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Cumulative Outstanding Reading

@ Read chapter 1 from Fujishige's book.
@ Read chapter 2 from Fujishige's book.
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Logistics

Announcements, Assignments, and Reminders

e If you have any questions about anything, please ask then via our
discussion board
(https://canvas.uw.edu/courses/1216339/discussion_topics).
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Matroid

Independent set definition of a matroid is perhaps most natural. Note, if
J € Z, then J is said to be an independent set.

Definition 7.2.3 (Matroid)

A set system (E,Z) is a Matroid if
(1) ez
(I2) VI €Z,J Cc I = J €T (down-closed or subclusive)

(I3) VI,J € Z, with |I| = |J| + 1, then there exists x € I \ J such that
Ju{z} eI

Why is (I1) is not redundant given (12)7 Because without (I1) could have a
non-matroid where Z = {}.
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Matroids - important property

Proposition 7.2.3

In a matroid M = (E,T), for any U C E(M), any two bases of U have the
same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

e In fact, under (11),(12), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 7.2.4 (Matroid)

A set system (V,Z) is a Matroid if
(11") @ € Z (emptyset containing)
(12") VI € Z,J C I = J € T (down-closed or subclusive)

(13") VX CV, and I, I, € maxInd(X), we have |I;| = |I2| (all maximally
independent subsets of X have the same size).
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Partition Matroid

@ Let V be our ground set.
o Let V=V UVoU---UV, be a partition of V into ¢ blocks (i.e.,
disjoint sets). Define a set of subsets of V' as

IT={XCV: | XnVj|<kjforalli=1,... ¢} (7.4)

where k1, ..., kg are fixed “limit" parameters, k; > 0. Then M = (V,I)
is a matroid.

@ Note that a k-uniform matroid is a trivial example of a partition
matroid with ¢ =1, V; =V, and k1 = k.

@ Parameters associated with a partition matroid: ¢ and ki, ko, ..., ky
although often the k;'s are all the same.

o We'll show that property (13') in Def ?? holds. First note, for any
XCV,|X|= Zle | X NV;| since {V1,Va,...,V;} is a partition.

o If X, Y €7 with |Y| > |X|, then there must be at least one i with
Y N V;| > |X NV;|. Therefore, adding one element e € V; N (Y \ X)
to X won't break independence.
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Matroids - rank function is submodular

The rank function r : 2¥ — 7. of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

@ Let X € 7 be an inclusionwise maximal set with X C AN B

@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

© Since M is a matroid, we know that (AN B) = r(X) = |X|, and
r(AUB) =7r(Y)=1Y]|. Also, forany U € Z, r(A) > |[ANU|.

© Then we have (since X CANB, X CY,and Y C AU B),

r(A)+r(B) > |Y NA|+|Y NB| :
=YN(ANB)|+|Y N(AUB)| (7.5)
>|X|+|Y|=r(ANB)+r(AUB) (7.6)

[
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A matroid is defined from its rank function

Theorem 7.2.3 (Matroid from rank)

Let E be a set and let r : 2F — 7 be a function. Then r(-) defines a

matroid with r being its rank function if and only if for all A,B C E:
(R1) VACE 0<r(A) <|A| (non-negative cardinality bounded)
(R2) r(A) < r(B) whenever A C B C E (monotone non-decreasing)
(R3) r(AUB)+r(AnB) <r(A)+r(B) forall A,B C E (submodular) ]

e From above, 7(f)) = 0. Let v ¢ A, then by monotonicity and
submodularity, 7(A4) < r(AU{v}) < r(A) + r({v}) which gives only
two possible values to (A U {v}), namely 7(A) or r(A) + 1.

@ Hence, unit increment (if 7(A) = k, then either r(AU {v}) =k or
r(AU{v}) =k + 1) holds.

@ Thus, submodularity, non-negative monotone non-decreasing, and unit
increment of rank is necessary and sufficient to define a matroid.

@ Can refer to matroid as (E,r), E is ground set, r is rank function.
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Laminar Family and Laminar Matroid

@ We can define a matroid with structures richer than just partitions.

@ A set system (V| F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets AN B, A\ B, or B\ A is empty.

A B B A A B
A:‘

e Family is laminar 3 no two properly intersecting members: VA, B € F,
either A, B disjoint (AN B = ()) or comparable (A C B or B C A).

