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Logistics Review

Cumulative Outstanding Reading

Read chapter 1 from Fujishige’s book.
Read chapter 2 from Fujishige’s book.
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Announcements, Assignments, and Reminders

If you have any questions about anything, please ask then via our
discussion board
(https://canvas.uw.edu/courses/1216339/discussion_topics).
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Logistics Review

Class Road Map - EE563

L1(3/26): Motivation, Applications, &

Basic Definitions,

L2(3/28): Machine Learning Apps

(diversity, complexity, parameter, learning

target, surrogate).

L3(4/2): Info theory exs, more apps,

definitions, graph/combinatorial examples

L4(4/4): Graph and Combinatorial

Examples, Matrix Rank, Examples and

Properties, visualizations

L5(4/9): More Examples/Properties/

Other Submodular Defs., Independence,

L6(4/11): Matroids, Matroid Examples,

Matroid Rank, Partition/Laminar

Matroids

L7(4/16):

L8(4/18):

L9(4/23):

L10(4/25):

L11(4/30):

L12(5/2):

L13(5/7):

L14(5/9):

L15(5/14):

L16(5/16):

L17(5/21):

L18(5/23):

L–(5/28): Memorial Day (holiday)

L19(5/30):

L21(6/4): Final Presentations

maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.
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Logistics Review

Composition of non-decreasing submodular and

non-decreasing concave

Theorem 6.2.1

Given two functions, one defined on sets

f : 2V ! R (6.1)

and another continuous valued one:

� : R ! R (6.2)

the composition formed as h = � � f : 2V ! R (defined as
h(S) = �(f(S))) is nondecreasing submodular, if � is non-decreasing
concave and f is nondecreasing submodular.
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Logistics Review

Monotone difference of two functions

Let f and g both be submodular functions on subsets of V and let
(f � g)(·) be either monotone non-decreasing or monotone non-increasing
Then h : 2V ! R defined by

h(A) = min(f(A), g(A)) (6.1)

is submodular.
Proof.
If h(A) agrees with f on both X and Y (or g on both X and Y ), and since

h(X) + h(Y ) = f(X) + f(Y ) � f(X [ Y ) + f(X \ Y ) (6.2)
or

h(X) + h(Y ) = g(X) + g(Y ) � g(X [ Y ) + g(X \ Y ), (6.3)
the result (Equation ?? being submodular) follows since
f(X) + f(Y )

g(X) + g(Y )
� min(f(X [ Y ), g(X [ Y )) + min(f(X \ Y ), g(X \ Y ))

(6.4)
. . .
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Logistics Review

Arbitrary functions: difference between submodular funcs.

Theorem 6.2.1
Given an arbitrary set function h, it can be expressed as a difference
between two submodular functions (i.e., 8h 2 2V ! R,
9f, g s.t. 8A, h(A) = f(A)� g(A) where both f and g are submodular).

Proof.
Let h be given and arbitrary, and define:

↵
�
= min

X,Y :X 6✓Y,Y 6✓X

⇣
h(X) + h(Y )� h(X [ Y )� h(X \ Y )

⌘
(6.4)

If ↵ � 0 then h is submodular, so by assumption ↵ < 0. Now let f be an
arbitrary strict submodular function and define

�
�
= min

X,Y :X 6✓Y,Y 6✓X

⇣
f(X) + f(Y )� f(X [ Y )� f(X \ Y )

⌘
. (6.5)

Strict means that � > 0. . . .
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Logistics Review

