdots \uplus V_k$.

Exercise: Matroid Union, and Matroid duality

Exercise: Fully characterize $M \vee M^*$.

Matroids of three or fewer elements are graphic

• All matroids up to and including three elements (edges) are graphic.

Matroids of three or fewer elements are graphic

• All matroids up to and including three elements (edges) are graphic. |V|=3

←

- (a) The only matroid with zero elements.
- (b) The two one-element matroids.

(c) The four two-element matroids.

(d) The eight three-element matroids.

Matroids of three or fewer elements are graphic

All matroids up to and including three elements (edges) are graphic.

- (a) The only matroid with zero elements.
- (b) The two one-element matroids.

- (c) The four two-element matroids.
- (d) The eight three-element matroids.

This is a nice way to visualize matroids with very low ground set sizes.

What about matroids that are low rank but with many elements?

Affine Matroids

• Given an $n \times m$ matrix with entries over some field \mathbb{F} , we say that a subset $S \subseteq \{1, \ldots, m\}$ of indices (with corresponding column vectors $\{v_i : i \in S\}$, with $|S| = k \le m$) is affinely dependent if $m \ge 1$ and there exists elements $\{a_1, \ldots, a_k\} \in \mathbb{F}$, not all zero with $\sum_{i=1}^k a_i = 0$, such that $\sum_{i=1}^k a_i v_i = 0$.

- Given an $n \times m$ matrix with entries over some field \mathbb{F} , we say that a subset $S \subseteq \{1,\ldots,m\}$ of indices (with corresponding column vectors $\{v_i: i \in S\}$, with $|S| = k \le m$) is affinely dependent if $m \ge 1$ and there exists elements $\{a_1,\ldots,a_k\} \in \mathbb{F}$, not all zero with $\sum_{i=1}^k a_i = 0$, such that $\sum_{i=1}^k a_i v_i = 0$.
- Otherwise, the set is called affinely independent.

- Given an $n \times m$ matrix with entries over some field \mathbb{F} , we say that a subset $S \subseteq \{1, \ldots, m\}$ of indices (with corresponding column vectors $\{v_i: i \in S\}$, with $|S| = k \le m$) is affinely dependent if $m \ge 1$ and there exists elements $\{a_1,\ldots,a_k\}\in\mathbb{F}$, not all zero with $\sum_{i=1}^k a_i=0$, such that $\sum_{i=1}^{k} a_i v_i = 0$.
- Otherwise, the set is called affinely independent.
- Concisely: points $\{v_1, v_2, \dots, v_k\}$ are affinely independent if $v_2 - v_1, v_3 - v_1, \dots, v_k - v_1$ are linearly independent.

- Given an $n \times m$ matrix with entries over some field \mathbb{F} , we say that a subset $S \subseteq \{1,\dots,m\}$ of indices (with corresponding column vectors $\{v_i: i \in S\}$, with $|S| = k \le m$) is affinely dependent if $m \ge 1$ and there exists elements $\{a_1,\dots,a_k\} \in \mathbb{F}$, not all zero with $\sum_{i=1}^k a_i = 0$, such that $\sum_{i=1}^k a_i v_i = 0$.
- Otherwise, the set is called affinely independent.
- Concisely: points $\{v_1,v_2,\ldots,v_k\}$ are affinely independent if $v_2-v_1,v_3-v_1,\ldots,v_k-v_1$ are linearly independent.
- Example: in 2D, three collinear points are affinely dependent, three non-collear points are affinely independent, and ≥ 4 collinear or non-collinear points are affinely dependent.

• Given an $n \times m$ matrix with entries over some field \mathbb{F} , we say that a subset $S \subseteq \{1,\ldots,m\}$ of indices (with corresponding column vectors $\{v_i: i \in S\}$, with $|S| = k \le m$) is affinely dependent if $m \ge 1$ and there exists elements $\{a_1,\ldots,a_k\} \in \mathbb{F}$, not all zero with $\sum_{i=1}^k a_i = 0$, such that $\sum_{i=1}^k a_i v_i = 0$.

- Otherwise, the set is called affinely independent.
- Concisely: points $\{v_1,v_2,\ldots,v_k\}$ are affinely independent if $v_2-v_1,v_3-v_1,\ldots,v_k-v_1$ are linearly independent.
- Example: in 2D, three collinear points are affinely dependent, three non-collear points are affinely independent, and ≥ 4 collinear or non-collinear points are affinely dependent.

Proposition 8.5.1 (affine matroid)

Let ground set $E=\{1,\ldots,m\}$ index column vectors of a matrix, and let $\mathcal I$ be the set of subsets X of E such that X indices affinely independent vectors. Then $(E,\mathcal I)$ is a matroid.