@ Suppose we have a laminar family F of subsets of V' and an integer k4 for
every set A € F. Then (V,Z) defines a matroid where

T={ICE:|[INA| <kyforal AcF} (7.1)

@ Exercise: what is the rank function here?
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System of Distinct Reps
[N

System of Representatives

o Let (V,V) be a set system (i.e.,, V= (V;:i € I) where ) CV; CV for
all i), and I is an index set. Hence, |I| = |V|.

@ Here, the sets V; € V are like “groups’ and any v € V with v € V; is a
member of group i. Groups need not be disjoint (e.g., interest groups
of individuals).

o A family (v; : i € I) with v; € V is said to be a system of
representatives of V if 3 a bijection 7 : I — I such that v; € V().

@ v; is the representative of set (or group) Vy(;), meaning the fn
representative is meant to represent set V(;).

@ Example: Consider the house of representatives, v; = “Jim
McDermott”, while i = “King County, WA-7".

@ In a system of representatives, there is no requirement for the
representatives to be distinct. l.e., we could have some v € V; N V5,
where vy represents both V; and V5.

@ We can view this as a bipartite graph.
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System of Distinct Reps
1nl

System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked by
color tags on the left, and also via right neighbors in the graph.
@ Here, £ =6 groups, with V = (V1, Vs, ..., Vg)

= (e . e EERENN FCvy. . l)

@ A system of representatives would make
I sure that there is a representative for
| each color group. For example,

@ The representatives ({a,c,d, f, h}) are
shown as colors on the left.

@ Here, the set of representatives is not
distinct. Why? In fact, due to the red
and pink group, a distinct group of
representatives is impossible (since there
is only one common choice to represent
both color groups).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 7 - April 16th, 2018 F12/42 (pg.12/58)




System of Distinct Reps
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System of Representatives
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System of Representatives
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System of Distinct Reps
(WA |

System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vj :i € I) where V; C V for all
i), and I is an index set. Hence, |I| = |V|.

o A family (v; : i € I) with v; € V is said to be a system of distinct
representatives of V if 3 a bijection 7 : I <+ I such that v; € V,(;) and
v; # v; for all 4 # j.

@ In a system of distinct representatives, there is a requirement for the
representatives to be distinct. We can re-state (and rename) this as a:

Definition 7.4.1 (transversal)

Given a set system (V,V) and index set [ for V as defined above, a set
T C V is a transversal of V if there is a bijection 7 : T' <> I such that

T € Vi) forallz €T (7.2)

@ Note that due to 7 : T <> I being a bijection, all of I and T are
“covered” (so this makes things distinct automatically).
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Transversals
[AAREREN]

Transversals are Subclusive

@ Aset 7" C V is a partial transversal if 7" is a transversal of some
subfamily V' = (V; : i € I') where I' C I.

@ Therefore, for any transversal T, any subset 7" C T is a partial
transversal.

@ Thus, transversals are down closed (subclusive).
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Transversals
IRt

When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
@ Given a set system (V,V) with V = (V; :i € I), and V; C V for all 1.
Then, for any J C I, let
V(J) =UjesV; (7.3)

so |[V(J)|: 2! — Z, is the set cover func. (we know is submodular).
@ We have

Theorem 7.5.1 (Hall’s theorem)

Given a set system (V,V), the family of subsets V = (V; : i € I) has a
transversal (v; :i € I) iff forall J C 1

V(DI =[] (7.4)
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Transversals
IRt

When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
@ Given a set system (V,V) with V = (V; :i € I), and V; C V for all 1.
Then, for any J C I, let
V(J) =UjesV; (7.3)

so |[V(J)|: 2! — Z, is the set cover func. (we know is submodular).
e Hall's theorem (VJ C I, |V (J)| > |J|) as a bipartite graph.

