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Logistics Review

Cumulative Outstanding Reading

Read chapter 1 from Fujishige’s book.
Read chapter 2 from Fujishige’s book.
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Logistics Review

Announcements, Assignments, and Reminders

If you have any questions about anything, please ask then via our
discussion board
(https://canvas.uw.edu/courses/1216339/discussion_topics).
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Class Road Map - EE563
L1(3/26): Motivation, Applications, &
Basic Definitions,
L2(3/28): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).
L3(4/2): Info theory exs, more apps,
definitions, graph/combinatorial examples
L4(4/4): Graph and Combinatorial
Examples, Matrix Rank, Examples and
Properties, visualizations
L5(4/9): More Examples/Properties/
Other Submodular Defs., Independence,
L6(4/11): Matroids, Matroid Examples,
Matroid Rank, Partition/Laminar
Matroids
L7(4/16): Laminar Matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid Representation, Dual
Matroids
L8(4/18):
L9(4/23):
L10(4/25):

L11(4/30):
L12(5/2):
L13(5/7):
L14(5/9):
L15(5/14):
L16(5/16):
L17(5/21):
L18(5/23):
L–(5/28): Memorial Day (holiday)
L19(5/30):
L21(6/4): Final Presentations
maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.
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Logistics Review

Matroid

Independent set definition of a matroid is perhaps most natural. Note, if
J ∈ I, then J is said to be an independent set.

Definition 7.2.3 (Matroid)

A set system (E, I) is a Matroid if
(I1) ∅ ∈ I
(I2) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)
(I3) ∀I, J ∈ I, with |I| = |J |+ 1, then there exists x ∈ I \ J such that

J ∪ {x} ∈ I.

Why is (I1) is not redundant given (I2)? Because without (I1) could have a
non-matroid where I = {}.
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Matroids - important property

Proposition 7.2.3

In a matroid M = (E, I), for any U ⊆ E(M), any two bases of U have the
same size.

In matrix terms, given a set of vectors U , all sets of independent
vectors that span the space spanned by U have the same size.
In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 7.2.4 (Matroid)

A set system (V, I) is a Matroid if

(I1’) ∅ ∈ I (emptyset containing)

(I2’) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)

(I3’) ∀X ⊆ V , and I1, I2 ∈ maxInd(X), we have |I1| = |I2| (all maximally
independent subsets of X have the same size).
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Logistics Review

Partition Matroid

Let V be our ground set.
Let V = V1 ∪ V2 ∪ · · · ∪ V` be a partition of V into ` blocks (i.e.,
disjoint sets). Define a set of subsets of V as

I = {X ⊆ V : |X ∩ Vi| ≤ ki for all i = 1, . . . , `}. (7.4)

where k1, . . . , k` are fixed “limit” parameters, ki ≥ 0. Then M = (V, I)
is a matroid.
Note that a k-uniform matroid is a trivial example of a partition
matroid with ` = 1, V1 = V , and k1 = k.
Parameters associated with a partition matroid: ` and k1, k2, . . . , k`
although often the ki’s are all the same.
We’ll show that property (I3’) in Def ?? holds. First note, for any
X ⊆ V , |X| = ∑`

i=1 |X ∩ Vi| since {V1, V2, . . . , V`} is a partition.
If X,Y ∈ I with |Y | > |X|, then there must be at least one i with
|Y ∩ Vi| > |X ∩ Vi|. Therefore, adding one element e ∈ Vi ∩ (Y \X)
to X won’t break independence.
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Matroids - rank function is submodular
Lemma 7.2.3

The rank function r : 2E → Z+ of a matroid is submodular, that is
r(A) + r(B) ≥ r(A ∪B) + r(A ∩B)

Proof.
1 Let X ∈ I be an inclusionwise maximal set with X ⊆ A ∩B
2 Let Y ∈ I be inclusionwise maximal set with X ⊆ Y ⊆ A ∪B.
3 Since M is a matroid, we know that r(A ∩B) = r(X) = |X|, and
r(A ∪B) = r(Y ) = |Y |. Also, for any U ∈ I, r(A) ≥ |A ∩ U |.