Affine Matroids

- Given an $n \times m$ matrix with entries over some field \mathbb{F} , we say that a subset $S \subseteq \{1,\dots,m\}$ of indices (with corresponding column vectors $\{v_i: i \in S\}$, with $|S| = k \le m$) is affinely dependent if $m \ge 1$ and there exists elements $\{a_1,\dots,a_k\} \in \mathbb{F}$, not all zero with $\sum_{i=1}^k a_i = 0$, such that $\sum_{i=1}^k a_i v_i = 0$.
- Otherwise, the set is called affinely independent.
- Concisely: points $\{v_1,v_2,\ldots,v_k\}$ are affinely independent if $v_2-v_1,v_3-v_1,\ldots,v_k-v_1$ are linearly independent.
- Example: in 2D, three collinear points are affinely dependent, three non-collear points are affinely independent, and ≥ 4 collinear or non-collinear points are affinely dependent.

Proposition 8.5.1 (affine matroid)

Let ground set $E=\{1,\ldots,m\}$ index column vectors of a matrix, and let $\mathcal I$ be the set of subsets X of E such that X indices affinely independent vectors. Then $(E,\mathcal I)$ is a matroid.

Exercise: prove this.

• Consider the affine matroid with $n \times m = 2 \times 6$ matrix on the field $\mathbb{F} = \mathbb{R}$, and let the elements be $\{(0,0), (1,0), (2,0), (0,1), (0,2), (1,1)\}$.

- Consider the affine matroid with $n \times m = 2 \times 6$ matrix on the field $\mathbb{F} = \mathbb{R}$, and let the elements be $\{(0,0),(1,0),(2,0),(0,1),(0,2),(1,1)\}.$
- ullet We can plot the points in \mathbb{R}^2 as on the right:

- Consider the affine matroid with $n \times m = 2 \times 6$ matrix on the field $\mathbb{F} = \mathbb{R}$, and let the elements be $\{(0,0), (1,0), (2,0), (0,1), (0,2), (1,1)\}$.
- We can plot the points in \mathbb{R}^2 as on the right:
- A point has rank 1, points that comprise a line have rank 2, points that comprise a plane have rank 3.

- Consider the affine matroid with $n \times m = 2 \times 6$ matrix on the field $\mathbb{F} = \mathbb{R}$, and let the elements be $\{(0,0), (1,0), (2,0), (0,1), (0,2), (1,1)\}$.
- We can plot the points in \mathbb{R}^2 as on the right:
- A point has rank 1, points that comprise a line have rank 2, points that comprise a plane have rank 3.
- Flats (points, lines, planes, etc.) have rank equal to one more than their geometric dimension.

- Consider the affine matroid with $n \times m = 2 \times 6$ matrix on the field $\mathbb{F} = \mathbb{R}$, and let the elements be $\{(0,0), (1,0), (2,0), (0,1), (0,2), (1,1)\}$.
- We can plot the points in \mathbb{R}^2 as on the right:
- A point has rank 1, points that comprise a line have rank 2, points that comprise a plane have rank 3.
- Flats (points, lines, planes, etc.) have rank equal to one more than their geometric dimension.
- Any two points constitute a line, but lines with only two points are not drawn.

- Consider the affine matroid with $n \times m = 2 \times 6$ matrix on the field $\mathbb{F} = \mathbb{R}$, and let the elements be $\{(0,0),(1,0),(2,0),(0,1),(0,2),(1,1)\}.$
- We can plot the points in \mathbb{R}^2 as on the right:
- A point has rank 1, points that comprise a line have rank 2, points that comprise a plane have rank 3.
- Flats (points, lines, planes, etc.) have rank equal to one more than their geometric dimension.
- Any two points constitute a line, but lines with only two points are not drawn.
- Lines indicate collinear sets with ≥ 3 points, while any two points have rank 2.

- Consider the affine matroid with $n \times m = 2 \times 6$ matrix on the field $\mathbb{F} = \mathbb{R}$, and let the elements be $\{(0,0),(1,0),(2,0),(0,1),(0,2),(1,1)\}.$
- ullet We can plot the points in \mathbb{R}^2 as on the right:
- A point has rank 1, points that comprise a line have rank 2, points that comprise a plane have rank 3.
- Flats (points, lines, planes, etc.) have rank equal to one more than their geometric dimension.
- Any two points constitute a line, but lines with only two points are not drawn.
- Lines indicate collinear sets with ≥ 3 points, while any two points have rank 2.
- Dependent sets consist of all subsets with ≥ 4 elements (rank 3), or 3 collinear elements (rank 2).
 Any two points have rank 2.

