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Cumulative Outstanding Reading

@ Read chapter 1 from Fujishige’s book.
@ Read chapter 2 from Fujishige’s book.
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Logistics

Announcements, Assignments, and Reminders

@ If you have any questions about anything, please ask then via our
discussion board
(https://canvas.uw.edu/courses/1216339/discussion_topics).
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Logistics

Class Road Map - EE563

@ L1(3/26): Motivation, Applications, &
Basic Definitions,

@ L2(3/28): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).

@ L3(4/2): Info theory exs, more apps,
definitions, graph/combinatorial examples

@ L4(4/4): Graph and Combinatorial
Examples, Matrix Rank, Examples and
Properties, visualizations

@ L5(4/9): More Examples/Properties/
Other Submodular Defs., Independence,

@ L6(4/11): Matroids, Matroid Examples,
Matroid Rank, Partition/Laminar
Matroids

@ L7(4/16): Laminar Matroids, System of
Distinct Reps, Transversals, Transversal
Matroid, Matroid Representation, Dual
Matroids

o 18(4/18):

@ L9(4/23):

@ L10(4/25):

L11(4/30):

L12(5/2):

L13(5/7):

L14(5/9):

L15(5/14):

L16(5/16):

L17(5/21):

L18(5/23):

L—(5/28): Memorial Day (holiday)
L19(5/30):

L21(6/4): Final Presentations
maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.
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Matroid

Independent set definition of a matroid is perhaps most natural. Note, if
J € Z, then J is said to be an independent set.

Definition 7.2.3 (Matroid)

A set system (E,7) is a Matroid if
(1) 0ez
(12) VI €Z,J Cc I = J € T (down-closed or subclusive)

(13) VI, J € Z, with |I| = |J| + 1, then there exists € I \ J such that
JU{z} e

Why is (11) is not redundant given (12)? Because without (11) could have a
non-matroid where 7 = {}.
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Matroids - important property

Proposition 7.2.3

In a matroid M = (E,I), for any U C E(M), any two bases of U have the
same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

e In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 7.2.4 (Matroid)

A set system (V,Z) is a Matroid if

(I1") @ € Z (emptyset containing)

(12"y VI €Z,J c I = J € T (down-closed or subclusive)

(13") VX CV, and I1,I5 € maxInd(X), we have |I;| = |I2| (all maximally
—

independent subsets of X have the same size).

EES563/Spring 2018/Submodularity - Lecture 7 - April 16th, 2018 F6/42 (pg.6/159)



Partition Matroid

o Let V be our ground set.
Let V=11 UVaU:---UV, be a partition of V into ¢ blocks (i.e.,
disjoint sets). Define a set of subsets of V" as

I={XCV: XNV <kjforalli=1,... ¢} (7.4)
=g

where k1, ..., kg are fixed “limit" parameters, k; > 0. Then M = (V,I)
is a matroid.

Note that a k-uniform matroid is a trivial example of a partition
matroid with £ =1, V4 =V, and k1 = k.

Parameters associated with a partition matroid: ¢ and k1, ko, ..., ky
although often the k;'s are all the same.

We'll show that property (13") in Def ?? holds. First note, for any

X CV,|X| =Xt |X NV since {V1,Va,...,V,} is a partition.

If X,Y €7 with |Y| > |X|, then there must be at least one i with
Y N V;| > | X NV;|. Therefore, adding one element e € V; N (Y \ X)
to X won't break independence.
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Matroids - rank function is submodular

Lemma 7.2.3

The rank function r : 2F — Z of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

@ Let X € 7 be an inclusionwise maximal set with X C AN B

@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

© Since M is a matroid, we know that r(AN B) = r(X) = |X]|, and
r(AUuB)=r(Y)=|Y|. Also, forany U € Z, r(A) > |[ANU|.

© Then we have (since X CANB, X CY,and Y C AU B),

r(A)+r(B) > Y NA|+|Y NB| (7.4)
=YN(ANB)|+|YN(AUB)| (7.5)
> X|+|Y|=r(ANB)+r(AUB) (7.6)
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A matroid is defined from its rank function

Theorem 7.2.3 (Matroid from rank)

Let E be a set and let #: 2% — Z be a function. Then r(-) defines a
matroid with v being its rank function if and only if for all A,B C E:
(R1) VACE 0<r(A) <|A| (non-negative cardinality bounded)

(R2) r(A) < r(B) whenever A C B C E (monotone non-decreasing)

(R3) r(AUB)+71r(ANB) <r(A)+r(B) for all A,B C E (submodular)

e From above, () = 0. Let v ¢ A, then by monotonicity and
submodularity, r(A) < r(AU{v}) <r(A)+ r({v}) which gives only
two possible values to (A U {v}), namely r(A) or r(A) + 1.

@ Hence, unit increment (if (A) = k, then either r(AU {v}) =k or
r(AuU{v}) =k + 1) holds.

@ Thus, submodularity, non-negative monotone non-decreasing, and unit
increment of rank is necessary and sufficient to define a matroid.

o Can refer to matroid as (E,r), E is ground set, r is rank function.
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Laminar Matroids

Laminar Family and Laminar Matroid

@ We can define a matroid with structures richer than just partitions.
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@ We can define a matroid with structures richer than just partitions.
@ A set system (V, F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets AN B, A\ B, or B\ A is empty.

A B B
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ids

Laminar Family and Laminar Matroid

@ We can define a matroid with structures richer than just partitions.
@ A set system (V, F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets AN B, A\ B, or B\ A is empty.

A B B

@ Family is laminar 3 no two properly intersecting members: VA, B € F,
either A, B disjoint (AN B = ()) or comparable (A C B or B C A).
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Lami

Laminar Family and Laminar Matroid

@ We can define a matroid with structures richer than just partitions.

@ A set system (V, F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets AN B, A\ B, or B\ A is empty.

A B B

e Family is laminar 3 no two properly intersecting members: VA, B € F,
either A, B disjoint (AN B = )) or comparable (A C B or B C A).

@ Suppose we have a laminar family F of subsets of V' and an integer k4 for
every set A € F.
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Laminar Family and Laminar Matroid

@ We can define a matroid with structures richer than just partitions.

@ A set system (V, F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets AN B, A\ B, or B\ A is empty.

A B B

e Family is laminar 3 no two properly intersecting members: VA, B € F,
either A, B disjoint (AN B = )) or comparable (A C B or B C A).

@ Suppose we have a laminar family F of subsets of V' and an integer k4 for
every set A € F. Then (V,Z) defines a matroid where

T={ICE:|[INA <kjforall Ac F} (7.1)
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Laminar Family and Laminar Matroid

@ We can define a matroid with structures richer than just partitions.

@ A set system (V, F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets AN B, A\ B, or B\ A is empty.

A B B

e Family is laminar 3 no two properly intersecting members: VA, B € F,
either A, B disjoint (AN B = )) or comparable (A C B or B C A).

@ Suppose we have a laminar family F of subsets of V' and an integer k4 for
every set A € F. Then (V,Z) defines a matroid where

IT={ICE:|[INA <kjforall Ac F} (7.1)

@ Exercise: what is the rank function here?

Prof. Jeff Bilmes EES563/Spring 2018/Submodularity - Lecture 7 - April 16th, 2018 F10/42 (pg.15/159)






Syster
(N}

System of Representatives

o Let (V,V) be a set system (i.e., V =(V; : @ € I)where ) CH)C V for
all 4), and I is an index set. HenceI| = [V|.

EES563/Spring 2018/Submodularity - Lecture 7 - April 16th, 2018 F11/42 (pg.16/159)



System of Distinct Reps

System of Representatives

o Let (V,V) be a set system (i.e., V= (V;:i€I)where ) CV; CV for
all 7), and I is an index set. Hence, |I| = |V|.

o Here, the sets V; € V are like “groups” and any v € V with v € V} is a
member of group i. Groups need not be disjoint (e.g., interest groups
of individuals).
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Syster
(N}

System of Representatives

o Let (V,V) be a set system (i.e., V= (V;:i€I)where ) CV; CV for
all 7), and I is an index set. Hence, |I| = |V|.

@ Here, the sets V; € V are like “groups” and any v € V with v € V} is a
member of group i. Groups need not be disjoint (e.g., interest groups
of individuals).

o A famil ith v; € V is said to be a system of
representatives of V' if 3 a bijection(@ : I = Dsuch that G7€ V().

veV o el v eV

?'v; ; 4'54;2 cV

EES563/Spring 2018/Submodularity - Lecture 7 - April 16th, 2018 F11/42 (pg.18/159)




System of Distinct Reps
(AN

System of Representatives

o Let (V,V) be a set system (i.e., V= (V;:i€I)where ) CV; CV for
all 7), and I is an index set. Hence, |I| = |V|.

@ Here, the sets V; € V are like “groups” and any v € V with v € V} is a
member of group i. Groups need not be disjoint (e.g., interest groups
of individuals).

o A family (v; : i € I) with v; € V is said to be a system of
representatives of V' if 3 a bijection m : I — I such that v; € V.

