Submodular Functions, Optimization, and Applications to Machine Learning — Spring Quarter, Lecture 6 —

http://www.ee.washington.edu/people/faculty/bilmes/classes/ee563_spring_2018/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
http://melodi.ee.washington.edu/~bilmes

April 11th, 2018

Prof. Jeff Bilmes

EE563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018

F1/46 (pg.1/56)

Cumulative Outstanding Reading

111111

- Read chapter 1 from Fujishige's book.
- Read chapter 2 from Fujishige's book.

Announcements, Assignments, and Reminders

 If you have any questions about anything, please ask then via our discussion board

(https://canvas.uw.edu/courses/1216339/discussion_topics).

Prof. Jeff Bilmes

 ${\rm EE563/Spring}$ 2018/Submodularity - Lecture 6 - April 11th, 2018

F3/46 (pg.3/56)

Class Road Map - EE563

- L1(3/26): Motivation, Applications, & Basic Definitions,
- L2(3/28): Machine Learning Apps (diversity, complexity, parameter, learning target, surrogate).
- L3(4/2): Info theory exs, more apps, definitions, graph/combinatorial examples
- L4(4/4): Graph and Combinatorial Examples, Matrix Rank, Examples and Properties, visualizations
- L5(4/9): More Examples/Properties/ Other Submodular Defs., Independence,
- L6(4/11): Matroids, Matroid Examples, Matroid Rank, Partition/Laminar Matroids
- L7(4/16): Laminar Matroids, System of Distinct Reps, Transversals, Transversal Matroid, Matroid Representation, Dual Matroids
- L8(4/18):
- L9(4/23):
- L10(4/25):

- L11(4/30):
- L12(5/2):
- L13(5/7):
- L14(5/9):
- L15(5/14):
- L16(5/16):
- L17(5/21):
- L18(5/23):
- L-(5/28): Memorial Day (holiday)
- L19(5/30):
- L21(6/4): Final Presentations maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.

Logistics Review

Composition of non-decreasing submodular and non-decreasing concave

Theorem 6.2.1

Given two functions, one defined on sets

$$f: 2^V \to \mathbb{R} \tag{6.1}$$

and another continuous valued one:

$$\phi: \mathbb{R} \to \mathbb{R} \tag{6.2}$$

the composition formed as $h = \phi \circ f : 2^V \to \mathbb{R}$ (defined as $h(S) = \phi(f(S))$) is nondecreasing submodular, if ϕ is non-decreasing concave and f is nondecreasing submodular.

Prof. Jeff Bilmes

EE563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018

F5/46 (pg.5/56)

Logistic

Review

Monotone difference of two functions

Let f and g both be submodular functions on subsets of V and let $(f-g)(\cdot)$ be either monotone non-decreasing or monotone non-increasing Then $h:2^V\to R$ defined by

$$h(A) = \min(f(A), g(A)) \tag{6.1}$$

is submodular.

Proof.

If h(A) agrees with f on both X and Y (or g on both X and Y), and since

$$h(X) + h(Y) = f(X) + f(Y) \ge f(X \cup Y) + f(X \cap Y)$$
 (6.2)

or

$$h(X) + h(Y) = g(X) + g(Y) \ge g(X \cup Y) + g(X \cap Y),$$
 (6.3)

the result (Equation 6.1 being submodular) follows since

$$\frac{f(X) + f(Y)}{g(X) + g(Y)} \ge \min(f(X \cup Y), g(X \cup Y)) + \min(f(X \cap Y), g(X \cap Y))$$

(6.4)

Arbitrary functions: difference between submodular funcs.

Theorem 6.2.1

Given an arbitrary set function h, it can be expressed as a difference between two submodular functions (i.e., $\forall h \in 2^V \to \mathbb{R}$,

 $\exists f, g \text{ s.t. } \forall A, h(A) = f(A) - g(A) \text{ where both } f \text{ and } g \text{ are submodular}).$

Proof.

Let h be given and arbitrary, and define:

$$\alpha \stackrel{\Delta}{=} \min_{X,Y:X \not\subseteq Y,Y \not\subseteq X} \Big(h(X) + h(Y) - h(X \cup Y) - h(X \cap Y) \Big) \tag{6.4}$$

If $\alpha \geq 0$ then h is submodular, so by assumption $\alpha < 0$. Now let f be an arbitrary strict submodular function and define

$$\beta \stackrel{\Delta}{=} \min_{X,Y:X \not\subseteq Y,Y \not\subseteq X} \Big(f(X) + f(Y) - f(X \cup Y) - f(X \cap Y) \Big). \tag{6.5}$$

Strict means that $\beta > 0$.