Many (Equivalent) Definitions of Submodularity

f(A) + f(B) � f(A [B) + f(A \B), 8A,B ✓ V (6.16)
f(j|S) � f(j|T ), 8S ✓ T ✓ V, with j 2 V \ T (6.17)
f(C|S) � f(C|T ), 8S ✓ T ✓ V, with C ✓ V \ T (6.18)
f(j|S) � f(j|S [ {k}), 8S ✓ V with j 2 V \ (S [ {k}) (6.19)

f(A [B|A \B)  f(A|A \B) + f(B|A \B), 8A,B ✓ V (6.20)

f(T )  f(S) +
X

j2T\S

f(j|S)�
X

j2S\T

f(j|S [ T � {j}), 8S, T ✓ V

(6.21)

f(T )  f(S) +
X

j2T\S

f(j|S), 8S ✓ T ✓ V (6.22)

f(T )  f(S)�
X

j2S\T

f(j|S \ {j}) +
X

j2T\S

f(j|S \ T ) 8S, T ✓ V

(6.23)

f(T )  f(S)�
X

j2S\T

f(j|S \ {j}), 8T ✓ S ✓ V (6.24)
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Logistics Review

On Rank

Let rank : 2V ! Z+ be the rank function.
In general, rank(A)  |A|, and vectors in A are linearly independent if
and only if rank(A) = |A|.
If A,B are such that rank(A) = |A| and rank(B) = |B|, with
|A| < |B|, then the space spanned by B is greater, and we can find a
vector in B that is linearly independent of the space spanned by vectors
in A.
To stress this point, note that the above condition is |A| < |B|, not
A ✓ B which is sufficient (to be able to find an independent vector)
but not required.
In other words, given A,B with rank(A) = |A| & rank(B) = |B|, then
|A| < |B| , 9 an b 2 B such that rank(A [ {b}) = |A|+ 1.
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Logistics Review

Spanning trees/forests & incidence matrices

A directed version of the graph
(right) and its adjacency matrix
(below).
Orientation can be arbitrary.
Note, rank of this matrix is 7.
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Matroids Matroid Examples Matroid Rank More on Partition Matroid

From Matrix Rank ! Matroid

So V is set of column vector indices of a matrix.

Let I = {I1, I2, . . .} be a set of all subsets of V such that for any I 2 I,
the vectors indexed by I are linearly independent.
Given a set B 2 I of linearly independent vectors, then any subset A ✓ B
is also linearly independent.

Hence, I is down-closed or “subclusive”,
under subsets. In other words,

A ✓ B and B 2 I ) A 2 I (6.1)

maxInd: Inclusionwise maximal independent subsets (or bases) of any set
B ✓ V .

maxInd(B) , {A ✓ B : A 2 I and 8v 2 B \A,A [ {v} /2 I} (6.2)

Given any set B ⇢ V of vectors, all maximal (by set inclusion) subsets of
linearly independent vectors are the same size. That is, for all B ✓ V ,

8A1, A2 2 maxInd(B), |A1| = |A2| = rank(B) (6.3)
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Matroids Matroid Examples Matroid Rank More on Partition Matroid

From Matrix Rank ! Matroid

Let I = {I1, I2, . . .} be the set of sets as described above.

Thus, for all I 2 I, the matrix rank function has the property

r(I) = |I| (6.4)

and for any B /2 I,

r(B) = max {|A| : A ✓ B and A 2 I} < |B| (6.5)

Since all maximally independent subsets of a set are the same size, the
rank function is well defined.
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Matroids Matroid Examples Matroid Rank More on Partition Matroid

Matroid

Matroids abstract the notion of linear independence of a set of vectors
to general algebraic properties.

In a matroid, there is an underlying ground set, say E (or V ), and a
collection of subsets I = {I1, I2, . . .} of E that correspond to
independent elements.
There are many definitions of matroids that are mathematically
equivalent, we’ll see some of them here.
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Matroids Matroid Examples Matroid Rank More on Partition Matroid

Independence System

Definition 6.3.1 (set system)

A (finite) ground set E and a set of subsets of E, ; 6= I ✓ 2E is called a set
system, notated (E, I).

Set systems can be arbitrarily complex since, as stated, there is no
systematic method (besides exponential-cost exhaustive search) to
determine if a given set S ✓ E has S 2 I.

