Submodular Functions, Optimization, and Applications to Machine Learning

- Spring Quarter, Lecture 8 -

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

April 18th, 2018

Cumulative Outstanding Reading

- Read chapter 1 from Fujishige's book.
- Read chapter 2 from Fujishige's book.

Announcements, Assignments, and Reminders

- If you have any questions about anything, please ask then via our discussion board
(https://canvas.uw.edu/courses/1216339/discussion_topics).

Class Road Map - EE563

- L1(3/26): Motivation, Applications, \& Basic Definitions,
- L2(3/28): Machine Learning Apps (diversity, complexity, parameter, learning target, surrogate).
- L3(4/2): Info theory exs, more apps, definitions, graph/combinatorial examples
- L4(4/4): Graph and Combinatorial Examples, Matrix Rank, Examples and Properties, visualizations
- L5(4/9): More Examples/Properties/ Other Submodular Defs., Independence,
- L6(4/11): Matroids, Matroid Examples, Matroid Rank, Partition/Laminar Matroids
- L7(4/16): Laminar Matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid Representation, Dual Matroids
- L8(4/18): Dual Matroids, Other Matroid Properties, Combinatorial Geometries, Matroids and Greedy.
- L9(4/23):
- L10(4/25):

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.

System of Distinct Representatives

- Let (V, \mathcal{V}) be a set system (i.e., $\mathcal{V}=\left(V_{b}: i \in I\right)$ where $V_{i} \subseteq V$ for all i), and I is an index set. Hence, $|I|=|\mathcal{V}|$.
- A family $\left(v_{i}: i \in I\right)$ with $v_{i} \in V$ is said to be a system of distinct representatives of \mathcal{V} if \exists a bijection $\pi: I \leftrightarrow I$ such that $v_{i} \in V_{\pi(i)}$ and $v_{i} \neq v_{j}$ for all $i \neq j$.
- In a system of distinct representatives, there is a requirement for the representatives to be distinct. We can re-state (and rename) this as a:

Definition 8.2.1 (transversal)

Given a set system (V, \mathcal{V}) and index set I for \mathcal{V} as defined above, a set $T \subseteq V$ is a transversal of \mathcal{V} if there is a bijection $\pi: T \leftrightarrow I$ such that

$$
\begin{equation*}
x \in V_{\pi(x)} \text { for all } x \in T \tag{8.2}
\end{equation*}
$$

- Note that due to $\pi: T \leftrightarrow I$ being a bijection, all of I and T are "covered" (so this makes things distinct automatically).

When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V}=\left(V_{i}: i \in I\right)$, and $V_{i} \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$
\begin{equation*}
V(J)=\cup_{j \in J} V_{j} \tag{8.2}
\end{equation*}
$$

so $|V(J)|: 2^{I} \rightarrow \mathbb{Z}_{+}$is the set cover func. (we know is submodular).

- We have

Theorem 8.2.1 (Hall's theorem)

Given a set system (V, \mathcal{V}), the family of subsets $\mathcal{V}=\left(V_{i}: i \in I\right)$ has a transversal $\left(v_{i}: i \in I\right)$ iff for all $J \subseteq I$

$$
\begin{equation*}
|V(J)| \geq|J| \tag{8.3}
\end{equation*}
$$

When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V}=\left(V_{i}: i \in I\right)$, and $V_{i} \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$
\begin{equation*}
V(J)=\cup_{j \in J} V_{j} \tag{8.2}
\end{equation*}
$$

so $|V(J)|: 2^{I} \rightarrow \mathbb{Z}_{+}$is the set cover func. (we know is submodular).

- Hall's theorem ($\forall J \subseteq I,|V(J)| \geq|J|)$ as a bipartite graph.

When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V}=\left(V_{i}: i \in I\right)$, and $V_{i} \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$
\begin{equation*}
V(J)=\cup_{j \in J} V_{j} \tag{8.2}
\end{equation*}
$$

so $|V(J)|: 2^{I} \rightarrow \mathbb{Z}_{+}$is the set cover func. (we know is submodular).

- Hall's theorem ($\forall J \subseteq I,|V(J)| \geq|J|)$ as a bipartite graph.

When do transversals exist?

- As we saw, a transversal might not always exist. How to tell?
- Given a set system (V, \mathcal{V}) with $\mathcal{V}=\left(V_{i}: i \in I\right)$, and $V_{i} \subseteq V$ for all i. Then, for any $J \subseteq I$, let

$$
\begin{equation*}
V(J)=\cup_{j \in J} V_{j} \tag{8.2}
\end{equation*}
$$

so $|V(J)|: 2^{I} \rightarrow \mathbb{Z}_{+}$is the set cover func. (we know is submodular).

- Moreover, we have

Theorem 8.2.2 (Rado's theorem (1942))

If $M=(V, r)$ is a matroid on V with rank function r, then the family of subsets $\left(V_{i}: i \in I\right)$ of V has a transversal $\left(v_{i}: i \in I\right)$ that is independent in \underline{M} iff for all $J \subseteq I$

$$
\begin{equation*}
r(V(J)) \geq|J| \tag{8.4}
\end{equation*}
$$

- Note, a transversal T independent in M means that $r(T)=|T|$.

Application's of Hall's theorem

- Consider a set of jobs I and a set of applicants V to the jobs. If an applicant $v \in V$ is qualified for job $i \in I$, we add edge (v, i) to the bipartite graph $G=(V, I, E)$.

Application's of Hall's theorem

- Consider a set of jobs I and a set of applicants V to the jobs. If an applicant $v \in V$ is qualified for job $i \in I$, we add edge (v, i) to the bipartite graph $G=(V, I, E)$.
- We wish all jobs to be filled, and hence Hall's condition $(\forall J \subseteq I,|V(J)| \geq|J|)$ is a necessary and sufficient condition for this to be possible.

Application's of Hall's theorem

- Consider a set of jobs I and a set of applicants V to the jobs. If an applicant $v \in V$ is qualified for job $i \in I$, we add edge (v, i) to the bipartite graph $G=(V, I, E)$.
- We wish all jobs to be filled, and hence Hall's condition $(\forall J \subseteq I,|V(J)| \geq|J|)$ is a necessary and sufficient condition for this to be possible.
- Note if $|V|=|I|$, then Hall's theorem is the Marriage Theorem (Frobenious 1917), where an edge (v, i) in the graph indicate compatibility between two individuals $v \in V$ and $i \in I$ coming from two separate groups V and I.

Application's of Hall's theorem

- Consider a set of jobs I and a set of applicants V to the jobs. If an applicant $v \in V$ is qualified for job $i \in I$, we add edge (v, i) to the bipartite graph $G=(V, I, E)$.
- We wish all jobs to be filled, and hence Hall's condition $(\forall J \subseteq I,|V(J)| \geq|J|)$ is a necessary and sufficient condition for this to be possible.
- Note if $|V|=|I|$, then Hall's theorem is the Marriage Theorem (Frobenious 1917), where an edge (v, i) in the graph indicate compatibility between two individuals $v \in V$ and $i \in I$ coming from two separate groups V and I.
- If $\forall J \subseteq I,|V(J)| \geq|J|$, then all individuals in each group can be matched with a compatible mate.

More general conditions for existence of transversals

Theorem 8.2.1 (Polymatroid transversal theorem)

If $\mathcal{V}=\left(V_{i}: i \in I\right)$ is a finite family of non-empty subsets of V, and $f: 2^{V} \rightarrow \mathbb{Z}_{+}$is a non-negative, integral, monotone non-decreasing, and submodular function, then \mathcal{V} has a system of representatives $\left(v_{i}: i \in I\right)$ such that

$$
\begin{equation*}
f\left(\cup_{i \in J}\left\{v_{i}\right\}\right) \geq|J| \text { for all } J \subseteq I \tag{8.2}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
f(V(J)) \geq|J| \text { for all } J \subseteq I \tag{8.3}
\end{equation*}
$$

- Given Theorem ??, we immediately get Theorem 8.2 .1 by taking $f(S)=|S|$ for $S \subseteq V$.
- We get Theorem ?? by taking $f(S)=r(S)$ for $S \subseteq V$, the rank function of the matroid.

Review from Lecture 6

The next frame comes from lecture 6 .

Matroids, other definitions using matroid rank $r: 2^{V} \rightarrow \mathbb{Z}_{+}$

Definition 8.3.3 (closed/flat/subspace)

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \backslash A, r(A \cup\{x\})=r(A)+1$. (maximin of a give cam h).

Definition: A hyperplane is a flat of $\operatorname{rank} r(M)-1$.

$$
\text { Definition 8.3.4 (closure) } \quad r(A+1)+r\left(A+b_{-}\right) \geq r\left(A+L_{1}+h_{2}\right)+r(A)
$$

Given $A \subseteq E$, the closure (or span) of A, is defined by $\Rightarrow\left(A+b_{1}+b_{2}\right)=r(A)$
$\operatorname{span}(A)=\{b \in E: r(A \cup\{b\})=r(A)\}$.
$\operatorname{span}(A)=\{b \in E: r(A \cup\{b\})=r(A)\}$ $r\left(A+b_{n}\right)=r(A)$

Therefore, a closed set A has $\operatorname{span}(A)=A$.

Definition 8.3.5 (circuit)

A subset $A \subseteq E$ is circuit or a cycle if it is an inclusionwise-minimal dependent set (ie., if $r(A)<|A|$ and for any $\overline{a \in A, r(A \backslash\{a\})=\mid} A \mid-1$).

$$
r(A)<|A|-1
$$

Spanning Sets

- We have the following definitions:

Spanning Sets

- We have the following definitions:

Definition 8.3.1 (spanning set of a set)

Given a matroid $\mathcal{M}=(V, \mathcal{I})$, and a set $Y \subseteq V$, then any set $X \subseteq Y$ such that $r(X)=r(Y)$ is called a spanning set of Y.

Spanning Sets

- We have the following definitions:

Definition 8.3.1 (spanning set of a set)

Given a matroid $\mathcal{M}=(V, \mathcal{I})$, and a set $Y \subseteq V$, then any set $X \subseteq Y$ such that $r(X)=r(Y)$ is called a spanning set of Y.

Definition 8.3.2 (spanning set of a matroid)

Given a matroid $\mathcal{M}=(V, \mathcal{I})$, any set $A \subseteq V$ such that $r(A)=r(V)$ is called a spanning set of the matroid.

Spanning Sets

- We have the following definitions:

Definition 8.3.1 (spanning set of a set)

Given a matroid $\mathcal{M}=(V, \mathcal{I})$, and a set $Y \subseteq V$, then any set $X \subseteq Y$ such that $r(X)=r(Y)$ is called a spanning set of Y.

Definition 8.3.2 (spanning set of a matroid)

Given a matroid $\mathcal{M}=(V, \mathcal{I})$, any set $A \subseteq V$ such that $r(A)=r(V)$ is called a spanning set of the matroid.

- A base of a matroid is a minimal spanning set (and it is independent) but supersets of a base are also spanning.

Spanning Sets

- We have the following definitions:

Definition 8.3.1 (spanning set of a set)

Given a matroid $\mathcal{M}=(V, \mathcal{I})$, and a set $Y \subseteq V$, then any set $X \subseteq Y$ such that $r(X)=r(Y)$ is called a spanning set of Y.

Definition 8.3.2 (spanning set of a matroid)

Given a matroid $\mathcal{M}=(V, \mathcal{I})$, any set $A \subseteq V$ such that $r(A)=r(V)$ is called a spanning set of the matroid.

- A base of a matroid is a minimal spanning set (and it is independent) but supersets of a base are also spanning.
- V is always trivially spanning.

Spanning Sets

- We have the following definitions:

Definition 8.3.1 (spanning set of a set)

Given a matroid $\mathcal{M}=(V, \mathcal{I})$, and a set $Y \subseteq V$, then any set $X \subseteq Y$ such that $r(X)=r(Y)$ is called a spanning set of Y.

Definition 8.3.2 (spanning set of a matroid)

Given a matroid $\mathcal{M}=(V, \mathcal{I})$, any set $A \subseteq V$ such that $r(A)=r(V)$ is called a spanning set of the matroid.

- A base of a matroid is a minimal spanning set (and it is independent) but supersets of a base are also spanning.
- V is always trivially spanning.
- Consider the terminology: "spanning tree in a graph", comes from spanning in a matroid sense.

Dual of a Matroid

- Given a matroid $M=(V, \mathcal{I})$, a dual matroid $M^{*}=\left(V, \mathcal{I}^{*}\right)$ can be defined on the same ground set V, but using a very different set of independent sets \mathcal{I}^{*}.

Dual of a Matroid

- Given a matroid $M=(V, \mathcal{I})$, a dual matroid $M^{*}=\left(V, \mathcal{I}^{*}\right)$ can be defined on the same ground set V, but using a very different set of independent sets \mathcal{I}^{*}.
- We define the set of sets \mathcal{I}^{*} for M^{*} as follows:

$$
\begin{align*}
\mathcal{I}^{*} & =\{A \subseteq V: V \backslash A \text { is a spanning set of } M\} \tag{8.1}\\
& =\{V \backslash S: S \subseteq V \text { is a spanning set of } M\} \tag{8.2}
\end{align*}
$$

i.e., \mathcal{I}^{*} are complements of spanning sets of M.