As another example on

• the right, a rank 4 matroid

As another example on

• the right, a rank 4 matroid

• All sets of 5 points are dependent. The only other sets of dependent points are coplanar ones of size 4. Namely:

```
 \{ (0,0,0), (0,1,0), (1,1,0), (1,0,0) \}, \\ \{ (0,0,0), (0,0,1), (0,1,1), (0,1,0) \}, \text{ and } \\ \{ (0,0,1), (0,1,1), (1,1,0), (1,0,0) \}.
```

• In general, for a matroid \mathcal{M} of rank m+1 with $m\leq 3$, then a subset X in a geometric representation in \mathbb{R}^m is dependent if:

- In general, for a matroid \mathcal{M} of rank m+1 with $m\leq 3$, then a subset X in a geometric representation in \mathbb{R}^m is dependent if:
 - $|X| \ge 2$ and the points are identical;

- In general, for a matroid \mathcal{M} of rank m+1 with $m\leq 3$, then a subset X in a geometric representation in \mathbb{R}^m is dependent if:
 - |X| > 2 and the points are identical;
 - |X| > 3 and the points are collinear;

- In general, for a matroid \mathcal{M} of rank m+1 with $m\leq 3$, then a subset X in a geometric representation in \mathbb{R}^m is dependent if:
 - |X| > 2 and the points are identical;
 - |X| > 3 and the points are collinear;
 - |X| > 4 and the points are coplanar; or

- In general, for a matroid \mathcal{M} of rank m+1 with $m\leq 3$, then a subset X in a geometric representation in \mathbb{R}^m is dependent if:
 - |X| > 2 and the points are identical;
 - |X| > 3 and the points are collinear;
 - |X| > 4 and the points are coplanar; or
 - |X| > 5 and the points are anywhere in space.

- In general, for a matroid $\mathcal M$ of rank m+1 with $m\leq 3$, then a subset X in a geometric representation in $\mathbb R^m$ is dependent if:
 - **1** $|X| \ge 2$ and the points are identical;
 - $|X| \ge 3$ and the points are collinear;
 - $|X| \ge 4$ and the points are coplanar; or
 - $|X| \ge 5$ and the points are anywhere in space.
- When they exist, loops are represented in a geometry by a separate box indicating how many loops there are.

- In general, for a matroid \mathcal{M} of rank m+1 with $m\leq 3$, then a subset X in a geometric representation in \mathbb{R}^m is dependent if:
 - |X| > 2 and the points are identical;
 - |X| > 3 and the points are collinear;
 - |X| > 4 and the points are coplanar; or
 - |X| > 5 and the points are anywhere in space.
- When they exist, loops are represented in a geometry by a separate box indicating how many loops there are.
- Parallel elements, when they exist in a matroid, are indicated by a multiplicity next to a point.

- In general, for a matroid $\mathcal M$ of rank m+1 with $m\leq 3$, then a subset X in a geometric representation in $\mathbb R^m$ is dependent if:
 - ① $|X| \ge 2$ and the points are identical;
 - $|X| \ge 3$ and the points are collinear;
 - $|X| \ge 4$ and the points are coplanar; or
 - $|X| \ge 5$ and the points are anywhere in space.
- When they exist, loops are represented in a geometry by a separate box indicating how many loops there are.
- Parallel elements, when they exist in a matroid, are indicated by a multiplicity next to a point.

Theorem 8.5.2

Any matroid of rank $m \le 4$ can be represented by an affine matroid in \mathbb{R}^{m-1} . Correction of $m \ge 4$ is.

 rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- \bullet every line contains at least two points (not dependent unless > 2).

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless > 2).
- any two distinct points lie on a line (often not drawn when only two)

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless > 2).
- any two distinct points lie on a line (often not drawn when only two)
- every plane contains at least three non-collinear points (not dependent unless > 3)

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless > 2).
- any two distinct points lie on a line (often not drawn when only two)
- every plane contains at least three non-collinear points (not dependent unless > 3)
- any three distinct non-collinear points lie on a plane

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless > 2).
- any two distinct points lie on a line (often not drawn when only two)
- every plane contains at least three non-collinear points (not dependent unless > 3)
- any three distinct non-collinear points lie on a plane
- If diagram has at most one plane, then any two distinct lines meet in at most one point.

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless > 2).
- any two distinct points lie on a line (often not drawn when only two)
- every plane contains at least three non-collinear points (not dependent unless > 3)
- any three distinct non-collinear points lie on a plane
- If diagram has at most one plane, then any two distinct lines meet in at most one point.
- If diagram has more than one plane, then: 1) any two distinct planes meeting in more than two points do so in a line; 2) any two distinct lines meeting in a point do so in at most one point and lie in on a common plane; 3) any line not lying on a plane intersects it in at most one point.

Other Matroid Properties Combinatorial Geometries Matroid and G

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless > 2).
- any two distinct points lie on a line (often not drawn when only two)
- ullet every plane contains at least three non-collinear points (not dependent unless >3)
- any three distinct non-collinear points lie on a plane
- If diagram has at most one plane, then any two distinct lines meet in at most one point.
- If diagram has more than one plane, then: 1) any two distinct planes meeting in more than two points do so in a line; 2) any two distinct lines meeting in a point do so in at most one point and lie in on a common plane; 3) any line not lying on a plane intersects it in at most one point.
- (see Oxley 2011) for more details).