@ v; is the representative of set (or group) V;(;), meaning the ith
representative is meant to represent set V.
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System of Distinct Reps
(AN

System of Representatives

o Let (V,V) be a set system (i.e., V= (V;:i€I)where ) CV; CV for
all 7), and I is an index set. Hence, |I| = |V|.

@ Here, the sets V; € V are like “groups” and any v € V with v € V} is a
member of group i. Groups need not be disjoint (e.g., interest groups
of individuals).

o A family (v; : i € I) with v; € V is said to be a system of
representatives of V' if 3 a bijection m : I — I such that v; € V.

@ v; is the representative of set (or group) V;(;), meaning the ith
representative is meant to represent set V(;).

@ Example: Consider the house of representatives, v; = “Jim
McDermott”, while i = “King County, WA-7".
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System of Representatives

o Let (V,V) be a set system (i.e., V= (V;:i€I)where ) CV; CV for
all 7), and I is an index set. Hence, |I| = |V|.

@ Here, the sets V; € V are like “groups” and any v € V with v € V} is a
member of group i. Groups need not be disjoint (e.g., interest groups
of individuals).

o A family (v; : i € I) with v; € V is said to be a system of
representatives of V' if 3 a bijection m : I — I such that v; € V.

@ v; is the representative of set (or group) V;(;), meaning the ith
representative is meant to represent set V(;).

@ Example: Consider the house of representatives, v; = “Jim
McDermott”, while i = “King County, WA-7".

@ In a system of representatives, there is no requirement for the
representatives to be distinct. l.e., we could have some v1 € Vi N5,
where vy represents both 1/ and V5.
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System of Representatives

o Let (V,V) be a set system (i.e., V= (V;:i€I)where ) CV; CV for
all 7), and I is an index set. Hence, |I| = |V|.

@ Here, the sets V; € V are like “groups” and any v € V with v € V} is a
member of group i. Groups need not be disjoint (e.g., interest groups
of individuals).

o A family (v; : i € I) with v; € V is said to be a system of
representatives of V' if 3 a bijection m : I — I such that v; € V.

@ v; is the representative of set (or group) V;(;), meaning the ith
representative is meant to represent set V(;).

@ Example: Consider the house of representatives, v; = “Jim
McDermott”, while i = “King County, WA-7".

@ In a system of representatives, there is no requirement for the
representatives to be distinct. l.e., we could have some v1 € Vi N V5,
where v represents both 1 and V5.

@ We can view this as a bipartite graph.
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System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked by
color tags on the left, and also via right neighbors in the graph.
@ Here, £ =6 groups, with V = (V1,Va,..., Vs)

sy o o8 joodod |
V |

EES563/Spring 2018/Submodularity - Lecture 7 - April 16th, 2018 F12/42 (pg.23/159)



System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked by
color tags on the left, and also via right neighbors in the graph.
@ Here, £ =6 groups, with V = (V1,Va,..., Vs)

= (et . e, NNGRENN. Fswuy. y I)

@ A system of representatives would make
V I sure that there is a representative for
each color group. For example,
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System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked by
color tags on the left, and also via right neighbors in the graph.
@ Here, £ =6 groups, with V = (V1,Va,..., Vs)

= (et . e, NNGRENN. Fswuy. y I)

@ A system of representatives would make
V I sure that there is a representative for
] each color group. For example,

[
n @ The representatives ({a,c,d, f, h}) are
shown as colors on the left.
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System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked by
color tags on the left, and also via right neighbors in the graph.
@ Here, £ =6 groups, with V = (V1,Va,..., Vs)

= (et . e, NNGRENN. Fswuy. y I)

@ A system of representatives would make
V I sure that there is a representative for
] each color group. For example,

[
n @ The representatives ({a,c,d, f, h}) are
shown as colors on the left.

@ Here, the set of representatives is not
distinct. Why?
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System of Representatives

@ We can view this as a bipartite graph. The groups of V' are marked by
color tags on the left, and also via right neighbors in the graph.
@ Here, £ =6 groups, with V = (V1,Va,..., Vs)

= (e . e, NNERENN. Fswuy. y I)

@ A system of representatives would make
A V I sure that there is a representative for
w::\ [ E 3 m each color group. For example,
2\ 2 B 77> @ The representatives ({a,c,d, f, h}) are
: Z 4 shown as colors on the left.
e 3 L @ Here, the set of representatives is not
f 5 distinct. Why? In fact, due to the red
L and pink group, a distinct group of

representatives is impossible (since there
is only one common choice to represent

\fJeT, [v) z1d) both color groups).
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System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vi : i € I) where V; C V for all
i), and I is an index set. Hence,(I| = |V|.
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System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vi : i € I) where V; CV for all
i), and I is an index set. Hence, |I| = |V|.

e A family (v; : i € I) with v; € V is said to be a system of'distinct
representatives of 1V if 3 a bijection 7 : I <> I such that v; € V(;) and

v; # vj for all i # j.
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System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vi : i € I) where V; CV for all
i), and I is an index set. Hence, |I| = |V|.

o A family (v; : i € I) with v; € V is said to be a system of distinct
representatives of V' if 3 a bijection 7 : I <> I such that v; € V(;) and
v; # vj for all i # j.

@ In a system of distinct representatives, there is a requirement for the
representatives to be distinct. We can re-state (and rename) this as a:
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System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vi : i € I) where V; CV for all
i), and I is an index set. Hence, |I| = |V|.

o A family (v; : i € I) with v; € V is said to be a system of distinct
representatives of V' if 3 a bijection 7 : I <> I such that v; € V(;) and
v; # vj for all i # j.

@ In a system of distinct representatives, there is a requirement for the
representatives to be distinct. We can re-state (and rename) this as a:

Definition 7.4.1 (transversal)

Given a set system (V,V) and index set I for V as defined above, a set
T C V is a transversal of V if there is a bijection 7 : T' <+ I such that

T € Vy(p forallzeT (7.2)
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System of Distinct Representatives

o Let (V,V) be a set system (i.e., V= (Vi : i € I) where V; CV for all
i), and I is an index set. Hence, |I| = |V|.

o A family (v; : i € I) with v; € V is said to be a system of distinct
representatives of V' if 3 a bijection 7 : I <> I such that v; € V(;) and
v; # vj for all i # j.

@ In a system of distinct representatives, there is a requirement for the
representatives to be distinct. We can re-state (and rename) this as a:

Definition 7.4.1 (transversal)

Given a set system (V,V) and index set I for V as defined above, a set
T C V is a transversal of V if there is a bijection 7 : T' <+ I such that

T € Vy(p forallzeT (7.2)

o Note that due to w : T <> I being a bijection, all of I and T are
“covered” (so this makes things distinct automatically).
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Transversals
[ARRRRRN]

Transversals are Subclusive

@ Aset TV C V is a partial transversal if T” is a transversal of some
subfamily V' = (V; : i € I') where I' C I.
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Transversals
[ARRRRRN]

Transversals are Subclusive

@ Aset TV C V is a partial transversal if T” is a transversal of some
subfamily V' = (V; :i € I') where I' C I.

@ Therefore, for any transversal T, any subset 7" C T is a partial
transversal.

Prof. Jeff Bilmes EES563/Spring 2018/Submodularity - Lecture 7 - April 16th, 2018 F14/42 (pg.34/159)



Transversals
[ARRRRRN]

Transversals are Subclusive

@ Aset TV C V is a partial transversal if T” is a transversal of some
subfamily V' = (V; :i € I') where I' C I.

@ Therefore, for any transversal T, any subset 7" C T is a partial
transversal.

@ Thus, transversals are down closed (subclusive).
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Transversals
[LERARNN]

When do transversals exist?
@ As we saw, a transversal might not always exist. How to tell?
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Transversals
[LERARNN]

When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
@ Given a set system (V,V) with V = (V;:i € I), and V; C V for all .
Then, for any J C I, let

V(J) = UjesV; (7.3)

so |V (J)| : 2! — 7Z, is the set cover func. (we know is submodular).

v(a): 5 =Y
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When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
@ Given a set system (V,V) with V = (V;:i € I), and V; C V for all .
Then, for any J C I, let
V(J) = UjesV; (7.3)

so |V (J)| : 2! — 7Z, is the set cover func. (we know is submodular).
e We have

Theorem 7.5.1 (Hall's theorem)

Given a set system (V. V), the family of subsets V = (V; : i € I) has a
transversal (v; i € I) iff for all i € I

V(NI =1 (7.4)
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When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?

@ Given a set system (V,V) with V = (V;:i € I), and V; C V for all .
Then, for any J C I, let

V(J) = UjesV; (7.3)

so |V (J)] : 2! — 7Z, is the set cover func. (we know is submodular).
e Hall's theorem (V.J C I,|V (J)| > |J]|) as a bipartite graph.