Dual of a Matroid

- Given a matroid $M=(V, \mathcal{I})$, a dual matroid $M^{*}=\left(V, \mathcal{I}^{*}\right)$ can be defined on the same ground set V, but using a very different set of independent sets \mathcal{I}^{*}.
- We define the set of sets \mathcal{I}^{*} for M^{*} as follows:

$$
\begin{align*}
\mathcal{I}^{*} & =\{A \subseteq V: V \backslash A \text { is a spanning set of } M\} \tag{8.1}\\
& =\{V \backslash S: S \subseteq V \text { is a spanning set of } M\} \tag{8.2}
\end{align*}
$$

i.e., \mathcal{I}^{*} are complements of spanning sets of M.

- That is, a set A is independent in the dual matroid M^{*} if removal of A from V does not decrease the rank in M :

$$
\begin{equation*}
\mathcal{I}^{*}=\left\{A \subseteq V: \operatorname{rank}_{M}(V \backslash A)=\operatorname{rank}_{M}(V)\right\} \tag{8.3}
\end{equation*}
$$

Dual of a Matroid

- Given a matroid $M=(V, \mathcal{I})$, a dual matroid $M^{*}=\left(V, \mathcal{I}^{*}\right)$ can be defined on the same ground set V, but using a very different set of independent sets \mathcal{I}^{*}.
- We define the set of sets \mathcal{I}^{*} for M^{*} as follows:

$$
\begin{align*}
\mathcal{I}^{*} & =\{A \subseteq V: V \backslash A \text { is a spanning set of } M\} \tag{8.1}\\
& =\{V \backslash S: S \subseteq V \text { is a spanning set of } M\} \tag{8.2}
\end{align*}
$$

ie., \mathcal{I}^{*} are complements of spanning sets of M.

- That is, a set A is independent in the dual matroid M^{*} if removal of A from V does not decrease the rank in M :

$$
\begin{equation*}
\mathcal{I}^{*}=\left\{A \subseteq V: \operatorname{rank}_{M}(V \backslash A)=\operatorname{rank}_{M}(V)\right\} \tag{8.3}
\end{equation*}
$$

- In other words, a set $A \subseteq V$ is independent in the dual M^{*} (ie., $A \in \mathcal{I}^{*}$) if A 's complement is spanning in M (residual $V \backslash A$ must contain a base in M).

$$
\begin{aligned}
& \exists \text { bax } B^{*} \text { ot } \text { mt sit. }^{\prime} B^{\top} \in V A \\
& \text { if } A \in I^{*}
\end{aligned}
$$

Dual of a Matroid

- Given a matroid $M=(V, \mathcal{I})$, a dual matroid $M^{*}=\left(V, \mathcal{I}^{*}\right)$ can be defined on the same ground set V, but using a very different set of independent sets \mathcal{I}^{*}.
- We define the set of sets \mathcal{I}^{*} for M^{*} as follows:

$$
\begin{align*}
\mathcal{I}^{*} & =\{A \subseteq V: V \backslash A \text { is a spanning set of } M\} \tag{8.1}\\
& =\{V \backslash S: S \subseteq V \text { is a spanning set of } M\} \tag{8.2}
\end{align*}
$$

i.e., \mathcal{I}^{*} are complements of spanning sets of M.

- That is, a set A is independent in the dual matroid M^{*} if removal of A from V does not decrease the rank in M :

$$
\begin{equation*}
\mathcal{I}^{*}=\left\{A \subseteq V: \operatorname{rank}_{M}(V \backslash A)=\operatorname{rank}_{M}(V)\right\} \tag{8.3}
\end{equation*}
$$

- In other words, a set $A \subseteq V$ is independent in the dual M^{*} (i.e., $A \in \mathcal{I}^{*}$) if A 's complement is spanning in M (residual $V \backslash A$ must contain a base in M).
- Dual of the dual: Note, we have that $\left(M^{*}\right)^{*}=M$.

Dual of a Matroid: Bases

- The smallest spanning sets are bases.

Dual of a Matroid: Bases

- The smallest spanning sets are bases. Hence, a base B of M (where $B=V \backslash B^{*}$ is as small as possible while still spanning) is the complement of a base B^{*} of M^{*} (where $B^{*}=V \backslash B$ is as large as possible while still being independent).

Dual of a Matroid: Bases

- The smallest spanning sets are bases. Hence, a base B of M (where $B=V \backslash B^{*}$ is as small as possible while still spanning) is the complement of a base B^{*} of M^{*} (where $B^{*}=V \backslash B$ is as large as possible while still being independent).
- In fact, we have that

Dual of a Matroid: Bases

- The smallest spanning sets are bases. Hence, a base B of M (where $B=V \backslash B^{*}$ is as small as possible while still spanning) is the complement of a base B^{*} of M^{*} (where $B^{*}=V \backslash B$ is as large as possible while still being independent).
- In fact, we have that

Theorem 8.3.3 (Dual matroid bases)

Let $M=(V, \mathcal{I})$ be a matroid and $\mathcal{B}(M)$ be the set of bases of M. Then define

$$
\begin{equation*}
\mathcal{B}^{*}(M)=\{V \backslash B: B \in \mathcal{B}(M)\} . \tag{8.4}
\end{equation*}
$$

Then $\mathcal{B}^{*}(M)$ is the set of basis of M^{*} (that is, $\mathcal{B}^{*}(M)=\mathcal{B}\left(M^{*}\right)$.

An exercise in duality Terminology

- $\mathcal{B}^{*}(M)$, the bases of M^{*}, are called cobases of M.

An exercise in duality Terminology

- $\mathcal{B}^{*}(M)$, the bases of M^{*}, are called cobases of M.
- The circuits of M^{*} are called cocircuits of M.

An exercise in duality Terminology

- $\mathcal{B}^{*}(M)$, the bases of M^{*}, are called cobases of M.
- The circuits of M^{*} are called cocircuits of M.
- The hyperplanes of M^{*} are called cohyperplanes of M.

An exercise in duality Terminology

- $\mathcal{B}^{*}(M)$, the bases of M^{*}, are called cobases of M.
- The circuits of M^{*} are called cocircuits of M.
- The hyperplanes of M^{*} are called cohyperplanes of M.
- The independent sets of M^{*} are called coindependent sets of M.

An exercise in duality Terminology

- $\mathcal{B}^{*}(M)$, the bases of M^{*}, are called cobases of M.
- The circuits of M^{*} are called cocircuits of M.
- The hyperplanes of M^{*} are called cohyperplanes of M.
- The independent sets of M^{*} are called coindependent sets of M.
- The spanning sets of M^{*} are called cospanning sets of M.

An exercise in duality Terminology

- $\mathcal{B}^{*}(M)$, the bases of M^{*}, are called cobases of M.
- The circuits of M^{*} are called cocircuits of M.
- The hyperplanes of M^{*} are called cohyperplanes of M.
- The independent sets of M^{*} are called coindependent sets of M.
- The spanning sets of M^{*} are called cospanning sets of M.

Proposition 8.3.4 (from Oxley 2011)

Let $M=(V, \mathcal{I})$ be a matroid, and let $X \subseteq V$. Then

An exercise in duality Terminology

- $\mathcal{B}^{*}(M)$, the bases of M^{*}, are called cobases of M.
- The circuits of M^{*} are called cocircuits of M.
- The hyperplanes of M^{*} are called cohyperplanes of M.
- The independent sets of M^{*} are called coindependent sets of M.
- The spanning sets of M^{*} are called cospanning sets of M.

Proposition 8.3.4 (from Oxley 2011)

Let $M=(V, \mathcal{I})$ be a matroid, and let $X \subseteq V$. Then
(1) X is independent in M iff $V \backslash X$ is cospanning in M (spanning in M^{*}).

An exercise in duality Terminology

- $\mathcal{B}^{*}(M)$, the bases of M^{*}, are called cobases of M.
- The circuits of M^{*} are called cocircuits of M.
- The hyperplanes of M^{*} are called cohyperplanes of M.
- The independent sets of M^{*} are called coindependent sets of M.
- The spanning sets of M^{*} are called cospanning sets of M.

Proposition 8.3.4 (from Oxley 2011)

Let $M=(V, \mathcal{I})$ be a matroid, and let $X \subseteq V$. Then
(1) X is independent in M iff $V \backslash X$ is cospanning in M (spanning in M^{*}).
(2) X is spanning in M iff $V \backslash X$ is coindependent in M (independent in $\left.M^{*}\right)$.

An exercise in duality Terminology

- $\mathcal{B}^{*}(M)$, the bases of M^{*}, are called cobases of M.
- The circuits of M^{*} are called cocircuits of M.
- The hyperplanes of M^{*} are called cohyperplanes of M.
- The independent sets of M^{*} are called coindependent sets of M.
- The spanning sets of M^{*} are called cospanning sets of M.

Proposition 8.3.4 (from Oxley 2011)

Let $M=(V, \mathcal{I})$ be a matroid, and let $X \subseteq V$. Then
(1) X is independent in M iff $V \backslash X$ is cospanning in M (spanning in M^{*}).
(2) X is spanning in M iff $V \backslash X$ is coindependent in M (independent in $\left.M^{*}\right)$.
(3) X is a hyperplane in M iff $V \backslash X$ is a cocircuit in M (circuit in M^{*}).

An exercise in duality Terminology

- $\mathcal{B}^{*}(M)$, the bases of M^{*}, are called cobases of M.
- The circuits of M^{*} are called cocircuits of M.
- The hyperplanes of M^{*} are called cohyperplanes of M.
- The independent sets of M^{*} are called coindependent sets of M.
- The spanning sets of M^{*} are called cospanning sets of M.

Proposition 8.3.4 (from Oxley 2011)

Let $M=(V, \mathcal{I})$ be a matroid, and let $X \subseteq V$. Then
(1) X is independent in M iff $V \backslash X$ is cospanning in M (spanning in M^{*}).
(2) X is spanning in M iff $V \backslash X$ is coindependent in M (independent in $\left.M^{*}\right)$.
(3) X is a hyperplane in M iff $V \backslash X$ is a cocircuit in M (circuit in M^{*}).
(4) X is a circuit in M iff $V \backslash X$ is a cohyperplane in M (hyperplane in M^{*}).

Example duality: graphic matroid

- Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrates the extraordinary flexibility and power that a matroid can have.

Example duality: graphic matroid

- Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrates the extraordinary flexibility and power that a matroid can have.
- Recall, in cycle matroid, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest), a minimal spanning set is a spanning tree (or forest), and a circuit has a nice visual interpretation (a cycle in the graph).

Example duality: graphic matroid

- Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrates the extraordinary flexibility and power that a matroid can have.
- Recall, in cycle matroid, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest), a minimal spanning set is a spanning tree (or forest), and a circuit has a nice visual interpretation (a cycle in the graph).
- A cut in a graph G is a set of edges, the removal of which increases the number of connected components. I.e., $X \subseteq E(G)$ is a cut in G if $k(G)<k(G \backslash X)$.

Example duality: graphic matroid

- Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrates the extraordinary flexibility and power that a matroid can have.
- Recall, in cycle matroid, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest), a minimal spanning set is a spanning tree (or forest), and a circuit has a nice visual interpretation (a cycle in the graph).
- A cut in a graph G is a set of edges, the removal of which increases the number of connected components. I.e., $X \subseteq E(G)$ is a cut in G if $k(G)<k(G \backslash X)$.
- A minimal cut in G is a cut $X \subseteq E(G)$ such that $X \backslash\{x\}$ is not a cut for any $x \in X$.

Example duality: graphic matroid

- Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrates the extraordinary flexibility and power that a matroid can have.
- Recall, in cycle matroid, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest), a minimal spanning set is a spanning tree (or forest), and a circuit has a nice visual interpretation (a cycle in the graph).
- A cut in a graph G is a set of edges, the removal of which increases the number of connected components. I.e., $X \subseteq E(G)$ is a cut in G if $k(G)<k(G \backslash X)$.
- A minimal cut in G is a cut $X \subseteq E(G)$ such that $X \backslash\{x\}$ is not a cut for any $x \in X$.
- A cocycle (cocircuit) in a graphic matroid is a minimal graph cut.

Example duality: graphic matroid

- Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrates the extraordinary flexibility and power that a matroid can have.
- Recall, in cycle matroid, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest), a minimal spanning set is a spanning tree (or forest), and a circuit has a nice visual interpretation (a cycle in the graph).
- A cut in a graph G is a set of edges, the removal of which increases the number of connected components. I.e., $X \subseteq E(G)$ is a cut in G if $k(G)<k(G \backslash X)$.
- A minimal cut in G is a cut $X \subseteq E(G)$ such that $X \backslash\{x\}$ is not a cut for any $x \in X$.
- A cocycle (cocircuit) in a graphic matroid is a minimal graph cut.
- A mincut is a circuit in the dual "cocycle" (or "cut") matroid.

Example duality: graphic matroid

- Using a graphic/cycle matroid, we can already see how dual matroid concepts demonstrates the extraordinary flexibility and power that a matroid can have.
- Recall, in cycle matroid, a spanning set of G is any set of edges that are incident to all nodes (i.e., any superset of a spanning forest), a minimal spanning set is a spanning tree (or forest), and a circuit has a nice visual interpretation (a cycle in the graph).
- A cut in a graph G is a set of edges, the removal of which increases the number of connected components. I.e., $X \subseteq E(G)$ is a cut in G if $k(G)<k(G \backslash X)$.
- A minimal cut in G is a cut $X \subseteq E(G)$ such that $X \backslash\{x\}$ is not a cut for any $x \in X$.
- A cocycle (cocircuit) in a graphic matroid is a minimal graph cut.
- A mincut is a circuit in the dual "cocycle" (or "cut") matroid.
- All dependent sets in a cocycle matroid are cuts (i.e., a dependent set is a minimal cut or contains one).