 Very useful for graphically depicting low-rank matrices but which still have rich structure. Also useful for answering questions.

- Very useful for graphically depicting low-rank matrices but which still have rich structure. Also useful for answering questions.
- Example: Is there a matroid that is not representable (i.e., not linear for some field)?

- Very useful for graphically depicting low-rank matrices but which still have rich structure. Also useful for answering questions.
- Example: Is there a matroid that is not representable (i.e., not linear for some field)? Yes, consider the matroid

roid Other Matroid Properties Combinatorial Geometries Matr

Euclidean Representation of Low-rank Matroids

- Very useful for graphically depicting low-rank matrices but which still have rich structure. Also useful for answering questions.
- Example: Is there a matroid that is not representable (i.e., not linear for some field)? Yes, consider the matroid

Called the non-Pappus matroid. Has rank three, but any matric
matroid with the above dependencies would require that {7,8,9} is
dependent, hence requiring an additional line in the above.

• Is this a matroid?

Is this a matroid?

• Check rank's submodularity: Let $X = \{1, 2, 3, 6, 7\}$, $Y = \{1, 4, 5, 6, 7\}$. So r(X) =

• Is this a matroid?

• Check rank's submodularity: Let $X=\{1,2,3,6,7\}$, $Y=\{1,4,5,6,7\}$. So r(X)=3

Is this a matroid?

• Check rank's submodularity: Let $X=\{1,2,3,6,7\}$, $Y=\{1,4,5,6,7\}$. So r(X)=3, and r(Y)=

Is this a matroid?

• Check rank's submodularity: Let $X = \{1, 2, 3, 6, 7\}$, $Y = \{1, 4, 5, 6, 7\}$. So r(X) = 3, and r(Y) = 3

Is this a matroid?

• Check rank's submodularity: Let $X=\{1,2,3,6,7\}$, $Y=\{1,4,5,6,7\}$. So r(X)=3, and r(Y)=3, and $r(X\cup Y)=3$

Is this a matroid?

• Check rank's submodularity: Let $X = \{1, 2, 3, 6, 7\}$, $Y = \{1, 4, 5, 6, 7\}$. So r(X) = 3, and r(Y) = 3, and $r(X \cup Y) = 4$

Is this a matroid?

• Check rank's submodularity: Let $X=\{1,2,3,6,7\}$, $Y=\{1,4,5,6,7\}$. So r(X)=3, and r(Y)=3, and $r(X\cup Y)=4$, so we must have, by submodularity, that

$$r(\{1,6,7\}) = r(X \cap Y) \le r(X) + r(Y) - r(X \cup Y) = 2.$$

Is this a matroid?

- Check rank's submodularity: Let $X=\{1,2,3,6,7\}$, $Y=\{1,4,5,6,7\}$. So r(X)=3, and r(Y)=3, and $r(X\cup Y)=4$, so we must have, by submodularity, that $r(\{1,6,7\})=r(X\cap Y)\leq r(X)+r(Y)-r(X\cup Y)=2$.
- However, from the diagram, we have that since 1, 6, 7 are distinct non-collinear points, we have that $r(X \cap Y) =$

Is this a matroid?

• Check rank's submodularity: Let $X = \{1, 2, 3, 6, 7\}, Y = \{1, 4, 5, 6, 7\}.$ So r(X)=3, and r(Y)=3, and $r(X\cup Y)=4$, so we must have, by submodularity, that

$$r(\{1,6,7\}) = r(X \cap Y) \le r(X) + r(Y) - r(X \cup Y) = 2.$$

 However, from the diagram, we have that since 1, 6, 7 are distinct non-collinear points, we have that $r(X \cap Y) = 3$

Is this a matroid?

- Check rank's submodularity: Let $X = \{1, 2, 3, 6, 7\}, Y = \{1, 4, 5, 6, 7\}.$ So r(X)=3, and r(Y)=3, and $r(X\cup Y)=4$, so we must have, by submodularity, that $r(\{1,6,7\}) = r(X \cap Y) < r(X) + r(Y) - r(X \cup Y) = 2.$
- However, from the diagram, we have that since 1, 6, 7 are distinct non-collinear points, we have that $r(X \cap Y) = 3$

• Is this a matroid?

- If we extend the line from 6-7 to 1, then is it a matroid?
- Hence, not all 2D or 3D graphs of points and lines are matroids.

Matroid?

• Consider the following geometry on |V|=8 points with $V=\{a,b,c,d,e,f,g,h\}.$

Matroid?