V | I
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Transversals
IRt

When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
@ Given a set system (V,V) with V = (V; :i € I), and V; C V for all 1.
Then, for any J C I, let

V(J) =UjesV; (7.3)

so |[V(J)|: 2! — Z, is the set cover func. (we know is submodular).
@ Moreover, we have

Theorem 7.5.2 (Rado’s theorem (1942))

If M = (V,r) is a matroid on V' with rank function r, then the family of
subsets (V; :i € I) of V has a transversal (v; : i € I) that is independent in
M iff for all J C I

r(V(J)) = |J| (7.5)

@ Note, a transversal T independent in M means that r»(T') = |T|.
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Transversals
LIRLLIL]

More general conditions for existence of transversals

Theorem 7.5.3 (Polymatroid transversal theorem)

IfV = (V; :i € 1) is a finite family of non-empty subsets of V', and
f:2Y — Z, is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (v; : i € I)
such that

F(Uses{vi}) > |J| forall J C I (7.6)

it and only if

f(V(J))>|J| forall J C I (7.7)

v

@ Given Theorem 7.5.3, we immediately get Theorem 7.5.1 by taking
f(S) =S| for S C V. In which case, Eq. 7.6 requires the system of
representatives to be distinct.

@ We get Theorem 7.5.2 by taking f(S) = r(S) for S C V, the rank
function of the matroid. where, Eq. 7.6 insists the system of representatives is
independent in M, _and hence also distinct.
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Transversals
(NER RREN

Submodular Composition with Set-to-Set functions

@ Note the condition in Theorem 7.5.3is f(V(J)) > |J| for all J C I,
where f : 2V — Z. is non-negative, integral, monotone non-decreasing
and submodular, and V' (J) = U,c;V; with V; C V.

o Note V(-) : 2 — 2V is a set-to-set function, composable with a
submodular function.

o Define g : 21 — Z with g(J) = f(V(J)) — |J|, then the condition for
the existence of a system of representatives, with quality Equation 7.6,
becomes:

1 >
iy () 2 U (7.8)

@ What kind of function is g7
Proposition 7.5.4

g as given above is submodular.

@ Hence, the condition for existence can be solved by (a special case of)
submodular function minimization, or vice verse!
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More general conditions for existence of transversals

first part proof of Theorem 7.5.3.

@ Suppose V has a system of representatives (v; : i € I) such that
Eq. 7.6 (i.e., f(Uies{vi}) > |J| for all J C I) is true.
@ Then since f is monotone, and since V(J) D U;ecs{v;} when

(v; : @ € I) is a system of representatives, then Eq. 7.7 (i.e.,
f(V(J)) > |J| for all J C I) immediately follows.
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Transversals
INEENE AN

More general conditions for existence of transversals

Lemma 7.5.5 (contraction lemma)

Suppose Eq. 7.7 (f(V(J)) > |J|,VJ C I) is true for V = (V; : i € I), and
there exists an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there exists
v € V1 such that the family of subsets (V1 \ {0}, Va,...,V|y)) also satisfies
Eq7.7.

| \

Proof.

@ When Eq. 7.7 holds, this means that for any subsets J;,Jy C I\ {1},
we have that, for J € {Ji, Jo},

f(V(JU{l})) = |JU{1}] (7.9)
and hence

f(Vl U V(Jl)) > |J1| +1 (7.10)

f(V1 U V(JQ)) > |J2| +1 (7.11)

\
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Transversals
INEENE AN

More general conditions for existence of transversals

Lemma 7.5.5 (contraction lemma)

Suppose Eq. 7.7 (f(V(J)) > |J|,VJ C 1) is true for V = (V;:i € I), and
there exists an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there exists
v € V1 such that the family of subsets (V1 \ {0}, Va,...,V|y)) also satisfies
Eq7.7.

Proof.

@ Suppose, to the contrary, the consequent is false. Then we may take
any 01,02 € Vi as two distinct elements in Vj ...

@ ...and there must exist subsets Ji, Jo of I\ {1} such that

| \

f(M\{o ) UV (L)) <[]+ 1, (7.12)
F(Vi\{v2}) UV (J2)) < |Ja| + 1, (7.13)

(note that either one or both of Ji, Jo could be empty).
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Transversals
INEENE AN

More general conditions for existence of transversals

Lemma 7.5.5 (contraction lemma)

Suppose Eq. 7.7 (f(V(J)) > |J|,VJ C I) is true for V = (V; : i € I), and
there exists an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there exists
v € V1 such that the family of subsets (V1 \ {0}, Va,...,V|y)) also satisfies
Eq7.7.