Prof. Jeff Bilmes

EE563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018

F7/46 (pg.7/56)

Logistics

Many (Equivalent) Definitions of Submodularity

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B), \quad \forall A, B \subseteq V$$
(6.16)

$$f(j|S) \ge f(j|T), \ \forall S \subseteq T \subseteq V, \text{ with } j \in V \setminus T$$
 (6.17)

$$f(C|S) \ge f(C|T), \forall S \subseteq T \subseteq V, \text{ with } C \subseteq V \setminus T$$
 (6.18)

$$f(j|S) \ge f(j|S \cup \{k\}), \ \forall S \subseteq V \text{ with } j \in V \setminus (S \cup \{k\})$$
 (6.19)

$$f(A \cup B | A \cap B) \le f(A | A \cap B) + f(B | A \cap B), \quad \forall A, B \subseteq V$$
 (6.20)

$$f(T) \leq f(S) + \sum_{j \in T \backslash S} f(j|S) - \sum_{j \in S \backslash T} f(j|S \cup T - \{j\}), \ \forall S, T \subseteq V$$

(6.21)

$$f(T) \le f(S) + \sum_{j \in T \setminus S} f(j|S), \ \forall S \subseteq T \subseteq V$$
(6.22)

$$f(T) \le f(S) - \sum_{j \in S \setminus T} f(j|S \setminus \{j\}) + \sum_{j \in T \setminus S} f(j|S \cap T) \ \forall S, T \subseteq V$$

(6.23)

$$f(T) \le f(S) - \sum_{j \in S \setminus T} f(j|S \setminus \{j\}), \ \forall T \subseteq S \subseteq V$$
 (6.24)

On Rank

- Let rank : $2^V \to \mathbb{Z}_+$ be the rank function.
- In general, $\operatorname{rank}(A) \leq |A|$, and vectors in A are linearly independent if and only if $\operatorname{rank}(A) = |A|$.
- If A,B are such that $\operatorname{rank}(A)=|A|$ and $\operatorname{rank}(B)=|B|$, with |A|<|B|, then the space spanned by B is greater, and we can find a vector in B that is linearly independent of the space spanned by vectors in A.
- To stress this point, note that the above condition is |A| < |B|, not $A \subseteq B$ which is sufficient (to be able to find an independent vector) but not required.
- In other words, given A,B with $\mathrm{rank}(A)=|A|$ & $\mathrm{rank}(B)=|B|$, then $|A|<|B|\Leftrightarrow \exists$ an $b\in B$ such that $\mathrm{rank}(A\cup\{b\})=|A|+1$.

Prof. Jeff Bilmes

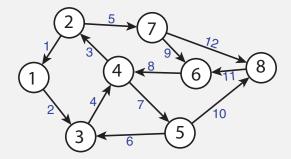
EE563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018

F9/46 (pg.9/56)

Spanning trees/forests & incidence matrices

Review

- A directed version of the graph (right) and its adjacency matrix (below).
- Orientation can be arbitrary.
- Note, rank of this matrix is 7.



From Matrix Rank → Matroid

- ullet So V is set of column vector indices of a matrix.
- Let $\mathcal{I} = \{I_1, I_2, \ldots\}$ be a set of all subsets of V such that for any $I \in \mathcal{I}$, the vectors indexed by I are linearly independent.
- Given a set $B \in \mathcal{I}$ of linearly independent vectors, then any subset $A \subseteq B$ is also linearly independent. Hence, \mathcal{I} is down-closed or "subclusive", under subsets. In other words,

$$A \subseteq B \text{ and } B \in \mathcal{I} \Rightarrow A \in \mathcal{I}$$
 (6.1)

• maxInd: Inclusionwise maximal independent subsets (i.e., the set of bases of) of any set $B \subseteq V$ defined as:

$$\mathsf{maxInd}(B) \triangleq \{A \subseteq B : A \in \mathcal{I} \text{ and } \forall v \in B \setminus A, A \cup \{v\} \notin \mathcal{I}\}$$
 (6.2)

• Given any set $B \subset V$ of vectors, all maximal (by set inclusion) subsets of linearly independent vectors are the same size. That is, for all $B \subseteq V$,

$$\forall A_1, A_2 \in \mathsf{maxInd}(B), \quad |A_1| = |A_2| = \mathsf{rank}(B)$$
 (6.3)

Prof. Jeff Bilmes

 $EE563/Spring\ 2018/Submodularity\ \textbf{-}\ Lecture\ 6\ \textbf{-}\ April\ 11th,\ 2018$

F11/46 (pg.11/56

Matroids Matroid Examples Matroid Rank More on Partition Matroid

From Matrix Rank → Matroid

- Let $\mathcal{I} = \{I_1, I_2, \ldots\}$ be the set of sets as described above.
- ullet Thus, for all $I \in \mathcal{I}$, the matrix rank function has the property

$$r(I) = |I| \tag{6.4}$$

and for any $B \notin \mathcal{I}$,

$$r(B) = \max\{|A| : A \subseteq B \text{ and } A \in \mathcal{I}\} < |B| \tag{6.5}$$

Since all maximally independent subsets of a set are the same size, the rank function is well defined.

- Matroids abstract the notion of linear independence of a set of vectors to general algebraic properties.
- In a matroid, there is an underlying ground set, say E (or V), and a collection of subsets $\mathcal{I} = \{I_1, I_2, \ldots\}$ of E that correspond to independent elements.
- There are many definitions of matroids that are mathematically equivalent, we'll see some of them here.

Prof. Jeff Bilmes

 ${\tt EE563/Spring~2018/Submodularity-Lecture~6-April~11th,~2018}$

F13/46 (pg.13/56)

Matroid Examples Matroid Rank More on Partition Matroid

Independence System

Definition 6.3.1 (set system)

A (finite) ground set E and a set of subsets of E, $\emptyset \neq \mathcal{I} \subseteq 2^E$ is called a set system, notated (E,\mathcal{I}) .