One useful property is “heredity.” Namely, a set system is a hereditary
set system if for any A ⇢ B 2 I, we have that A 2 I.
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Independence System

Definition 6.3.2 (independence (or hereditary) system)
A set system (V, I) is an independence system if

; 2 I (emptyset containing) (I1)

and

8I 2 I, J ⇢ I ) J 2 I (subclusive) (I2)

Property (I2) called “down monotone,” “down closed,” or “subclusive”

Example: E = {1, 2, 3, 4}. With I = {;, {1}, {1, 2}, {1, 2, 4}}.
Then (E, I) is a set system, but not an independence system since it is
not down closed (i.e., we have {1, 2} 2 I but not {2} 2 I).
With I = {;, {1}, {2}, {1, 2}}, then (E, I) is now an independence
(hereditary) system.
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Independence System

0

B@

1 2 3 4 5 6 7 8

1 0 0 1 1 2 1 3 1

2 0 1 1 0 2 0 2 4

3 1 1 1 0 0 3 1 5

1

CA =

0

B@

1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |

1

CA (6.6)

Given any set of linearly independent vectors A, any subset B ⇢ A will
also be linearly independent.

Given any forest Gf that is an edge-induced sub-graph of a graph G,
any sub-graph of Gf is also a forest.
So these both constitute independence systems.
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Matroid

Independent set definition of a matroid is perhaps most natural. Note, if
J 2 I, then J is said to be an independent set.

Definition 6.3.3 (Matroid)

A set system (E, I) is a Matroid if
(I1) ; 2 I
(I2) 8I 2 I, J ⇢ I ) J 2 I (down-closed or subclusive)
(I3) 8I, J 2 I, with |I| = |J |+ 1, then there exists x 2 I \ J such that

J [ {x} 2 I.

Why is (I1) is not redundant given (I2)?

Because without (I1) could have a
non-matroid where I = {}.
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On Matroids

Abstract properties of linear dependence (Hassler Whitney, 1935), but
already then found instances of objects with those properties not based
on a matrix.

Takeo Nakasawa, 1935, also early work.
Forgotten for 20 years until mid 1950s.
Matroids are powerful and flexible combinatorial objects.
The rank function of a matroid is already a very powerful submodular
function (perhaps all we need for many problems).
Understanding matroids crucial for understanding submodularity.
Matroid independent sets (i.e., A s.t. r(A) = |A|) are useful constraint
set, and fast algorithms for submodular optimization subject to one (or
more) matroid independence constraints exist.
Crapo & Rota preferred the term “combinatorial geometry”, or more
specifically a “pregeometry” and said that pregeometries are “often
described by the ineffably cacaphonic [sic] term ’matroid’, which we
prefer to avoid in favor of the term ’pregeometry’.”
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Matroid

Slight modification (non unit increment) that is equivalent.

Definition 6.3.4 (Matroid-II)

A set system (E, I) is a Matroid if
(I1’) ; 2 I
(I2’) 8I 2 I, J ⇢ I ) J 2 I (down-closed or subclusive)
(I3’) 8I, J 2 I, with |I| > |J |, then there exists x 2 I \ J such that

J [ {x} 2 I

Note (I1)=(I1’), (I2)=(I2’), and we get (I3)⌘(I3’) using induction.
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Matroids, independent sets, and bases

Independent sets: Given a matroid M = (E, I), a subset A ✓ E is
called independent if A 2 I and otherwise A is called dependent.

A base of U ✓ E: For U ✓ E, a subset B ✓ U is called a base of U if
B is inclusionwise maximally independent subset of U . That is, B 2 I
and there is no Z 2 I with B ⇢ Z ✓ U .
A base of a matroid: If U = E, then a “base of E” is just called a base
of the matroid M (this corresponds to a basis in a linear space, or a
spanning forest in a graph, or a spanning tree in a connected graph).
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Matroids - important property

Proposition 6.3.5
In a matroid M = (E, I), for any U ✓ E(M), any two bases of U have the
same size.