V I
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When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?

@ Given a set system (V,V) with V = (V;:i € I), and V; C V for all .
Then, for any J C I, let

V(J) = UjesV; (7.3)

so |V (J)] : 2! — 7Z, is the set cover func. (we know is submodular).
e Hall's theorem (V.J C I,|V (J)| > |J]|) as a bipartite graph.

V I
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When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
@ Given a set system (V,V) with V = (V;:i € I), and V; C V for all .
Then, for any J C I, let

V(J) = UjesV; (7.3)
so |V (J)| : 2! — 7Z, is the set cover func. (we know is submodular).
@ Moreover, we have (‘(X):) X
Theorem 7.5.2 (Rado's theorem (1942))
If M = (V,r) is a matroid on V with rank function r, then the family of

subsets (V; :i € I) of V has a transversal (v; : i € I) that is independent in
M iff for all J C I

r(V(J))) = |J]| (7.5)
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When do transversals exist?

@ As we saw, a transversal might not always exist. How to tell?
@ Given a set system (V,V) with V = (V;:i € I), and V; C V for all .
Then, for any J C I, let

V(J) = UjesV; (7.3)

so |V (J)| : 2! — 7Z, is the set cover func. (we know is submodular).
@ Moreover, we have

Theorem 7.5.2 (Rado's theorem (1942))

If M = (V,r) is a matroid on V with rank function r, then the family of
subsets (V; :i € I) of V has a transversal (v; : i € I) that is independent in
M iff for all J C I

r(V(J))) = |J]| (7.5)

e Note, a transversal T" independent in M means that r(T') = |T|.
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More general conditions for existence of transversals

Theorem 7.5.3 (Polymatroid transversal theorem)

IfV = (V;:i€l) is a finite family of non-empty subsets of V', and
f:2Y — Z, is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (v; : i € I)
such that

f(Uieg{vi}) > |J| forall J C I (7.6)
if and only if

fV(J)) > |J| forall JC I (7.7)
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IfV = (V;:i€l) is a finite family of non-empty subsets of V', and
f:2Y — Z_ is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (v; : i € I)
such that

FUies{vi}) = || forall J C T (7.6)

if and only if

fV(J)) > |J| forall JC I (7.7)

@ Given Theorem 7.5.3, we immediately get Theorem 7.5.1 by taking
f(S) = |S| for S C V. In which case, Eq. 7.6 requires the system of
representatives to be distinct.

F16/42 (pg.44/159)
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More general conditions for existence of transversals

Theorem 7.5.3 (Polymatroid transversal theorem)

IfV = (V;:i€l) is a finite family of non-empty subsets of V', and
f:2Y — Z, is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (v; : i € I)
such that

F(Uies{vi}) > |J| forall J C T (7.6)
Y2 U &w3
if and igl)y ,’_ﬁ J:&Z 0 VT jeT
:)’ E fV(T)) = |J| forall J C I (7.7)

@ Given Theorem 7.5.3, we immediately get Theorem 7.5.1 by taking
f(S)=1S|for S C V.

@ We get Theorem 7.5.2 by taking f(S) = r(S) for S C V, the rank
function of the matroid. where, Eq. 7.6 insists the system of representatives is
independent in M, and hence also distinct.
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Transversals
[RRLRRNN]

Submodular Composition with Set-to-Set functions

@ Note the condition in Theorem 7.5.3is f(V(J)) > |J| for all J C I,
where f: 2V — Z. is non-negative, integral, monotone non-decreasing
and submodular, and V(J) = Uje;V; with V;

V(7) - 31 - }\/

($oV)(7)

Exuvcsc
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Transversals
[RRLRRNN]

Submodular Composition with Set-to-Set functions

@ Note the condition in Theorem 7.5.3is f(V(J)) > |J| for all J C I,
where f: 2V — Z_ is non-negative, integral, monotone non-decreasing
and submodular, and V(J) = Uje;V; with V; C V.

@ Note V() : 21 5 2V is a set-to-set function, composable with a
submodular function.
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Submodular Composition with Set-to-Set functions

@ Note the condition in Theorem 7.5.3is f(V(J)) > |J| for all J C I,
where f: 2V — Z_ is non-negative, integral, monotone non-decreasing
and submodular, and V(J) = Uje;V; with V; C V.

o Note V(-) : 2/ — 2" is a set-to-set function, composable with a
submodular function.

@ Define g : 2! — Z with g(J) = f(V(J)) — |J|, then the condition for
the existence of a system of representatives, with quality Equation 7.6,
becomes:

ing(J) >0 7.8
ming(J) > (7.8)
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Submodular Composition with Set-to-Set functions

@ Note the condition in Theorem 7.5.3is f(V(J)) > |J| for all J C I,
where f: 2V — Z_ is non-negative, integral, monotone non-decreasing
and submodular, and V(J) = Uje;V; with V; C V.

o Note V(-) : 2/ — 2" is a set-to-set function, composable with a
submodular function.

o Define g : 2/ — Z with g(J) = f(V(J)) — |J|, then the condition for
the existence of a system of representatives, with quality Equation 7.6,
becomes:

ming(J) > 0 (7.8)

@ What kind of function is g?
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Submodular Composition with Set-to-Set functions

@ Note the condition in Theorem 7.5.3is f(V(J)) > |J| for all J C I,
where f: 2V — Z_ is non-negative, integral, monotone non-decreasing
and submodular, and V(J) = Uje;V; with V; C V.

o Note V(-) : 2/ — 2" is a set-to-set function, composable with a
submodular function.

o Define g : 2/ — Z with g(J) = f(V(J)) — |J|, then the condition for
the existence of a system of representatives, with quality Equation 7.6,
becomes:

i >
ming(J) > 0 (7.8)

e What kind of function is g7
Proposition 7.5.4

g as given above is submodular.
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Submodular Composition with Set-to-Set functions

@ Note the condition in Theorem 7.5.3is f(V(J)) > |J| for all J C I,
where f: 2V — Z_ is non-negative, integral, monotone non-decreasing
and submodular, and V(J) = Uje;V; with V; C V.

o Note V(-) : 2/ — 2" is a set-to-set function, composable with a
submodular function.

o Define g : 2/ — Z with g(J) = f(V(J)) — |J|, then the condition for
the existence of a system of representatives, with quality Equation 7.6,
becomes:

i >
ming(J) > 0 (7.8)

e What kind of function is g7
Proposition 7.5.4

g as given above is submodular.

@ Hence, the condition for existence can be solved by (a special case of)
submodular function minimization, or vice versel!
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Transversals
[RERLENN]

More general conditions for existence of transversals

first part proof of Theorem 7.5.3.

@ Suppose V has a system of representatives (v; : i € I) such that
Eq. 7.6 (i.e., f(Uies{vi}) > |J| for all J C I) is true.
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More general conditions for existence of transversals

f

irst part proof of Theorem 7.5.3.
@ Suppose V has a system of representatives (v; : i € I) such that
Eq. 7.6 (i.e., f(Uies{vi}) > |J| for all J C I) is true.

@ Then since f is monotone, and since V(J) O U;cs{v;} when
(vi : i € I) is a system of representatives, then Eq. 7.7 (i.e.,
f(V(J)) > |J| for all J C I) immediately follows.
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Transversals
[RRRRA AN

More general conditions for existence of transversals

Lemma 7.5.5 (contraction lemma)

Suppose Eq. 7.7 (f(V(J)) = |J|,;¥J C I) is true for V = (V; :i € I), and
there exists an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there exists
v € Vi such that the family of subsets (V1 \ {v}, Va, ..., V|y)) also satisfies
Eq 7.7

Proof.

@ When Eq. 7.7 holds, this means that for any subsets J, Jo C I\ {1},
we have that, for J € {J1, J2}, L(v(@,0619) 2| Tv s o)
£((pvinn 2 |7evild)
f(V(JU{l})) = [JU{1}] (7.9)
fWViuV(h)) = |h|+1 (7.10)
fM1uV(h)) =[] +1 (7.11)

and hence

for Le 0> V(T v 113)) 2/ v 813)
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More general conditions for existence of transversals

Lemma 7.5.5 (contraction lemma)

Suppose Eq. 7.7 (f(V(J)) > |J|,¥YJ C I) is true for V = (V; : i € I), and
there exists an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there exists
v € Vi such that the family of subsets (V1 \ {v}, Va, ..., V|y)) also satisfies
Eq7.7.

Proof.