Example: cocycle matroid (sometimes "cut matroid")

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{A \subseteq V: V \backslash A$ is a spanning set of $M\}$

Example: cocycle matroid (sometimes "cut matroid")

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{A \subseteq V: V \backslash A$ is a spanning set of $M\}$
- \mathcal{I}^{*} consists of all sets of edges the complement of which contains a spanning tree - i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Example: cocycle matroid (sometimes "cut matroid")

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{A \subseteq V: V \backslash A$ is a spanning set of $M\}$
- \mathcal{I}^{*} consists of all sets of edges the complement of which contains a spanning tree - i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

A graph G

Example: cocycle matroid (sometimes "cut matroid")

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{A \subseteq V: V \backslash A$ is a spanning set of $M\}$
- \mathcal{I}^{*} consists of all sets of edges the complement of which contains a spanning tree - i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Minimally spanning in M (and thus a base (maximally independent) in M)

Maximally independent in M^{*} (thus a base, minimally spanning, in M^{*})

Example: cocycle matroid (sometimes "cut matroid")

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{A \subseteq V: V \backslash A$ is a spanning set of $M\}$
- \mathcal{I}^{*} consists of all sets of edges the complement of which contains a spanning tree - i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Minimally spanning in M (and thus a base (maximally independent) in M)

Maximally independent in M^{*} (thus a base, minimally spanning, in M^{*})

Example: cocycle matroid (sometimes "cut matroid")

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{A \subseteq V: V \backslash A$ is a spanning set of $M\}$
- \mathcal{I}^{*} consists of all sets of edges the complement of which contains a spanning tree - i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Independent but not spanning in M , and not closed in M .

Dependent in M^{*} (contains a cocycle, is a nonminimal cut)

Example: cocycle matroid (sometimes "cut matroid")

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{A \subseteq V: V \backslash A$ is a spanning set of $M\}$
- \mathcal{I}^{*} consists of all sets of edges the complement of which contains a spanning tree - i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Spanning in M, but not a base, and not independent (has cycles)

Independent in M^{*} (does
not contain a cut)

Example: cocycle matroid (sometimes "cut matroid")

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{A \subseteq V: V \backslash A$ is a spanning set of $M\}$
- \mathcal{I}^{*} consists of all sets of edges the complement of which contains a spanning tree - i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Independent but not spanning in M , and not closed in M .

Dependent in M^{*} (contains a cocycle, is a nonminimal cut)

Example: cocycle matroid (sometimes "cut matroid")

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{A \subseteq V: V \backslash A$ is a spanning set of $M\}$
- \mathcal{I}^{*} consists of all sets of edges the complement of which contains a spanning tree - i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

A hyperplane in M, dependent but not spanning in M

A cycle in M^{*} (minimally dependent in M^{*}, a cocycle, or a minimal cut)

Example: cocycle matroid (sometimes "cut matroid")

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{A \subseteq V: V \backslash A$ is a spanning set of $M\}$
- \mathcal{I}^{*} consists of all sets of edges the complement of which contains a spanning tree - i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

A hyperplane in M, dependent but not spanning in M

A cycle in M^{*} (minimally dependent in M^{*}, a cocycle, or a minimal cut)

Example: cocycle matroid (sometimes "cut matroid")

- The dual of the cycle matroid is called the cocycle matroid. Recall, $\mathcal{I}^{*}=\{A \subseteq V: V \backslash A$ is a spanning set of $M\}$
- \mathcal{I}^{*} consists of all sets of edges the complement of which contains a spanning tree - i.e., an independent set can't consist of edges that, if removed, would render the graph non-spanning.

Cycle Matroid - independent sets have no cycles.

Cocycle matroid, independent sets contain no cuts.

The dual of a matroid is (indeed) a matroid

Theorem 8.3.5

Given matroid $M=(V, \mathcal{I})$, let $M^{*}=\left(V, \mathcal{I}^{*}\right)$ be as previously defined. Then M^{*} is a matroid.

Proof.

- Since $V \backslash \emptyset$ is spanning in primal, clearly $\emptyset \in \mathcal{I}^{*}$, so (I1') holds.

The dual of a matroid is (indeed) a matroid

Theorem 8.3.5

Given matroid $M=(V, \mathcal{I})$, let $M^{*}=\left(V, \mathcal{I}^{*}\right)$ be as previously defined. Then M^{*} is a matroid.

Proof.

- Since $V \backslash \emptyset$ is spanning in primal, clearly $\emptyset \in \mathcal{I}^{*}$, so (11^{\prime}) holds.
- Also, if $I \subseteq J \in \mathcal{I}^{*}$, then clearly also $I \in \mathcal{I}^{*}$ since if $V \backslash J$ is spanning in M, so must $V \backslash I$. Therefore, (I2') holds. (V\J) $\subseteq(V \backslash I)$
- Next, given $I, J \in \mathcal{I}^{*}$ with $|I|<|J|$, it must be the case that $\bar{I}=V \backslash I$ and $\bar{J}=V \backslash J$ are both spanning in M with $|\bar{I}|>|\bar{J}|$.

The dual of a matroid is (indeed) a matroid

Theorem 8.3.5

Given matroid $M=(V, \mathcal{I})$, let $M^{*}=\left(V, \mathcal{I}^{*}\right)$ be as previously defined. Then M^{*} is a matroid.

Proof.

- Consider $I, J \in \mathcal{I}^{*}$ with $|I|<|J|$. We need to show that there is some member $v \in J \backslash I$ such that $I+v$ is independent in M^{*}, which means that $V \backslash(I+v)=(V \backslash I) \backslash v=\bar{I}-v$ is still spanning in M. That is, removing v from $V \backslash I$ doesn't make $(V \backslash I) \backslash v$ not spanning in M.

The dual of a matroid is (indeed) a matroid

Theorem 8.3.5

Given matroid $M=(V, \mathcal{I})$, let $M^{*}=\left(V, \mathcal{I}^{*}\right)$ be as previously defined. Then M^{*} is a matroid.

Proof.

- Consider $I, J \in \mathcal{I}^{*}$ with $|I|<|J|$. We need to show that there is some member $v \in J \backslash I$ such that $I+v$ is independent in M^{*}, which means that $V \backslash(I+v)=(V \backslash I) \backslash v=\bar{I}-v$ is still spanning in M. That is, removing v from $V \backslash I$ doesn't make $(V \backslash I) \backslash v$ not spanning in M.
- Since $V \backslash J$ is spanning in $M, V \backslash J$ contains some base (say $B_{\bar{J}} \subseteq V \backslash J$) of M. Also, $V \backslash I$ contains a base of M, say $B_{\bar{I}} \subseteq V \backslash I$.

The dual of a matroid is (indeed) a matroid

Theorem 8.3.5

Given matroid $M=(V, \mathcal{I})$, let $M^{*}=\left(V, \mathcal{I}^{*}\right)$ be as previously defined. Then M^{*} is a matroid.

Proof.

- Consider $I, J \in \mathcal{I}^{*}$ with $|I|<|J|$. We need to show that there is some member $v \in J \backslash I$ such that $I+v$ is independent in M^{*}, which means that $V \backslash(I+v)=(V \backslash I) \backslash v=\bar{I}-v$ is still spanning in M. That is, removing v from $V \backslash I$ doesn't make $(V \backslash I) \backslash v$ not spanning in M.
- Since $V \backslash J$ is spanning in $M, V \backslash J$ contains some base (say $\left.B_{\bar{J}} \subseteq V \backslash J\right)$ of M. Also, $V \backslash I$ contains a base of M, say $B_{\bar{I}} \subseteq V \backslash I$.
- Since $B_{\bar{J}} \backslash I \subseteq V \backslash I$, and $B_{\bar{J}} \backslash I$ is independent in M, we can choose the base $B_{\bar{I}}$ of M s.t. $B_{\bar{J}} \backslash I \subseteq B_{\bar{I}} \subseteq V \backslash I$.

The dual of a matroid is (indeed) a matroid

Theorem 8.3.5

Given matroid $M=(V, \mathcal{I})$, let $M^{*}=\left(V, \mathcal{I}^{*}\right)$ be as previously defined. Then M^{*} is a matroid.

Proof.

- Consider $I, J \in \mathcal{I}^{*}$ with $|I|<|J|$. We need to show that there is some member $v \in J \backslash I$ such that $I+v$ is independent in M^{*}, which means that $V \backslash(I+v)=(V \backslash I) \backslash v=\bar{I}-v$ is still spanning in M. That is, removing v from $V \backslash I$ doesn't make $(V \backslash I) \backslash v$ not spanning in M.
- Since $V \backslash J$ is spanning in $M, V \backslash J$ contains some base (say $\left.B_{\bar{J}} \subseteq V \backslash J\right)$ of M. Also, $V \backslash I$ contains a base of M, say $B_{\bar{I}} \subseteq V \backslash I$.
- Since $B_{\bar{J}} \backslash I \subseteq V \backslash I$, and $B_{\bar{J}} \backslash I$ is independent in M, we can choose the base $B_{\bar{I}}$ of M s.t. $B_{\bar{J}} \backslash I \subseteq B_{\bar{I}} \subseteq V \backslash I$.
- Since $B_{\bar{J}}$ and J are disjoint, we have both: 1) $B_{\bar{J}} \backslash I$ and $J \backslash I$ are disjoint; and 2) $B_{\bar{J}} \cap I \subseteq I \backslash J$. Also note, $B_{\bar{I}}$ and I are disjoint.

The dual of a matroid is (indeed) a matroid

Theorem 8.3.5

Given matroid $M=(V, \mathcal{I})$, let $M^{*}=\left(V, \mathcal{I}^{*}\right)$ be as previously defined. Then M^{*} is a matroid.

Proof.

- Now $J \backslash I \nsubseteq B_{\bar{I}}$, since otherwise (i.e., assuming $J \backslash I \subseteq B_{\bar{I}}$):

$$
|\overline{\bar{v}}|>|\mathcal{I}| \quad\left|B_{\bar{J}}\right|=\left|B_{\bar{J}} \cap I\right|+\left|B_{\bar{J}} \backslash I\right|, \quad \begin{align*}
& \tag{8.5}\\
& \leq|I \backslash J|+\left|B_{\bar{J}} \backslash I\right| \\
&<|J \backslash I|+\left|B_{\bar{J}} \backslash I\right| \leq\left|B_{\bar{I}}\right| \tag{8.6}
\end{align*}
$$

which is a contradiction. The last inequality on the right follows since $J \backslash I \subseteq B_{\bar{I}}$ (by assumption) and $B_{\bar{J}} \backslash I \subseteq B_{\bar{I}}$ implies that $(J \backslash I) \cup\left(B_{\bar{J}} \backslash I\right) \subseteq B_{\bar{I}}$, but since J and $B_{\bar{J}}$ are disjoint, we have that $|J \backslash I|+\left|B_{\bar{J}} \backslash I\right| \leq\left|B_{\bar{I}}\right|$.

The dual of a matroid is (indeed) a matroid

Theorem 8.3.5

Given matroid $M=(V, \mathcal{I})$, let $M^{*}=\left(V, \mathcal{I}^{*}\right)$ be as previously defined. Then M^{*} is a matroid.

Proof.

- Now $J \backslash I \nsubseteq B_{\bar{I}}$, since otherwise (i.e., assuming $J \backslash I \subseteq B_{\bar{I}}$):

$$
\begin{align*}
\left|B_{\bar{J}}\right| & =\left|B_{\bar{J}} \cap I\right|+\left|B_{\bar{J}} \backslash I\right| \tag{8.5}\\
& \leq|I \backslash J|+\left|B_{\bar{J}} \backslash I\right| \tag{8.6}\\
& <|J \backslash I|+\left|B_{\bar{J}} \backslash I\right| \leq\left|B_{\bar{I}}\right| \tag{8.7}
\end{align*}
$$

which is a contradiction.

- Therefore, $J \backslash I \nsubseteq B_{\bar{I}}$, and there is a $v \in J \backslash I$ s.t. $v \notin B_{\bar{I}}$.

The dual of a matroid is (indeed) a matroid

Theorem 8.3.5

Given matroid $M=(V, \mathcal{I})$, let $M^{*}=\left(V, \mathcal{I}^{*}\right)$ be as previously defined. Then M^{*} is a matroid.

Proof.

- Now $J \backslash I \nsubseteq B_{\bar{I}}$, since otherwise (i.e., assuming $J \backslash I \subseteq B_{\bar{I}}$):

$$
\begin{align*}
\left|B_{\bar{J}}\right| & =\left|B_{\bar{J}} \cap I\right|+\left|B_{\bar{J}} \backslash I\right| \tag{8.5}\\
& \leq|I \backslash J|+\left|B_{\bar{J}} \backslash I\right| \tag{8.6}\\
& <|J \backslash I|+\left|B_{\bar{J}} \backslash I\right| \leq\left|B_{\bar{I}}\right| \tag{8.7}
\end{align*}
$$

which is a contradiction.

