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Cumulative Outstanding Reading

@ Read chapter 1 from Fujishige's book.
@ Read chapter 2 from Fujishige's book.
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Announcements, Assignments, and Reminders

e If you have any questions about anything, please ask then via our
discussion board
(https://canvas.uw.edu/courses/1216339/discussion_topics).
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Last day of instruction, June 1st. Finals Week: June 2-8, 2018.
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Composition of non-decreasing submodular and

non-decreasing concave

Theorem 6.2.1

Given two functions, one defined on sets

f:2¥ >R (6.1)
and another continuous valued one:

¢:R—>R (6.2)

the composition formed as h = ¢ o f : 2V — R (defined as
h(S) = ¢(f(S))) is nondecreasing submodular, if ¢ is non-decreasing
concave and f is nondecreasing submodular.
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Monotone difference of two functions

Let f and g both be submodular functions on subsets of V' and let
(f — g)(+) be either monotone non-decreasing or monotone non-increasing
Then h : 2¥ — R defined by

h(A) = min(f(A),g(A)) (6.1)
is submodular.

Proof.
If h(A) agrees with f on both X and Y (or g on both X and Y'), and since
WMX) +hY) = f(X)+ f(Y) =2 F(XUY) + F(XNY) (6.2)

or
hX) +hY) = g(X) +9(Y) 2 g(XUY) +g(XNY), (6.3)
the result (Equation 6.1 being submodular) follows since

0+ ) _
9(X) + g(Y) >min(f(XUY),g(XUY))+min(f(XNY),g(X ﬂz;)i)

v
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Arbitrary functions: difference between submodular funcs.

Theorem 6.2.1

Given an arbitrary set function h, it can be expressed as a difference
between two submodular functions (i.e., Yh € 2V — R,
df,g s.t. VA, h(A) = f(A) — g(A) where both f and g are submodular).

Let h be given and arbitrary, and define:
A - _ _
af L min (h(X) FRY) = h(XUY) - h(X N Y)) (6.4)

If « > 0 then h is submodular, so by assumption o < 0. Now let f be an
arbitrary strict submodular function and define

82 wrm (f(X) FF(Y) = fF(XUY)— f(X N Y)). (6.5)

XY:XZY,YZX
Strict means that 5 > 0.

A\
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Many (Equivalent) Definitions of Submodularity

f(A)+ f(B) > f(AUB)+ f(ANB), VA, BCV (6.16)
FGIS) = FGIT), VSCT CV, withj € V\T (6.17)
F(C|S) > F(C|IT), VS CT CV, with CCV\T (6.18)
fG1S) > f(71SU{k}), VS CV with j € V' \ (SU{k}) (6.19)

f(AUB]AmB) < f(AJAnB)+ f(BJANB), VA, BCV (6.20)

FO)<FS)+ D fGIS)— DY FGISUT —{4}), V8, T CV

JET\S JES\T
(6.21)
FT) < S+ D fGIS), ¥SCTCV (6.22)
JET\S
FO) <) = D fUIS\{GH+ D fUISNT)VS,TCV
JES\T JET\S
(6.23)
FT)<F8)— > fUIS\{j}), VT CcSCV (6.24)

FES\T
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On Rank

o Let rank : 2V — Z, be the rank function.

@ In general, rank(A) < |A|, and vectors in A are linearly independent if
and only if rank(A) = |A].

e If A, B are such that rank(A) = |A| and rank(B) = |B|, with
|A| < |B], then the space spanned by B is greater, and we can find a
vector in B that is linearly independent of the space spanned by vectors
in A.

@ To stress this point, note that the above condition is |A| < |BJ, not
A C B which is sufficient (to be able to find an independent vector)
but not required.

@ In other words, given A, B with rank(A) = |A| & rank(B) = |B|, then
|A| < |B| & 3 an b € B such that rank(A U {b}) = |A| + 1.
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Spanning trees/forests & incidence matrices

@ A directed version of the graph
(right) and its adjacency matrix

(below).
@ Orientation can be arbitrary.

@ Note, rank of this matrix is 7.