In matrix terms, given a set of vectors U , all sets of independent
vectors that span the space spanned by U have the same size.
In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 6.3.6 (Matroid)

A set system (V, I) is a Matroid if

(I1’) ; 2 I (emptyset containing)

(I2’) 8I 2 I, J ⇢ I ) J 2 I (down-closed or subclusive)

(I3’) 8X ✓ V , and I1, I2 2 maxInd(X), we have |I1| = |I2| (all maximally
independent subsets of X have the same size).
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Matroids - rank

Thus, in any matroid M = (E, I), 8U ✓ E(M), any two bases of U
have the same size.

The common size of all the bases of U is called the rank of U , denoted
rM (U) or just r(U) when the matroid in equation is unambiguous.
r(E) = r(E,I) is the rank of the matroid, and is the common size of all
the bases of the matroid.
We can a bit more formally define the rank function this way.

Definition 6.3.7 (matroid rank function)

The rank function of a matroid is a function r : 2E ! Z+ defined by

r(A) = max {|X| : X ✓ A,X 2 I} = max
X2I

|A \X| (6.7)

From the above, we immediately see that r(A)  |A|.
Moreover, if r(A) = |A|, then A 2 I, meaning A is independent (in
this case, A is a self base).
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Matroids, other definitions using matroid rank r : 2V ! Z+

Definition 6.3.8 (closed/flat/subspace)
A subset A ✓ E is closed (equivalently, a flat or a subspace) of matroid M
if for all x 2 E \A, r(A [ {x}) = r(A) + 1.

Definition: A hyperplane is a flat of rank r(M)� 1.

Definition 6.3.9 (closure)
Given A ✓ E, the closure (or span) of A, is defined by
span(A) = {b 2 E : r(A [ {b}) = r(A)}.

Therefore, a closed set A has span(A) = A.

Definition 6.3.10 (circuit)

A subset A ✓ E is circuit or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if r(A) < |A| and for any a 2 A, r(A \ {a}) = |A|� 1).
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Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 6.3.11 (Matroid (by bases))
Let E be a set and B be a nonempty collection of subsets of E. Then the
following are equivalent.

1 B is the collection of bases of a matroid;
2 if B,B0 2 B, and x 2 B0 \B, then B0�x+ y 2 B for some y 2 B \B0.
3 If B,B0 2 B, and x 2 B0 \B, then B� y+ x 2 B for some y 2 B \B0.

Properties 2 and 3 are called “exchange properties.”

Proof here is omitted but think about this for a moment in terms of linear
spaces and matrices, and (alternatively) spanning trees.
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Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is not
surprising that circuits can also characterize a matroid.

Theorem 6.3.12 (Matroid by circuits)
Let E be a set and C be a collection of subsets of E that satisfy the
following three properties:

1 (C1): ; /2 C
2 (C2): if C1, C2 2 C and C1 ✓ C2, then C1 = C2.
3 (C3): if C1, C2 2 C with C1 6= C2, and e 2 C1 \C2, then there exists a

C3 2 C such that C3 ✓ (C1 [ C2) \ {e}.
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Matroids by circuits

Several circuit definitions for matroids.

Theorem 6.3.13 (Matroid by circuits)
Let E be a set and C be a collection of nonempty subsets of E, such that
no two sets in C are contained in each other. Then the following are
equivalent.

1 C is the collection of circuits of a matroid;
2 if C,C 0 2 C, and x 2 C \ C 0, then (C [ C 0) \ {x} contains a set in C;
3 if C,C 0 2 C, and x 2 C \ C 0, and y 2 C \ C 0, then (C [ C 0) \ {x}

contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and matrices,
and spanning trees.
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Uniform Matroid

Given E, consider I to be all subsets of E that are at most size k.
That is I = {A ✓ E : |A|  k}.