- Therefore, $J \backslash I \nsubseteq B_{\bar{I}}$, and there is a $v \in J \backslash I$ s.t. $v \notin B_{\bar{I}}$.
- So $B_{\bar{I}}$ is disjoint with $I \cup\{v\}$, means $B_{\bar{I}} \subseteq V \backslash(I \cup\{v\})$, or $V \backslash(I \cup\{v\})$ is spanning in M, and therefore $I \cup\{v\} \in \mathcal{I}^{*}$.

Matroid Duals and Representability

Theorem 8.3.6

Let M be an \mathbb{F}-representable matroid (i.e., one that can be represented by a finite sized matrix over field \mathbb{F}). Then M^{*} is also \mathbb{F}-representable.

Hence, for matroids as general as matric matroids, duality does not extend the space of matroids that can be used.

Matroid Duals and Representability

Theorem 8.3.6

Let M be an \mathbb{F}-representable matroid (i.e., one that can be represented by a finite sized matrix over field \mathbb{F}). Then M^{*} is also \mathbb{F}-representable.

Hence, for matroids as general as matric matroids, duality does not extend the space of matroids that can be used.

Theorem 8.3.7

Let M be a graphic matroid (i.e., one that can be represented by a graph $G=(V, E)$). Then M^{*} is not necessarily also graphic.

Hence, for graphic matroids, duality can increase the space and power of matroids, and since they are based on a graph, they are relatively easy to use: 1) all cuts are dependent sets; 2) minimal cuts are cycles; 3) bases of a cut are any one edge removed from minimal cuts; 4) independent sets are edges that are not cuts (minimal or otherwise); 5) bases of matroid are maximal non-cuts (non-cut containing edge sets).

Dual Matroid Rank

Theorem 8.3.8

The rank function $r_{M^{*}}$ of the dual matroid M^{*} may be specified in terms of the rank r_{M} in matroid M as follows. For $X \subseteq V$:

$$
\begin{equation*}
r_{M^{*}}(X)=|X|+r_{M}(V \backslash X)-r_{M}(V) \tag{8.8}
\end{equation*}
$$

- Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2. I.e., $|X|$ is modular, complement $f(V \backslash X)$ is submodular if f is submodular, $r_{M}(V)$ is a constant, and summing submodular functions and a constant preserves submodularity.

Dual Matroid Rank

Theorem 8.3.8

The rank function $r_{M^{*}}$ of the dual matroid M^{*} may be specified in terms of the rank r_{M} in matroid M as follows. For $X \subseteq V$:

$$
\begin{equation*}
r_{M^{*}}(X)=|X|+r_{M}(V \backslash X)-r_{M}(V) \geq 0 \tag{8.8}
\end{equation*}
$$

- Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2.
- Non-negativity integral follows since
$|X|+r_{M}(V \backslash X) \geq r_{M}(X)+r_{M}(V \backslash X) \geq r_{M}(V)$. The right inequality follows since r_{M} is submodular.

$$
\underbrace{+r_{m}(\phi)}_{=0}
$$

Dual Matroid Rank

Theorem 8.3.8

The rank function $r_{M^{*}}$ of the dual matroid M^{*} may be specified in terms of the rank r_{M} in matroid M as follows. For $X \subseteq V$:

$$
\begin{equation*}
r_{M^{*}}(X)=|X|+r_{M}(V \backslash X)-r_{M}(V) \tag{8.8}
\end{equation*}
$$

- Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2.
- Non-negativity integral follows since

$$
|X|+r_{M}(V \backslash X) \geq r_{M}(X)+r_{M}(V \backslash X) \geq r_{M}(V)
$$

- Monotone non-decreasing follows since, as X increases by one, $|X|$ always increases by 1 , while $r_{M}(V \backslash X)$ decreases by one or zero.

Dual Matroid Rank

Theorem 8.3.8

The rank function $r_{M^{*}}$ of the dual matroid M^{*} may be specified in terms of the rank r_{M} in matroid M as follows. For $X \subseteq V$:

$$
\begin{equation*}
r_{M^{*}}(X)=|X|+r_{M}(V \backslash X)-r_{M}(V) \tag{8.8}
\end{equation*}
$$

- Note, we again immediately see that this is submodular by the properties of submodular functions we saw in lectures 1 and 2 .
- Non-negativity integral follows since

$$
|X|+r_{M}(V \backslash X) \geq r_{M}(X)+r_{M}(V \backslash X) \geq r_{M}(V)
$$

- Monotone non-decreasing follows since, as X increases by one, $|X|$ always increases by 1 , while $r_{M}(V \backslash X)$ decreases by one or zero.
- Therefore, $r_{M^{*}}$ is the rank function of a matroid. That it is the dual matroid rank function is shown in the next proof.

Dual Matroid Rank

Theorem 8.3.8

The rank function $r_{M^{*}}$ of the dual matroid M^{*} may be specified in terms of the rank r_{M} in matroid M as follows. For $X \subseteq V$:

$$
\begin{equation*}
r_{M^{*}}(X)=|X|+r_{M}(V \backslash X)-r_{M}(V) \tag{8.8}
\end{equation*}
$$

Proof.

A set X is independent in $\left(V, r_{M^{*}}\right)$ if and only if

$$
\begin{equation*}
r_{M^{*}}(X)=|X|+r_{M}(V \backslash X)-r_{M}(V)=|X| \tag{8.9}
\end{equation*}
$$

Dual Matroid Rank

Theorem 8.3.8

The rank function $r_{M^{*}}$ of the dual matroid M^{*} may be specified in terms of the rank r_{M} in matroid M as follows. For $X \subseteq V$:

$$
\begin{equation*}
r_{M^{*}}(X)=|X|+r_{M}(V \backslash X)-r_{M}(V) \tag{8.8}
\end{equation*}
$$

Proof.

A set X is independent in ($V, r_{M^{*}}$) if and only if

$$
\begin{equation*}
r_{M^{*}}(X)=|X|+r_{M}(V \backslash X)-r_{M}(V)=|X| \tag{8.9}
\end{equation*}
$$

or

$$
\begin{equation*}
r_{M}(V \backslash X)=r_{M}(V) \tag{8.10}
\end{equation*}
$$

Dual Matroid Rank

Theorem 8.3.8

The rank function $r_{M^{*}}$ of the dual matroid M^{*} may be specified in terms of the rank r_{M} in matroid M as follows. For $X \subseteq V$:

$$
\begin{equation*}
r_{M^{*}}(X)=|X|+r_{M}(V \backslash X)-r_{M}(V) \tag{8.8}
\end{equation*}
$$

Proof.

A set X is independent in $\left(V, r_{M^{*}}\right)$ if and only if

$$
\begin{equation*}
r_{M^{*}}(X)=|X|+r_{M}(V \backslash X)-r_{M}(V)=|X| \tag{8.9}
\end{equation*}
$$

or

$$
\begin{equation*}
r_{M}(V \backslash X)=r_{M}(V) \tag{8.10}
\end{equation*}
$$

But a subset X is independent in M^{*} only if $V \backslash X$ is spanning in M (by the definition of the dual matroid).

Matroid restriction/deletion

- Let $M=(V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$
\begin{equation*}
\mathcal{I}_{Y}=\{Z: Z \subseteq Y, Z \in \mathcal{I}\} \tag{8.11}
\end{equation*}
$$

is such that $M_{Y}=\left(Y, \mathcal{I}_{Y}\right)$ is a matroid with rank $r\left(M_{Y}\right)=r(Y)$.

Matroid restriction/deletion

- Let $M=(V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$
\begin{equation*}
\mathcal{I}_{Y}=\{Z: Z \subseteq Y, Z \in \mathcal{I}\} \tag{8.11}
\end{equation*}
$$

is such that $M_{Y}=\left(Y, \mathcal{I}_{Y}\right)$ is a matroid with rank $r\left(M_{Y}\right)=r(Y)$.

- This is called the restriction of M to Y, and is often written $M \mid Y$.

Matroid restriction/deletion

- Let $M=(V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$
\begin{equation*}
\mathcal{I}_{Y}=\{Z: Z \subseteq Y, Z \in \mathcal{I}\} \tag{8.11}
\end{equation*}
$$

is such that $M_{Y}=\left(Y, \mathcal{I}_{Y}\right)$ is a matroid with rank $r\left(M_{Y}\right)=r(Y)$.

- This is called the restriction of M to Y, and is often written $M \mid Y$.
- If $Y=V \backslash X$, then we have that $M \mid Y$ has the form:
$(Z \cap x=\phi)$
$\equiv(z \subseteq \vee \backslash x)$

$$
\begin{equation*}
\mathcal{I}_{Y}=\{Z: Z \cap X=\emptyset, Z \in \mathcal{I}\} \tag{8.12}
\end{equation*}
$$

is considered a deletion of X from M, and is often written $M \backslash X$.

Matroid restriction/deletion

- Let $M=(V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$
\begin{equation*}
\mathcal{I}_{Y}=\{Z: Z \subseteq Y, Z \in \mathcal{I}\} \tag{8.11}
\end{equation*}
$$

is such that $M_{Y}=\left(Y, \mathcal{I}_{Y}\right)$ is a matroid with rank $r\left(M_{Y}\right)=r(Y)$.

- This is called the restriction of M to Y, and is often written $M \mid Y$.
- If $Y=V \backslash X$, then we have that $M \mid Y$ has the form:

$$
\begin{equation*}
\mathcal{I}_{Y}=\{Z: Z \cap X=\emptyset, Z \in \mathcal{I}\} \tag{8.12}
\end{equation*}
$$

is considered a deletion of X from M, and is often written $M \backslash X$.

- Hence, $M \mid Y=M \backslash(V \backslash Y)$, and $M \mid(V \backslash X)=M \backslash X$.

Matroid restriction/deletion

- Let $M=(V, \mathcal{I})$ be a matroid and let $Y \subseteq V$, then

$$
\begin{equation*}
\mathcal{I}_{Y}=\{Z: Z \subseteq Y, Z \in \mathcal{I}\} \tag{8.11}
\end{equation*}
$$

is such that $M_{Y}=\left(Y, \mathcal{I}_{Y}\right)$ is a matroid with rank $r\left(M_{Y}\right)=r(Y)$.

- This is called the restriction of M to Y, and is often written $M \mid Y$.
- If $Y=V \backslash X$, then we have that $M \mid Y$ has the form:

$$
\begin{equation*}
\mathcal{I}_{Y}=\{Z: Z \cap X=\emptyset, Z \in \mathcal{I}\} \tag{8.12}
\end{equation*}
$$

is considered a deletion of X from M, and is often written $M \backslash X$.

- Hence, $M \mid Y=M \backslash(V \backslash Y)$, and $M \mid(V \backslash X)=M \backslash X$.
- The rank function is of the same form. I.e., $r_{Y}: 2^{Y} \rightarrow \mathbb{Z}_{+}$, where $r_{Y}(Z)=r(Z)$ for $Z \subseteq Y, Y=V \backslash X$.

Matroid contraction M / Z

- Contraction by Z is dual to deletion, and is like a forced inclusion of a contained base B_{Z} of Z, but with a similar ground set removal by Z. Contracting Z is written M / Z. Updated ground set in M / Z is $V \backslash Z$.

Matroid contraction M / Z

- Contraction by Z is dual to deletion, and is like a forced inclusion of a contained base B_{Z} of Z, but with a similar ground set removal by Z. Contracting Z is written M / Z. Updated ground set in M / Z is $V \backslash Z$.
- Let $Z \subseteq V$ and let B_{Z} be a base of Z. Then a subset $I \subseteq V \backslash Z$ is independent in M / Z iff $I \cup B_{Z}$ is independent in M.

Matroid contraction M / Z

- Contraction by Z is dual to deletion, and is like a forced inclusion of a contained base B_{Z} of Z, but with a similar ground set removal by Z. Contracting Z is written M / Z. Updated ground set in M / Z is $V \backslash Z$.
- Let $Z \subseteq V$ and let B_{Z} be a base of Z. Then a subset $I \subseteq V \backslash Z$ is independent in M / Z iff $I \cup B_{Z}$ is independent in M.
- The rank function takes the form

$$
\begin{align*}
r_{M / Z}(Y) & =r(Y \cup Z)-r(Z)=r(Y \mid Z) \tag{8.13}\\
& =r\left(Y \cup B_{Z}\right)-r\left(B_{Z}\right)=r\left(Y \mid B_{Z}\right) \tag{8.14}
\end{align*}
$$

Matroid contraction M / Z

- Contraction by Z is dual to deletion, and is like a forced inclusion of a contained base B_{Z} of Z, but with a similar ground set removal by Z. Contracting Z is written M / Z. Updated ground set in M / Z is $V \backslash Z$.
- Let $Z \subseteq V$ and let B_{Z} be a base of Z. Then a subset $I \subseteq V \backslash Z$ is independent in M / Z iff $I \cup B_{Z}$ is independent in M.
- The rank function takes the form

$$
\begin{align*}
r_{M / Z}(Y) & =r(Y \cup Z)-r(Z)=r(Y \mid Z) \tag{8.13}\\
& =r\left(Y \cup B_{Z}\right)-r\left(B_{Z}\right)=r\left(Y \mid B_{Z}\right) \tag{8.14}
\end{align*}
$$

- So given $I \subseteq V \backslash Z$ and B_{Z} is a base of $Z, r_{M / Z}(I)=|I|$ is identical to $r(I \cup Z)=|I|+r(Z)=|I|+\left|B_{Z}\right|$. Since $r(I \cup Z)=r\left(I \cup B_{Z}\right)$, this implies $r\left(I \cup B_{Z}\right)=|I|+\left|B_{Z}\right|$, or $I \cup B_{Z}$ is independent in M.

$$
I \cap B_{z}=\phi
$$

Matroid contraction M / Z

- Contraction by Z is dual to deletion, and is like a forced inclusion of a contained base B_{Z} of Z, but with a similar ground set removal by Z. Contracting Z is written M / Z. Updated ground set in M / Z is $V \backslash Z$.
- Let $Z \subseteq V$ and let B_{Z} be a base of Z. Then a subset $I \subseteq V \backslash Z$ is independent in M / Z iff $I \cup B_{Z}$ is independent in M.
- The rank function takes the form

$$
\begin{align*}
r_{M / Z}(Y) & =r(Y \cup Z)-r(Z)=r(Y \mid Z) \tag{8.13}\\
& =r\left(Y \cup B_{Z}\right)-r\left(B_{Z}\right)=r\left(Y \mid B_{Z}\right) \tag{8.14}
\end{align*}
$$

- So given $I \subseteq V \backslash Z$ and B_{Z} is a base of $Z, r_{M / Z}(I)=|I|$ is identical to $r(I \cup Z)=|I|+r(Z)=|I|+\left|B_{Z}\right|$. Since $r(I \cup Z)=r\left(I \cup B_{Z}\right)$, this implies $r\left(I \cup B_{Z}\right)=|I|+\left|B_{Z}\right|$, or $I \cup B_{Z}$ is independent in M.
- A minor of a matroid is any matroid obtained via a series of deletions and contractions of some matroid.