1 3 4 5 6 7T 8 9 10 11 12
1 /-1 1 o o0 o o o0 o0 o0 o0 0 o0
21 1 0O -1 0 1 o o o o o0 0 O
31 0 -1 0 1 o -1 0 0 O 0 0 O
41 0 0 1 -1 0 0 1 -1 0 0 0 O
51 0 O 0O 0 0 1 -1 0 0 1 0 0
61 0 O o o0 0 0 O 1 -1 0 -1 O
71 0 O o 0 -1 0 0 O 1 0 0 1
8\ 0 O o o0 o o o0 o0 o0 -1 1 -1
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Matroids
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From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

o Let Z = {Iy,Is,...} be a set of all subsets of V' such that for any I € Z,
the vectors indexed by I are linearly independent.

@ Given a set B € 7 of linearly independent vectors, then any subset A C B
is also linearly independent. Hence, Z is down-closed or “subclusive”,
under subsets. In other words,

ACBand BeI=Aecl (6.1)

@ maxind: Inclusionwise maximal independent subsets (i.e., the set of bases
of) of any set B C V defined as:

maxind(B) £ {ACB:AcZandVve B\ A, AU{v} ¢I} (6.2)

@ Given any set B C V of vectors, all maximal (by set inclusion) subsets of
linearly independent vectors are the same size. That is, for all B C V,

VA, Ay € maxind(B), |A;| = |As| = rank(B) (6.3)
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Matroids
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From Matrix Rank — Matroid

@ Let Z = {I1,Is,...} be the set of sets as described above.
@ Thus, for all I € 7, the matrix rank function has the property

r(I) = |1 (6.4)
and for any B ¢ 7,
r(B) =max{|A] : AC Band A€ I} < |B]| (6.5)

Since all maximally independent subsets of a set are the same size, the
rank function is well defined.
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Matroids
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Matroid

@ Matroids abstract the notion of linear independence of a set of vectors
to general algebraic properties.

@ In a matroid, there is an underlying ground set, say E (or V'), and a
collection of subsets Z = {11, I2, ...} of E that correspond to
independent elements.

@ There are many definitions of matroids that are mathematically
equivalent, we'll see some of them here.
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(NN RN RERER RN

Independence System

Definition 6.3.1 (set system)

A (finite) ground set E and a set of subsets of E, } # T C 2F is called a set
system, notated (E,Z).

@ Set systems can be arbitrarily complex since, as stated, there is no
systematic method (besides exponential-cost exhaustive search) to
determine if a given set S C F has S € 7.

@ One useful property is “heredity.” Namely, a set system is a hereditary
set system if for any A C B € Z, we have that A € 7.
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Matroids
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Independence System

Definition 6.3.2 (independence (or hereditary) system)

A set system (V,Z) is an independence system if
) € Z (emptyset containing) (11)
and
VIeZ,JCI=JecZ (subclusive) (12)

@ Property (12) called “down monotone,” “down closed,” or “subclusive”

o Example: F ={1,2,3,4}. With Z = {0,{1},{1,2},{1,2,4}}.

@ Then (E,Z) is a set system, but not an independence system since it is
not down closed (e.g., we have {1,2} € 7 but not {2} € 7).

o With Z = {0,{1},{2},{1,2}}, then (E,Z) is now an independence
(hereditary) system.
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Independence System

1 2 3456 7 8 1 2 3 4 5 6 7 8
00112131 [ N
001 1020 2 4|= |21 20 23 24 25 x5 27 a5 | (6:6)
1 1100315 [ (R R N

@ Given any set of linearly independent vectors A, any subset B C A will
also be linearly independent.

e Given any forest G ¢ that is an edge-induced sub-graph of a graph G,
any sub-graph of Gy is also a forest.

@ So these both constitute independence systems.
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Matroids
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Matroid

Independent set definition of a matroid is perhaps most natural. Note, if
J € Z, then J is said to be an independent set.

Definition 6.3.3 (Matroid)

A set system (E,Z) is a Matroid if
(1) ez
(I2) VI €Z,J Cc I = J €T (down-closed or subclusive)

(I3) VI,J € Z, with |I| = |J| + 1, then there exists x € I \ J such that
Ju{z} eI

Why is (I1) is not redundant given (12)7 Because without (I1) could have a
non-matroid where Z = {}.
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On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935), but
already then found instances of objects with those properties not based
on a matrix.

Takeo Nakasawa, 1935, also early work.

Forgotten for 20 years until mid 1950s.