Then (E, I) is a matroid called a k-uniform matroid.
Note, if I, J 2 I, and |I| < |J |  k, and j 2 J such that j 62 I, then j
is such that |I + j|  k and so I + j 2 I.
Rank function

r(A) =

(
|A| if |A|  k

k if |A| > k
(6.8)

Note, this function is submodular. Not surprising since
r(A) = min(|A|, k) which is a non-decreasing concave function applied
to a modular function.
Closure function

span(A) =

(
A if |A| < k,

E if |A| � k,
(6.9)

A “free” matroid sets k = |E|, so everything is independent.
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Linear (or Matric) Matroid

Let X be an n⇥m matrix and E = {1, . . . ,m}
Let I consists of subsets of E such that if A 2 I, and
A = {a1, a2, . . . , ak} then the vectors xa1 , xa2 , . . . , xak are linearly
independent.
the rank function is just the rank of the space spanned by the
corresponding set of vectors.
rank is submodular, it is intuitive that it satisfies the diminishing
returns property (a given vector can only become linearly dependent in
a greater context, thereby no longer contributing to rank).
Called both linear matroids and matric matroids.
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Cycle Matroid of a graph: Graphic Matroids

Let G = (V,E) be a graph. Consider (E, I) where the edges of the
graph E are the ground set and A 2 I if the edge-induced graph
G(V,A) by A does not contain any cycle.

Then M = (E, I) is a matroid.
I contains all forests.
Bases are spanning forests (spanning trees if G is connected).
Rank function r(A) is the size of the largest spanning forest contained
in G(V,A).
Recall from earlier, r(A) = |V (G)|� kG(A), where for A ✓ E(G), we
define kG(A) as the number of connected components of the
edge-induced spanning subgraph (V (G), A), and that kG(A) is
supermodular, so |V (G)|� kG(A) is submodular.
Closure function adds all edges between the vertices adjacent to any
edge in A. Closure of a spanning forest is G.
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Example: graphic matroid

A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Partition Matroid

Let V be our ground set.

Let V = V1 [ V2 [ · · · [ V` be a partition of V into ` blocks (i.e.,
disjoint sets). Define a set of subsets of V as

I = {X ✓ V : |X \ Vi|  ki for all i = 1, . . . , `}. (6.10)

where k1, . . . , k` are fixed “limit” parameters, ki � 0. Then M = (V, I)
is a matroid.
Note that a k-uniform matroid is a trivial example of a partition
matroid with ` = 1, V1 = V , and k1 = k.
Parameters associated with a partition matroid: ` and k1, k2, . . . , k`
although often the ki’s are all the same.
We’ll show that property (I3’) in Def 6.3.4 holds. First note, for any
X ✓ V , |X| =

P`
i=1 |X \ Vi| since {V1, V2, . . . , V`} is a partition.

If X,Y 2 I with |Y | > |X|, then there must be at least one i with
|Y \ Vi| > |X \ Vi|. Therefore, adding one element e 2 Vi \ (Y \X)
to X won’t break independence.
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Partition Matroid

Ground set of objects, V =

⇢

�
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Partition Matroid

Partition of V into six blocks, V1, V2, . . . , V6
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Partition Matroid

Limit associated with each block, {k1, k2, . . . , k6}
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Partition Matroid

Independent subset but not maximally independent.
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Partition Matroid

Maximally independent subset, what is called a base.
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Partition Matroid

Not independent since over limit in set six.
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Matroids - rank function is submodular

Lemma 6.5.1

The rank function r : 2E ! Z+ of a matroid is submodular, that is
r(A) + r(B) � r(A [B) + r(A \B)

Proof.