4 Then we have (since X ⊆ A ∩B, X ⊆ Y , and Y ⊆ A ∪B),

r(A) + r(B) ≥ |Y ∩A|+ |Y ∩B| (7.4)
= |Y ∩ (A ∩B)|+ |Y ∩ (A ∪B)| (7.5)
≥ |X|+ |Y | = r(A ∩B) + r(A ∪B) (7.6)
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Logistics Review

A matroid is defined from its rank function

Theorem 7.2.3 (Matroid from rank)

Let E be a set and let r : 2E → Z+ be a function. Then r(·) defines a
matroid with r being its rank function if and only if for all A,B ⊆ E:

(R1) ∀A ⊆ E 0 ≤ r(A) ≤ |A| (non-negative cardinality bounded)
(R2) r(A) ≤ r(B) whenever A ⊆ B ⊆ E (monotone non-decreasing)
(R3) r(A ∪B) + r(A ∩B) ≤ r(A) + r(B) for all A,B ⊆ E (submodular)

From above, r(∅) = 0. Let v /∈ A, then by monotonicity and
submodularity, r(A) ≤ r(A ∪ {v}) ≤ r(A) + r({v}) which gives only
two possible values to r(A ∪ {v}), namely r(A) or r(A) + 1.
Hence, unit increment (if r(A) = k, then either r(A ∪ {v}) = k or
r(A ∪ {v}) = k + 1) holds.
Thus, submodularity, non-negative monotone non-decreasing, and unit
increment of rank is necessary and sufficient to define a matroid.
Can refer to matroid as (E, r), E is ground set, r is rank function.
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Laminar Matroids System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid

Laminar Family and Laminar Matroid
We can define a matroid with structures richer than just partitions.
A set system (V,F) is called a laminar family if for any two sets
A,B ∈ F , at least one of the three sets A ∩B, A \B, or B \A is empty.

A B

A

B A

B

A BBA

Family is laminar ∃ no two properly intersecting members: ∀A,B ∈ F ,
either A,B disjoint (A ∩B = ∅) or comparable (A ⊆ B or B ⊆ A).
Suppose we have a laminar family F of subsets of V and an integer kA for
every set A ∈ F . Then (V, I) defines a matroid where

I = {I ⊆ E : |I ∩A| ≤ kA for all A ∈ F} (7.1)

Exercise: what is the rank function here?
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System of Representatives

Let (V,V) be a set system (i.e., V = (Vi : i ∈ I) where ∅ ⊂ Vi ⊆ V for
all i), and I is an index set. Hence, |I| = |V|.
Here, the sets Vi ∈ V are like “groups” and any v ∈ V with v ∈ Vi is a
member of group i. Groups need not be disjoint (e.g., interest groups
of individuals).
A family (vi : i ∈ I) with vi ∈ V is said to be a system of
representatives of V if ∃ a bijection π : I → I such that vi ∈ Vπ(i).
vi is the representative of set (or group) Vπ(i), meaning the ith

representative is meant to represent set Vπ(i).
Example: Consider the house of representatives, vi = “Jim
McDermott”, while i = “King County, WA-7”.
In a system of representatives, there is no requirement for the
representatives to be distinct. I.e., we could have some v1 ∈ V1 ∩ V2,
where v1 represents both V1 and V2.
We can view this as a bipartite graph.
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System of Representatives

We can view this as a bipartite graph. The groups of V are marked by
color tags on the left, and also via right neighbors in the graph.
Here, ` = 6 groups, with V = (V1, V2, . . . , V6)

=
(
{e, f, h} , {d, e, g} , {b, c, e, h} , {a, b, h} , {a} , {a}

)
.

V I

1

2

3

4

5

6a
b
c
d
e
f
g

h

A system of representatives would make
sure that there is a representative for
each color group. For example,
The representatives ({a, c, d, f, h}) are
shown as colors on the left.
Here, the set of representatives is not
distinct. Why? In fact, due to the red
and pink group, a distinct group of
representatives is impossible (since there
is only one common choice to represent
both color groups).
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System of Distinct Representatives

Let (V,V) be a set system (i.e., V = (Vk : i ∈ I) where Vi ⊆ V for all
i), and I is an index set. Hence, |I| = |V|.
A family (vi : i ∈ I) with vi ∈ V is said to be a system of distinct
representatives of V if ∃ a bijection π : I ↔ I such that vi ∈ Vπ(i) and
vi 6= vj for all i 6= j.
In a system of distinct representatives, there is a requirement for the
representatives to be distinct. We can re-state (and rename) this as a:

Definition 7.4.1 (transversal)