Matroid contraction M / Z

- Contraction by Z is dual to deletion, and is like a forced inclusion of a contained base B_{Z} of Z, but with a similar ground set removal by Z. Contracting Z is written M / Z. Updated ground set in M / Z is $V \backslash Z$.
- Let $Z \subseteq V$ and let B_{Z} be a base of Z. Then a subset $I \subseteq V \backslash Z$ is independent in M / Z iff $I \cup B_{Z}$ is independent in M.
- The rank function takes the form

$$
\begin{align*}
r_{M / Z}(Y) & =r(Y \cup Z)-r(Z)=r(Y \mid Z) \tag{8.13}\\
& =r\left(Y \cup B_{Z}\right)-r\left(B_{Z}\right)=r\left(Y \mid B_{Z}\right) \tag{8.14}
\end{align*}
$$

- So given $I \subseteq V \backslash Z$ and B_{Z} is a base of $Z, r_{M / Z}(I)=|I|$ is identical to $r(I \cup Z)=|I|+r(Z)=|I|+\left|B_{Z}\right|$. Since $r(I \cup Z)=r\left(I \cup B_{Z}\right)$, this implies $r\left(I \cup B_{Z}\right)=|I|+\left|B_{Z}\right|$, or $I \cup B_{Z}$ is independent in M.
- A minor of a matroid is any matroid obtained via a series of deletions and contractions of some matroid.
- In fact, it is the case $M / Z=\left(M^{*} \backslash Z\right)^{*}$ (Exercise: show why).

Matroid Intersection

- Let $M_{1}=\left(V, \mathcal{I}_{1}\right)$ and $M_{2}=\left(V, \mathcal{I}_{2}\right)$ be two matroids. Consider their common independent sets $\mathcal{I}_{1} \cap \mathcal{I}_{2}$.

Matroid Intersection

- Let $M_{1}=\left(V, \mathcal{I}_{1}\right)$ and $M_{2}=\left(V, \mathcal{I}_{2}\right)$ be two matroids. Consider their common independent sets $\mathcal{I}_{1} \cap \mathcal{I}_{2}$.
- While $\left(V, \mathcal{I}_{1} \cap \mathcal{I}_{2}\right)$ is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find $\max |X|$ such that both $X \in \mathcal{I}_{1}$ and $X \in \mathcal{I}_{2}$.

Matroid Intersection

- Let $M_{1}=\left(V, \mathcal{I}_{1}\right)$ and $M_{2}=\left(V, \mathcal{I}_{2}\right)$ be two matroids. Consider their common independent sets $\mathcal{I}_{1} \cap \mathcal{I}_{2}$.
- While ($V, \mathcal{I}_{1} \cap \mathcal{I}_{2}$) is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find $\max |X|$ such that both $X \in \mathcal{I}_{1}$ and $X \in \mathcal{I}_{2}$.

Theorem 8.4.1

Let M_{1} and M_{2} be given as above, with rank functions r_{1} and r_{2}. Then the size of the maximum size set in $\mathcal{I}_{1} \cap \mathcal{I}_{2}$ is given by

$$
\begin{equation*}
\left(r_{1} * r_{2}\right)(V) \triangleq \min _{X \subseteq V}\left(r_{1}(X)+r_{2}(V \backslash X)\right) \tag{8.15}
\end{equation*}
$$

Matroid Intersection

- Let $M_{1}=\left(V, \mathcal{I}_{1}\right)$ and $M_{2}=\left(V, \mathcal{I}_{2}\right)$ be two matroids. Consider their common independent sets $\mathcal{I}_{1} \cap \mathcal{I}_{2}$.
- While $\left(V, \mathcal{I}_{1} \cap \mathcal{I}_{2}\right)$ is typically not a matroid (Exercise: show graphical example.), we might be interested in finding the maximum size common independent set. That is, find $\max |X|$ such that both $X \in \mathcal{I}_{1}$ and $X \in \mathcal{I}_{2}$.

Theorem 8.4.1

Let M_{1} and M_{2} be given as above, with rank functions r_{1} and r_{2}. Then the size of the maximum size set in $\mathcal{I}_{1} \cap \mathcal{I}_{2}$ is given by

$$
\begin{equation*}
\left(r_{1} * r_{2}\right)(V) \triangleq \min _{X \subseteq V}\left(r_{1}(X)+r_{2}(V \backslash X)\right) \tag{8.15}
\end{equation*}
$$

This is an instance of the convolution of two submodular functions, f_{1} and f_{2} that, evaluated at $Y \subseteq V$, is written as:

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(Y)=\min _{X \subseteq Y}\left(f_{1}(X)+f_{2}(Y \backslash X)\right) \tag{8.16}
\end{equation*}
$$

Convolution and Hall's Theorem

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq|X|$.

Convolution and Hall's Theorem

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq|X|$.
- $\Leftrightarrow|\Gamma(X)|-|X| \geq 0, \forall X$

Convolution and Hall's Theorem

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq|X|$.
- $\Leftrightarrow|\Gamma(X)|-|X| \geq 0, \forall X$
- $\Leftrightarrow \min _{X}|\Gamma(X)|-|X| \geq 0$

Convolution and Hall's Theorem

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq|X|$.
- $\Leftrightarrow|\Gamma(X)|-|X| \geq 0, \forall X$
- $\Leftrightarrow \min _{X}|\Gamma(X)|-|X| \geq 0$
- $\Leftrightarrow \min _{X}|\Gamma(X)|+|V|-|X| \geq|V|$

Convolution and Hall's Theorem

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq|X|$.
- $\Leftrightarrow|\Gamma(X)|-|X| \geq 0, \forall X$
- $\Leftrightarrow \min _{X}|\Gamma(X)|-|X| \geq 0$
- $\Leftrightarrow \min _{X}|\Gamma(X)|+|V|-|X| \geq|V|$
- $\Leftrightarrow \min _{X}(|\Gamma(X)|+|V \backslash X|) \geq|V|$

Convolution and Hall's Theorem

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq|X|$.
- \Leftrightarrow
$|\Gamma(X)|-|X| \geq 0, \forall X$
- $\Leftrightarrow \min _{X}|\Gamma(X)|-|X| \geq 0$
- $\Leftrightarrow \min _{X}|\Gamma(X)|+|V|-|X| \geq|V|$
- $\Leftrightarrow \min _{X}(|\Gamma(X)|+|V \backslash X|) \geq|V|$
- $\Leftrightarrow \quad[\Gamma(\cdot) *|\cdot|](V) \geq|V|$

Convolution and Hall's Theorem

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq|X|$.
- $\Leftrightarrow|\Gamma(X)|-|X| \geq 0, \forall X$
- $\Leftrightarrow \min _{X}|\Gamma(X)|-|X| \geq 0$
- $\Leftrightarrow \min _{X}|\Gamma(X)|+|V|-|X| \geq|V|$
- $\Leftrightarrow \min _{X}(|\Gamma(X)|+|V \backslash X|) \geq|V|$
- $\Leftrightarrow \quad[\Gamma(\cdot) *|\cdot|](V) \geq|V|$
- So Hall's theorem can be expressed as convolution. Exercise: define $g(A)=[\Gamma(\cdot) *|\cdot|](A)$, prove that g is submodular.

Convolution and Hall's Theorem

- Recall Hall's theorem, that a transversal exists iff for all $X \subseteq V$, we have $|\Gamma(X)| \geq|X|$.
- $\Leftrightarrow|\Gamma(X)|-|X| \geq 0, \forall X$
- $\Leftrightarrow \min _{X}|\Gamma(X)|-|X| \geq 0$
- $\Leftrightarrow \min _{X}|\Gamma(X)|+|V|-|X| \geq|V|$
- $\Leftrightarrow \min _{X}(|\Gamma(X)|+|V \backslash X|) \geq|V|$
- $\Leftrightarrow \quad[\Gamma(\cdot) *|\cdot|](V) \geq|V|$
- So Hall's theorem can be expressed as convolution. Exercise: define $g(A)=[\Gamma(\cdot) *|\cdot|](A)$, prove that g is submodular.
- Note, in general, convolution of two submodular functions does not preserve submodularity (but in certain special cases it does).

Matroid Union

Definition 8.4.2

Let $M_{1}=\left(V_{1}, \mathcal{I}_{1}\right), M_{2}=\left(V_{2}, \mathcal{I}_{2}\right), \ldots, M_{k}=\left(V_{k}, \mathcal{I}_{k}\right)$ be matroids. We define the union of matroids as $M_{1} \vee M_{2} \vee \cdots \vee M_{k}=\left(V_{1} \uplus V_{2} \uplus \cdots \uplus V_{k}, \mathcal{I}_{1} \vee \mathcal{I}_{2} \vee \cdots \vee \mathcal{I}_{k}\right)$, where

$$
\begin{equation*}
I_{1} \vee \mathcal{I}_{2} \vee \cdots \vee \mathcal{I}_{k}=\left\{I_{1} \uplus I_{2} \uplus \cdots \uplus I_{k} \mid I_{1} \in \mathcal{I}_{1}, \ldots, I_{k} \in \mathcal{I}_{k}\right\} \tag{8.17}
\end{equation*}
$$

Note $A \uplus B$ designates the disjoint union of A and B.

$$
\begin{aligned}
& V_{1}=\{a, b, c\rangle \quad v_{2}=\{a, b, c\rangle \\
& V_{1} \uplus V_{2}=\{\underbrace{(v, i):} \begin{array}{l}
v \in\{a, b, c\rangle, \\
i \in\{i, 2\rangle
\end{array}\}
\end{aligned}
$$

Matroid Union

Definition 8.4.2

Let $M_{1}=\left(V_{1}, \mathcal{I}_{1}\right), M_{2}=\left(V_{2}, \mathcal{I}_{2}\right), \ldots, M_{k}=\left(V_{k}, \mathcal{I}_{k}\right)$ be matroids. We define the union of matroids as $M_{1} \vee M_{2} \vee \cdots \vee M_{k}=\left(V_{1} \uplus V_{2} \uplus \cdots \uplus V_{k}, \mathcal{I}_{1} \vee \mathcal{I}_{2} \vee \cdots \vee \mathcal{I}_{k}\right)$, where

$$
\begin{equation*}
I_{1} \vee \mathcal{I}_{2} \vee \cdots \vee \mathcal{I}_{k}=\left\{I_{1} \uplus I_{2} \uplus \cdots \uplus I_{k} \mid I_{1} \in \mathcal{I}_{1}, \ldots, I_{k} \in \mathcal{I}_{k}\right\} \tag{8.17}
\end{equation*}
$$

Note $A \uplus B$ designates the disjoint union of A and B.

Theorem 8.4.3

Let $M_{1}=\left(V_{1}, \mathcal{I}_{1}\right), M_{2}=\left(V_{2}, \mathcal{I}_{2}\right), \ldots, M_{k}=\left(V_{k}, \mathcal{I}_{k}\right)$ be matroids, with rank functions r_{1}, \ldots, r_{k}. Then the union of these matroids is still a matroid, having rank function

$$
\begin{equation*}
r(Y)=\min _{X \subseteq Y}\left(|Y \backslash X|+r_{1}\left(X \cap V_{1}\right)+\cdots+r_{k}\left(X \cap V_{k}\right)\right) \tag{8.18}
\end{equation*}
$$

for any $Y \subseteq V_{1} \uplus \ldots V_{2} \uplus \cdots \uplus V_{k}$.

Exercise: Matroid Union, and Matroid duality

Exercise: Fully characterize $M \vee M^{*}$.

Matroids of three or fewer elements are graphic

- All matroids up to and including three elements (edges) are graphic.

Matroids of three or fewer elements are graphic

- All matroids up to and including three elements (edges) are graphic.

$$
|v|=3
$$

(a) The only matroid with zero elements.
(b) The two one-element matroids.

(c) The four two-element matroids.

(d) The eight three-element matroids.