| \

Proof.
(-} Taking X = (Vi \ {171}) U V(Jl) and Y = (Vl \ {1_12}) U V(JQ), we
have f(X) < |Ji], f(Y) < |J2|, and that:
XUY =WMuV(J1UJs), (7.14)
XNY D V(Jl N Ja), (7.15)
and
1] + [ 2] = F(X) + f(Y)
> ((XUY)+(XNY) (7.16)

\
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Transversals
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More general conditions for existence of transversals

Lemma 7.5.5 (contraction lemma)

Suppose Eq. 7.7 (f(V(J)) > |J|,VJ C 1) is true for V = (V;:i € I), and
there exists an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there exists
v € V1 such that the family of subsets (V1 \ {0}, Va,...,V|y)) also satisfies
Eq7.7.

Proof.
@ since f submodular monotone non-decreasing, & Eqs 7.14-7.16,
’J1| + |J2| > f(V1 U V(Jl U JQ)) -+ f(V(Jl N J2)) (7.17)
@ Since V satisfies Eq. 7.7, 1 ¢ J; U Jo, & Eqgs 7.10-7.11, this gives

| \

|J1|—|—|J2‘ > |J1UJ2|+1+‘J1QJQ‘ (7.18)

which is a contradiction since cardinality is modular.
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Transversals
INEENEN B

More general conditions for existence of transversals

Theorem 7.5.3 (Polymatroid transversal theorem)

IfV = (V; :i € 1) is a finite family of non-empty subsets of V', and
f:2Y — Z, is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (v; : i € I)
such that

fUseg{vi}) > |J| forall J C 1 (7.6)
it and only if

f(V(J))>|J| forall J C I (7.7)

v

@ Given Theorem 7.5.3, we immediately get Theorem 7.5.1 by taking
f(S) =S| for S C V. In which case, Eq. 7.6 requires the system of
representatives to be distinct.

@ We get Theorem 7.5.2 by taking f(S) = r(S) for S C V, the rank
function of the matroid. where, Eq. 7.6 insists the system of representatives is
independent in M . and hence also distinct.
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More general conditions for existence of transversals

converse proof of Theorem 7.5.3.
@ Conversely, suppose Eq. 7.7 is true.
e If each Vj is a singleton set, then the result follows immediately.

e W.lo.g., let V1] > 2, then by Lemma 7.5.5, the family of subsets
(Vi \ {9}, Va,...,V|p) also satisfies Eq 7.7 for the right v.

@ We can continue to reduce the family, deleting elements from V; for
some i while |V;| > 2, until we arrive at a family of singleton sets.

@ This family will be the required system of representatives.

[

This theorem can be used to produce a variety of other results quite easily,
and shows how submodularity is the key ingredient in its truth.
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Transversal Matroid

Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 7.6.1

If V is a family of finite subsets of a ground set V', then the collection of
partial transversals of V is the set of independent sets of a matroid
M=(V,V)onV.

@ This means that the transversals of V' are the bases of matroid M .

@ Therefore, all maximal partial transversals of V' have the same
cardinality!
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Transversal Matroid

Transversals and Bipartite Matchings

@ Transversals correspond exactly to matchings in bipartite graphs.

e Given a set system (V, V), with ¥V = (V; : i € I), we can define a
bipartite graph G = (V, I, F) associated with ) that has edge set
{(v,i) ;v eV,yiel,veV}.

@ A matching in this graph is a set of edges no two of which that have a
common endpoint. In fact, we easily have:

A subset T' C V is a partial transversal of V iff there is a matching in
(V,I, E) in which every edge has one endpoint in T (T matched into I).

vV I \ I
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Transversal Matroid

Arbitrary Matchings and Matroids?

@ Are arbitrary matchings matroids?

@ Consider the following graph (left), and two max-matchings (two right

instances)
@@ k
e {AC} is a maximum matching, as is {AD, BC}, but they are not the
same size.