Given a set system (V,V) and index set I for V as defined above, a set
T ⊆ V is a transversal of V if there is a bijection π : T ↔ I such that

x ∈ Vπ(x) for all x ∈ T (7.2)

Note that due to π : T ↔ I being a bijection, all of I and T are
“covered” (so this makes things distinct automatically).
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Transversals are Subclusive

A set T ′ ⊆ V is a partial transversal if T ′ is a transversal of some
subfamily V ′ = (Vi : i ∈ I ′) where I ′ ⊆ I.
Therefore, for any transversal T , any subset T ′ ⊆ T is a partial
transversal.
Thus, transversals are down closed (subclusive).
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When do transversals exist?
As we saw, a transversal might not always exist. How to tell?
Given a set system (V,V) with V = (Vi : i ∈ I), and Vi ⊆ V for all i.
Then, for any J ⊆ I, let

V (J) = ∪j∈JVj (7.3)

so |V (J)| : 2I → Z+ is the set cover func. (we know is submodular).
We have

Theorem 7.5.1 (Hall’s theorem)

Given a set system (V,V), the family of subsets V = (Vi : i ∈ I) has a
transversal (vi : i ∈ I) iff for all J ⊆ I

|V (J)| ≥ |J | (7.4)
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When do transversals exist?
As we saw, a transversal might not always exist. How to tell?
Given a set system (V,V) with V = (Vi : i ∈ I), and Vi ⊆ V for all i.
Then, for any J ⊆ I, let

V (J) = ∪j∈JVj (7.3)

so |V (J)| : 2I → Z+ is the set cover func. (we know is submodular).
Hall’s theorem (∀J ⊆ I, |V (J)| ≥ |J |) as a bipartite graph.

V I

1

2

3

4

V I

1

2

3

4
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When do transversals exist?
As we saw, a transversal might not always exist. How to tell?
Given a set system (V,V) with V = (Vi : i ∈ I), and Vi ⊆ V for all i.
Then, for any J ⊆ I, let

V (J) = ∪j∈JVj (7.3)

so |V (J)| : 2I → Z+ is the set cover func. (we know is submodular).
Moreover, we have

Theorem 7.5.2 (Rado’s theorem (1942))

If M = (V, r) is a matroid on V with rank function r, then the family of
subsets (Vi : i ∈ I) of V has a transversal (vi : i ∈ I) that is independent in
M iff for all J ⊆ I

r(V (J)) ≥ |J | (7.5)

Note, a transversal T independent in M means that r(T ) = |T |.
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More general conditions for existence of transversals

Theorem 7.5.3 (Polymatroid transversal theorem)

If V = (Vi : i ∈ I) is a finite family of non-empty subsets of V , and
f : 2V → Z+ is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (vi : i ∈ I)
such that

f(∪i∈J{vi}) ≥ |J | for all J ⊆ I (7.6)

if and only if

f(V (J)) ≥ |J | for all J ⊆ I (7.7)

Given Theorem 7.5.3, we immediately get Theorem 7.5.1 by taking
f(S) = |S| for S ⊆ V . In which case, Eq. 7.6 requires the system of
representatives to be distinct.
We get Theorem 7.5.2 by taking f(S) = r(S) for S ⊆ V , the rank
function of the matroid. where, Eq. 7.6 insists the system of representatives is
independent in M , and hence also distinct.
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Submodular Composition with Set-to-Set functions

Note the condition in Theorem 7.5.3 is f(V (J)) ≥ |J | for all J ⊆ I,
where f : 2V → Z+ is non-negative, integral, monotone non-decreasing
and submodular, and V (J) = ∪j∈JVj with Vi ⊆ V .
Note V (·) : 2I → 2V is a set-to-set function, composable with a
submodular function.
Define g : 2I → Z with g(J) = f(V (J))− |J |, then the condition for
the existence of a system of representatives, with quality Equation 7.6,
becomes:

min
J⊆I

g(J) ≥ 0 (7.8)

What kind of function is g?

Proposition 7.5.4
g as given above is submodular.

Hence, the condition for existence can be solved by (a special case of)
submodular function minimization, or vice verse!
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More general conditions for existence of transversals

first part proof of Theorem 7.5.3.