@ Suppose, to the contrary, theé ¢onsequent is false. Then we may take
any 71,79 € V7 as two distinct elements in V7 ...
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Transversals
[RRRRA AN

More general conditions for existence of transversals

Lemma 7.5.5 (contraction lemma)

Suppose Eq. 7.7 (f(V(J)) > |J|,¥YJ C I) is true for V = (V; : i € I), and
there exists an i such that |V;| > 2 (w.l.o.g., sayi = 1). Then there exists
v € Vi such that the family of subsets (V1 \ {v}, Va, ..., V|y)) also satisfies

Eq7.7. W= )3 a5 vis) < )7, virs) = 100+ 649 <)3)+ )
@ Suppose, to the contrary, the consequent is false. Then we may take
any U1, 79 € V7 as two distinct elements in V; .. ke’ -
@ ...and there must eX|st ubsets, Jp, Jag, of I \ {1} such that “ U
(),ﬁ\v‘ﬁ £(7) = £ vt15) = 3] = Jg )=+
(A \Hu ) uV(de) < [Jil + BN - (7.12)
_508Y A\ {5 UV () < ol 417 (7.13)

(note that either one or both of J;, J2 could be empty).

EES563/Spring 2018/Submodularity - Lecture 7 - April 16th, 2018 F19/42 (pg.56/159)



Transversals
[RRRRA AN

More general conditions for existence of transversals

Lemma 7.5.5 (contraction lemma)

Suppose Eq. 7.7 (f(V(J)) > |J|,¥YJ C I) is true for V = (V; : i € I), and
there exists an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there exists
v € Vi such that the family of subsets (V1 \ {v}, Va, ..., V|y)) also satisfies

Eq7.7. xny :@v] %) uvla)3a [ (v~ &) o7
Proof. 2 V(W avl) 2 (G2~
o Taking X = (Vi \ {v1}) UV (J1) and Y = (V1 \ {v2}) UV (J2), we
have f(X)<ol/y|, F(¥)=<|Jaly and that:
XUY =VUV(J1UJa), (7.14)
XNY DV(JiNJa), (7.15)

and
|J1] + |J2| > f(X) + f(Y)
> f(XUY)+ f(XNnY) (7.16)
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More general conditions for existence of transversals

Lemma 7.5.5 (contraction lemma)

Suppose Eq. 7.7 (f(V(J)) > |J|,¥YJ C I) is true for V = (V; : i € I), and
there exists an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there exists
v € Vi such that the family of subsets (V1 \ {v}, Va, ..., V|y)) also satisfies
Eq 7.7

Proof.

@ since f submodular monotone non-decreasing, & Eqs 7.14-7.16,
[J1| + [ 2] =2 F(Vi UV (J1 U J2)) + f(V(J1 N ) (7.17)
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Transversals
[RRRRA AN

More general conditions for existence of transversals

Lemma 7.5.5 (contraction lemma)

Suppose Eq. 7.7 (f(V(J)) > |J|,¥YJ C I) is true for V = (V; : i € I), and
there exists an i such that |V;| > 2 (w.l.o.g., say i = 1). Then there exists
v € Vi such that the family of subsets (V1 \ {v}, Va, ..., V|y)) also satisfies
Eq 7.7

Y 5 I
@ since f submodular moriotone non-decreasing, & Eqs 7.14-7.16,
1| + [Jo| > f(VAUV (A UR)) + F(V (AN T2)) (7.17)
@ Since V satisfies Eq. 7.7, 1 ¢ J; U Jo, & Egs 7.10-7.11, this gives

|J1| + | 2| > (L U T £0+ [T 0 Tz (7.18)

which is a contradiction since cardinality is modular.
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Tran
[RRRARA NI

More general conditions for existence of transversals

Theorem 7.5.3 (Polymatroid transversal theorem)

IfV = (V;:i€l) is a finite family of non-empty subsets of V', and
f:2Y — Z, is a non-negative, integral, monotone non-decreasing, and
submodular function, then V has a system of representatives (v; : i € I)
such that

f(Uieg{vi}) > |J| forall J C I (7.6)
if and only if

fV(J)) > |J| forall JC I (7.7)

@ Given Theorem 7.5.3, we immediately get Theorem 7.5.1 by taking
f(S)=1S|for S CV.

@ We get Theorem 7.5.2 by taking f(S) = r(S) for S C V, the rank
function of the matroid.
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Transversals
(RRRARNR ]

More general conditions for existence of transversals

converse proof of Theorem 7.5.3.

o Conversely, suppose Eq. 7.7 is true.
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Transversals
(RRRARNR ]

More general conditions for existence of transversals

converse proof of Theorem 7.5.3.

o Conversely, suppose Eq. 7.7 is true.

@ If each Vj is a singleton set, then the result follows immediately.
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Transversals
(RRRARNR ]

More general conditions for existence of transversals

converse proof of Theorem 7.5.3.

o Conversely, suppose Eq. 7.7 is true.

@ If each Vj is a singleton set, then the result follows immediately.

o W.lo.g., let |V;]| > 2, then by Lemma 7.5.5, the family of subsets
(Vi\ {9}, Va,..., V) also satisfies Eq 7.7 for the right v.
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Transversals
(RRRARNR ]

More general conditions for existence of transversals

converse proof of Theorem 7.5.3.

o Conversely, suppose Eq. 7.7 is true.

@ If each Vj is a singleton set, then the result follows immediately.
o W.lo.g., let |V;]| > 2, then by Lemma 7.5.5, the family of subsets
(Vi\ {9}, Va,..., V) also satisfies Eq 7.7 for the right v.

@ We can continue to reduce the family, deleting elements from V; for
some i while |V;| > 2, until we arrive at a family of singleton sets.
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Transversals
(RRRARNR ]

More general conditions for existence of transversals

converse proof of Theorem 7.5.3.

o Conversely, suppose Eq. 7.7 is true.

@ If each Vj is a singleton set, then the result follows immediately.

o W.lo.g., let |V;]| > 2, then by Lemma 7.5.5, the family of subsets
(Vi\ {9}, Va,..., V) also satisfies Eq 7.7 for the right v.

@ We can continue to reduce the family, deleting elements from V; for
some i while |V;| > 2, until we arrive at a family of singleton sets.

@ This family will be the required system of representatives.
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Transversals
(RRRARNR ]

More general conditions for existence of transversals

converse proof of Theorem 7.5.3.
o Conversely, suppose Eq. 7.7 is true.
@ If each Vj is a singleton set, then the result follows immediately.

e W.lo.g., let |Vi| > 2, then by Lemma 7.5.5, the family of subsets
(Vi\ {9}, Va,..., V) also satisfies Eq 7.7 for the right v.

@ We can continue to reduce the family, deleting elements from V; for
some i while |V;| > 2, until we arrive at a family of singleton sets.

@ This family will be the required system of representatives.

Ol

This theorem can be used to produce a variety of other results quite easily,
and shows how submodularity is the key ingredient in its truth.
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Transversal Matroid

Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 7.6.1

IfV is a family of finite subsets of a ground set V', then the collection of
partial transversals of V is the set of independent sets of a matroid
M= (V,V)onV.
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Transversal Matroid

Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 7.6.1

IfV is a family of finite subsets of a ground set V', then the collection of
partial transversals of V is the set of independent sets of a matroid
M= (V,V)onV.

@ This means that the transversals of V are the bases of matroid M.
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Transversal Matroid

Transversal Matroid

Transversals, themselves, define a matroid.

Theorem 7.6.1

IfV is a family of finite subsets of a ground set V', then the collection of
partial transversals of V is the set of independent sets of a matroid
M= (V,V)onV.

@ This means that the transversals of V are the bases of matroid M.

@ Therefore, all maximal partial transversals of V have the same
cardinality!
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Transversal Matroid

Transversals and Bipartite Matchings

@ Transversals correspond exactly to matchings in bipartite graphs.
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Transversals and Bipartite Matchings

@ Transversals correspond exactly to matchings in bipartite graphs.

@ Given a set system (V,V), with V = (V; : i € I), we can define a
bipartite graph G = (V, I, E) associated with V that has edge set
{(v,7):veVyiel,veV}.
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Transversals and Bipartite Matchings

@ Transversals correspond exactly to matchings in bipartite graphs.

o Given a set system (V,V), with V = (V; : i € I), we can define a
bipartite graph G = (V, I, E) associated with V that has edge set
{(v,7):veVyiel,veV;}.

@ A matching in this graph is a set of edges no two of which that have a
common endpoint.
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Transversals and Bipartite Matchings

@ Transversals correspond exactly to matchings in bipartite graphs.

o Given a set system (V,V), with V = (V; : i € I), we can define a
bipartite graph G = (V, I, E) associated with V that has edge set
{(v,7):veVyiel,veV;}.

@ A matching in this graph is a set of edges no two of which that have a
common endpoint. In fact, we easily have:
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Transversals and Bipartite Matchings

@ Transversals correspond exactly to matchings in bipartite graphs.

o Given a set system (V,V), with V = (V; : i € I), we can define a
bipartite graph G = (V, I, E) associated with V that has edge set
{(v,7):veVyiel,veV;}.

@ A matching in this graph is a set of edges no two of which that have a
common endpoint. In fact, we easily have:

A subset T C V is a partial transversal of V iff there is a matching in
(V,1, E) in which every edge has one endpoint in T' (I' matched into I ).
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Arbitrary Matchings and Matroids?