- Set systems can be arbitrarily complex since, as stated, there is no systematic method (besides exponential-cost exhaustive search) to determine if a given set $S \subseteq E$ has $S \in \mathcal{I}$.
- One useful property is "heredity." Namely, a set system is a hereditary set system if for any $A \subset B \in \mathcal{I}$, we have that $A \in \mathcal{I}$.

Independence System

Definition 6.3.2 (independence (or hereditary) system)

A set system (V, \mathcal{I}) is an independence system if

$$\emptyset \in \mathcal{I}$$
 (emptyset containing) (I1)

and

$$\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I} \quad \text{(subclusive)}$$

- Property (I2) called "down monotone," "down closed," or "subclusive"
- Example: $E = \{1, 2, 3, 4\}$. With $\mathcal{I} = \{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 4\}\}$.
- Then (E, \mathcal{I}) is a set system, but not an independence system since it is not down closed (e.g., we have $\{1,2\} \in \mathcal{I}$ but not $\{2\} \in \mathcal{I}$).
- With $\mathcal{I}=\{\emptyset,\{1\},\{2\},\{1,2\}\}$, then (E,\mathcal{I}) is now an independence (hereditary) system.

Prof. Jeff Bilmes

 ${\tt EE563/Spring~2018/Submodularity-Lecture~6-April~11th,~2018}$

F15/46 (pg.15/56)

Matroids Matroid Examples Matroid Rank More on Partition Matroid

Independence System

- Given any set of linearly independent vectors A, any subset $B \subset A$ will also be linearly independent.
- Given any forest G_f that is an edge-induced sub-graph of a graph G, any sub-graph of G_f is also a forest.
- So these both constitute independence systems.

Matroid

Independent set definition of a matroid is perhaps most natural. Note, if $J \in \mathcal{I}$, then J is said to be an independent set.

Definition 6.3.3 (Matroid)

A set system (E, \mathcal{I}) is a Matroid if

- (I1) $\emptyset \in \mathcal{I}$
- (12) $\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$ (down-closed or subclusive)
- (13) $\forall I, J \in \mathcal{I}$, with |I| = |J| + 1, then there exists $x \in I \setminus J$ such that $J \cup \{x\} \in \mathcal{I}$.

Why is (I1) is not redundant given (I2)? Because without (I1) could have a non-matroid where $\mathcal{I} = \{\}$.

On Matroids

- Abstract properties of linear dependence (Hassler Whitney, 1935), but already then found instances of objects with those properties not based on a matrix.
- Takeo Nakasawa, 1935, also early work.
- Forgotten for 20 years until mid 1950s.
- Matroids are powerful and flexible combinatorial objects.
- The rank function of a matroid is already a very powerful submodular function (perhaps all we need for many problems).
- Understanding matroids crucial for understanding submodularity.
- Matroid independent sets (i.e., A s.t. r(A) = |A|) are useful constraint set, and fast algorithms for submodular optimization subject to one (or more) matroid independence constraints exist.
- Crapo & Rota preferred the term "combinatorial geometry", or more specifically a "pregeometry" and said that pregeometries are "often described by the ineffably cacaphonic [sic] term 'matroid', which we prefer to avoid in favor of the term 'pregeometry'.''

Matroid

Slight modification (non unit increment) that is equivalent.

Definition 6.3.4 (Matroid-II)

A set system (E, \mathcal{I}) is a Matroid if

- (I1') $\emptyset \in \mathcal{I}$
- (12') $\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$ (down-closed or subclusive)
- (13') $\forall I,J\in\mathcal{I}$, with |I|>|J|, then there exists $x\in I\setminus J$ such that $J\cup\{x\}\in\mathcal{I}$

Note (I1)=(I1'), (I2)=(I2'), and we get (I3)=(I3') using induction.

Prof. Jeff Bilmes

EE563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018

F19/46 (pg.19/56)

Matroide Matroid Examples Matroid Rank More on Partition Matroid

Matroids, independent sets, and bases

- Independent sets: Given a matroid $M=(E,\mathcal{I})$, a subset $A\subseteq E$ is called independent if $A\in\mathcal{I}$ and otherwise A is called dependent.
- A base of $U \subseteq E$: For $U \subseteq E$, a subset $B \subseteq U$ is called a base of U if B is inclusionwise maximally independent subset of U. That is, $B \in \mathcal{I}$ and there is no $Z \in \mathcal{I}$ with $B \subset Z \subseteq U$.
- A base of a matroid: If U = E, then a "base of E" is just called a base of the matroid M (this corresponds to a basis in a linear space, or a spanning forest in a graph, or a spanning tree in a connected graph).

Matroids - important property

Proposition 6.3.5

In a matroid $M=(E,\mathcal{I})$, for any $U\subseteq E(M)$, any two bases of U have the same size.

- In matrix terms, given a set of vectors U, all sets of independent vectors that span the space spanned by U have the same size.
- In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise: show the following is equivalent to the above.