Matroids are powerful and flexible combinatorial objects.

The rank function of a matroid is already a very powerful submodular

function (perhaps all we need for many problems).

Understanding matroids crucial for understanding submodularity.

@ Matroid independent sets (i.e., A s.t. r(A) = |A|) are useful constraint
set, and fast algorithms for submodular optimization subject to one (or
more) matroid independence constraints exist.

@ Crapo & Rota preferred the term “combinatorial geometry”, or more
specifically a “pregeometry” and said that pregeometries are “often
described by the ineffably cacaphonic [sic] term 'matroid’, which we
prefer to avoid in favor of the term 'pregeometry’.”
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Matroid

Slight modification (non unit increment) that is equivalent.

Definition 6.3.4 (Matroid-11)

A set system (E,Z) is a Matroid if
(11 0eZ
12"y VI € Z,J C I = J € T (down-closed or subclusive)

(13") VI,J € Z, with |I| > |J|, then there exists x € I \ J such that
Ju{z} el

Note (11)=(I11"), (12)=(12"), and we get (I13)=(I13") using induction.
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Matroids, independent sets, and bases

@ Independent sets: Given a matroid M = (E,Z), a subset A C E'is
called independent if A € Z and otherwise A is called dependent.

@ Abase of U C E: For U C E, a subset B C U is called a base of U if
B is inclusionwise maximally independent subset of U. Thatis, B € Z
and thereisno Z € Z with BCc Z CU.

@ A base of a matroid: If U = E, then a "base of E" is just called a base
of the matroid M (this corresponds to a basis in a linear space, or a
spanning forest in a graph, or a spanning tree in a connected graph).
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Matroids - important property

Proposition 6.3.5

In a matroid M = (E,T), for any U C E(M), any two bases of U have the
same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

o In fact, under (11),(12), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 6.3.6 (Matroid)

A set system (V,Z) is a Matroid if
(11") @ € T (emptyset containing)
(12") VI € Z,J C I = J € T (down-closed or subclusive)

(13") VX CV, and I, I € maxInd(X), we have |I;| = |I2| (all maximally
independent subsets of X have the same size).
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Matroids - rank

@ Thus, in any matroid M = (E,Z), VU C E(M), any two bases of U
have the same size.

@ The common size of all the bases of U is called the rank of U, denoted
rar(U) or just (U) when the matroid in equation is unambiguous.

o 7(E) = (g is the rank of the matroid, and is the common size of all
the bases of the matroid.

@ We can a bit more formally define the rank function this way.

Definition 6.3.7 (matroid rank function)

The rank function of a matroid is a function r : 2F — 7. defined by

T(A):max{\X|:XQA,XEI}zr;(la%c\AﬂX| (6.7)
€

@ From the above, we immediately see that r(A) < |A|.
@ Moreover, if 7(A) = |A|, then A € Z, meaning A is independent (in
this case, A is a self base).
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Matroids
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Matroids, other definitions using matroid rank r : 2V — Z,

Definition 6.3.8 (closed/flat/subspace)

A subset A C F is closed (equivalently, a flat or a subspace) of matroid M
if forallz € E\ A, r(AU{z}) =r(A) + 1.

Definition: A hyperplane is a flat of rank r(M) — 1.

Definition 6.3.9 (closure)

Given A C E, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(A4)}.

Therefore, a closed set A has span(A) = A.

Definition 6.3.10 (circuit)

A subset A C E is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if 7(A) < |A| and for any a € A, r(A\ {a}) = |A| - 1).
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Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 6.3.11 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then the
following are equivalent.

@ B is the collection of bases of a matroid;
Q@ ifB,B' € B,andx € B'\ B, then B'—x+y € B forsomey € B\ B'.
© IfB,B' € B,andx € B'\ B, then B—y+x € B for somey € B\ B'.

Properties 2 and 3 are called “exchange properties.”
Proof here is omitted but think about this for a moment in terms of linear
spaces and matrices, and (alternatively) spanning trees.
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Matroids
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Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is not
surprising that circuits can also characterize a matroid.
Theorem 6.3.12 (Matroid by circuits)

Let E be a set and C be a collection of subsets of E that satisfy the
following three properties:

Q (CI)DécC
Q (C2) ifCl,CQ € C and C1 C Oy, then C1 = C5.