@ Are arbitrary matchings matroids?
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Transversal Matroid

Arbitrary Matchings and Matroids?

@ Are arbitrary matchings matroids?

o Consider the following graph (left), and two max-matchings (two right
instances)
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Arbitrary Matchings and Matroids?

@ Are arbitrary matchings matroids?

o Consider the following graph (left), and two max-matchings (two right
instances)

° {AC} is a maximum matching, as is {AD, BC}, but they are not the
same size.
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Arbitrary Matchings and Matroids?

@ Are arbitrary matchings matroids?

o Consider the following graph (left), and two max-matchings (two right
instances)

° {AC} is a maximum matching, as is {AD, BC}, but they are not the
same size.

@ Let M be the set of matchings in an arbitrary graph G = (V, E).
Hence, (E, M) is a set system. |1 holds since (} € M. 12 also holds
since if M € M is a matching, then so is any M’ C M. 13 doesn’t hold
(as seen above). Exercise: fully characterize the problem of finding the
largest subset M’ C M of matchings so that (E, M’) also satisfies 137
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Transversal Matroid
[NNLRRRRN!

Review from Lecture 7

The next frame comes from lecture 7.
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Transver at
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Partition Matroid, rank as matching

@ Example where ¢ =5,
(K1, ko, k3, ka, ks) =
(2,2,1,1,3). @ Recall, ' : 2V — R as the neighbor
V | function in a bipartite graph, the
neighbors of X is defined as I'(X) =
{veV(G)\ X : E(X,{v}) # 0}, and
recall that |I'(X)| is submodular.
l> o Here, for X C V', we have NX)=
{iel:(v,i) € E(G) and v € X}.
@ For such a constructed bipartite graph,
the rank function of a partition matroid
la is r(X) = S min(|X N V|, k) = the
maximum matching involving X.

~
=
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Transversal | Matroid
[NNRRL RN

Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the bipartite
graph representation, and since a matroid, w.l.o.g., |V;| > k; (also, recall,
V(J) = UjesVj)-
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@ Recall the partition matroid rank function. Note, k; = |I;| in the bipartite
graph representation, and since a matroid, w.l.o.g., |V;| > k; (also, recall,
V(J) = UsesVy).

@ Start with partition matroid rank function in the subsequent equations.

r(A)= Y min(|AnV;| k) (7.19)
i€{1,....0}
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Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the bipartite
graph representation, and since a matroid, w.l.o.g., |V;| > k; (also, recall,
V(J) = UjesVy).

@ Start with partition matroid rank function in the subsequent equations.

r(A)= >  wmin(|ANVi[#&) (7.19)
ie{1,...,.0}
l
= min([ANV(L)], (G)) (7.20)
=1

EES563/Spring 2018/Submodularity - Lecture 7 - April 16th, 2018 F27/42 (pg.83/159)




Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the bipartite
graph representation, and since a matroid, w.l.o.g., |V;| > k; (also, recall,
V(J) = UjesVy).

@ Start with partition matroid rank function in the subsequent equations.

r(A)= Y min(|AnV;| k) 719
ie{1,...,.0}
l
= " min(|ANV(L)], L) 720
=1
= i ANV(L)| if J; #0 o
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Transversal Matroid

Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the bipartite
graph representation, and since a matroid, w.l.o.g., |V;| > k; (also, recall,
V(J) = UjesVy).

@ Start with partition matroid rank function in the subsequent equations.

r(A) = Z min(|A N V;|, k;) (7.19)

ie{1,...,0}
¢

= > min(|AN V(L) 1) (7.20)
=1

: ANV(L)| ifJ; #0 } )

= 2w o Do HHNJl) o (7.21)
ie{l,...,.0} Ji€{0,1;} ({ 0 if JZ = (D

. g <{ | o( ! . Jii(b }*'Ii\JiO (7.22)
ie{1,....0}
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Transversal Matroid
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Morphing Partition Matroid Rank

@ Recall the partition matroid rank function. Note, k; = |I;| in the bipartite
graph representation, and since a matroid, w.l.o.g., |V;| > k; (also, recall,
V(J) = UjesVy).

@ Start with partition matroid rank function in the subsequent equations.

r(A)= Y min(|AnV;| k) (7.19)

ie{l, s

:me ANV (L), L)) (7.20)
=1

B . ANV(L)| i J; #0 N

= 2 (U Ry ) oa

S mmZ( 4nv (@ :ij#g}ﬂf\ﬂ) (7.22)
1e{L,.o JV(3)) = IV(H} ¥ pc 7 el

= > min ([V(Ji) N A+ L\ Jil) \J,-l:5 (7.23)
iel,...,e} 19.]-5
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... Morphing Partition Matroid Rank

o Continuing,

1
r(A) =Y min ([V(J;) NV(L) NAl - LN il +[L]) - (7.24)

- i &1y
=1

EES563/Spring 2018/Submodularity - Lecture 7 - April 16th, 2018 F28/42 (pg.87/159)



Transver atroid
(RN |

... Morphing Partition Matroid Rank

o Continuing,

¢
r(A) =Y min (|V(J;) V(L) VA = [0 il + (L)) (7.24)
i=1 "=
l
= min (z; V() NVI)NA = |LNJ] + |m> (7.25)
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Transversal Matroid
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. Morphing Partition Matroid Rank

o Continuing,

1
r(4) =) min (V) OVI)NA| = [LOJ]+ (L) (7.24)
i=1 """
l
= r}lgl? (Z |V ﬂ A’ |IZ' N J’ + |IZ‘> (7.25)
= min ([V(J) NV(D) N A = ] +|1]) (7.26)
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Transversal Matroid

... Morphing Partition Matroid Rank

o Continuing,

r(A) =Y min ([V(J;) NV (L) N Al = L0+ L) (7.24)

~

= min (Z |V(J) N V(Il) N A’ — |IZ' N J’ + |IZ‘> (7.25)
=1
=min ([V(/) NV {I) 0 A] = [J] + 1) (7.26)

=min ([V(J) N A| = 7]+ 1)) (7.27)

=g "al)
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... Morphing Partition Matroid Rank

o Continuing,

¢
r(A) =Y min (|V(J;) V(L) VA = [0 il + (L)) (7.24)
i=1 "=
l
= min (;W(J)HV(IZ-)mAy LN J|+ |m> (7.25)
=min ([V(/) NV {I) 0 A] = [J] + 1) (7.26)
=min ([V(J) N A| = 7]+ 1)) (7.27)

@ In fact, this bottom (more general) expression is the expression for the
rank of a transversal matroid.
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Partial Transversals Are Independent Sets in a Matroid

In fact, we have

Theorem 7.6.3

Let (V,V) where V = (V1,Va, ..., Vy) be a subset system. Let
I={1,...,0}. Let T be the set of partial transversals of V. Then (V,T) is

a matroid.

Proof.

D |
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Transversal | Matroid
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Partial Transversals Are Independent Sets in a Matroid

In fact, we have

Theorem 7.6.3

Let (V,V) where V = (V1,Va, ..., Vy) be a subset system. Let
I={1,...,0}. Let T be the set of partial transversals of V. Then (V,T) is

a matroid.

Proof.

@ We note that () € Z since the empty set is a transversal of the empty
subfamily of V, thus (I1") holds.
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Partial Transversals Are Independent Sets in a Matroid

In fact, we have

Theorem 7.6.3

Let (V,V) where V = (V1,Va, ..., Vy) be a subset system. Let
I={1,...,0}. Let T be the set of partial transversals of V. Then (V,T) is

a matroid.

Proof.
@ We note that () € Z since the empty set is a transversal of the empty
subfamily of V, thus (I1") holds.
o We already saw that if T is a partial transversal of V, and if T C T,
then 7" is also a partial transversal. So (12") holds.
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Partial Transversals Are Independent Sets in a Matroid

In fact, we have

Theorem 7.6.3

Let (V,V) where V = (V1,Va, ..., Vy) be a subset system. Let
I={1,...,0}. Let T be the set of partial transversals of V. Then (V,T) is

a matroid.

Proof.
@ We note that () € Z since the empty set is a transversal of the empty
subfamily of V, thus (I1") holds.
o We already saw that if T is a partial transversal of V, and if T C T,
then 7" is also a partial transversal. So (12") holds.
@ Suppose that T} and Ty are partial transversals of V such that
|T1| < |T3|. Exercise: show that (I13") holds.

EES563/Spring 2018/Submodularity - Lecture 7 - April 16th, 2018 F29/42 (pg.95/159)




Transversal Matroid Rank

@ Transversal matroid has rank

(A) = min (V) N A] ~ ]| + |1]) (7.28)
= min my(I) (7.29)
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Transversal Matroid Rank

@ Transversal matroid has rank

P(4) = win V() 1 A] — ] + 1) (729)
= I}lglI]l my(I) (7.29)

@ Therefore, this function is submodular.
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Transversal Matroid

Transversal Matroid Rank

@ Transversal matroid has rank

P(4) = win V() 1 A] — ] + 1) (729)
= I}lglI]l my(I) (7.29)

@ Therefore, this function is submodular.