Definition 6.3.6 (Matroid)

A set system (V, \mathcal{I}) is a Matroid if

- (I1') $\emptyset \in \mathcal{I}$ (emptyset containing)
- (I2') $\forall I \in \mathcal{I}, J \subset I \Rightarrow J \in \mathcal{I}$ (down-closed or subclusive)
- (I3') $\forall X \subseteq V$, and $I_1, I_2 \in \mathsf{maxInd}(X)$, we have $|I_1| = |I_2|$ (all maximally independent subsets of X have the same size).

Prof. Jeff Bilmes

EE563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018

F21/46 (pg.21/56

Matroids Matroid Examples Matroid Rank More on Partition Matroid

Matroids - rank

- Thus, in any matroid $M=(E,\mathcal{I}), \ \forall U\subseteq E(M)$, any two bases of U have the same size.
- The common size of all the bases of U is called the rank of U, denoted $r_M(U)$ or just r(U) when the matroid in equation is unambiguous.
- $r(E) = r_{(E,\mathcal{I})}$ is the rank of the matroid, and is the common size of all the bases of the matroid.
- We can a bit more formally define the rank function this way.

Definition 6.3.7 (matroid rank function)

The rank function of a matroid is a function $r:2^E \to \mathbb{Z}_+$ defined by

$$r(A) = \max\{|X| : X \subseteq A, X \in \mathcal{I}\} = \max_{X \in \mathcal{I}} |A \cap X|$$
 (6.7)

- From the above, we immediately see that $r(A) \leq |A|$.
- Moreover, if r(A) = |A|, then $A \in \mathcal{I}$, meaning A is independent (in this case, A is a self base).

Matroids, other definitions using matroid rank $r: 2^V o \mathbb{Z}_+$

Definition 6.3.8 (closed/flat/subspace)

A subset $A \subseteq E$ is closed (equivalently, a flat or a subspace) of matroid M if for all $x \in E \setminus A$, $r(A \cup \{x\}) = r(A) + 1$.

Definition: A hyperplane is a flat of rank r(M) - 1.

Definition 6.3.9 (closure)

Given $A \subseteq E$, the closure (or span) of A, is defined by $\operatorname{span}(A) = \{b \in E : r(A \cup \{b\}) = r(A)\}.$

Therefore, a closed set A has span(A) = A.

Definition 6.3.10 (circuit)

A subset $A \subseteq E$ is circuit or a cycle if it is an inclusionwise-minimal dependent set (i.e., if r(A) < |A| and for any $a \in A$, $r(A \setminus \{a\}) = |A| - 1$).

Prof. Jeff Bilmes

EE563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018

F23/46 (pg.23/56

Matroids Matroid Examples Matroid Rank More on Partition Matroid

Matroids by bases

In general, besides independent sets and rank functions, there are other equivalent ways to characterize matroids.

Theorem 6.3.11 (Matroid (by bases))

Let E be a set and $\mathcal B$ be a nonempty collection of subsets of E. Then the following are equivalent.

- $oldsymbol{0}$ \mathcal{B} is the collection of bases of a matroid;
- ② if $B, B' \in \mathcal{B}$, and $x \in B' \setminus B$, then $B' x + y \in \mathcal{B}$ for some $y \in B \setminus B'$.
- $\textbf{ 3} \ \ \textit{If} \ B, B' \in \mathcal{B} \textit{, and } x \in B' \setminus B \textit{, then } B y + x \in \mathcal{B} \textit{ for some } y \in B \setminus B'.$

Properties 2 and 3 are called "exchange properties."

Proof here is omitted but think about this for a moment in terms of linear spaces and matrices, and (alternatively) spanning trees.

Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is not surprising that circuits can also characterize a matroid.

Theorem 6.3.12 (Matroid by circuits)

Let E be a set and $\mathcal C$ be a collection of subsets of E that satisfy the following three properties:

- **1** (C1): ∅ ∉ C
- 2 (C2): if $C_1, C_2 \in \mathcal{C}$ and $C_1 \subseteq C_2$, then $C_1 = C_2$.
- **3** (C3): if $C_1, C_2 \in \mathcal{C}$ with $C_1 \neq C_2$, and $e \in C_1 \cap C_2$, then there exists a $C_3 \in \mathcal{C}$ such that $C_3 \subseteq (C_1 \cup C_2) \setminus \{e\}$.

Prof. Jeff Bilmes

EE563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018

F25/46 (pg.25/56)

Matroids Matroid Examples Matroid Rank More on Partition Matroid

Matroids by circuits

Several circuit definitions for matroids.

Theorem 6.3.13 (Matroid by circuits)

Let E be a set and $\mathcal C$ be a collection of nonempty subsets of E, such that no two sets in $\mathcal C$ are contained in each other. Then the following are equivalent.

- \bullet C is the collection of circuits of a matroid;
- ② if $C, C' \in \mathcal{C}$, and $x \in C \cap C'$, then $(C \cup C') \setminus \{x\}$ contains a set in \mathcal{C} ;
- **3** if $C, C' \in \mathcal{C}$, and $x \in C \cap C'$, and $y \in C \setminus C'$, then $(C \cup C') \setminus \{x\}$ contains a set in \mathcal{C} containing y;

Again, think about this for a moment in terms of linear spaces and matrices, and spanning trees.