Suppose V has a system of representatives (vi : i ∈ I) such that
Eq. 7.6 (i.e., f(∪i∈J{vi}) ≥ |J | for all J ⊆ I) is true.
Then since f is monotone, and since V (J) ⊇ ∪i∈J{vi} when
(vi : i ∈ I) is a system of representatives, then Eq. 7.7 (i.e.,
f(V (J)) ≥ |J | for all J ⊆ I) immediately follows.

. . .
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More general conditions for existence of transversals
Lemma 7.5.5 (contraction lemma)

Suppose Eq. 7.7 (f(V (J)) ≥ |J |,∀J ⊆ I) is true for V = (Vi : i ∈ I), and
there exists an i such that |Vi| ≥ 2 (w.l.o.g., say i = 1). Then there exists
v̄ ∈ V1 such that the family of subsets (V1 \ {v̄}, V2, . . . , V|I|) also satisfies
Eq 7.7.

Proof.
When Eq. 7.7 holds, this means that for any subsets J1, J2 ⊆ I \ {1},
we have that, for J ∈ {J1, J2},

f(V (J ∪ {1})) ≥ |J ∪ {1}| (7.9)
and hence

f(V1 ∪ V (J1)) ≥ |J1|+ 1 (7.10)
f(V1 ∪ V (J2)) ≥ |J2|+ 1 (7.11)

. . .
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More general conditions for existence of transversals
Lemma 7.5.5 (contraction lemma)

Suppose Eq. 7.7 (f(V (J)) ≥ |J |,∀J ⊆ I) is true for V = (Vi : i ∈ I), and
there exists an i such that |Vi| ≥ 2 (w.l.o.g., say i = 1). Then there exists
v̄ ∈ V1 such that the family of subsets (V1 \ {v̄}, V2, . . . , V|I|) also satisfies
Eq 7.7.

Proof.
Suppose, to the contrary, the consequent is false. Then we may take
any v̄1, v̄2 ∈ V1 as two distinct elements in V1 . . .
. . . and there must exist subsets J1, J2 of I \ {1} such that

f((V1 \ {v̄1}) ∪ V (J1)) < |J1|+ 1, (7.12)
f((V1 \ {v̄2}) ∪ V (J2)) < |J2|+ 1, (7.13)

(note that either one or both of J1, J2 could be empty).
. . .
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More general conditions for existence of transversals
Lemma 7.5.5 (contraction lemma)

Suppose Eq. 7.7 (f(V (J)) ≥ |J |,∀J ⊆ I) is true for V = (Vi : i ∈ I), and
there exists an i such that |Vi| ≥ 2 (w.l.o.g., say i = 1). Then there exists
v̄ ∈ V1 such that the family of subsets (V1 \ {v̄}, V2, . . . , V|I|) also satisfies
Eq 7.7.

Proof.
Taking X = (V1 \ {v̄1}) ∪ V (J1) and Y = (V1 \ {v̄2}) ∪ V (J2), we
have f(X) ≤ |J1|, f(Y ) ≤ |J2|, and that:

X ∪ Y = V1 ∪ V (J1 ∪ J2), (7.14)
X ∩ Y ⊇ V (J1 ∩ J2), (7.15)

and
|J1|+ |J2| ≥ f(X) + f(Y )

≥ f(X ∪ Y ) + f(X ∩ Y ) (7.16)
. . .
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More general conditions for existence of transversals
Lemma 7.5.5 (contraction lemma)

Suppose Eq. 7.7 (f(V (J)) ≥ |J |,∀J ⊆ I) is true for V = (Vi : i ∈ I), and
there exists an i such that |Vi| ≥ 2 (w.l.o.g., say i = 1). Then there exists
v̄ ∈ V1 such that the family of subsets (V1 \ {v̄}, V2, . . . , V|I|) also satisfies
Eq 7.7.

Proof.
since f submodular monotone non-decreasing, & Eqs 7.14-7.16,

|J1|+ |J2| ≥ f(V1 ∪ V (J1 ∪ J2)) + f(V (J1 ∩ J2)) (7.17)
Since V satisfies Eq. 7.7, 1 /∈ J1 ∪ J2, & Eqs 7.10-7.11, this gives

|J1|+ |J2| ≥ |J1 ∪ J2|+ 1 + |J1 ∩ J2| (7.18)

which is a contradiction since cardinality is modular.