@ Note that it is a minimum over a set of modular functions in I. Is this
true in general?
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Transversal Matroid Rank

@ Transversal matroid has rank

P(4) = win V() 1 A] — ] + 1) (729)
= I}lglI]l my(I) (7.29)

@ Therefore, this function is submodular.

@ Note that it is a minimum over a set of modular functions in I. Is this
true in general?
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Transversal Matroid Rank

@ Transversal matroid has rank

P(4) = win V() 1 A] — ] + 1) (729)
= I}lglI]l my(I) (7.29)

@ Therefore, this function is submodular.

@ Note that it is a minimum over a set of modular functions in I. Is this
true in general? Exercise:

@ Exercise: Can you identify a set of sufficient properties over a set of
modular functions m;: V' — R, so that'f(A) = min; m;(A) is
submodular? Can you identify both necessary and sufficient conditions?
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Matroid loops

@ A circuit in a matroids is well defined, a subset A C FE is circuit if it is
an inclusionwise minimally dependent set (i.e., if 7(A) < |A| and for
anya € A, r(A\ {a}) =|A| - 1).
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Matroid loops

@ A circuit in a matroids is well defined, a subset A C FE is circuit if it is
an inclusionwise minimally dependent set (i.e., if r(A) < |A| and for
any a € A, r(A\ {a}) = |A| - 1).

@ There is no reason in a matroid such an A could not consist of a single
element.
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Matroid loops

@ A circuit in a matroids is well defined, a subset A C FE is circuit if it is
an inclusionwise minimally dependent set (i.e., if r(A) < |A| and for
any a € A, r(A\ {a}) = |A| - 1).

@ There is no reason in a matroid such an A could not consist of a single
element.

@ Such an {a} is called a loop.
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Matroid loops

A circuit in a matroids is well defined, a subset A C E is circuit if it is
an inclusionwise minimally dependent set (i.e., if r(A) < |A| and for
any a € A, r(A\ {a}) = |A| - 1).

@ There is no reason in a matroid such an A could not consist of a single
element.

@ Such an {a} is called a loop.

@ In a matric (i.e., linear) matroid, the only such loop is the value 0, as
all non-zero vectors have rank 1. The O can appear > 1 time with
different indices, as can a self loop in a graph appear on different nodes.
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Matroid loops

/

A circuit in a matroids is well defined, a subset A C E is circuit if it is
an inclusionwise minimally dependent set (i.e., if r(A) < |A| and for
any a € A, r(A\ {a}) = |A| - 1).

There is no reason in a matroid such an A could not consist of a single
element.

Such an {a} is called a loop.

In a matric (i.e., linear) matroid, the only such loop is the value 0, as
all non-zero vectors have rank 1. The 0 can appear > 1 time with
different indices, as can a self loop in a graph appear on different nodes.

Note, we also say that two elements s, ¢ are said to besparallel’if {s, ¢}

is a circuit. %‘/ 21X
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Representable

Definition 7.7.1 (Matroid isomorphism)

Two matroids M7 and M5 respectively on ground sets V4 and V5 are
isomorphic if there is a bijection 7 : V3 — V5 which preserves independence
(equivalently, rank, circuits, and so on).
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Representable

Definition 7.7.1 (Matroid isomorphism)

Two matroids M7 and M5 respectively on ground sets V4 and V5 are
isomorphic if there is a bijection 7 : V3 — V5 which preserves independence

(equivalently, rank, circuits, and so on).

o Let FF be any field (such as R, Q, or some finite field F, such as a
Galois field GF(p) where p is prime (such as GF(2)), but not Z.
Succinctly: A field is a set with +, %, closure, associativity,
commutativity, and additive and multiplicative identities and inverses.

F32/42 (pg.107/159)
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Representable

Definition 7.7.1 (Matroid isomorphism)

Two matroids M7 and M5 respectively on ground sets V4 and V5 are
isomorphic if there is a bijection 7 : V3 — V5 which preserves independence

(equivalently, rank, circuits, and so on).

o Let FF be any field (such as R, Q, or some finite field F, such as a
Galois field GF(p) where p is prime (such as GF(2)), but not Z.
Succinctly: A field is a set with +, %, closure, associativity,
commutativity, and additive and multiplicative identities and inverses.

@ We can more generally define matroids on a field.

F32/42 (pg.108/159)
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Representable

Definition 7.7.1 (Matroid isomorphism)

Two matroids M7 and M5 respectively on ground sets V4 and V5 are
isomorphic if there is a bijection 7 : V3 — V5 which preserves independence
(equivalently, rank, circuits, and so on).

o Let FF be any field (such as R, Q, or some finite field F, such as a
Galois field GF(p) where p is prime (such as GF(2)), but not Z.
Succinctly: A field is a set with +, %, closure, associativity,
commutativity, and additive and multiplicative identities and inverses.

@ We can more generally define matroids on a field.

Definition 7.7.2 (linear matroids on a field)

Let X be an n X m matrix and E = {1,...,m}, where X;; € IF for some
field, and let Z be the set of subsets of E such that the columns of X are

linearly independent over F.

F32/42 (pg.109/159)

EES563/Spring 2018/Submodularity - Lecture 7 - April 16th, 2018



Representable

Definition 7.7.1 (Matroid isomorphism)

Two matroids M7 and M5 respectively on ground sets V4 and V5 are
isomorphic if there is a bijection 7 : V3 — V5 which preserves independence

(equivalently, rank, circuits, and so on).

o Let FF be any field (such as R, Q, or some finite field F, such as a
Galois field GF(p) where p is prime (such as GF(2)), but not Z.
Succinctly: A field is a set with +, %, closure, associativity,
commutativity, and additive and multiplicative identities and inverses.

@ We can more generally define matroids on a field.

Definition 7.7.3 (representable (as a linear matroid))
Any matroid isomorphic to a linear matroid on a field is called representable

over [F

F32/42 (pg.110/159)
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Representability of Transversal Matroids

o Piff and Welsh in 1970, and Adkin in 1972 proved an important
theorem about representability of transversal matroids.

EES563/Spring 2018/Submodularity - Lecture 7 - April 16th, 2018 F33/42 (pg.111/159)



Representability of Transversal Matroids

o Piff and Welsh in 1970, and Adkin in 1972 proved an important
theorem about representability of transversal matroids.

@ In particular:

Theorem 7.7.4

Transversal matroids are representable over all finite fields of sufficiently
large cardinality, and are representable over any infinite field.
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Converse: Representability of Transversal Matroids

The converse is not true, however.

Let V =1{1,2,3,4,5,6} be a ground set and let M = (V,Z) be a set
system where Z is all subsets of V' of cardinality < 2 except for the pairs

{1,2}, {3,4}, {5,6}.
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Converse: Representability of Transversal Matroids

The converse is not true, however.

Let V =1{1,2,3,4,5,6} be a ground set and let M = (V,Z) be a set
system where Z is all subsets of V' of cardinality < 2 except for the pairs

{1,2}, {3,4}, {5,6}.

@ It can be shown that this is a matroid and is representable.
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Converse: Representability of Transversal Matroids

The converse is not true, however.

Let V =1{1,2,3,4,5,6} be a ground set and let M = (V,Z) be a set
system where Z is all subsets of V' of cardinality < 2 except for the pairs

{1,2}, {3,4}, {5,6}.

@ It can be shown that this is a matroid and is representable.

@ However, this matroid is not isomorphic to any transversal matroid.
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Dual Matroid
[ERRRNRN

Review from Lecture 6

The next frame comes from lecture 6.
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Dual Matroid
[LERRRNE

Matroids, other definitions using matroid rank 7 : 2V — Z_

Definition 7.8.3 (closed/flat/subspace)

A subset A C E'is closed (equivalently, a flat or a subspace) of matroid M
if forallz € E\ A, r(AU{z}) =r(A) + 1.

Definition: A hyperplane is a flat of rank (M) — 1.

Definition 7.8.4 (closure)

Given A C FE, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(A4)}.

Therefore, a closed set A has span(A) = A.

Definition 7.8.5 (circuit)

A subset A C FE is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if 7(A) < |A| and for any a € A, (A \ {a}) = |A] — 1).
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Dual Matroid
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Spanning Sets

@ We have the following definitions:

Prof. Jeff Bilmes EES563/Spring 2018/Submodularity - Lecture 7 - April 16th, 2018 F37/42 (pg.118/159)



Dual Matroid
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Spanning Sets

@ We have the following definitions:

Definition 7.8.1 (spanning set of a set)

Given a matroid M = (V,Z), and a set Y C V, then any set X C Y such
that 7(X) = r(Y) is called a spanning set of Y.
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Dual Matroid

Spanning Sets

@ We have the following definitions:

Definition 7.8.1 (spanning set of a set)

Given a matroid M = (V,Z), and a set Y C V, then any set X C Y such
that 7(X) = r(Y) is called a spanning set of Y.