Uniform Matroid

- Given E, consider \mathcal{I} to be all subsets of E that are at most size k. That is $\mathcal{I} = \{A \subseteq E : |A| \le k\}$.
- Then (E, \mathcal{I}) is a matroid called a k-uniform matroid.
- Note, if $I, J \in \mathcal{I}$, and $|I| < |J| \le k$, and $j \in J$ such that $j \notin I$, then j is such that $|I + j| \le k$ and so $I + j \in \mathcal{I}$.
- Rank function

$$r(A) = \begin{cases} |A| & \text{if } |A| \le k \\ k & \text{if } |A| > k \end{cases}$$
 (6.8)

- Note, this function is submodular. Not surprising since $r(A) = \min(|A|, k)$ which is a non-decreasing concave function applied to a modular function.
- Closure function

$$\operatorname{span}(A) = \begin{cases} A & \text{if } |A| < k, \\ E & \text{if } |A| \ge k, \end{cases}$$

$$(6.9)$$

• A "free" matroid sets $k=\vert E\vert$, so everything is independent.

Prof. Jeff Bilmes

EE563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018

F27/46 (pg.27/56)

Matroids

Matroid Examples

Matroid Rank

More on Partition Matroid

Linear (or Matric) Matroid

- Let X be an $n \times m$ matrix and $E = \{1, \dots, m\}$
- Let \mathcal{I} consists of subsets of E such that if $A \in \mathcal{I}$, and $A = \{a_1, a_2, \ldots, a_k\}$ then the vectors $x_{a_1}, x_{a_2}, \ldots, x_{a_k}$ are linearly independent.
- the rank function is just the rank of the space spanned by the corresponding set of vectors.
- rank is submodular, it is intuitive that it satisfies the diminishing returns property (a given vector can only become linearly dependent in a greater context, thereby no longer contributing to rank).
- Called both linear matroids and matric matroids.

Cycle Matroid of a graph: Graphic Matroids

- Let G=(V,E) be a graph. Consider (E,\mathcal{I}) where the edges of the graph E are the ground set and $A\in\mathcal{I}$ if the edge-induced graph G(V,A) by A does not contain any cycle.
- Then $M = (E, \mathcal{I})$ is a matroid.
- I contains all forests.
- ullet Bases are spanning forests (spanning trees if G is connected).
- Rank function r(A) is the size of the largest spanning forest contained in G(V,A).
- Recall from earlier, $r(A) = |V(G)| k_G(A)$, where for $A \subseteq E(G)$, we define $k_G(A)$ as the number of connected components of the edge-induced spanning subgraph (V(G), A), and that $k_G(A)$ is supermodular, so $|V(G)| k_G(A)$ is submodular.
- Closure function adds all edges between the vertices adjacent to any edge in A. Closure of a spanning forest is G.

Prof. Jeff Bilmes

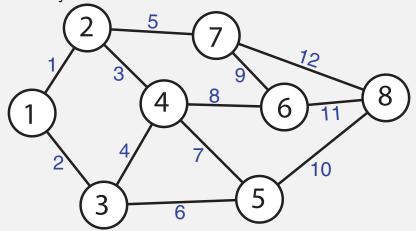
 $EE563/Spring\ 2018/Submodularity\ \textbf{-}\ Lecture\ 6\ \textbf{-}\ April\ 11th,\ 2018$

F29/46 (pg.29/56)

Matroids Matroid Examples Matroid Rank More on Partition Matroid

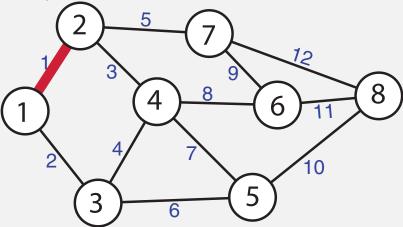
Example: graphic matroid

• A graph defines a matroid on edge sets, independent sets are those without a cycle.



Example: graphic matroid

• A graph defines a matroid on edge sets, independent sets are those without a cycle.



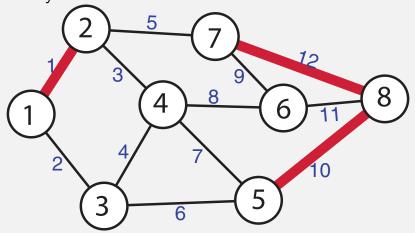
Prof. Jeff Bilmes

EE563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018

F30/46 (pg.31/56)

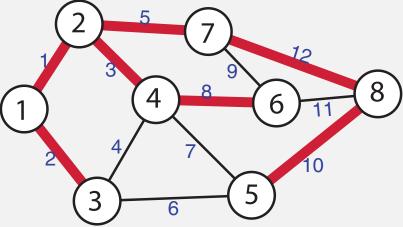
Example: graphic matroid

• A graph defines a matroid on edge sets, independent sets are those without a cycle.



Example: graphic matroid

 A graph defines a matroid on edge sets, independent sets are those without a cycle.