• Consider the following geometry on |V|=8 points with $V=\{a,b,c,d,e,f,g,h\}.$

• Note, we are given that the points $\{b,d,h,f\}$ are not coplanar. However, the following sets of points are coplanar: $\{a,b,e,f\}$, $\{d,c,g,h\}$, $\{a,d,h,e\}$, $\{b,c,g,f\}$, $\{b,c,d,a\}$, $\{f,g,h,e\}$, and $\{a,c,g,e\}$.

Matroid?

• Consider the following geometry on |V|=8 points with $V=\{a,b,c,d,e,f,g,h\}.$

- Note, we are given that the points $\{b,d,h,f\}$ are not coplanar. However, the following sets of points are coplanar: $\{a,b,e,f\}$, $\{d,c,g,h\}$, $\{a,d,h,e\}$, $\{b,c,g,f\}$, $\{b,c,d,a\}$, $\{f,g,h,e\}$, and $\{a,c,g,e\}$.
- Exercise: Is this a matroid? Exercise: If so, is it representable?

• Other examples can be more complex, consider the following two matroids (from Oxley, 2011):

Projective Geometries: Other Examples

 Other examples can be more complex, consider the following two matroids (from Oxley, 2011):

• Right: a matroid (and a 2D depiction of a geometry) over the field $\mathsf{GF}(3) = \{0, 1, 2\} \bmod 3$ and is "coordinatizable" in $\mathsf{GF}(3)^3$.

Matroid Other Matroid Properties Combinatorial Geometries Matroid and Gree

Projective Geometries: Other Examples

 Other examples can be more complex, consider the following two matroids (from Oxley, 2011):

- Right: a matroid (and a 2D depiction of a geometry) over the field $GF(3) = \{0, 1, 2\} \mod 3$ and is "coordinatizable" in $GF(3)^3$.
- Hence, lines (in 2D) which are rank 2 sets may be curved; planes (in 3D) can be twisted.

• Matroids with $|V| \leq 3$ are graphic.

- Matroids with $|V| \leq 3$ are graphic.
- Matroids with $r(V) \leq 4$ can be geometrically represented in \mathbb{R}^3 .

- Matroids with $|V| \leq 3$ are graphic.
- Matroids with $r(V) \leq 4$ can be geometrically represented in \mathbb{R}^3 .
- Not all matroids are linear (i.e., matric) matroids.

- Matroids with |V| < 3 are graphic.
- Matroids with $r(V) \leq 4$ can be geometrically represented in \mathbb{R}^3 .
- Not all matroids are linear (i.e., matric) matroids.
- Matroids can be seen as related to projective geometries (and are sometimes called combinatorial geometries).

- Matroids with $|V| \leq 3$ are graphic.
- Matroids with $r(V) \leq 4$ can be geometrically represented in \mathbb{R}^3 .
- Not all matroids are linear (i.e., matric) matroids.
- Matroids can be seen as related to projective geometries (and are sometimes called combinatorial geometries).
- Exists much research on different subclasses of matroids, and if/when they are contained in (or isomorphic to) each other.

- "Matroids: A Geometric Introduction", Gordon and McNulty, 2012.
- "The Coming of the Matroids", William Cunningham, 2012 (a nice history)
- Welsh, "Matroid Theory", 1975.
- Oxley, "Matroid Theory", 1992 (and 2011) (perhaps best "single source" on matroids right now).
- Crapo & Rota, "On the Foundations of Combinatorial Theory: Combinatorial Geometries", 1970 (while this is old, it is very readable).
- Lawler, "Combinatorial Optimization: Networks and Matroids", 1976.
- Schrijver, "Combinatorial Optimization", 2003

troid Other Matroid Properties Combinatorial Geometries Matroid and Gree

The greedy algorithm

• In combinatorial optimization, the greedy algorithm is often useful as a heuristic that can work quite well in practice.

- In combinatorial optimization, the greedy algorithm is often useful as a heuristic that can work quite well in practice.
- The goal is to choose a good subset of items, and the fundamental tenet of the greedy algorithm is to choose next whatever currently looks best, without the possibility of later recall or backtracking.

- In combinatorial optimization, the greedy algorithm is often useful as a heuristic that can work quite well in practice.
- The goal is to choose a good subset of items, and the fundamental tenet of the greedy algorithm is to choose next whatever <u>currently</u> looks best, without the possibility of later recall or backtracking.
- Sometimes, this gives the optimal solution (we saw three greedy algorithms that can find the maximum weight spanning tree).

- In combinatorial optimization, the greedy algorithm is often useful as a heuristic that can work quite well in practice.
- The goal is to choose a good subset of items, and the fundamental tenet of the greedy algorithm is to choose next whatever <u>currently</u> looks best, without the possibility of later recall or backtracking.
- Sometimes, this gives the optimal solution (we saw three greedy algorithms that can find the maximum weight spanning tree).
- Greedy is good since it can be made to run very fast $O(n \log n)$.