. . .
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More general conditions for existence of transversals

Theorem 7.5.3 (Polymatroid transversal theorem)

If V = (Vi : i ∈ I) is a finite family of non-empty subsets of V , and
f : 2V → Z+ is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (vi : i ∈ I)
such that

f(∪i∈J{vi}) ≥ |J | for all J ⊆ I (7.6)

if and only if

f(V (J)) ≥ |J | for all J ⊆ I (7.7)

Given Theorem 7.5.3, we immediately get Theorem 7.5.1 by taking
f(S) = |S| for S ⊆ V . In which case, Eq. 7.6 requires the system of
representatives to be distinct.
We get Theorem 7.5.2 by taking f(S) = r(S) for S ⊆ V , the rank
function of the matroid. where, Eq. 7.6 insists the system of representatives is
independent in M , and hence also distinct.
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More general conditions for existence of transversals

converse proof of Theorem 7.5.3.
Conversely, suppose Eq. 7.7 is true.
If each Vi is a singleton set, then the result follows immediately.
W.l.o.g., let |V1| ≥ 2, then by Lemma 7.5.5, the family of subsets
(V1 \ {v̄}, V2, . . . , V|I|) also satisfies Eq 7.7 for the right v̄.
We can continue to reduce the family, deleting elements from Vi for
some i while |Vi| ≥ 2, until we arrive at a family of singleton sets.
This family will be the required system of representatives.

This theorem can be used to produce a variety of other results quite easily,
and shows how submodularity is the key ingredient in its truth.
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Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 7.6.1
If V is a family of finite subsets of a ground set V , then the collection of
partial transversals of V is the set of independent sets of a matroid
M = (V,V) on V .

This means that the transversals of V are the bases of matroid M .
Therefore, all maximal partial transversals of V have the same
cardinality!
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Transversals and Bipartite Matchings
Transversals correspond exactly to matchings in bipartite graphs.
Given a set system (V,V), with V = (Vi : i ∈ I), we can define a
bipartite graph G = (V, I, E) associated with V that has edge set
{(v, i) : v ∈ V, i ∈ I, v ∈ Vi}.
A matching in this graph is a set of edges no two of which that have a
common endpoint. In fact, we easily have:

Lemma 7.6.2
A subset T ⊆ V is a partial transversal of V iff there is a matching in
(V, I, E) in which every edge has one endpoint in T (T matched into I).

V I

1

2

3

4

V I

1

2

3

4
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Arbitrary Matchings and Matroids?

Are arbitrary matchings matroids?
Consider the following graph (left), and two max-matchings (two right
instances)

A B

CD

A B

CD

A B

CD

{AC} is a maximum matching, as is {AD,BC}, but they are not the
same size.
LetM be the set of matchings in an arbitrary graph G = (V,E).
Hence, (E,M) is a set system. I1 holds since ∅ ∈ M. I2 also holds
since if M ∈M is a matching, then so is any M ′ ⊆M . I3 doesn’t hold
(as seen above). Exercise: fully characterize the problem of finding the
largest subsetM′ ⊂M of matchings so that (E,M′) also satisfies I3?
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Review from Lecture 7

The next frame comes from lecture 7.
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Partition Matroid, rank as matching

Example where ` = 5,
(k1, k2, k3, k4, k5) =
(2, 2, 1, 1, 3).

I1

I2

I3

I4

I5

V1

V2

V3

V4

V5

V I
Recall, Γ : 2V → R as the neighbor
function in a bipartite graph, the
neighbors of X is defined as Γ(X) =
{v ∈ V (G) \X : E(X, {v}) 6= ∅}, and
recall that |Γ(X)| is submodular.
Here, for X ⊆ V , we have Γ(X) =
{i ∈ I : (v, i) ∈ E(G) and v ∈ X}.
For such a constructed bipartite graph,
the rank function of a partition matroid
is r(X) =

∑`
i=1 min(|X ∩ Vi|, ki) = the

maximum matching involving X.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 7 - April 16th, 2018 F26/42 (pg.33/58)

Laminar Matroids System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid

Morphing Partition Matroid Rank
Recall the partition matroid rank function. Note, ki = |Ii| in the bipartite
graph representation, and since a matroid, w.l.o.g., |Vi| ≥ ki (also, recall,
V (J) = ∪j∈JVj).
Start with partition matroid rank function in the subsequent equations.
r(A) =

∑
i∈{1,...,`}

min(|A ∩ Vi|, ki) (7.19)