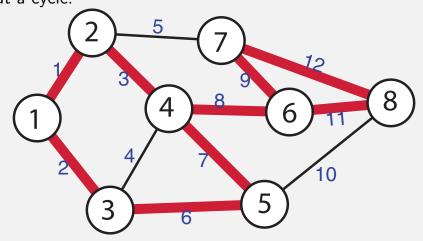
Prof. Jeff Bilmes

EE563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018

F30/46 (pg.33/56)

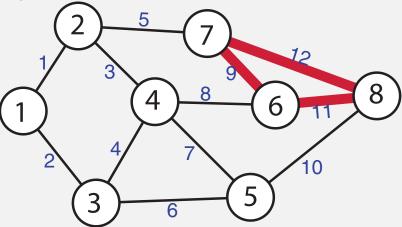
Example: graphic matroid

• A graph defines a matroid on edge sets, independent sets are those without a cycle.



Example: graphic matroid

 A graph defines a matroid on edge sets, independent sets are those without a cycle.



Prof. Jeff Bilmes

 ${\tt EE563/Spring~2018/Submodularity-Lecture~6-April~11th,~2018}$

F30/46 (pg.35/56)

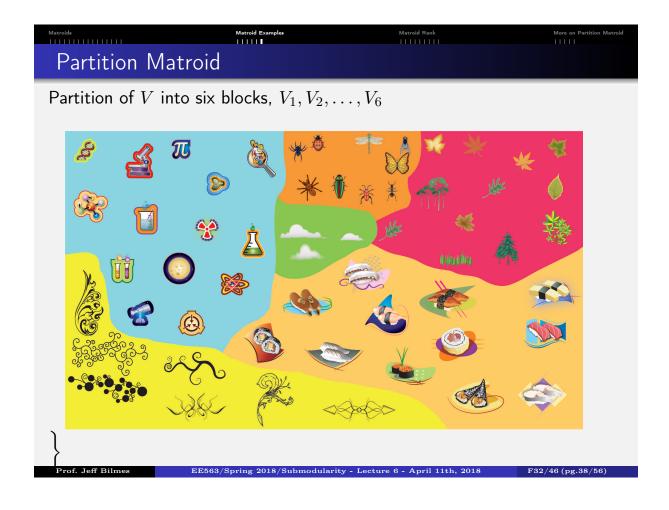
Partition Matroid

- Let V be our ground set.
- Let $V=V_1\cup V_2\cup \cdots \cup V_\ell$ be a partition of V into ℓ blocks (i.e., disjoint sets). Define a set of subsets of V as

$$\mathcal{I} = \{ X \subseteq V : |X \cap V_i| \le k_i \text{ for all } i = 1, \dots, \ell \}.$$
 (6.10)

where k_1, \ldots, k_ℓ are fixed "limit" parameters, $k_i \geq 0$. Then $M = (V, \mathcal{I})$ is a matroid.

- Note that a k-uniform matroid is a trivial example of a partition matroid with $\ell=1,\ V_1=V$, and $k_1=k$.
- Parameters associated with a partition matroid: ℓ and $k_1, k_2, \ldots, k_{\ell}$ although often the k_i 's are all the same.
- We'll show that property (I3') in Def 6.3.4 holds. First note, for any $X\subseteq V$, $|X|=\sum_{i=1}^\ell |X\cap V_i|$ since $\{V_1,V_2,\ldots,V_\ell\}$ is a partition.
- If $X,Y\in\mathcal{I}$ with |Y|>|X|, then there must be at least one i with $|Y\cap V_i|>|X\cap V_i|$. Therefore, adding one element $e\in V_i\cap (Y\setminus X)$ to X won't break independence.



Maximally independent subset, what is called a base.

Prof. Jeff Bilmes

 ${
m EE563/Spring}$ 2018/Submodularity - Lecture 6 - April 11th, 2018

F32/46 (pg.41/56)

Not independent since over limit in set six.

Matroids - rank function is submodular

Lemma 6.5.1

The rank function $r: 2^E \to \mathbb{Z}_+$ of a matroid is submodular, that is $r(A) + r(B) \ge r(A \cup B) + r(A \cap B)$

Proof.

- ① Let $X \in \mathcal{I}$ be an inclusionwise maximal set with $X \subseteq A \cap B$
- 2 Let $Y \in \mathcal{I}$ be inclusionwise maximal set with $X \subseteq Y \subseteq A \cup B$.
- 3 Since M is a matroid, we know that $r(A \cap B) = r(X) = |X|$, and $r(A \cup B) = r(Y) = |Y|$. Also, for any $U \in \mathcal{I}$, $r(A) \geq |A \cap U|$.
- Then we have (since $X \subseteq A \cap B$, $X \subseteq Y$, and $Y \subseteq A \cup B$),

$$r(A) + r(B) \ge |Y \cap A| + |Y \cap B| \tag{6.11}$$

$$= |Y \cap (A \cap B)| + |Y \cap (A \cup B)|$$
 (6.12)

$$\geq |X| + |Y| = r(A \cap B) + r(A \cup B)$$
 (6.13)

Prof. Jeff Bilmes

EE563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018

F33/46 (pg.43/56)

A matroid is defined from its rank function

More on Partition Matroid

Theorem 6.5.2 (Matroid from rank)

Let E be a set and let $r: 2^E \to \mathbb{Z}_+$ be a function. Then $r(\cdot)$ defines a matroid with r being its rank function if and only if for all $A, B \subseteq E$:

- (R1) $\forall A \subseteq E \ 0 \le r(A) \le |A|$ (non-negative cardinality bounded)
- (R2) $r(A) \leq r(B)$ whenever $A \subseteq B \subseteq E$ (monotone non-decreasing)
- (R3) $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ for all $A, B \subseteq E$ (submodular)
 - From above, $r(\emptyset) = 0$. Let $v \notin A$, then by monotonicity and submodularity, $r(A) \le r(A \cup \{v\}) \le r(A) + r(\{v\})$ which gives only two possible values to $r(A \cup \{v\})$, namely r(A) or r(A) + 1.
 - Hence, unit increment (if r(A) = k, then either $r(A \cup \{v\}) = k$ or $r(A \cup \{v\}) = k + 1$) holds.
 - Thus, submodularity, non-negative monotone non-decreasing, and unit increment of rank is necessary and sufficient to define a matroid.
 - Can refer to matroid as (E, r), E is ground set, r is rank function.

Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank).

- Given a matroid $M=(E,\mathcal{I})$, we see its rank function as defined in Eq. 6.7 satisfies (R1), (R2), and, as we saw in Lemma 6.5.1, (R3) too.
- Next, assume we have (R1), (R2), and (R3). Define $\mathcal{I} = \{X \subseteq E : r(X) = |X|\}$. We will show that (E, \mathcal{I}) is a matroid.
- First, $\emptyset \in \mathcal{I}$.
- Also, if $Y \in \mathcal{I}$ and $X \subseteq Y$ then by submodularity,

$$r(X) \ge r(Y) - r(Y \setminus X) + r(\emptyset) \tag{6.14}$$

$$\geq |Y| - |Y \setminus X| \tag{6.15}$$

$$=|X| \tag{6.16}$$

implying r(X) = |X|, and thus $X \in \mathcal{I}$.

Prof. Jeff Bilmes

EE563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018

F35/46 (pg.45/56

Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank) cont.

- Let $A, B \in \mathcal{I}$, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let $B \setminus A = \{b_1, b_2, \dots, b_k\}$ (note $1 \le k \le |B|$).
- Suppose, to the contrary, that $\forall b \in B \setminus A$, $A+b \notin \mathcal{I}$, which means for all such b, r(A+b)=r(A)=|A|<|A|+1. Then

$$r(B) \le r(A \cup B) \tag{6.17}$$

$$\leq r(A \cup (B \setminus \{b_1\})) + r(A \cup \{b_1\}) - r(A)$$
 (6.18)

$$= r(A \cup (B \setminus \{b_1\}) \tag{6.19}$$

$$\leq r(A \cup (B \setminus \{b_1, b_2\})) + r(A \cup \{b_2\}) - r(A)$$
 (6.20)

$$= r(A \cup (B \setminus \{b_1, b_2\})) \tag{6.21}$$

$$\leq \ldots \leq r(A) = |A| < |B| \tag{6.22}$$

giving a contradiction since $B \in \mathcal{I}$.

Matroids from rank II

Another way of using function r to define a matroid.

Theorem 6.5.3 (Matroid from rank II)

Let E be a finite set and let $r: 2^E \to \mathbb{Z}_+$ be a function. Then $r(\cdot)$ defines a matroid with r being its rank function if and only if for all $X \subseteq E$, and $x,y \in E$:

- (R1') $r(\emptyset) = 0$;
- (R2') $r(X) \le r(X \cup \{y\}) \le r(X) + 1;$
- (R3') If $r(X \cup \{x\}) = r(X \cup \{y\}) = r(X)$, then $r(X \cup \{x,y\}) = r(X)$.

Prof. Jeff Bilmes

EE563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018

F37/46 (pg.47/56)

Matroids Matroid Examples Matroid Rank

Matroids by submodular functions

Theorem 6.5.4 (Matroid by submodular functions)

Let $f: 2^E \to \mathbb{Z}$ be a integer valued monotone non-decreasing submodular function. Define a set of sets as follows:

$$\mathcal{C}(f) = \Big\{ C \subseteq E : C \text{ is non-empty,}$$
 is inclusionwise-minimal,} and has $f(C) < |C| \Big\}$ (6.23)

Then C(f) is the collection of circuits of a matroid on E.

Inclusionwise-minimal in this case means that if $C \in \mathcal{C}(f)$, then there exists no $C' \subset C$ with $C' \in \mathcal{C}(f)$ (i.e., $C' \subset C$ would either be empty or have $f(C') \geq |C'|$). Also, recall inclusionwise-minimal in Definition 6.3.10, the definition of a circuit.

Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to uniquely define a matroid based on any of:

- Independence (define the independent sets).
- Base axioms (exchangeability)
- Circuit axioms
- Closure axioms (we didn't see this, but it is possible)
- Rank axioms (normalized, monotone, cardinality bounded, non-negative integral, submodular)
- Matroids by integral submodular functions.

Prof. Jeff Bilmes

EE563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018

F39/46 (pg.49/56

Matroid Examples

Matroid Fank

More on Partition Matroid

Maximization problems for matroids

• Given a matroid $M=(E,\mathcal{I})$ and a modular value function $c:E\to\mathbb{R}$, the task is to find an $X\in\mathcal{I}$ such that $c(X)=\sum_{x\in X}c(x)$ is maximum.

• This seems remarkably similar to the max spanning tree problem.