Definition 7.8.2 (spanning set of a matroid)

Given a matroid M = (V,Z), any set A C V such that r(A) =r(V) is
called a spanning set of the matroid.
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Dual Matroid

Spanning Sets

@ We have the following definitions:

Definition 7.8.1 (spanning set of a set)

Given a matroid M = (V,Z), and a set Y C V, then any set X C Y such
that 7(X) = r(Y) is called a spanning set of Y.

Definition 7.8.2 (spanning set of a matroid)

Given a matroid M = (V,Z), any set A C V such that r(A) =r(V) is
called a spanning set of the matroid.

@ A base of a matroid is a minimal spanning set (and it is independent)
but supersets of a base are also spanning.
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Dual Matroid

Spanning Sets

@ We have the following definitions:

Definition 7.8.1 (spanning set of a set)

Given a matroid M = (V,Z), and a set Y C V, then any set X C Y such
that 7(X) = r(Y) is called a spanning set of Y.

Definition 7.8.2 (spanning set of a matroid)

Given a matroid M = (V,Z), any set A C V such that r(A) =r(V) is
called a spanning set of the matroid.

@ A base of a matroid is a minimal spanning set (and it is independent)
but supersets of a base are also spanning.

e V is always trivially spanning.
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Dual Matroid
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Spanning Sets

@ We have the following definitions:

Definition 7.8.1 (spanning set of a set)

Given a matroid M = (V,Z), and a set Y C V, then any set X C Y such
that 7(X) = r(Y) is called a spanning set of Y.

Definition 7.8.2 (spanning set of a matroid)

Given a matroid M = (V,Z), any set A C V such that r(A) =r(V) is
called a spanning set of the matroid.

@ A base of a matroid is a minimal spanning set (and it is independent)
but supersets of a base are also spanning.

@ V is always trivially spanning.
o Consider the terminology: “spanning tree in a graph”, comes from
spanning in a matroid sense.
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Dual Matroid
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Dual of a Matroid

e Given a matroid M = (V,Z), a dual matroid M* = (V,Z*) can be
defined on the same ground set V, but using a very different set of
independent sets Z*.
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Dual of a Matroid

e Given a matroid M = (V,Z), a dual matroid M* = (V,Z*) can be
defined on the same ground set V, but using a very different set of
independent sets Z*.

@ We define the set of sets Z* for M* as follows:

I ={ACV:V\Ais aspanning set of M} (7.30)
={V\S:8 CV isa spanning set of M} (7.31)

i.e., Z* are complements of spanning sets of M.
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Dual Matroid
[RRLENNE

Dual of a Matroid

e Given a matroid M = (V,Z), a dual matroid M* = (V,Z*) can be
defined on the same ground set V, but using a very different set of
independent sets Z*.

o We define the set of sets Z* for M* as follows:

I ={ACV:V\Ais aspanning set of M} (7.30)
={V\S:S5 CVis a spanning set of M} (7.31)
i.e., Z* are complements of spanning sets of M.

@ That is, a set A is independent in the dual matroid M* if removal of A
from V does not decrease the rank in M:

A {A CV: rankM(V \ A) = rankM(V)} (7.32)
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Dual of a Matroid

e Given a matroid M = (V,Z), a dual matroid M* = (V,Z*) can be
defined on the same ground set V, but using a very different set of
independent sets Z*.

o We define the set of sets Z* for M* as follows:

I ={ACV:V\Ais aspanning set of M} (7.30)
={V\S:S5 CVis a spanning set of M} (7.31)
i.e., Z* are complements of spanning sets of M.

@ That is, a set A is independent in the dual matroid M* if removal of A
from V does not decrease the rank in M:

I = {A CV :rankp (V' \ A) = rankp (V) } (7.32)
@ In other words, a set A C V is independent in the dual M* (i.e.,

A eT*)if A's complement is spanning in M (residual V' \ A must
contain a base in M).
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Dual Matroid
[RRLENNE

Dual of a Matroid

e Given a matroid M = (V,Z), a dual matroid M* = (V,Z*) can be
defined on the same ground set V, but using a very different set of
independent sets Z*.

o We define the set of sets Z* for M* as follows:

I ={ACV:V\Ais aspanning set of M} (7.30)
={V\S:S5 CVis a spanning set of M} (7.31)
i.e., Z* are complements of spanning sets of M.

@ That is, a set A is independent in the dual matroid M* if removal of A
from V does not decrease the rank in M:

I = {A CV :rankp (V' \ A) = rankp (V) } (7.32)

@ In other words, a set A C V is independent in the dual M* (i.e.,
A eT*)if A's complement is spanning in M (residual V' \ A must
contain a base in M).

@ Dual of the dual: Note, we have that (M*)* = M.
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Dual Matroid
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Dual of a Matroid: Bases

@ The smallest spanning sets are bases.
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Dual Matroid
[RRRLENE

Dual of a Matroid: Bases

@ The smallest spanning sets are bases. Hence, a base B of M (where
B =V \ B* is as small as possible while still spanning) is the
complement of a base B* of M* (where B* =V \ B is as large as
possible while still being independent).
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Dual Matroid
[RRRLENE

Dual of a Matroid: Bases

@ The smallest spanning sets are bases. Hence, a base B of M (where
B =V \ B* is as small as possible while still spanning) is the
complement of a base B* of M* (where B* =V \ B is as large as
possible while still being independent).

@ In fact, we have that

EES563/Spring 2018/Submodularity - Lecture 7 - April 16th, 2018 F39/42 (pg.131/159)



Dual Matroid
[RRRLENE

Dual of a Matroid: Bases

@ The smallest spanning sets are bases. Hence, a base B of M (where
B =V \ B* is as small as possible while still spanning) is the
complement of a base B* of M* (where B* =V \ B is as large as
possible while still being independent).

o In fact, we have that

Theorem 7.8.3 (Dual matroid bases)

Let M = (V,Z) be a matroid and B(M) be the set of bases of M. Then
define

B*(M) = {V\ B: B e B(M). (7.33)

Then B*(M) is the set of basis of M* (that is, B*(M) = B(M™*).
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Dual Matroid
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An exercise in duality Terminology

@ B*(M), the bases of M*, are called cobases of M.
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Dual Matroid
[RRRRA NN

An exercise in duality Terminology

@ B*(M), the bases of M*, are called cobases of M.

@ The circuits of M* are called cocircuits of M.
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Dual Matroid
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An exercise in duality Terminology

@ B*(M), the bases of M*, are called cobases of M.
@ The circuits of M* are called cocircuits of M.

@ The hyperplanes of M* are called cohyperplanes of M.
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Dual Matroid
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An exercise in duality Terminology

B*(M), the bases of M*, are called cobases of M.

The circuits of M* are called cocircuits of M.

The hyperplanes of M* are called cohyperplanes of M.

The independent sets of M™* are called coindependent sets of M.
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Dual Matroid
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An exercise in duality Terminology

B*(M), the bases of M*, are called cobases of M.

The circuits of M* are called cocircuits of M.

The hyperplanes of M* are called cohyperplanes of M.

The independent sets of M* are called coindependent sets of M.

The spanning sets of M* are called cospanning sets of M.
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Dual Matroid
[RRRRA NN

An exercise in duality Terminology

@ B*(M), the bases of M*, are called cobases of M.
@ The circuits of M™* are called cocircuits of M.

@ The hyperplanes of M* are called cohyperplanes of M.

@ The independent sets of M* are called coindependent sets of M.
@ The spanning sets of M* are called cospanning sets of M.

Proposition 7.8.4 (from Oxley 2011)
Let M = (V,Z) be a matroid, and let X C V. Then
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An exercise in duality Terminology

@ B*(M), the bases of M*, are called cobases of M.

@ The circuits of M™* are called cocircuits of M.

@ The hyperplanes of M* are called cohyperplanes of M.

@ The independent sets of M* are called coindependent sets of M.

@ The spanning sets of M* are called cospanning sets of M.

Proposition 7.8.4 (from Oxley 2011)
Let M = (V,Z) be a matroid, and let X C V. Then
@ X is independent in M iff V' \ X is cospanning in M (spanning in M*).
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An exercise in duality Terminology

@ B*(M), the bases of M*, are called cobases of M.

@ The circuits of M™* are called cocircuits of M.

@ The hyperplanes of M* are called cohyperplanes of M.

@ The independent sets of M* are called coindependent sets of M.

@ The spanning sets of M* are called cospanning sets of M.

Proposition 7.8.4 (from Oxley 2011)
Let M = (V,Z) be a matroid, and let X C V. Then
@ X is independent in M iff V '\ X is cospanning in M (spanning in M*).

@ X is spanning in M iff V'\ X is coindependent in M (independent in
M*).
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An exercise in duality Terminology

@ B*(M), the bases of M*, are called cobases of M.
@ The circuits of M™* are called cocircuits of M.