- In combinatorial optimization, the greedy algorithm is often useful as a heuristic that can work quite well in practice.
- The goal is to choose a good subset of items, and the fundamental tenet of the greedy algorithm is to choose next whatever <u>currently</u> looks best, without the possibility of later recall or backtracking.
- Sometimes, this gives the optimal solution (we saw three greedy algorithms that can find the maximum weight spanning tree).
- Greedy is good since it can be made to run very fast $O(n \log n)$.
- Often, however, greedy is heuristic (it might work well in practice, but worst-case performance can be unboundedly poor).

- In combinatorial optimization, the greedy algorithm is often useful as a heuristic that can work quite well in practice.
- The goal is to choose a good subset of items, and the fundamental tenet of the greedy algorithm is to choose next whatever <u>currently</u> looks best, without the possibility of later recall or backtracking.
- Sometimes, this gives the optimal solution (we saw three greedy algorithms that can find the maximum weight spanning tree).
- Greedy is good since it can be made to run very fast $O(n \log n)$.
- Often, however, greedy is heuristic (it might work well in practice, but worst-case performance can be unboundedly poor).
- We will next see that the greedy algorithm working optimally is a
 defining property of a matroid, and is also a defining property of a
 polymatroid function.

atroid Other Matroid Properties Combinatorial Geometries Matroid and Gree

Matroid and the greedy algorithm

ullet Let (E,\mathcal{I}) be an independence system, and we are given a non-negative modular weight function $w:E o\mathbb{R}_+.$

• Let (E,\mathcal{I}) be an independence system, and we are given a non-negative modular weight function $w:E\to\mathbb{R}_+.$

Algorithm 1: The Matroid Greedy Algorithm

```
1 Set X \leftarrow \emptyset;
2 while \exists v \in E \setminus X s.t. X \cup \{v\} \in \mathcal{I} do
3 v \in \operatorname{argmax} \{w(v) : v \in E \setminus X, \ X \cup \{v\} \in \mathcal{I}\};
4 X \leftarrow X \cup \{v\};
```

Matroid and the greedy algorithm

• Let (E,\mathcal{I}) be an independence system, and we are given a non-negative modular weight function $w:E\to\mathbb{R}_+.$

Algorithm 1: The Matroid Greedy Algorithm

```
1 Set X \leftarrow \emptyset;
2 while \exists v \in E \setminus X s.t. X \cup \{v\} \in \mathcal{I} do
3 | v \in \operatorname{argmax} \{w(v) : v \in E \setminus X, \ X \cup \{v\} \in \mathcal{I}\};
```

4 $X \leftarrow X \cup \{v\}$;

ullet Same as sorting items by decreasing weight w, and then choosing items in that order that retain independence.

Matroid and the greedy algorithm

• Let (E,\mathcal{I}) be an independence system, and we are given a non-negative modular weight function $w: E \to \mathbb{R}_+$.

Algorithm 1: The Matroid Greedy Algorithm

- 1 Set $X \leftarrow \emptyset$:
- 2 while $\exists v \in E \setminus X \text{ s.t. } X \cup \{v\} \in \mathcal{I} \text{ do}$
- $v \in \operatorname{argmax} \{w(v) : v \in E \setminus X, X \cup \{v\} \in \mathcal{I}\}\$; 4 $X \leftarrow X \cup \{v\}$;
- Same as sorting items by decreasing weight w, and then choosing items in that order that retain independence.

Theorem 8.6.1

Let (E,\mathcal{I}) be an independence system. Then the pair (E,\mathcal{I}) is a matroid if and only if for each weight function $w \in \mathcal{R}_+^E$, Algorithm 1 above leads to a set $I \in \mathcal{I}$ of maximum weight w(I).

Review from Lecture 6

• The next slide is from Lecture 6.

Matroids by bases

In general, besides independent sets and rank functions, there are other equivalent ways to characterize matroids.

Theorem 8.6.3 (Matroid (by bases))

Let E be a set and $\mathcal B$ be a nonempty collection of subsets of E. Then the following are equivalent.

- 1 B is the collection of bases of a matroid;
- ② if $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B' x + y \in \mathcal{B}$ for some $y \in B \setminus B'$.
- $\textbf{ § If } B,B'\in\mathcal{B} \text{, and } x\in B'\setminus B \text{, then } B-y+x\in\mathcal{B} \text{ for some } y\in B\setminus B'.$

Properties 2 and 3 are called "exchange properties."

Proof here is omitted but think about this for a moment in terms of linear spaces and matrices, and (alternatively) spanning trees.

Matroid and the greedy algorithm

proof of Theorem 8.6.1.