Minimization problems for matroids

- Given a matroid $M = (E, \mathcal{I})$ and a modular cost function $c: E \to \mathbb{R}$, the task is to find a basis $B \in \mathcal{B}$ such that c(B) is minimized.
- This sounds like a set cover problem (find the minimum cost covering set of sets).

Partition Matroid

- What is the partition matroid's rank function?
- A partition matroids rank function:

$$r(A) = \sum_{i=1}^{\ell} \min(|A \cap V_i|, k_i)$$
 (6.24)

which we also immediately see is submodular using properties we spoke about last week. That is:

- $\min($ submodular $(A), k_i)$ is submodular in A since $|A \cap V_i|$ is monotone.
- 3 sums of submodular functions are submodular.
- \bullet r(A) is also non-negative integral monotone non-decreasing, so it defines a matroid (the partition matroid).

From 2-partition matroid rank to truncated matroid rank

- Example: 2-partition matroid rank function: Given natural numbers $a, b \in \mathbb{Z}_+$ with a < b, and any set $R \subseteq V$ with |R| = b.
- Create two-block partition $V=(R,\bar{R})$, where $\bar{R}=V\setminus R$ so $|\bar{R}|=|V|-b$. Gives 2-partition matroid rank function as follows:

$$r(A) = \min(|A \cap R|, a) + \min(|A \cap \bar{R}|, |\bar{R}|)$$
 (6.25)

$$= \min(|A \cap R|, a) + |A \cap \bar{R}| \tag{6.26}$$

$$= \min(|A \cap \bar{R}| + |A \cap R|, |A \cap \bar{R}| + a)$$
 (6.27)

$$= \min(|A|, |A \cap \bar{R}| + a) \tag{6.28}$$

Figure showing partition blocks and partition matroid limits.

Since $|\bar{R}| = |V| - b$

Since $|\bar{R}| = |V| - b$

the limit on R is vacuous.

 \bar{R} the limit on \bar{R} is vacuo

a < |R| = b

R a < |R| = b

Prof. Jeff Bilmes

|V| - b

R

EE563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018

F43/46 (pg.53/56

Matroids Matroid Examples Matroid Rank More on Partition Matroi

Truncated Matroid Rank Function

• Define truncated matroid rank function. Start with 2-partition matroid rank $r(A) = \min(|A \cap R|, a) + \min(|A \cap \bar{R}|, |\bar{R}|)$, a < b. Define:

$$f_R(A) = \min\left\{\frac{r(A)}{b}, b\right\} \tag{6.29}$$

$$= \min\left\{ \min(|A|, |A \cap \bar{R}| + a), b \right\} \tag{6.30}$$

$$= \min\{|A|, a + |A \cap \bar{R}|, b\}$$
 (6.31)

ullet Defines a matroid $M=(V,f_R)=(V,\mathcal{I})$ (Goemans et. al.) with

$$\mathcal{I} = \{ I \subseteq V : |I| \le b \text{ and } |I \cap R| \le a \}, \tag{6.32}$$

Useful for showing hardness of constrained submodular minimization. Consider sets $B \subseteq V$ with |B| = b. Recall R fixed, and |R| = b.

- For R, we have $f_R(R) = \min(b, a, b) = a < b$.
- For any B with $|B \cap R| \le a$, $f_R(B) = b$.
- For any B with $|B \cap R| = \ell$, with $a \le \ell \le b$, $f_R(B) = a + b \ell$.
- R, the set with minimum valuation amongst size-b sets, is hidden within an exponentially larger set of size-b sets with larger valuation.

Partition Matroid, rank as matching

- A partition matroid can be viewed using a bipartite graph.
- Letting V denote the ground set, and V_1, V_2, \ldots the partition, the bipartite graph is G = (V, I, E) where V is the ground set, I is a set of "indices", and E is the set of edges.
- $I = (I_1, I_2, \dots, I_\ell)$ is a set of $k = \sum_{i=1}^\ell k_i$ nodes, grouped into ℓ clusters, where there are k_i nodes in the i^{th} group I_i , and $|I_i| = k_i$.
- $(v,i) \in E(G)$ iff $v \in V_j$ and $i \in I_j$.

Prof. Jeff Bilmes

EE563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018

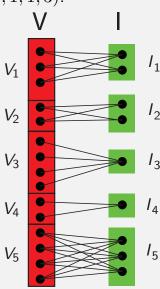
F45/46 (pg.55/56

Matroid Rank

More on Partition Matroid

Partition Matroid, rank as matching

• Example where $\ell = 5$, $(k_1, k_2, k_3, k_4, k_5) = (2, 2, 1, 1, 3)$.



- Recall, $\Gamma: 2^V \to \mathbb{R}$ as the neighbor function in a bipartite graph, the neighbors of X is defined as $\Gamma(X) = \{v \in V(G) \setminus X : E(X, \{v\}) \neq \emptyset\}$, and recall that $|\Gamma(X)|$ is submodular.
- $\bullet \mbox{ Here, for } X \subseteq V \mbox{, we have } \Gamma(X) = \{i \in I : (v,i) \in E(G) \mbox{ and } v \in X\}.$
- For such a constructed bipartite graph, the rank function of a partition matroid is $r(X) = \sum_{i=1}^{\ell} \min(|X \cap V_i|, k_i) =$ the maximum matching involving X.