@ The hyperplanes of M* are called cohyperplanes of M.

@ The independent sets of M* are called coindependent sets of M.
@ The spanning sets of M* are called cospanning sets of M.

Proposition 7.8.4 (from Oxley 2011)

Let M = (V,Z) be a matroid, and let X C V. Then
@ X is independent in M iff V '\ X is cospanning in M (spanning in M*).
@ X is spanning in M iff V'\ X is coindependent in M (independent in
© X is a hyperplane in M iff V'\ X is a cocircuit in M (circuit in M*).
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An exercise in duality Terminology

@ B*(M), the bases of M*, are called cobases of M.
@ The circuits of M™* are called cocircuits of M.

@ The hyperplanes of M* are called cohyperplanes of M.

@ The independent sets of M* are called coindependent sets of M.
@ The spanning sets of M* are called cospanning sets of M.

Proposition 7.8.4 (from Oxley 2011)

Let M = (V,Z) be a matroid, and let X C V. Then
@ X is independent in M iff V '\ X is cospanning in M (spanning in M*).
@ X is spanning in M iff V'\ X is coindependent in M (independent in
© X is a hyperplane in M iff V'\ X is a cocircuit in M (circuit in M*).

Q X isacircuit in M iff V' \ X is a cohyperplane in M (hyperplane in M*)

v
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Dual Matroid
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Example duality: graphic matroid

e Using a graphic/cycle matroid, we can already see how dual matroid
concepts demonstrates the extraordinary flexibility and power that a
matroid can have.
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Dual Matroid
[RRRRNN ]I

Example duality: graphic matroid

e Using a graphic/cycle matroid, we can already see how dual matroid
concepts demonstrates the extraordinary flexibility and power that a
matroid can have.

@ Recall, in cycle matroid, a spanning set of GG is any set of edges that are
incident to all nodes (i.e., any superset of a spanning forest), a minimal
spanning set is a spanning tree (or forest), and a circuit has a nice visual
interpretation (a cycle in the graph).
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Dual Matroid
[RRRRNN ]I

Example duality: graphic matroid

e Using a graphic/cycle matroid, we can already see how dual matroid
concepts demonstrates the extraordinary flexibility and power that a
matroid can have.

@ Recall, in cycle matroid, a spanning set of GG is any set of edges that are
incident to all nodes (i.e., any superset of a spanning forest), a minimal
spanning set is a spanning tree (or forest), and a circuit has a nice visual
interpretation (a cycle in the graph).

@ A cut in a graph G is a set of edges, the removal of which increases the
number of connected components. l.e., X C E(G) is a cut in G if
kE(G) < k(G \ X).

Prof. Jeff Bilmes EES563/Spring 2018/Submodularity - Lecture 7 - April 16th, 2018 F41/42 (pg.145/159)



Example duality: graphic matroid

Using a graphic/cycle matroid, we can already see how dual matroid
concepts demonstrates the extraordinary flexibility and power that a
matroid can have.

Recall, in cycle matroid, a spanning set of GG is any set of edges that are

incident to all nodes (i.e., any superset of a spanning forest), a minimal

spanning set is a spanning tree (or forest), and a circuit has a nice visual
interpretation (a cycle in the graph).

@ A cut in a graph G is a set of edges, the removal of which increases the
number of connected components. l.e., X C E(G) is a cut in G if
k(G) < k(G \ X).

@ A minimal cut in G is a cut X C E(G) such that X \ {z} is not a cut for

any z € X.
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Example duality: graphic matroid

Using a graphic/cycle matroid, we can already see how dual matroid
concepts demonstrates the extraordinary flexibility and power that a
matroid can have.

Recall, in cycle matroid, a spanning set of GG is any set of edges that are
incident to all nodes (i.e., any superset of a spanning forest), a minimal
spanning set is a spanning tree (or forest), and a circuit has a nice visual
interpretation (a cycle in the graph).

A cut in a graph G is a set of edges, the removal of which increases the
number of connected components. l.e., X C E(G) is a cut in G if
k(G) < k(G \ X).

A minimal cut in G is a cut X C E(G) such that X \ {z} is not a cut for
any x € X.

A cocycle (cocircuit) in a graphic matroid is a minimal graph cut.
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Example duality: graphic matroid

Using a graphic/cycle matroid, we can already see how dual matroid
concepts demonstrates the extraordinary flexibility and power that a
matroid can have.

Recall, in cycle matroid, a spanning set of GG is any set of edges that are
incident to all nodes (i.e., any superset of a spanning forest), a minimal
spanning set is a spanning tree (or forest), and a circuit has a nice visual
interpretation (a cycle in the graph).

A cut in a graph G is a set of edges, the removal of which increases the
number of connected components. l.e., X C E(G) is a cut in G if
k(G) < k(G \ X).

A minimal cut in G is a cut X C E(G) such that X \ {z} is not a cut for
any x € X.

A cocycle (cocircuit) in a graphic matroid is a minimal graph cut.

A mincut is a circuit in the dual “cocycle” (or “cut”) matroid.
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Dual Matroid
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Example duality: graphic matroid

e Using a graphic/cycle matroid, we can already see how dual matroid
concepts demonstrates the extraordinary flexibility and power that a
matroid can have.

@ Recall, in cycle matroid, a spanning set of GG is any set of edges that are
incident to all nodes (i.e., any superset of a spanning forest), a minimal
spanning set is a spanning tree (or forest), and a circuit has a nice visual
interpretation (a cycle in the graph).

@ A cut in a graph G is a set of edges, the removal of which increases the
number of connected components. l.e., X C E(G) is a cut in G if
k(G) < k(G\ X).

e A minimal cut in G is a cut X C E(G) such that X \ {z} is not a cut for
any x € X.

@ A cocycle (cocircuit) in a graphic matroid is a minimal graph cut.

@ A mincut is a circuit in the dual “cocycle” (or “cut”) matroid.

@ All dependent sets in a cocycle matroid are cuts (i.e., a dependent set is a
minimal cut or contains one).
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Dual Matroid
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Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\ Ais a spanning set of M}
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Dual Matroid
[RRRRNER!

Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\Ais aspanning set of M}

@ T* consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that, if
removed, would render the graph non-spanning.
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Dual Matroid
[RRRRNER!

Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\ Ais a spanning set of M}

@ T* consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that, if
removed, would render the graph non-spanning.

linimally spanning in M (and thus Maximally independent in M* (thus
base (maximally independent) in M)  a base, minimally spanning, in M¥)
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Dual Matroid
[RRRRNER!

Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\ Ais a spanning set of M}
@ T* consists of all sets of edges the complement of which contains a

spanning tree — i.e., an independent set can't consist of edges that, if
removed, would render the graph non-spanning.

Minimally spanning in M (and thus Maximally independent in M* (thus
a base (maximally independent) in M)  a base, minimally spanning, in M¥)
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Dual Matroid
[RRRRNER!

Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\ Ais a spanning set of M}

@ T* consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that, if
removed, would render the graph non-spanning.

Independent but not spanning Dependent in M* (contains
in M, and not closed in M. a cocycle, is a nonminimal cut)

EES563/Spring 2018/Submodularity - Lecture 7 - April 16th, 2018 F42/42 (pg.154/159)



Dual Matroid
[RRRRNER!

Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\ Ais a spanning set of M}

@ T* consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that, if
removed, would render the graph non-spanning.

Spanning in M, but not a base,and  Independent in M* (does
not independent (has cycles) not contain a cut)
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Dual Matroid
[RRRRNER!

Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\ Ais a spanning set of M}

@ T* consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that, if
removed, would render the graph non-spanning.

Independent but not spanning Dependent in M* (contains
in M, and not closed in M. a cocycle, is a nonminimal cut)
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Dual Matroid
[RRRRNER!

Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\ Ais a spanning set of M}

@ T* consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that, if
removed, would render the graph non-spanning.

A hyperplane in M, dependent A cycle in M* (minimally dependent
but not spanning in M in M*, a cocycle, or a minimal cut)

EES563/Spring 2018/Submodularity - Lecture 7 - April 16th, 2018 F42/42 (pg.157/159)



Dual Matroid
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Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\ Ais a spanning set of M}

@ T* consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that, if
removed, would render the graph non-spanning.

A hyperplane in M, dependent A cycle in M* (minimally depender
but not spanningin M in M*, a cocycle, or a minimal cut)
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Dual Matroid
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Example: cocycle matroid (sometimes “cut matroid”)

@ The dual of the cycle matroid is called the cocycle matroid. Recall,
I*={ACV:V\ Ais a spanning set of M}

@ T* consists of all sets of edges the complement of which contains a
spanning tree — i.e., an independent set can't consist of edges that, if
removed, would render the graph non-spanning.

Cycle Matroid - independent Cocycle matroid, independent
sets have no cycles. sets contain no cuts.
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