© (C3): if C1,Cy € C with C; # C5, and e € C1 N Cy, then there exists a
C3 € C such that C3 C (Cl U 02) \ {6}
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Matroids
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Matroids by circuits

Several circuit definitions for matroids.

Theorem 6.3.13 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such that
no two sets in C are contained in each other. Then the following are
equivalent.

@ C is the collection of circuits of a matroid;
Q@ ifC,C"eC,andx e CNC', then (CUC")\ {x} contains a set inC;
Q@ ifC,C"eC,andzx e CNC’,andy € C\ ', then (CUC")\ {z}

contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and matrices,
and spanning trees.
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Matroid Examples

Uniform Matroid

e Given E, consider Z to be all subsets of E that are at most size k.
ThatisZ={AC E: |A| <k}

@ Then (E,Z) is a matroid called a k-uniform matroid.

e Note, if I,J €Z, and |I| < |J| <k, and j € J such that j & I, then j
is such that [T+ j| < kandso [+j€Z.

@ Rank function
Al it A <k
ray= 1A TAlS (68)
k if |[A| >k
@ Note, this function is submodular. Not surprising since
r(A) = min(|A[, k) which is a non-decreasing concave function applied

to a modular function.
@ Closure function

A i |A| <k,

. (6.9)
E if |A| >k,

span(A) = {

@ A “free” matroid sets k = |E/|, so everything is independent.
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Matroid Examples
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Linear (or Matric) Matroid

@ Let X be an n x m matrixand E = {1,...,m}

@ Let 7 consists of subsets of E such that if A € Z, and
A ={ay,az,...,a;} then the vectors x4, , gy, - . ., Zq, are linearly
independent.

@ the rank function is just the rank of the space spanned by the
corresponding set of vectors.

@ rank is submodular, it is intuitive that it satisfies the diminishing
returns property (a given vector can only become linearly dependent in
a greater context, thereby no longer contributing to rank).

@ Called both linear matroids and matric matroids.
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Matroid Examples
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Cycle Matroid of a graph: Graphic Matroids

@ Let G = (V, E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V,A) by A does not contain any cycle.

@ Then M = (E,Z) is a matroid.

@ 7 contains all forests.

@ Bases are spanning forests (spanning trees if G is connected).

@ Rank function r(A) is the size of the largest spanning forest contained
in G(V, A).

@ Recall from earlier, 7(A) = |V (G)| — kg(A), where for A C E(G), we
define kg (A) as the number of connected components of the
edge-induced spanning subgraph (V(G), A), and that kg(A) is
supermodular, so |V (G)| — kg(A) is submodular.

@ Closure function adds all edges between the vertices adjacent to any
edge in A. Closure of a spanning forest is G.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Matroid Examples

Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018 F30/46 (pg.31/56)

Matroid Examples
LIl

Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Matroid Examples

Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Matroid Examples
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Partition Matroid

@ Let V' be our ground set.
@ Let V=V UVaU---UV, be a partition of V into ¢ blocks (i.e.,
disjoint sets). Define a set of subsets of V' as

IT={XCV: | XnVj|<kjforalli=1,... ¢} (6.10)
where k1, ..., kg are fixed “limit" parameters, k; > 0. Then M = (V,I)
is a matroid.

@ Note that a k-uniform matroid is a trivial example of a partition
matroid with ¢ =1, V; =V, and k1 = k.

@ Parameters associated with a partition matroid: ¢ and k1, ko, ..., ky
although often the k;'s are all the same.

o We'll show that property (13") in Def 6.3.4 holds. First note, for any
XCV, |X|= Zle | X N'V;| since {V1,Va,...,Vy} is a partition.

o If X, Y € Z with |Y| > |X]|, then there must be at least one i with
Y N V;| > |X NV;|. Therefore, adding one element e € V; N (Y \ X)
to X won't break independence.
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Partition Matroid

Ground set of objects, V' = {
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Partition Matroid

Partition of V into six blocks, V1, Vs, ..., Vs
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Matroid Examples

Partition Matroid

Limit associated with each block, {ki, k2, ..., ke}

| *
el
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Partition Matroid
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Matroid Examples

Partition Matroid

Maximally independent subset, what is called a base.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018 F32/46 (pg.41/56)
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Partition Matroid

Not independent since over limit in set six.
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Matroid Rank
[EERERRNE]