1 Let X 2 I be an inclusionwise maximal set with X ✓ A \B

2 Let Y 2 I be inclusionwise maximal set with X ✓ Y ✓ A [B.
3 Since M is a matroid, we know that r(A \B) = r(X) = |X|, and

r(A [B) = r(Y ) = |Y |. Also, for any U 2 I, r(A) � |A \ U |.
4 Then we have (since X ✓ A \B, X ✓ Y , and Y ✓ A [B),

r(A) + r(B)

� |Y \A|+ |Y \B|

(6.11)

= |Y \ (A \B)|+ |Y \ (A [B)| (6.12)
� |X|+ |Y | = r(A \B) + r(A [B) (6.13)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018 F33/47 (pg.102/169)



Matroids Matroid Examples Matroid Rank More on Partition Matroid

Matroids - rank function is submodular

Lemma 6.5.1

The rank function r : 2E ! Z+ of a matroid is submodular, that is
r(A) + r(B) � r(A [B) + r(A \B)

Proof.
1 Let X 2 I be an inclusionwise maximal set with X ✓ A \B

2 Let Y 2 I be inclusionwise maximal set with X ✓ Y ✓ A [B.
3 Since M is a matroid, we know that r(A \B) = r(X) = |X|, and

r(A [B) = r(Y ) = |Y |. Also, for any U 2 I, r(A) � |A \ U |.
4 Then we have (since X ✓ A \B, X ✓ Y , and Y ✓ A [B),

r(A) + r(B)

� |Y \A|+ |Y \B|

(6.11)

= |Y \ (A \B)|+ |Y \ (A [B)| (6.12)
� |X|+ |Y | = r(A \B) + r(A [B) (6.13)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018 F33/47 (pg.103/169)

•
rain HKH ) . fvt(ANBHX

xtr at I



Matroids Matroid Examples Matroid Rank More on Partition Matroid

Matroids - rank function is submodular

Lemma 6.5.1

The rank function r : 2E ! Z+ of a matroid is submodular, that is
r(A) + r(B) � r(A [B) + r(A \B)

Proof.
1 Let X 2 I be an inclusionwise maximal set with X ✓ A \B

2 Let Y 2 I be inclusionwise maximal set with X ✓ Y ✓ A [B. We
can find such a Y ◆ X because the following. Let Y 0 2 I be any inclusionwise
maximal set with Y 0 ✓ A [B, which might not have X ✓ Y 0. Starting from
Y  X ✓ A [B, since |Y 0| � |X|, there exists a y 2 Y 0 \ X ✓ A [B such that
X + y 2 I but since y 2 A [B, also X + y 2 A [B — we then add y to Y . We
can keep doing this while |Y 0| > |X| since this is a matroid. We end up with an
inclusionwise maximal set Y with Y 2 I and X ✓ Y .

3 Since M is a matroid, we know that r(A \B) = r(X) = |X|, and
r(A [B) = r(Y ) = |Y |. Also, for any U 2 I, r(A) � |A \ U |.

4 Then we have (since X ✓ A \B, X ✓ Y , and Y ✓ A [B),

r(A) + r(B)

� |Y \A|+ |Y \B|

(6.11)

= |Y \ (A \B)|+ |Y \ (A [B)| (6.12)
� |X|+ |Y | = r(A \B) + r(A [B) (6.13)
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Matroids - rank function is submodular

Lemma 6.5.1

The rank function r : 2E ! Z+ of a matroid is submodular, that is
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Proof.
1 Let X 2 I be an inclusionwise maximal set with X ✓ A \B

2 Let Y 2 I be inclusionwise maximal set with X ✓ Y ✓ A [B.
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Matroids - rank function is submodular

Lemma 6.5.1

The rank function r : 2E ! Z+ of a matroid is submodular, that is
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Proof.
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Matroids - rank function is submodular

Lemma 6.5.1

The rank function r : 2E ! Z+ of a matroid is submodular, that is
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Proof.
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= |Y \ (A \B)|+ |Y \ (A [B)| (6.12)
� |X|+ |Y | = r(A \B) + r(A [B) (6.13)

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018 F33/47 (pg.109/169)



Matroids Matroid Examples Matroid Rank More on Partition Matroid

A matroid is defined from its rank function

Theorem 6.5.2 (Matroid from rank)

Let E be a set and let r : 2E ! Z+ be a function. Then r(·) defines a
matroid with r being its rank function if and only if for all A,B ✓ E:

(R1) 8A ✓ E 0  r(A)  |A| (non-negative cardinality bounded)
(R2) r(A)  r(B) whenever A ✓ B ✓ E (monotone non-decreasing)
(R3) r(A [B) + r(A \B)  r(A) + r(B) for all A,B ✓ E (submodular)

From above, r(;) = 0. Let v /2 A, then by monotonicity and
submodularity, r(A)  r(A [ {v})  r(A) + r({v}) which gives only
two possible values to r(A [ {v}).