Matroids of three or fewer elements are graphic

- All matroids up to and including three elements (edges) are graphic.

$$
\begin{gathered}
M=(v, \pm) \\
|V| \leq 3
\end{gathered}
$$

(a) The only matroid with zero elements.
(b) The two one-element matroids.

(c) The four two-element matroids.

(d) The eight three-element matroids.

This is a nice way to visualize matroids with very low ground set sizes. What about matroids that are low rank but with many elements?

Affine Matroids

- Given an $n \times m$ matrix with entries over some field \mathbb{F}, we say that a subset $S \subseteq\{1, \ldots, m\}$ of indices (with corresponding column vectors $\left\{v_{i}: i \in S\right\}$, with $\left.|S|=k \leq m\right)$ is affinely dependent if $m \geq 1$ and there exists elements $\left\{a_{1}, \ldots, a_{k}\right\} \in \mathbb{F}$, not all zero with $\sum_{i=1}^{k} a_{i}=0$, such that $\sum_{i=1}^{k} a_{i} v_{i}=0$.

Affine Matroids

- Given an $n \times m$ matrix with entries over some field \mathbb{F}, we say that a subset $S \subseteq\{1, \ldots, m\}$ of indices (with corresponding column vectors $\left\{v_{i}: i \in S\right\}$, with $\left.|S|=k \leq m\right)$ is affinely dependent if $m \geq 1$ and there exists elements $\left\{a_{1}, \ldots, a_{k}\right\} \in \mathbb{F}$, not all zero with $\sum_{i=1}^{k} a_{i}=0$, such that $\sum_{i=1}^{k} a_{i} v_{i}=0$.
- Otherwise, the set is called affinely independent.

Affine Matroids

- Given an $n \times m$ matrix with entries over some field \mathbb{F}, we say that a subset $S \subseteq\{1, \ldots, m\}$ of indices (with corresponding column vectors $\left\{v_{i}: i \in S\right\}$, with $|S|=k \leq m$) is affinely dependent if $m \geq 1$ and there exists elements $\left\{a_{1}, \ldots, a_{k}\right\} \in \mathbb{F}$, not all zero with $\sum_{i=1}^{k} a_{i}=0$, such that $\sum_{i=1}^{k} a_{i} v_{i}=0$.
- Otherwise, the set is called affinely independent.
- Concisely: points $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ are affinely independent if $v_{2}-v_{1}, v_{3}-v_{1}, \ldots, v_{k}-v_{1}$ are linearly independent.

Affine Matroids

- Given an $n \times m$ matrix with entries over some field \mathbb{F}, we say that a subset $S \subseteq\{1, \ldots, m\}$ of indices (with corresponding column vectors $\left\{v_{i}: i \in S\right\}$, with $\left.|S|=k \leq m\right)$ is affinely dependent if $m \geq 1$ and there exists elements $\left\{a_{1}, \ldots, a_{k}\right\} \in \mathbb{F}$, not all zero with $\sum_{i=1}^{k} a_{i}=0$, such that $\sum_{i=1}^{k} a_{i} v_{i}=0$.
- Otherwise, the set is called affinely independent.
- Concisely: points $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ are affinely independent if $v_{2}-v_{1}, v_{3}-v_{1}, \ldots, v_{k}-v_{1}$ are linearly independent.
- Example: in 2D, three collinear points are affinely dependent, three non-collear points are affinely independent, and ≥ 4 collinear or non-collinear points are affinely dependent.

Affine Matroids

- Given an $n \times m$ matrix with entries over some field \mathbb{F}, we say that a subset $S \subseteq\{1, \ldots, m\}$ of indices (with corresponding column vectors $\left\{v_{i}: i \in S\right\}$, with $\left.|S|=k \leq m\right)$ is affinely dependent if $m \geq 1$ and there exists elements $\left\{a_{1}, \ldots, a_{k}\right\} \in \mathbb{F}$, not all zero with $\sum_{i=1}^{k} a_{i}=0$, such that $\sum_{i=1}^{k} a_{i} v_{i}=0$.
- Otherwise, the set is called affinely independent.
- Concisely: points $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ are affinely independent if $v_{2}-v_{1}, v_{3}-v_{1}, \ldots, v_{k}-v_{1}$ are linearly independent.
- Example: in 2D, three collinear points are affinely dependent, three non-collear points are affinely independent, and ≥ 4 collinear or non-collinear points are affinely dependent.

Proposition 8.5.1 (affine matroid)

Let ground set $E=\{1, \ldots, m\}$ index column vectors of a matrix, and let \mathcal{I} be the set of subsets X of E such that X indices affinely independent vectors. Then (E, \mathcal{I}) is a matroid.

Affine Matroids

- Given an $n \times m$ matrix with entries over some field \mathbb{F}, we say that a subset $S \subseteq\{1, \ldots, m\}$ of indices (with corresponding column vectors $\left\{v_{i}: i \in S\right\}$, with $\left.|S|=k \leq m\right)$ is affinely dependent if $m \geq 1$ and there exists elements $\left\{a_{1}, \ldots, a_{k}\right\} \in \mathbb{F}$, not all zero with $\sum_{i=1}^{k} a_{i}=0$, such that $\sum_{i=1}^{k} a_{i} v_{i}=0$.
- Otherwise, the set is called affinely independent.
- Concisely: points $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ are affinely independent if $v_{2}-v_{1}, v_{3}-v_{1}, \ldots, v_{k}-v_{1}$ are linearly independent.
- Example: in 2D, three collinear points are affinely dependent, three non-collear points are affinely independent, and ≥ 4 collinear or non-collinear points are affinely dependent.

Proposition 8.5.1 (affine matroid)

Let ground set $E=\{1, \ldots, m\}$ index column vectors of a matrix, and let \mathcal{I} be the set of subsets X of E such that X indices affinely independent vectors. Then (E, \mathcal{I}) is a matroid.

Euclidean Representation of Low-rank Matroids

- Consider the affine matroid with $n \times m=2 \times 6$ matrix on the field $\mathbb{F}=\mathbb{R}$, and let the elements be $\{(0,0),(1,0),(2,0),(0,1),(0,2),(1,1)\}$.

Euclidean Representation of Low-rank Matroids

- Consider the affine matroid with $n \times m=2 \times 6$ matrix on the field $\mathbb{F}=\mathbb{R}$, and let the elements be $\{(0,0),(1,0),(2,0),(0,1),(0,2),(1,1)\}$.
- We can plot the points in \mathbb{R}^{2} as on the right:

Euclidean Representation of Low-rank Matroids

- Consider the affine matroid with $n \times m=2 \times 6$ matrix on the field $\mathbb{F}=\mathbb{R}$, and let the elements be $\{(0,0),(1,0),(2,0),(0,1),(0,2),(1,1)\}$.
- We can plot the points in \mathbb{R}^{2} as on the right:
- A point has rank 1 , points that comprise a line have rank 2, points that comprise a plane have rank 3.

Euclidean Representation of Low-rank Matroids

- Consider the affine matroid with $n \times m=2 \times 6$ matrix on the field $\mathbb{F}=\mathbb{R}$, and let the elements be $\{(0,0),(1,0),(2,0),(0,1),(0,2),(1,1)\}$.
- We can plot the points in \mathbb{R}^{2} as on the right:
- A point has rank 1 , points that comprise a line have rank 2, points that comprise a plane have rank 3.
- Flats (points, lines, planes, etc.) have rank equal to one more than their geometric dimension.

Euclidean Representation of Low-rank Matroids

- Consider the affine matroid with $n \times m=2 \times 6$ matrix on the field $\mathbb{F}=\mathbb{R}$, and let the elements be $\{(0,0),(1,0),(2,0),(0,1),(0,2),(1,1)\}$.
- We can plot the points in \mathbb{R}^{2} as on the right:
- A point has rank 1, points that comprise a line have rank 2, points that comprise a plane have rank 3.
- Flats (points, lines, planes, etc.) have rank equal to one more than their geometric dimension.
- Any two points constitute a line, but lines with only two points are not drawn.

Euclidean Representation of Low-rank Matroids

- Consider the affine matroid with $n \times m=2 \times 6$ matrix on the field $\mathbb{F}=\mathbb{R}$, and let the elements be $\{(0,0),(1,0),(2,0),(0,1),(0,2),(1,1)\}$.
- We can plot the points in \mathbb{R}^{2} as on the right:
- A point has rank 1, points that comprise a line have rank 2, points that comprise a plane have rank 3.
- Flats (points, lines, planes, etc.) have rank equal to one more than their geometric dimension.
- Any two points constitute a line, but lines with only two points are not drawn.
- Lines indicate collinear sets with ≥ 3 points, while
 any two points have rank 2.

Euclidean Representation of Low-rank Matroids

- Consider the affine matroid with $n \times m=2 \times 6$ matrix on the field $\mathbb{F}=\mathbb{R}$, and let the elements be $\{(0,0),(1,0),(2,0),(0,1),(0,2),(1,1)\}$.
- We can plot the points in \mathbb{R}^{2} as on the right:
- A point has rank 1 , points that comprise a line have rank 2, points that comprise a plane have rank 3.
- Flats (points, lines, planes, etc.) have rank equal to one more than their geometric dimension.
- Any two points constitute a line, but lines with only two points are not drawn.
- Lines indicate collinear sets with ≥ 3 points, while
 any two points have rank 2.
- Dependent sets consist of all subsets with ≥ 4 elements (rank 3), or 3 collinear elements (rank 2). Any two points have rank 2.

Euclidean Representation of Low-rank Matroids

As another example on

- the right, a rank 4 matroid

Euclidean Representation of Low-rank Matroids

As another example on

- the right, a rank 4 matroid

- All sets of 5 points are dependent. The only other sets of dependent points are coplanar ones of size 4. Namely:
$\{(0,0,0),(0,1,0),(1,1,0),(1,0,0)\}$,
$\{(0,0,0),(0,0,1),(0,1,1),(0,1,0)\}$, and
$\{(0,0,1),(0,1,1),(1,1,0),(1,0,0)\}$.

Euclidean Representation of Low-rank Matroids

- In general, for a matroid \mathcal{M} of rank $m+1$ with $m \leq 3$, then a subset X in a geometric representation in \mathbb{R}^{m} is dependent if:

Euclidean Representation of Low-rank Matroids

- In general, for a matroid \mathcal{M} of rank $m+1$ with $m \leq 3$, then a subset X in a geometric representation in \mathbb{R}^{m} is dependent if:
(1) $|X| \geq 2$ and the points are identical; - 2

Euclidean Representation of Low-rank Matroids

- In general, for a matroid \mathcal{M} of rank $m+1$ with $m \leq 3$, then a subset X in a geometric representation in \mathbb{R}^{m} is dependent if:
(1) $|X| \geq 2$ and the points are identical;
(2) $|X| \geq 3$ and the points are collinear;
is dependent

Euclidean Representation of Low-rank Matroids

- In general, for a matroid \mathcal{M} of rank $m+1$ with $m \leq 3$, then a subset X in a geometric representation in \mathbb{R}^{m} is dependent if:
(1) $|X| \geq 2$ and the points are identical;
(2) $|X| \geq 3$ and the points are collinear;
(3) $|X| \geq 4$ and the points are coplanar; or

Euclidean Representation of Low-rank Matroids

- In general, for a matroid \mathcal{M} of rank $m+1$ with $m \leq 3$, then a subset X in a geometric representation in \mathbb{R}^{m} is dependent if:
(1) $|X| \geq 2$ and the points are identical;
(2) $|X| \geq 3$ and the points are collinear;
(3) $|X| \geq 4$ and the points are coplanar; or
(9) $|X| \geq 5$ and the points are anywhere in space.

Euclidean Representation of Low-rank Matroids

- In general, for a matroid \mathcal{M} of rank $m+1$ with $m \leq 3$, then a subset X in a geometric representation in \mathbb{R}^{m} is dependent if:
(1) $|X| \geq 2$ and the points are identical;
(2) $|X| \geq 3$ and the points are collinear;
(3) $|X| \geq 4$ and the points are coplanar; or
(9) $|X| \geq 5$ and the points are anywhere in space.
- When they exist, loops are represented in a geometry by a separate box indicating how many loops there are.

Euclidean Representation of Low-rank Matroids

- In general, for a matroid \mathcal{M} of rank $m+1$ with $m \leq 3$, then a subset X in a geometric representation in \mathbb{R}^{m} is dependent if:
(1) $|X| \geq 2$ and the points are identical;
(2) $|X| \geq 3$ and the points are collinear;
(3) $|X| \geq 4$ and the points are coplanar; or
(4) $|X| \geq 5$ and the points are anywhere in space.
- When they exist, loops are represented in a geometry by a separate box indicating how many loops there are.
- Parallel elements, when they exist in a matroid, are indicated by a multiplicity next to a point.

Euclidean Representation of Low-rank Matroids

- In general, for a matroid \mathcal{M} of rank $m+1$ with $m \leq 3$, then a subset X in a geometric representation in \mathbb{R}^{m} is dependent if:
(1) $|X| \geq 2$ and the points are identical;
(2) $|X| \geq 3$ and the points are collinear;
(3) $|X| \geq 4$ and the points are coplanar; or
(4) $|X| \geq 5$ and the points are anywhere in space.
- When they exist, loops are represented in a geometry by a separate box indicating how many loops there are.
- Parallel elements, when they exist in a matroid, are indicated by a multiplicity next to a point.

Theorem 8.5.2

Any matroid of rank $m \leq 4$ can be represented by an affine matroid in \mathbb{R}^{m-1}. regadles of hou hiz $|\mathrm{V}|$ is.

Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. ines, planes).

Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. lines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).

Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. imes, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless >2).

Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. ines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless >2).
- any two distinct points lie on a line (often not drawn when only two)

Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. ines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless >2).
- any two distinct points lie on a line (often not drawn when only two)
- every plane contains at least three non-collinear points (not dependent unless >3)

Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. ines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless >2).
- any two distinct points lie on a line (often not drawn when only two)
- every plane contains at least three non-collinear points (not dependent unless >3)
- any three distinct non-collinear points lie on a plane

Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. ines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless >2).
- any two distinct points lie on a line (often not drawn when only two)
- every plane contains at least three non-collinear points (not dependent unless >3)
- any three distinct non-collinear points lie on a plane
- If diagram has at most one plane, then any two distinct lines meet in at most one point.

Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. ines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless >2).
- any two distinct points lie on a line (often not drawn when only two)
- every plane contains at least three non-collinear points (not dependent unless >3)
- any three distinct non-collinear points lie on a plane

- If diagram has at most one plane, then any two distinct lines meet in at most one point.
- If diagram has more than one plane, then: 1) any two distinct planes meeting in more than two points do so in a line; 2) any two distinct lines meeting in a point do so in at most one point and lie in on a common plane; 3) any line not lying on a plane intersects it in at most one point.

Euclidean Rep. of Low-rank Matroids: Conditions

- rank-1 (resp. rank-2, rank-3) flats correspond to points (resp. ines, planes).
- a set of parallel points (could be size 1) does not touch another set of parallel points (could be size 1).
- every line contains at least two points (not dependent unless >2).
- any two distinct points lie on a line (often not drawn when only two)
- every plane contains at least three non-collinear points (not dependent unless >3)
- any three distinct non-collinear points lie on a plane
- If diagram has at most one plane, then any two distinct lines meet in at most one point.
- If diagram has more than one plane, then: 1) any two distinct planes meeting in more than two points do so in a line; 2) any two distinct lines meeting in a point do so in at most one point and lie in on a common plane; 3) any line not lying on a plane intersects it in at most one point.
- (see Oxley 2011 for more details).

Euclidean Representation of Low-rank Matroids

- Very useful for graphically depicting low-rank matrices but which still have rich structure. Also useful for answering questions.

Euclidean Representation of Low-rank Matroids

- Very useful for graphically depicting low-rank matrices but which still have rich structure. Also useful for answering questions.
- Example: Is there a matroid that is not representable (i.e., not linear for some field)?

Euclidean Representation of Low-rank Matroids

- Very useful for graphically depicting low-rank matrices but which still have rich structure. Also useful for answering questions.
- Example: Is there a matroid that is not representable (i.e., not linear for some field)? Yes, consider the matroid

Euclidean Representation of Low-rank Matroids

- Very useful for graphically depicting low-rank matrices but which still have rich structure. Also useful for answering questions.
- Example: Is there a matroid that is not representable (i.e., not linear for some field)? Yes, consider the matroid

- Called the non-Pappus matroid. Has rank three, but any matric matroid with the above dependencies would require that $\{7,8,9\}$ is dependent, hence requiring an additional line in the above.

Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank's submodularity: Let $X=\{1,2,3,6,7\}, Y=\{1,4,5,6,7\}$. So $r(X)=$

Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank's submodularity: Let $X=\{1,2,3,6,7\}, Y=\{1,4,5,6,7\}$. So $r(X)=3$

Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank's submodularity: Let $X=\{1,2,3,6,7\}, Y=\{1,4,5,6,7\}$. So $r(X)=3$, and $r(Y)=$

Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank's submodularity: Let $X=\{1,2,3,6,7\}, Y=\{1,4,5,6,7\}$. So $r(X)=3$, and $r(Y)=3$

Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank's submodularity: Let $X=\{1,2,3,6,7\}, Y=\{1,4,5,6,7\}$. So $r(X)=3$, and $r(Y)=3$, and $r(X \cup Y)=$

Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank's submodularity: Let $X=\{1,2,3,6,7\}, Y=\{1,4,5,6,7\}$. So $r(X)=3$, and $r(Y)=3$, and $r(X \cup Y)=4$

Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank's submodularity: Let $X=\{1,2,3,6,7\}, Y=\{1,4,5,6,7\}$. So $r(X)=3$, and $r(Y)=3$, and $r(X \cup Y)=4$, so we must have, by submodularity, that

$$
r(\{1,6,7\})=r(X \cap Y) \leq r(X)+r(Y)-r(X \cup Y)=2 .
$$

Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank's submodularity: Let $X=\{1,2,3,6,7\}, Y=\{1,4,5,6,7\}$. So $r(X)=3$, and $r(Y)=3$, and $r(X \cup Y)=4$, so we must have, by submodularity, that $r(\{1,6,7\})=r(X \cap Y) \leq r(X)+r(Y)-r(X \cup Y)=2$.
- However, from the diagram, we have that since 1, 6, 7 are distinct non-collinear points, we have that $r(X \cap Y)=$

Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank's submodularity: Let $X=\{1,2,3,6,7\}, Y=\{1,4,5,6,7\}$. So $r(X)=3$, and $r(Y)=3$, and $r(X \cup Y)=4$, so we must have, by submodularity, that $r(\{1,6,7\})=r(X \cap Y) \leq r(X)+r(Y)-r(X \cup Y)=2$.
- However, from the diagram, we have that since 1, 6, 7 are distinct non-collinear points, we have that $r(X \cap Y)=3$

Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- Check rank's submodularity: Let $X=\{1,2,3,6,7\}, Y=\{1,4,5,6,7\}$. So $r(X)=3$, and $r(Y)=3$, and $r(X \cup Y)=4$, so we must have, by submodularity, that $r(\{1,6,7\})=r(X \cap Y) \leq r(X)+r(Y)-r(X \cup Y)=2$.
- However, from the diagram, we have that since 1, 6, 7 are distinct non-collinear points, we have that $r(X \cap Y)=3$

Euclidean Representation of Low-rank Matroids: A test

- Is this a matroid?

- If we extend the line from 6-7 to 1 , then is it a matroid?
- Hence, not all 2D or 3D graphs of points and lines are matroids.

Matroid?

- Consider the following geometry on $|V|=8$ points with $V=\{a, b, c, d, e, f, g, h\}$.

Matroid?

- Consider the following geometry on $|V|=8$ points with $V=\{a, b, c, d, e, f, g, h\}$.

- Note, we are given that the points $\{b, d, h, f\}$ are not coplanar. However, the following sets of points are coplanar: $\{a, b, e, f\}$, $\{d, c, g, h\},\{a, d, h, e\},\{b, c, g, f\},\{b, c, d, a\},\{f, g, h, e\}$, and $\{a, c, g, e\}$.

Matroid?

- Consider the following geometry on $|V|=8$ points with $V=\{a, b, c, d, e, f, g, h\}$.

- Note, we are given that the points $\{b, d, h, f\}$ are not coplanar. However, the following sets of points are coplanar: $\{a, b, e, f\}$, $\{d, c, g, h\},\{a, d, h, e\},\{b, c, g, f\},\{b, c, d, a\},\{f, g, h, e\}$, and $\{a, c, g, e\}$.
- Exercise: Is this a matroid? Exercise: If so, is it representable?

Projective Geometries: Other Examples

- Other examples can be more complex, consider the following two matroids (from Oxley, 2011):

Projective Geometries: Other Examples

- Other examples can be more complex, consider the following two matroids (from Oxley, 2011):

- Right: a matroid (and a 2D depiction of a geometry) over the field $\mathrm{GF}(3)=\{0,1,2\} \bmod 3$ and is "coordinatizable" in $\operatorname{GF}(3)^{3}$.

Projective Geometries: Other Examples

- Other examples can be more complex, consider the following two matroids (from Oxley, 2011):

- Right: a matroid (and a 2D depiction of a geometry) over the field $\mathrm{GF}(3)=\{0,1,2\} \bmod 3$ and is "coordinatizable" in $\mathrm{GF}(3)^{3}$.
- Hence, lines (in 2D) which are rank 2 sets may be curved; planes (in 3D) can be twisted.

Matroids, Representation and Equivalence: Summary

- Matroids with $|V| \leq 3$ are graphic.

Matroids, Representation and Equivalence: Summary

- Matroids with $|V| \leq 3$ are graphic.
- Matroids with $r(V) \leq 4$ can be geometrically represented in \mathbb{R}^{3}.

Matroids, Representation and Equivalence: Summary

- Matroids with $|V| \leq 3$ are graphic.
- Matroids with $r(V) \leq 4$ can be geometrically represented in \mathbb{R}^{3}.
- Not all matroids are linear (i.e., matric) matroids.

Matroids, Representation and Equivalence: Summary

- Matroids with $|V| \leq 3$ are graphic.
- Matroids with $r(V) \leq 4$ can be geometrically represented in \mathbb{R}^{3}.
- Not all matroids are linear (i.e., matric) matroids.
- Matroids can be seen as related to projective geometries (and are sometimes called combinatorial geometries).

Matroids, Representation and Equivalence: Summary

- Matroids with $|V| \leq 3$ are graphic.
- Matroids with $r(V) \leq 4$ can be geometrically represented in \mathbb{R}^{3}.
- Not all matroids are linear (i.e., matric) matroids.
- Matroids can be seen as related to projective geometries (and are sometimes called combinatorial geometries).
- Exists much research on different subclasses of matroids, and if/when they are contained in (or isomorphic to) each other.

Matroid Further Reading

- "Matroids: A Geometric Introduction", Gordon and McNulty, 2012.
- "The Coming of the Matroids", William Cunningham, 2012 (a nice history)
- Welsh, "Matroid Theory", 1975.
- Oxley, "Matroid Theory", 1992 (and 2011) (perhaps best "single source" on matroids right now).
- Crapo \& Rota, "On the Foundations of Combinatorial Theory: Combinatorial Geometries", 1970 (while this is old, it is very readable).
- Lawler, "Combinatorial Optimization: Networks and Matroids", 1976.
- Schrijver, "Combinatorial Optimization", 2003

The greedy algorithm

- In combinatorial optimization, the greedy algorithm is often useful as a heuristic that can work quite well in practice.

The greedy algorithm

- In combinatorial optimization, the greedy algorithm is often useful as a heuristic that can work quite well in practice.
- The goal is to choose a good subset of items, and the fundamental tenet of the greedy algorithm is to choose next whatever currently looks best, without the possibility of later recall or backtracking.

The greedy algorithm

- In combinatorial optimization, the greedy algorithm is often useful as a heuristic that can work quite well in practice.
- The goal is to choose a good subset of items, and the fundamental tenet of the greedy algorithm is to choose next whatever currently looks best, without the possibility of later recall or backtracking.
- Sometimes, this gives the optimal solution (we saw three greedy algorithms that can find the maximum weight spanning tree).

The greedy algorithm

- In combinatorial optimization, the greedy algorithm is often useful as a heuristic that can work quite well in practice.
- The goal is to choose a good subset of items, and the fundamental tenet of the greedy algorithm is to choose next whatever currently looks best, without the possibility of later recall or backtracking.
- Sometimes, this gives the optimal solution (we saw three greedy algorithms that can find the maximum weight spanning tree).
- Greedy is good since it can be made to run very fast $O(n \log n)$.

The greedy algorithm

- In combinatorial optimization, the greedy algorithm is often useful as a heuristic that can work quite well in practice.
- The goal is to choose a good subset of items, and the fundamental tenet of the greedy algorithm is to choose next whatever currently looks best, without the possibility of later recall or backtracking.
- Sometimes, this gives the optimal solution (we saw three greedy algorithms that can find the maximum weight spanning tree).
- Greedy is good since it can be made to run very fast $O(n \log n)$.
- Often, however, greedy is heuristic (it might work well in practice, but worst-case performance can be unboundedly poor).

The greedy algorithm

- In combinatorial optimization, the greedy algorithm is often useful as a heuristic that can work quite well in practice.
- The goal is to choose a good subset of items, and the fundamental tenet of the greedy algorithm is to choose next whatever currently looks best, without the possibility of later recall or backtracking.
- Sometimes, this gives the optimal solution (we saw three greedy algorithms that can find the maximum weight spanning tree).
- Greedy is good since it can be made to run very fast $O(n \log n)$.
- Often, however, greedy is heuristic (it might work well in practice, but worst-case performance can be unboundedly poor).
- We will next see that the greedy algorithm working optimally is a defining property of a matroid, and is also a defining property of a polymatroid function.

Matroid and the greedy algorithm

- Let (E, \mathcal{I}) be an independence system, and we are given a non-negative modular weight function $w: E \rightarrow \mathbb{R}_{+}$.

Matroid and the greedy algorithm

- Let (E, \mathcal{I}) be an independence system, and we are given a non-negative modular weight function $w: E \rightarrow \mathbb{R}_{+}$.

Algorithm 1: The Matroid Greedy Algorithm

1 Set $X \leftarrow \emptyset$;
2 while $\exists v \in E \backslash X$ s.t. $X \cup\{v\} \in \mathcal{I}$ do
3 $\quad \begin{aligned} & v \in \underset{\operatorname{argmax}}{\operatorname{argm}}\{w): v \in E \backslash X, X \cup\{v\} \in \mathcal{I}\} ; \\ & X \leftarrow X \cup\{v\} ;\end{aligned}$

Matroid and the greedy algorithm

- Let (E, \mathcal{I}) be an independence system, and we are given a non-negative modular weight function $w: E \rightarrow \mathbb{R}_{+}$.