@ Let M be the set of matchings in an arbitrary graph G = (V, E).
Hence, (E, M) is a set system. |1 holds since () € M. 12 also holds
since if M € M is a matching, then so is any M’ C M. I3 doesn't hold
(as seen above). Exercise: fully characterize the problem of finding the
largest subset M’ C M of matchings so that (E, M’) also satisfies 137
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Transversal
(NN RN

Review from Lecture 7

The next frame comes from lecture 7.
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Transversal Matroid

Partition Matroid, rank as matching

@ Example where ¢/ =5,
(k17 k?a k37 k47 k5) —
(2,2,1,1,3). @ Recall, T': 2¥ — R as the neighbor
V | function in a bipartite graph, the
neighbors of X is defined as I'(X) =
{fveV(G)\ X : E(X,{v}) # 0}, and
recall that |T'(X)| is submodular.
%3 L Here, for X C V, we have I'(X) =
{iel:(v,i) € E(G) and v € X},
/s o For such a constructed bipartite graph,
the rank function of a partition matroid
la is 7(X) = S2¢_, min(|X N V|, ki) = the
maximum matching involving X .

o~
—
o
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Transversal Matroid

Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the bipartite

graph representation, and since a matroid, w.l.o.g., |V;| > k; (also, recall,
V(J) = Uje]‘/j).

@ Start with partition matroid rank function in the subsequent equations.

r(A)= Y min(|[ANVi|, k) (7.19)

ief{l,...,0}
¢

= > min(|ANV(L)], L) (7.20)
=1

= ), min ({LAQXU”‘;Effg}%Jh\LO (7.21)
I S e =

_ - ANV (L) ifJ; #0 L

B 5%%({ 0 =g [ TIE\ (7.22)
1€{1,...,0}

N min ([V(J;) 0 A| + |1\ i) (7.23)
1€{1,...,0} =
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Transversal Matroid

... Morphing Partition Matroid Rank

e Continuing,

¢
r(4) = Z min (V(I)NV(L)NAl = LN Ji| + L) (7.24)

14
= min Z ‘V(J) N V(IZ) M A| — |Ii N J| + L;) (7.25)

JCI
- =1
= min (IV(J) N V() N 4| = || + 1) (7.26)
= min (1V(J) N 4] = |J] + 1) (7.27)

@ In fact, this bottom (more general) expression is the expression for the
rank of a transversal matroid.
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Partial Transversals Are Independent Sets in a Matroid

In fact, we have

Theorem 7.6.3

Let (V,V) where V = (V1,Va,...,V}) be a subset system. Let
I={1,...,¢}. LetT be the set of partial transversals of V. Then (V,I) is
a matroid.

Proof.

@ We note that () € 7 since the empty set is a transversal of the empty
subfamily of V, thus (I1") holds.

o We already saw that if T is a partial transversal of V, and if T" C T,
then 7" is also a partial transversal. So (12") holds.

@ Suppose that 77 and Ty are partial transversals of V' such that
|T1| < |T»|. Exercise: show that (13") holds.
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Transversal Matroid

Transversal Matroid Rank

@ Transversal matroid has rank

mCaA) == mmin (VAR S A St ) (7.28)
= I}lgi?mj(l) (7.29)

@ Therefore, this function is submodular.

@ Note that it is a minimum over a set of modular functions in I. Is this
true in general? Exercise:

@ Exercise: Can you identify a set of sufficient properties over a set of
modular functions m; : V' — R4 so that f(A) = min; m;(A) is
submodular? Can you identify both necessary and sufficient conditions?
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Matroid loops

A circuit in a matroids is well defined, a subset A C E is circuit if it is
an inclusionwise minimally dependent set (i.e., if r(A) < |A| and for
any a € A, r(A\{a}) =|A] - 1).

@ There is no reason in a matroid such an A could not consist of a single
element.

@ Such an {a} is called a loop.

@ In a matric (i.e., linear) matroid, the only such loop is the value 0, as
all non-zero vectors have rank 1. The 0 can appear > 1 time with
different indices, as can a self loop in a graph appear on different nodes.

@ Note, we also say that two elements s, ¢ are said to be parallel if {s,t}
Is a circuit.
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Representable

Definition 7.7.1 (Matroid isomorphism)

Two matroids My and M respectively on ground sets V; and V5 are
isomorphic if there is a bijection 7 : V4 — V5 which preserves independence
(equivalently, rank, circuits, and so on).

o Let F be any field (such as R, Q, or some finite field F, such as a
Galois field GF(p) where p is prime (such as GF(2)), but not Z.
Succinctly: A field is a set with +, x, closure, associativity,
commutativity, and additive and multiplicative identities and inverses.