Dual Matroid

• Assume (E, \mathcal{I}) is a matroid and $w: E \to \mathcal{R}_+$ is given.

. .

Matroid and the greedy algorithm

proof of Theorem 8.6.1.

- Assume (E, \mathcal{I}) is a matroid and $w : E \to \mathcal{R}_+$ is given.
- Let $A=(a_1,a_2,\ldots,a_r)$ be the solution returned by greedy, where r=r(M) the rank of the matroid, and we order the elements as they were chosen (so $w(a_1)>w(a_2)>\cdots>w(a_r)$).

. . .

proof of Theorem 8.6.1.

- Assume (E, \mathcal{I}) is a matroid and $w : E \to \mathcal{R}_+$ is given.
- Let $A=(a_1,a_2,\ldots,a_r)$ be the solution returned by greedy, where r=r(M) the rank of the matroid, and we order the elements as they were chosen (so $w(a_1) \geq w(a_2) \geq \cdots \geq w(a_r)$).
- A is a base of M, and let $B=(b_1,\ldots,b_r)$ be <u>any</u> another base of M with elements also ordered decreasing by weight, so $w(b_1) > w(b_2) > \cdots > w(b_r)$.

proof of Theorem 8.6.1.

- Assume (E, \mathcal{I}) is a matroid and $w : E \to \mathcal{R}_+$ is given.
- Let $A=(a_1,a_2,\ldots,a_r)$ be the solution returned by greedy, where r=r(M) the rank of the matroid, and we order the elements as they were chosen (so $w(a_1) \geq w(a_2) \geq \cdots \geq w(a_r)$).
- A is a base of M, and let $B=(b_1,\ldots,b_r)$ be <u>any</u> another base of M with elements also ordered decreasing by weight, so $w(b_1) \ge w(b_2) \ge w(b_r)$.
- We next show that not only is $w(A) \ge w(B)$ but that $w(a_i) \ge w(b_i)$ for all i.

proof of Theorem 8.6.1.

• Assume otherwise, and let k be the first (smallest) integer such that $w(a_k) < w(b_k)$. Hence $w(a_j) \ge w(b_j)$ for j < k.

proof of Theorem 8.6.1.

- Assume otherwise, and let k be the first (smallest) integer such that $w(a_k) < w(b_k)$. Hence $w(a_j) \ge w(b_j)$ for j < k.
- Define independent sets $A_{k-1} = \{a_1, \dots, a_{k-1}\}$ and $B_k = \{b_1, \dots, b_k\}$.

proof of Theorem 8.6.1.

- Assume otherwise, and let k be the first (smallest) integer such that $w(a_k) < w(b_k)$. Hence $w(a_j) \ge w(b_j)$ for j < k.
- Define independent sets $A_{k-1} = \{a_1, \dots, a_{k-1}\}$ and $B_k = \{b_1, \dots, b_k\}$.
- Since $|A_{k-1}| < |B_k|$, there exists a $b_i \in B_k \setminus A_{k-1}$ where $A_{k-1} \cup \{b_i\} \in \mathcal{I}$ for some $1 \le i \le k$.

proof of Theorem 8.6.1.

- Assume otherwise, and let k be the first (smallest) integer such that $w(a_k) < w(b_k)$. Hence $w(a_j) \ge w(b_j)$ for j < k.
- Define independent sets $A_{k-1} = \{a_1, \dots, a_{k-1}\}$ and $B_k = \{b_1, \dots, b_k\}$.
- Since $|A_{k-1}| < |B_k|$, there exists a $b_i \in B_k \setminus A_{k-1}$ where $A_{k-1} \cup \{b_i\} \in \mathcal{I}$ for some $1 \le i \le k$.
- But $w(b_i) \ge w(b_k) > w(a_k)$, and so the greedy algorithm would have chosen b_i rather than a_k , contradicting what greedy does.

Dual Matroid Other Matroid Properties Combinatorial Geometries Matroid and Greek

Matroid and the greedy algorithm

converse proof of Theorem 8.6.1.

• Given an independence system (E,\mathcal{I}) , suppose the greedy algorithm leads to an independent set of max weight for every non-negative weight function. We'll show (E,\mathcal{I}) is a matroid.

Dual Matroid Other Matroid Properties Combinatorial Geometries Matroid and

Matroid and the greedy algorithm

converse proof of Theorem 8.6.1.

- Given an independence system (E,\mathcal{I}) , suppose the greedy algorithm leads to an independent set of max weight for every non-negative weight function. We'll show (E,\mathcal{I}) is a matroid.
- Emptyset containing and down monotonicity already holds (since we've started with an independence system).

converse proof of Theorem 8.6.1.