Algorithm 1: The Matroid Greedy Algorithm

1 Set $X \leftarrow \emptyset$;
2 while $\exists v \in E \backslash X$ s.t. $X \cup\{v\} \in \mathcal{I}$ do
$3 \mid v \in \operatorname{argmax}\{w(v): v \in E \backslash X, X \cup\{v\} \in \mathcal{I}\}$;
$4 \quad X \leftarrow X \cup\{v\}$;

- Same as sorting items by decreasing weight w, and then choosing items in that order that retain independence.

Matroid and the greedy algorithm

- Let (E, \mathcal{I}) be an independence system, and we are given a non-negative modular weight function $w: E \rightarrow \mathbb{R}_{+}$.

Algorithm 1: The Matroid Greedy Algorithm

1 Set $X \leftarrow \emptyset$;
2 while $\exists v \in E \backslash X$ s.t. $X \cup\{v\} \in \mathcal{I}$ do
$3 \mid v \in \operatorname{argmax}\{w(v): v \in E \backslash X, X \cup\{v\} \in \mathcal{I}\}$;
4 $X \leftarrow X \cup\{v\}$;

- Same as sorting items by decreasing weight w, and then choosing items in that order that retain independence.

Theorem 8.6.1

Let (E, \mathcal{I}) be an independence system. Then the pair (E, \mathcal{I}) is a matroid if and only if for each weight function $w \in \mathcal{R}_{+}^{E}$, Algorithm 1 above leads to a set $I \in \mathcal{I}$ of maximum weight $w(I)$.

Review from Lecture 6

- The next slide is from Lecture 6 .

Matroids by bases

In general, besides independent sets and rank functions, there are other equivalent ways to characterize matroids.

Theorem 8.6.3 (Matroid (by bases))

Let E be a set and \mathcal{B} be a nonempty collection of subsets of E. Then the following are equivalent.
(1) \mathcal{B} is the collection of bases of a matroid;
(2) if $B, B^{\prime} \in \mathcal{B}$, and $x \in B^{\prime} \backslash B$, then $B^{\prime}-x+y \in \mathcal{B}$ for some $y \in B \backslash B^{\prime}$.
(3) If $B, B^{\prime} \in \mathcal{B}$, and $x \in B^{\prime} \backslash B$, then $B-y+x \in \mathcal{B}$ for some $y \in B \backslash B^{\prime}$.

Properties 2 and 3 are called "exchange properties."
Proof here is omitted but think about this for a moment in terms of linear spaces and matrices, and (alternatively) spanning trees.

Matroid and the greedy algorithm

proof of Theorem 8.6.1.

- Assume (E, \mathcal{I}) is a matroid and $w: E \rightarrow \mathcal{R}_{+}$is given.

Matroid and the greedy algorithm

proof of Theorem 8.6.1.

- Assume (E, \mathcal{I}) is a matroid and $w: E \rightarrow \mathcal{R}_{+}$is given.
- Let $A=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ be the solution returned by greedy, where $r=r(M)$ the rank of the matroid, and we order the elements as they were chosen (so $w\left(a_{1}\right) \geq w\left(a_{2}\right) \geq \cdots \geq w\left(a_{r}\right)$).

Matroid and the greedy algorithm

proof of Theorem 8.6.1.

- Assume (E, \mathcal{I}) is a matroid and $w: E \rightarrow \mathcal{R}_{+}$is given.
- Let $A=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ be the solution returned by greedy, where $r=r(M)$ the rank of the matroid, and we order the elements as they were chosen (so $w\left(a_{1}\right) \geq w\left(a_{2}\right) \geq \cdots \geq w\left(a_{r}\right)$).
- A is a base of M, and let $B=\left(b_{1}, \ldots, b_{r}\right)$ be any another base of M with elements also ordered decreasing by weight, so $w\left(b_{1}\right) \geq w\left(b_{2}\right) \geq \cdots \geq w\left(b_{r}\right)$.

Matroid and the greedy algorithm

proof of Theorem 8.6.1.

- Assume (E, \mathcal{I}) is a matroid and $w: E \rightarrow \mathcal{R}_{+}$is given.
- Let $A=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ be the solution returned by greedy, where $r=r(M)$ the rank of the matroid, and we order the elements as they were chosen (so $w\left(a_{1}\right) \geq w\left(a_{2}\right) \geq \cdots \geq w\left(a_{r}\right)$).
- A is a base of M, and let $B=\left(b_{1}, \ldots, b_{r}\right)$ be any another base of M with elements also ordered decreasing by weight, so $w\left(b_{1}\right) \geq w\left(b_{2}\right)^{\vec{c}} \geq \stackrel{u(6)}{(x)} \geq w\left(b_{r}\right)$.
- We next show that not only is $w(A) \geq w(B)$ but that $w\left(a_{i}\right) \geq w\left(b_{i}\right)$ for all i.

Matroid and the greedy algorithm

proof of Theorem 8.6.1.

- Assume otherwise, and let k be the first (smallest) integer such that $w\left(a_{k}\right)<w\left(b_{k}\right)$. Hence $w\left(a_{j}\right) \geq w\left(b_{j}\right)$ for $j<k$.

Matroid and the greedy algorithm

proof of Theorem 8.6.1.

- Assume otherwise, and let k be the first (smallest) integer such that $w\left(a_{k}\right)<w\left(b_{k}\right)$. Hence $w\left(a_{j}\right) \geq w\left(b_{j}\right)$ for $j<k$.
- Define independent sets $A_{k-1}=\left\{a_{1}, \ldots, a_{k-1}\right\}$ and $B_{k}=\left\{b_{1}, \ldots, b_{k}\right\}$.

Matroid and the greedy algorithm

proof of Theorem 8.6.1.

- Assume otherwise, and let k be the first (smallest) integer such that $w\left(a_{k}\right)<w\left(b_{k}\right)$. Hence $w\left(a_{j}\right) \geq w\left(b_{j}\right)$ for $j<k$.
- Define independent sets $A_{k-1}=\left\{a_{1}, \ldots, a_{k-1}\right\}$ and $B_{k}=\left\{b_{1}, \ldots, b_{k}\right\}$.
- Since $\left|A_{k-1}\right|<\left|B_{k}\right|$, there exists a $b_{i} \in B_{k} \backslash A_{k-1}$ where $A_{k-1} \cup\left\{b_{i}\right\} \in \mathcal{I}$ for some $1 \leq i \leq k$.

Matroid and the greedy algorithm

proof of Theorem 8.6.1.

- Assume otherwise, and let A be the first (smallest) integer such that $w\left(a_{k}\right)<w\left(b_{k}\right)$. Hence $w\left(a_{j}\right) \geq w\left(b_{j}\right)$ for $j<k$.
- Define independent sets $A_{k-1}=\left\{a_{1}, \ldots, a_{k-1}\right\}$ and $B_{k}=\left\{b_{1}, \ldots, b_{k}\right\}$.
- Since $\left|A_{k-1}\right|<\left|B_{k}\right|$, there exists a $b_{i} \in B_{k} \backslash A_{k-1}$ where $A_{k-1} \cup\left\{b_{i}\right\} \in \mathcal{I}$ for some $1 \leq i \leq k$.
- But $w\left(b_{i}\right) \geq w\left(b_{k}\right)>w\left(a_{k}\right)$, and so the greedy algorithm would have chosen b_{i} rather than a_{k}, contradicting what greedy does.

Matroid and the greedy algorithm

converse proof of Theorem 8.6.1.

- Given an independence system (E, \mathcal{I}), suppose the greedy algorithm leads to an independent set of max weight for every non-negative weight function. We'll show (E, \mathcal{I}) is a matroid.

Matroid and the greedy algorithm

converse proof of Theorem 8.6.1.

- Given an independence system (E, \mathcal{I}), suppose the greedy algorithm leads to an independent set of max weight for every non-negative weight function. We'll show (E, \mathcal{I}) is a matroid.
- Emptyset containing and down monotonicity already holds (since we've started with an independence system).

Matroid and the greedy algorithm

converse proof of Theorem 8.6.1.

- Given an independence system (E, \mathcal{I}), suppose the greedy algorithm leads to an independent set of max weight for every non-negative weight function. We'll show (E, \mathcal{I}) is a matroid.
- Emptyset containing and down monotonicity already holds (since we've started with an independence system).
- Let $I, J \in \mathcal{I}$ with $|I|<|J|$. Suppose to the contrary, that $I \cup\{z\} \notin \mathcal{I}$ for all $z \in J \backslash I$.

Matroid and the greedy algorithm

converse proof of Theorem 8.6.1.

- Given an independence system (E, \mathcal{I}), suppose the greedy algorithm leads to an independent set of max weight for every non-negative weight function. We'll show (E, \mathcal{I}) is a matroid.
- Emptyset containing and down monotonicity already holds (since we've started with an independence system).
- Let $I, J \in \mathcal{I}$ with $|I|<|J|$. Suppose to the contrary, that $I \cup\{z\} \notin \mathcal{I}$ for all $z \in J \backslash I$.
- Define the following modular weight function w on E, and define $k=|I|$.

$$
w(v)= \begin{cases}k+2 & \text { if } v \in I, \tag{8.19}\\ k+1 & \text { if } v \in J \backslash I, \\ 0 & \text { if } v \in E \backslash(I \cup J)\end{cases}
$$

Matroid and the greedy algorithm

converse proof of Theorem 8.6.1.

- Now greedy will, after k iterations, recover I, but it cannot choose any element in $J \backslash I$ by assumption. Thus, greedy chooses a set of weight $k(k+2)=w(I)$.
$|I| \cdot(h+2)=\omega(I)$

Matroid and the greedy algorithm

converse proof of Theorem 8.6.1.

- Now greedy will, after k iterations, recover I, but it cannot choose any element in $J \backslash I$ by assumption. Thus, greedy chooses a set of weight $k(k+2)=w(I)$.
- On the other hand, J has weight $|\sigma|>|I|=\mu$

$$
\begin{equation*}
w(J) \geq|J|(k+1) \geq(k+1)(k+1)>k(k+2)=w(I) \tag{8.20}
\end{equation*}
$$

so J has strictly larger weight but is still independent, contradicting greedy's optimality.

Matroid and the greedy algorithm

converse proof of Theorem 8.6.1.

- Now greedy will, after k iterations, recover I, but it cannot choose any element in $J \backslash I$ by assumption. Thus, greedy chooses a set of weight $k(k+2)=w(I)$.
- On the other hand, J has weight

$$
\begin{equation*}
w(J) \geq|J|(k+1) \geq(k+1)(k+1)>k(k+2)=w(I) \tag{8.20}
\end{equation*}
$$

so J has strictly larger weight but is still independent, contradicting greedy's optimality.

- Therefore, there must be a $z \in J \backslash I$ such that $I \cup\{z\} \in \mathcal{I}$, and since I and J are arbitrary, (E, \mathcal{I}) must be a matroid.

Matroid and greedy

- As given, the theorem asked for a modular function $w \in \mathbb{R}_{+}^{E}$.

Matroid and greedy

- As given, the theorem asked for a modular function $w \in \mathbb{R}_{+}^{E}$.
- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0 .

Matroid and greedy

- As given, the theorem asked for a modular function $w \in \mathbb{R}_{+}^{E}$.
- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0 .
- If we don't want elements with weight 0 , we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.

Matroid and greedy

- As given, the theorem asked for a modular function $w \in \mathbb{R}_{+}^{E}$.
- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0.
- If we don't want elements with weight 0 , we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.
- We don't need non-negativity, we can use any $w \in \mathbb{R}^{E}$ and keep going until we have a base.

Matroid and greedy

- As given, the theorem asked for a modular function $w \in \mathbb{R}_{+}^{E}$.
- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0.
- If we don't want elements with weight 0 , we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.
- We don't need non-negativity, we can use any $w \in \mathbb{R}^{E}$ and keep going until we have a base.
- If we stop at a negative value, we'll once again get a maximum weight independent set.

Matroid and greedy

- As given, the theorem asked for a modular function $w \in \mathbb{R}_{+}^{E}$.
- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0 .
- If we don't want elements with weight 0 , we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.
- We don't need non-negativity, we can use any $w \in \mathbb{R}^{E}$ and keep going until we have a base.
- If we stop at a negative value, we'll once again get a maximum weight independent set.
- Exercise: what if we keep going until a base even if we encounter negative values?

Matroid and greedy

- As given, the theorem asked for a modular function $w \in \mathbb{R}_{+}^{E}$.
- This will not only return an independent set, but it will return a base if we keep going even if the weights are 0 .
- If we don't want elements with weight 0 , we can stop once (and if) the weight hits zero, thus giving us a maximum weight independent set.
- We don't need non-negativity, we can use any $w \in \mathbb{R}^{E}$ and keep going until we have a base.
- If we stop at a negative value, we'll once again get a maximum weight independent set.
- Exercise: what if we keep going until a base even if we encounter negative values?
- We can instead do as small as possible thus giving us a minimum weight independent set/base.

Summary of Important (for us) Matroid Definitions

Given an independence system, matroids are defined equivalently by any of the following:
(- All maximally independent sets have the same size.

- A monotone non-decreasing submodular integral rank function with unit increments.

The greedy algorithm achieves the maximum weight independent set for all weight functions.