Matroids - rank function is submodular

Lemma 6.5.1

The rank function r : 2¥ — 7. of a matroid is submodular, that is
r(A)+r(B)>r(AuB)+r(ANB)

@ Let X € 7 be an inclusionwise maximal set with X C AN B
@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

© Since M is a matroid, we know that (AN B) = r(X) = |X|, and
r(AUB) =7r(Y)=1Y]|. Also, forany U € Z, r(A) > |[ANU|.
© Then we have (since X CANB, X CY,and Y C AU B),
r(A)+r(B) > |Y NA|+|Y NB| (6.11)
=Y N(ANB)|+|Y Nn(AUB)| (6.12)
> |X|+|Y|=r(ANB)+r(AUB) (6.13)

[
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Matroid Rank
(R ARRRENE]

A matroid is defined from its rank function

Theorem 6.5.2 (Matroid from rank)

Let E be a set and let r : 2F — 7 be a function. Then r(-) defines a
matroid with r being its rank function if and only if for all A, B C E:

(R1) VACE 0<r(A) <|A| (non-negative cardinality bounded)

(R2) r(A) < r(B) whenever A C B C E (monotone non-decreasing)

(R3) r(AUB)+r(AnB) <r(A)+r(B) forall A,B C E (submodular) ]

e From above, 7()) = 0. Let v ¢ A, then by monotonicity and
submodularity, 7(A) < r(AU{v}) < r(A) + r({v}) which gives only
two possible values to (A U {v}), namely 7(A) or r(A) + 1.

@ Hence, unit increment (if 7(A) = k, then either r(AU{v}) =k or
r(AU{v}) =k + 1) holds.

@ Thus, submodularity, non-negative monotone non-decreasing, and unit
increment of rank is necessary and sufficient to define a matroid.

@ Can refer to matroid as (F,r), E is ground set, r is rank function.
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Matroid Rank
[N RN

Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank).

e Given a matroid M = (FE,Z), we see its rank function as defined in
Eq. 6.7 satisfies (R1), (R2), and, as we saw in Lemma 6.5.1, (R3) too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCFE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € Z.
@ Also, if Y € Z and X C Y then by submodularity,

r(X)>rY)—r(Y\ X)+r() (6.14)
> Y| - Y\ X| (6.15)
= | X| (6.16)

implying (X) = | X|, and thus X € 7.
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Matroid Rank
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Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank) cont.

o Let A, B €Z, with |A| < |B|, sor(A) = |A| < r(B)=|B|. Let
B\ A={b1,bs,...,br} (note 1 <k <|B|).

@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means for
all such b, r(A+0b) =7r(A) =|A| < |A|+ 1. Then

r(B) < r(AU B) (6.17)
<r(AU(B\{t})) +r(AU{b}) —r(A) (6.18)
=r(AU(B\{}) (6.19)
<r(AU(B\ {b1,b2})) + r(AU {b2}) — 7(A) (6.20)
=r(AU(B\{b1,b2})) (6.21)
<...<r(A) =|A| < |B] (6.22)

giving a contradiction since B € 7.
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Matroid Rank
[NERN ARNE

Matroids from rank Il

Another way of using function r to define a matroid.

Theorem 6.5.3 (Matroid from rank I1)

Let E be a finite set and let r : 2¥ — 7. be a function. Then r(-) defines a
matroid with r being its rank function if and only if for all X C E, and
x,y € B:

(R1") r(0) =0;

(R2) r(X) <r(XU{y}) <r(X)+ 1

(R3") Ifr(X U{z}) =r(XU{y}) =r(X), then r(X U{x,y}) = r(X).
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Matroid Rank
[NEREN RN

Matroids by submodular functions

Theorem 6.5.4 (Matroid by submodular functions)

Let f: 2F — 7 be a integer valued monotone non-decreasing submodular
function. Define a set of sets as follows:

C(f) = {C C E : C is non-empty,
is inclusionwise-minimal,

and has f(C) < |C]| } (6.23)

Then C(f) is the collection of circuits of a matroid on E.

v

Inclusionwise-minimal in this case means that if C' € C(f), then there exists

no C’' C C with C’ € C(f) (i.e., C' C C would either be empty or have
f(C") > |C"]). Also, recall inclusionwise-minimal in Definition 6.3.10, the
definition of a circuit.
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Matroid Rank
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Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to uniquely
define a matroid based on any of:

Independence (define the independent sets).