@ We can more generally define matroids on a field.

Definition 7.7.2 (linear matroids on a field)

Let X be an n x m matrix and E = {1,...,m}, where X;; € IF for some
field, and let Z be the set of subsets of E such that the columns of X are
linearly independent over F.
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Representable

Definition 7.7.1 (Matroid isomorphism)

Two matroids My and M> respectively on ground sets V7 and V5 are
isomorphic if there is a bijection 7 : V4 — V5 which preserves independence
(equivalently, rank, circuits, and so on).

o Let F be any field (such as R, Q, or some finite field F, such as a
Galois field GF(p) where p is prime (such as GF(2)), but not Z.
Succinctly: A field is a set with +, x, closure, associativity,
commutativity, and additive and multiplicative identities and inverses.

@ We can more generally define matroids on a field.

Definition 7.7.3 (representable (as a linear matroid))

Any matroid isomorphic to a linear matroid on a field is called representable
over [F
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Representability of Transversal Matroids

e Piff and Welsh in 1970, and Adkin in 1972 proved an important
theorem about representability of transversal matroids.

@ In particular:

Theorem 7.7.4

Transversal matroids are representable over all finite fields of sufficiently
large cardinality, and are representable over any infinite field.
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Converse: Representability of Transversal Matroids

The converse is not true, however.

Let V ={1,2,3,4,5,6} be a ground set and let M = (V,Z) be a set
system where 7 is all subsets of V' of cardinality < 2 except for the pairs

{1,2}, {3,4}, {5,6}.

@ It can be shown that this is a matroid and is representable.

@ However, this matroid is not isomorphic to any transversal matroid.
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Dual Matroid
Brrrren

Review from Lecture 6

The next frame comes from lecture 6.
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Dual Matroid
(R ERERNE

Matroids, other definitions using matroid rank r : 2V — Z,

Definition 7.8.3 (closed/flat/subspace)

A subset A C F is closed (equivalently, a flat or a subspace) of matroid M
if forallz € E\ A, r(AU{z}) =r(A) + 1.

Definition: A hyperplane is a flat of rank r(M) — 1.

Definition 7.8.4 (closure)

Given A C E, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(A4)}.

Therefore, a closed set A has span(A) = A.

Definition 7.8.5 (circuit)

A subset A C E is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if r(A) < |A| and for any a € A4, r(A\{a}) = |A] - 1).
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Dual Matroid
(N RRRRE

Spanning Sets

@ We have the following definitions:

Definition 7.8.1 (spanning set of a set)

Given a matroid M = (V,Z), and aset Y C V, then any set X C Y such
that r(X) = r(Y) is called a spanning set of Y.

Definition 7.8.2 (spanning set of a matroid)

Given a matroid M = (V,Z), any set A C V such that r(A) =r(V) is
called a spanning set of the matroid.

@ A base of a matroid is a minimal spanning set (and it is independent)
but supersets of a base are also spanning.

e V is always trivially spanning.

@ Consider the terminology: “spanning tree in a graph”, comes from
spanning in a matroid sense.
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Dual Matroid
(AEN RRNE

Dual of a Matroid

e Given a matroid M = (V,Z), a dual matroid M* = (V,Z*) can be
defined on the same ground set V/, but using a very different set of
independent sets 7*.

@ We define the set of sets Z* for M* as follows:

" ={ACV:V\ Ais a spanning set of M} (7.30)
={V\S:S5 CVis a spanning set of M} (7.31)
i.e., Z* are complements of spanning sets of M.

@ That is, a set A is independent in the dual matroid M™* if removal of A
from V does not decrease the rank in M:

¥ ={A CV :rankpy (V \ A) = ranky (V) } (7.32)

@ In other words, a set A C V is independent in the dual M* (i.e.,
A €T*)if A's complement is spanning in M (residual V' '\ A must
contain a base in M).

@ Dual of the dual: Note, we have that (M*)* = M.
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Dual Matroid
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Dual of a Matroid: Bases

@ The smallest spanning sets are bases. Hence, a base B of M (where
B =V \ B* is as small as possible while still spanning) is the
complement of a base B* of M* (where B* =V \ B is as large as
possible while still being independent).