- Given an independence system (E,\mathcal{I}) , suppose the greedy algorithm leads to an independent set of max weight for every non-negative weight function. We'll show (E,\mathcal{I}) is a matroid.
- Emptyset containing and down monotonicity already holds (since we've started with an independence system).
- Let $I, J \in \mathcal{I}$ with |I| < |J|. Suppose to the contrary, that $I \cup \{z\} \notin \mathcal{I}$ for all $z \in J \setminus I$.

converse proof of Theorem 8.6.1.

- Given an independence system (E,\mathcal{I}) , suppose the greedy algorithm leads to an independent set of max weight for every non-negative weight function. We'll show (E,\mathcal{I}) is a matroid.
- Emptyset containing and down monotonicity already holds (since we've started with an independence system).
- Let $I,J\in\mathcal{I}$ with |I|<|J|. Suppose to the contrary, that $I\cup\{z\}\notin\mathcal{I}$ for all $z\in J\setminus I$.
- Define the following modular weight function w on E, and define k=|I|.

$$w(v) = \begin{cases} k+2 & \text{if } v \in I, \\ k+1 & \text{if } v \in J \setminus I, \\ 0 & \text{if } v \in E \setminus (I \cup J) \end{cases}$$
 (8.19)

converse proof of Theorem 8.6.1.

• Now greedy will, after k iterations, recover I, but it cannot choose any element in $J\setminus I$ by assumption. Thus, greedy chooses a set of weight k(k+2)=w(I).

converse proof of Theorem 8.6.1.

- Now greedy will, after k iterations, recover I, but it cannot choose any element in $J \setminus I$ by assumption. Thus, greedy chooses a set of weight k(k+2) = w(I).
- 1517121-1 On the other hand, J has weight

$$w(J) \ge |J|(k+1) \ge (k+1)(k+1) > k(k+2) = w(I)$$
 (8.20)

so J has strictly larger weight but is still independent, contradicting greedy's optimality.

converse proof of Theorem 8.6.1.

- Now greedy will, after k iterations, recover I, but it cannot choose any element in $J\setminus I$ by assumption. Thus, greedy chooses a set of weight k(k+2)=w(I).
- ullet On the other hand, J has weight

$$w(J) \ge |J|(k+1) \ge (k+1)(k+1) > k(k+2) = w(I)$$
 (8.20)

so ${\cal J}$ has strictly larger weight but is still independent, contradicting greedy's optimality.

• Therefore, there must be a $z \in J \setminus I$ such that $I \cup \{z\} \in \mathcal{I}$, and since I and J are arbitrary, (E, \mathcal{I}) must be a matroid.

Dual Matroid Other Matroid Properties Combinatorial Geometries Matroid and Gree

Matroid and greedy

ullet As given, the theorem asked for a modular function $w \in \mathbb{R}_+^E$.

atroid Other Matroid Properties Combinatorial Geometries Matroid and Gree

- As given, the theorem asked for a modular function $w \in \mathbb{R}_+^E$.
- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0.

atroid Other Matroid Properties Combinatorial Geometries Matroid and Gree

- As given, the theorem asked for a modular function $w \in \mathbb{R}_+^E$.
- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0.
- If we don't want elements with weight 0, we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.

atroid Other Matroid Properties Combinatorial Geometries Matroid and Gree

- As given, the theorem asked for a modular function $w \in \mathbb{R}_+^E$.
- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0.
- If we don't want elements with weight 0, we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.
- \bullet We don't need non-negativity, we can use any $w \in \mathbb{R}^E$ and keep going until we have a base.

- ullet As given, the theorem asked for a modular function $w \in \mathbb{R}_+^E$.
- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0.
- If we don't want elements with weight 0, we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.
- We don't need non-negativity, we can use any $w \in \mathbb{R}^E$ and keep going until we have a base.
- If we stop at a negative value, we'll once again get a maximum weight independent set.

- As given, the theorem asked for a modular function $w \in \mathbb{R}^E_+$.
- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0.
- If we don't want elements with weight 0, we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.
- We don't need non-negativity, we can use any $w \in \mathbb{R}^E$ and keep going until we have a base.
- If we stop at a negative value, we'll once again get a maximum weight independent set.
- Exercise: what if we keep going until a base even if we encounter negative values?

- As given, the theorem asked for a modular function $w \in \mathbb{R}^E_+$.
- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0.
- If we don't want elements with weight 0, we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.
- We don't need non-negativity, we can use any $w \in \mathbb{R}^E$ and keep going until we have a base.
- If we stop at a negative value, we'll once again get a maximum weight independent set.
- Exercise: what if we keep going until a base even if we encounter negative values?
- We can instead do as small as possible thus giving us a minimum weight independent set/base.

Summary of Important (for us) Matroid Definitions

Given an independence system, matroids are defined equivalently by any of the following:

- All maximally independent sets have the same size.
 - A monotone non-decreasing submodular integral rank function with unit increments.
 - The greedy algorithm achieves the maximum weight independent set for all weight functions.