Base axioms (exchangeability)

o
o

e Circuit axioms
@ Closure axioms (we didn't see this, but it is possible)
o

Rank axioms (normalized, monotone, cardinality bounded, non-negative
integral, submodular)

Matroids by integral submodular functions.
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Matroid Rank
LErrrrini

Maximization problems for matroids

@ Given a matroid M = (F,Z) and a modular value function ¢: £ — R,
the task is to find an X € 7 such that ¢(X) = )y c¢(z) is maximum.

@ This seems remarkably similar to the max spanning tree problem.
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Matroid Rank
Lerrereen

Minimization problems for matroids

@ Given a matroid M = (F,Z) and a modular cost function ¢: £ — R,
the task is to find a basis B € B such that ¢(B) is minimized.

@ This sounds like a set cover problem (find the minimum cost covering
set of sets).
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Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

l
r(A) =) min(|AN V|, k;) (6.24)

=1

which we also immediately see is submodular using properties we spoke
about last week. That is:
Q |ANV;| is submodular (in fact modular) in A

@ min(submodular(A), k;) is submodular in A since |A N V;| is monotone.
© sums of submodular functions are submodular.

@ r(A) is also non-negative integral monotone non-decreasing, so it
defines a matroid (the partition matroid).
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From 2-partition matroid rank to truncated matroid rank

@ Example: 2-partition matroid rank function: Given natural numbers
a,b € Zy with a < b, and any set R C V with |R| = b.

e Create two-block partition V = (R, R), where R =V \ R so
|R| = |V| — b. Gives 2-partition matroid rank function as follows:

r(A) = min(|A N R|,a) + min(|A N R|, |R|) (6.25)
= min(|ANR|,a) + |AN R (6.26)
=min(|[ANR|+|ANR|,|[ANR| +a) (6.27)
— min(|A[,|[AN R| + a) (6.28)

e Figure showing partition blocks and partition matroid limits.
Since |R| = |[V|—b v Since |R| = |[V|—b

the limit on R is vacuous. the limit on R is vacuo

a<|R| =0
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Truncated Matroid Rank Function

@ Define truncated matroid rank function. Start with 2-partition matroid
rank 7(A) = min(JA N R|,a) + min(JA N R|, |R|), a < b. Define:

fr(A) = min{ r(A) ,b} (6.29)
= min{ min(|A|,|A N R| + a) ,b} (6.30)
= min {|A],a + |AN R|,b} (6.31)
o Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
I={ICV:|I|<band |INR|<a}l, (6.32)

Useful for showing hardness of constrained submodular minimization.
Consider sets B C V with |B| = b. Recall R fixed, and |R| = b.

e For R, we have fr(R) = min(b,a,b) = a < b.
For any B with [BN R| < a, fr(B) =b.
For any B with |[BN R| =/, witha < ¢ <b, fr(B) =a+b— /.
R, the set with minimum valuation amongst size-b sets, is hidden
within an exponentially larger set of size-b sets with larger valuation.
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Partition Matroid, rank as matching

A partition matroid can be viewed using a bipartite graph.

Letting V' denote the ground set, and V3, V5, ... the partition, the
bipartite graph is G = (V, I, E') where V is the ground set, [ is a set of
“indices’, and FE is the set of edges.

I=(L,I...,1) is a set of k = Zle k; nodes, grouped into ¢
clusters, where there are k; nodes in the it" group I;, and |I;| = k;.

(v,9) € E(G) iff v e Vjand i € I;.
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Partition Matroid, rank as matching

@ Example where ¢ =5,
(kl, k?a k37 k47 k5) =

(2,2,1,1,3). @ Recall, T': 2¥ — R as the neighbor
V | function in a bipartite graph, the
neighbors of X is defined as I'(X) =
Vi I {veV(G)\ X : E(X,{v}) #0}, and
recall that |I'(X)| is submodular.
%3 L o Here, for X C V, we have I'(X) =

{iel:(v,i) € E(G)and v e X}.
/s & For such a constructed bipartite graph,
the rank function of a partition matroid
la is 7(X) = S2¢_, min(|X N V|, k;) = the
maximum matching involving X .
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