@ In fact, we have that
Theorem 7.8.3 (Dual matroid bases)

Let M = (V,Z) be a matroid and B(M) be the set of bases of M. Then
define

B*(M)={V\B: B e B(M)}. (7.33)

Then B*(M) is the set of basis of M* (that is, B*(M) = B(M™).
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Dual Matroid
e

An exercise in duality Terminology

B*(M), the bases of M*, are called cobases of M.

The circuits of M* are called cocircuits of M.

The hyperplanes of M* are called cohyperplanes of M.

The independent sets of M™* are called coindependent sets of M.

The spanning sets of M™* are called cospanning sets of M.

Proposition 7.8.4 (from Oxley 2011)
Let M = (V,Z) be a matroid, and let X C V. Then
@ X is independent in M iff V' \ X is cospanning in M (spanning in M*).
@ X is spanning in M iff V' \ X is coindependent in M (independent in
© X is a hyperplane in M iff V'\ X is a cocircuit in M (circuit in M*).
Q X isacircuit in M iff V'\ X is a cohyperplane in M (hyperplane in M*).

v
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Dual Matroid
e

Example duality: graphic matroid

@ Using a graphic/cycle matroid, we can already see how dual matroid
concepts demonstrates the extraordinary flexibility and power that a
matroid can have.

@ Recall, in cycle matroid, a spanning set of GG is any set of edges that are
incident to all nodes (i.e., any superset of a spanning forest), a minimal
spanning set is a spanning tree (or forest), and a circuit has a nice visual
interpretation (a cycle in the graph).

@ A cut in a graph G is a set of edges, the removal of which increases the
number of connected components. l.e., X C E(G) is a cut in G if
k(G) < k(G \ X).

@ A minimal cut in G is a cut X C E(G) such that X \ {z} is not a cut for
any r € X.

@ A cocycle (cocircuit) in a graphic matroid is a minimal graph cut.

@ A mincut is a circuit in the dual “cocycle” (or “cut”) matroid.

@ All dependent sets in a cocycle matroid are cuts (i.e., a dependent set is a
minimal cut or contains one).
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Dual Matroid
trreeeen

Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
IT*={ACV:V\ Ais a spanning set of M}

@ 7I* consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that, if
removed, would render the graph non-spanning.
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Dual Matroid
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Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\ Ais a spanning set of M}

@ T* consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that, if
removed, would render the graph non-spanning.

Minimally spanning in M (and thus Maximally independent in M* (thus
a base (maximally independent) in M)  a base, minimally spanning, in M¥)
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Dual Matroid
trreeeen

Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\ Ais a spanning set of M}

@ T* consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that, if
removed, would render the graph non-spanning.

Minimally spanning in M (and thus Maximally independent in M* (thus
a base (maximally independent) in M)  a base, minimally spanning, in M¥)
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Dual Matroid
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Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\ Ais a spanning set of M}

@ T* consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that, if
removed, would render the graph non-spanning.

Independent but not spanning Dependent in M* (contains
in M, and not closed in M. a cocycle, is a nonminimal cut)
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Dual Matroid
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Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\ Ais a spanning set of M}

@ T* consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that, if
removed, would render the graph non-spanning.

Spanning in M, but not a base,and  Independent in M* (does
not independent (has cycles) not contain a cut)
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Dual Matroid
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Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\ Ais a spanning set of M}

@ T* consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that, if
removed, would render the graph non-spanning.

Independent but not spanning Dependent in M* (contains
in M, and not closed in M. a cocycle, is a nonminimal cut)
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Dual Matroid
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Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\ Ais a spanning set of M}

@ T* consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that, if
removed, would render the graph non-spanning.

A hyperplane in M, dependent A cycle in M* (minimally dependent
but not spanning in M in M*, a cocycle, or a minimal cut)
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Dual Matroid
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Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\ Ais a spanning set of M}

@ T* consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that, if
removed, would render the graph non-spanning.

A hyperplane in M, dependent A cycle in M* (minimally dependent
but not spanning in M in M*, a cocycle, or a minimal cut)
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Dual Matroid
trreeeen

Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\ Ais a spanning set of M}

@ T* consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that, if
removed, would render the graph non-spanning.

Cycle Matroid - independent Cocycle matroid, independent
sets have no cycles. sets contain no cuts.
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