=
∑̀
i=1

min(|A ∩ V (Ii)|, |Ii|) (7.20)

=
∑

i∈{1,...,`}

min
Ji∈{∅,Ii}

({
|A ∩ V (Ii)| if Ji 6= ∅

0 if Ji = ∅

}
+ |Ii \ Ji|

)
(7.21)

=
∑

i∈{1,...,`}

min
Ji⊆Ii

({
|A ∩ V (Ii)| if Ji 6= ∅

0 if Ji = ∅

}
+ |Ii \ Ji|

)
(7.22)

=
∑

i∈{1,...,`}

min
Ji⊆Ii

(|V (Ji) ∩A|+ |Ii \ Ji|) (7.23)
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... Morphing Partition Matroid Rank

Continuing,

r(A) =
∑̀
i=1

min
Ji⊆Ii

(|V (Ji) ∩ V (Ii) ∩A| − |Ii ∩ Ji|+ |Ii|) (7.24)

= min
J⊆I

(∑̀
i=1

|V (J) ∩ V (Ii) ∩A| − |Ii ∩ J |+ |Ii|
)

(7.25)

= min
J⊆I

(|V (J) ∩ V (I) ∩A| − |J |+ |I|) (7.26)

= min
J⊆I

(|V (J) ∩A| − |J |+ |I|) (7.27)

In fact, this bottom (more general) expression is the expression for the
rank of a transversal matroid.
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Partial Transversals Are Independent Sets in a Matroid

In fact, we have

Theorem 7.6.3
Let (V,V) where V = (V1, V2, . . . , V`) be a subset system. Let
I = {1, . . . , `}. Let I be the set of partial transversals of V. Then (V, I) is
a matroid.

Proof.
We note that ∅ ∈ I since the empty set is a transversal of the empty
subfamily of V, thus (I1’) holds.
We already saw that if T is a partial transversal of V, and if T ′ ⊆ T ,
then T ′ is also a partial transversal. So (I2’) holds.
Suppose that T1 and T2 are partial transversals of V such that
|T1| < |T2|. Exercise: show that (I3’) holds.
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Transversal Matroid Rank

Transversal matroid has rank

r(A) = min
J⊆I

(|V (J) ∩A| − |J |+ |I|) (7.28)

= min
J⊆I

mJ(I) (7.29)

Therefore, this function is submodular.
Note that it is a minimum over a set of modular functions in I. Is this
true in general? Exercise:
Exercise: Can you identify a set of sufficient properties over a set of
modular functions mi : V → R+ so that f(A) = minimi(A) is
submodular? Can you identify both necessary and sufficient conditions?
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Matroid loops

A circuit in a matroids is well defined, a subset A ⊆ E is circuit if it is
an inclusionwise minimally dependent set (i.e., if r(A) < |A| and for
any a ∈ A, r(A \ {a}) = |A| − 1).
There is no reason in a matroid such an A could not consist of a single
element.
Such an {a} is called a loop.
In a matric (i.e., linear) matroid, the only such loop is the value 0, as
all non-zero vectors have rank 1. The 0 can appear > 1 time with
different indices, as can a self loop in a graph appear on different nodes.
Note, we also say that two elements s, t are said to be parallel if {s, t}
is a circuit.
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Representable

Definition 7.7.1 (Matroid isomorphism)

Two matroids M1 and M2 respectively on ground sets V1 and V2 are
isomorphic if there is a bijection π : V1 → V2 which preserves independence
(equivalently, rank, circuits, and so on).

Let F be any field (such as R, Q, or some finite field F, such as a
Galois field GF(p) where p is prime (such as GF(2)), but not Z.
Succinctly: A field is a set with +, ∗, closure, associativity,
commutativity, and additive and multiplicative identities and inverses.
We can more generally define matroids on a field.

Definition 7.7.2 (linear matroids on a field)

Let X be an n×m matrix and E = {1, . . . ,m}, where Xij ∈ F for some
field, and let I be the set of subsets of E such that the columns of X are
linearly independent over F.
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Representable

Definition 7.7.1 (Matroid isomorphism)

Two matroids M1 and M2 respectively on ground sets V1 and V2 are
isomorphic if there is a bijection π : V1 → V2 which preserves independence
(equivalently, rank, circuits, and so on).

Let F be any field (such as R, Q, or some finite field F, such as a
Galois field GF(p) where p is prime (such as GF(2)), but not Z.
Succinctly: A field is a set with +, ∗, closure, associativity,
commutativity, and additive and multiplicative identities and inverses.
We can more generally define matroids on a field.

Definition 7.7.3 (representable (as a linear matroid))

Any matroid isomorphic to a linear matroid on a field is called representable
over F
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Representability of Transversal Matroids

Piff and Welsh in 1970, and Adkin in 1972 proved an important
theorem about representability of transversal matroids.
In particular:

Theorem 7.7.4
Transversal matroids are representable over all finite fields of sufficiently
large cardinality, and are representable over any infinite field.
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Converse: Representability of Transversal Matroids

The converse is not true, however.

Example 7.7.5

Let V = {1, 2, 3, 4, 5, 6} be a ground set and let M = (V, I) be a set
system where I is all subsets of V of cardinality ≤ 2 except for the pairs
{1, 2}, {3, 4}, {5, 6}.

It can be shown that this is a matroid and is representable.
However, this matroid is not isomorphic to any transversal matroid.
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Review from Lecture 6

The next frame comes from lecture 6.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 7 - April 16th, 2018 F35/42 (pg.43/58)

Laminar Matroids System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid

Matroids, other definitions using matroid rank r : 2V → Z+

Definition 7.8.3 (closed/flat/subspace)

A subset A ⊆ E is closed (equivalently, a flat or a subspace) of matroid M
if for all x ∈ E \A, r(A ∪ {x}) = r(A) + 1.

Definition: A hyperplane is a flat of rank r(M)− 1.

Definition 7.8.4 (closure)

Given A ⊆ E, the closure (or span) of A, is defined by
span(A) = {b ∈ E : r(A ∪ {b}) = r(A)}.

Therefore, a closed set A has span(A) = A.

Definition 7.8.5 (circuit)

A subset A ⊆ E is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if r(A) < |A| and for any a ∈ A, r(A \ {a}) = |A| − 1).
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Spanning Sets

We have the following definitions:

Definition 7.8.1 (spanning set of a set)

Given a matroidM = (V, I), and a set Y ⊆ V , then any set X ⊆ Y such
that r(X) = r(Y ) is called a spanning set of Y .

Definition 7.8.2 (spanning set of a matroid)

Given a matroidM = (V, I), any set A ⊆ V such that r(A) = r(V ) is
called a spanning set of the matroid.

A base of a matroid is a minimal spanning set (and it is independent)
but supersets of a base are also spanning.
V is always trivially spanning.
Consider the terminology: “spanning tree in a graph”, comes from
spanning in a matroid sense.
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Dual of a Matroid

Given a matroid M = (V, I), a dual matroid M∗ = (V, I∗) can be
defined on the same ground set V , but using a very different set of
independent sets I∗.
We define the set of sets I∗ for M∗ as follows:

I∗ = {A ⊆ V : V \A is a spanning set of M} (7.30)
= {V \ S : S ⊆ V is a spanning set of M} (7.31)

i.e., I∗ are complements of spanning sets of M .
That is, a set A is independent in the dual matroid M∗ if removal of A
from V does not decrease the rank in M :

I∗ = {A ⊆ V : rankM (V \A) = rankM (V )} (7.32)

In other words, a set A ⊆ V is independent in the dual M∗ (i.e.,
A ∈ I∗) if A’s complement is spanning in M (residual V \A must
contain a base in M).
Dual of the dual: Note, we have that (M∗)∗ = M .
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Dual of a Matroid: Bases

The smallest spanning sets are bases. Hence, a base B of M (where
B = V \B∗ is as small as possible while still spanning) is the
complement of a base B∗ of M∗ (where B∗ = V \B is as large as
possible while still being independent).
In fact, we have that

Theorem 7.8.3 (Dual matroid bases)

Let M = (V, I) be a matroid and B(M) be the set of bases of M . Then
define

B∗(M) = {V \B : B ∈ B(M)}. (7.33)

Then B∗(M) is the set of basis of M∗ (that is, B∗(M) = B(M∗).
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An exercise in duality Terminology

B∗(M), the bases of M∗, are called cobases of M .
The circuits of M∗ are called cocircuits of M .
The hyperplanes of M∗ are called cohyperplanes of M .
The independent sets of M∗ are called coindependent sets of M .
The spanning sets of M∗ are called cospanning sets of M .

Proposition 7.8.4 (from Oxley 2011)

Let M = (V, I) be a matroid, and let X ⊆ V . Then
1 X is independent in M iff V \X is cospanning in M (spanning in M∗).
2 X is spanning in M iff V \X is coindependent in M (independent in
M∗).

3 X is a hyperplane in M iff V \X is a cocircuit in M (circuit in M∗).
4 X is a circuit in M iff V \X is a cohyperplane in M (hyperplane in M∗).
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Example duality: graphic matroid

Using a graphic/cycle matroid, we can already see how dual matroid
concepts demonstrates the extraordinary flexibility and power that a
matroid can have.
Recall, in cycle matroid, a spanning set of G is any set of edges that are
incident to all nodes (i.e., any superset of a spanning forest), a minimal
spanning set is a spanning tree (or forest), and a circuit has a nice visual
interpretation (a cycle in the graph).
A cut in a graph G is a set of edges, the removal of which increases the
number of connected components. I.e., X ⊆ E(G) is a cut in G if
k(G) < k(G \X).
A minimal cut in G is a cut X ⊆ E(G) such that X \ {x} is not a cut for
any x ∈ X.
A cocycle (cocircuit) in a graphic matroid is a minimal graph cut.
A mincut is a circuit in the dual “cocycle” (or “cut”) matroid.
All dependent sets in a cocycle matroid are cuts (i.e., a dependent set is a
minimal cut or contains one).
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Example: cocycle matroid (sometimes “cut matroid”)

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {A ⊆ V : V \A is a spanning set of M}
I∗ consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that, if
removed, would render the graph non-spanning.
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A graph G

Minimally spanning in M (and thus
a base (maximally independent) in M)
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Example: cocycle matroid (sometimes “cut matroid”)

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {A ⊆ V : V \A is a spanning set of M}
I∗ consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that, if
removed, would render the graph non-spanning.
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a base (maximally independent) in M)
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Example: cocycle matroid (sometimes “cut matroid”)

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {A ⊆ V : V \A is a spanning set of M}
I∗ consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that, if
removed, would render the graph non-spanning.

Spanning in M, but not a base, and
not independent (has cycles)
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Minimally spanning in M (and thus
a base (maximally independent) in M)
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a base, minimally spanning, in M*)

Independent in M* (does 
not contain a cut)

2

1

3

4

7

6

5

8
1

2

3

4

6

7

8

5

9
12

10

11

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 7 - April 16th, 2018 F42/42 (pg.52/58)



Laminar Matroids System of Distinct Reps Transversals Transversal Matroid Matroid and representation Dual Matroid

Example: cocycle matroid (sometimes “cut matroid”)

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {A ⊆ V : V \A is a spanning set of M}
I∗ consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that, if
removed, would render the graph non-spanning.
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a cocycle, is a nonminimal cut)
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Example: cocycle matroid (sometimes “cut matroid”)

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {A ⊆ V : V \A is a spanning set of M}
I∗ consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that, if
removed, would render the graph non-spanning.

Spanning in M, but not a base, and
not independent (has cycles)
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not contain a cut)
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Example: cocycle matroid (sometimes “cut matroid”)

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {A ⊆ V : V \A is a spanning set of M}
I∗ consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that, if
removed, would render the graph non-spanning.

Independent but not spanning 
in M, and not closed in M.
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Dependent in M* (contains 
a cocycle, is a nonminimal cut)
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Example: cocycle matroid (sometimes “cut matroid”)

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {A ⊆ V : V \A is a spanning set of M}
I∗ consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that, if
removed, would render the graph non-spanning.

A hyperplane in M, dependent 
but not spanning in M
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A cycle in M* (minimally dependent
in M*, a cocycle, or a minimal cut)
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Example: cocycle matroid (sometimes “cut matroid”)

The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {A ⊆ V : V \A is a spanning set of M}
I∗ consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that, if
removed, would render the graph non-spanning.
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A cycle in M* (minimally dependent
in M*, a cocycle, or a minimal cut)
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The dual of the cycle matroid is called the cocycle matroid. Recall,
I∗ = {A ⊆ V : V \A is a spanning set of M}
I∗ consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can’t consist of edges that, if
removed, would render the graph non-spanning.
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Cycle Matroid - independent
sets have no cycles.
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Cocycle matroid, independent
sets contain no cuts. 
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