Hence, unit increment (if r(A) = k, then either r(A [ {v}) = k or
r(A [ {v}) = k + 1) holds.
Thus, submodularity, non-negative monotone non-decreasing, and unit
increment of rank is necessary and sufficient to define a matroid.
Can refer to matroid as (E, r), E is ground set, r is rank function.
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A matroid is defined from its rank function

Theorem 6.5.2 (Matroid from rank)

Let E be a set and let r : 2E ! Z+ be a function. Then r(·) defines a
matroid with r being its rank function if and only if for all A,B ✓ E:

(R1) 8A ✓ E 0  r(A)  |A| (non-negative cardinality bounded)
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submodularity, r(A)  r(A [ {v})  r(A) + r({v}) which gives only
two possible values to r(A [ {v}).
Hence, unit increment (if r(A) = k, then either r(A [ {v}) = k or
r(A [ {v}) = k + 1) holds.

Thus, submodularity, non-negative monotone non-decreasing, and unit
increment of rank is necessary and sufficient to define a matroid.
Can refer to matroid as (E, r), E is ground set, r is rank function.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018 F34/47 (pg.111/169)



Matroids Matroid Examples Matroid Rank More on Partition Matroid

A matroid is defined from its rank function

Theorem 6.5.2 (Matroid from rank)

Let E be a set and let r : 2E ! Z+ be a function. Then r(·) defines a
matroid with r being its rank function if and only if for all A,B ✓ E:

(R1) 8A ✓ E 0  r(A)  |A| (non-negative cardinality bounded)
(R2) r(A)  r(B) whenever A ✓ B ✓ E (monotone non-decreasing)
(R3) r(A [B) + r(A \B)  r(A) + r(B) for all A,B ✓ E (submodular)

From above, r(;) = 0. Let v /2 A, then by monotonicity and
submodularity, r(A)  r(A [ {v})  r(A) + r({v}) which gives only
two possible values to r(A [ {v}).
Hence, unit increment (if r(A) = k, then either r(A [ {v}) = k or
r(A [ {v}) = k + 1) holds.
Thus, submodularity, non-negative monotone non-decreasing, and unit
increment of rank is necessary and sufficient to define a matroid.

Can refer to matroid as (E, r), E is ground set, r is rank function.
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A matroid is defined from its rank function

Theorem 6.5.2 (Matroid from rank)

Let E be a set and let r : 2E ! Z+ be a function. Then r(·) defines a
matroid with r being its rank function if and only if for all A,B ✓ E:
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From above, r(;) = 0. Let v /2 A, then by monotonicity and
submodularity, r(A)  r(A [ {v})  r(A) + r({v}) which gives only
two possible values to r(A [ {v}).
Hence, unit increment (if r(A) = k, then either r(A [ {v}) = k or
r(A [ {v}) = k + 1) holds.
Thus, submodularity, non-negative monotone non-decreasing, and unit
increment of rank is necessary and sufficient to define a matroid.
Can refer to matroid as (E, r), E is ground set, r is rank function.
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Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank).
Given a matroid M = (E, I), we see its rank function as defined in
Eq. 6.7 satisfies (R1), (R2), and, as we saw in Lemma 6.5.1, (R3) too.

Next, assume we have (R1), (R2), and (R3). Define
I = {X ✓ E : r(X) = |X|}. We will show that (E, I) is a matroid.
First, ; 2 I.
Also, if Y 2 I and X ✓ Y then by submodularity,

r(X) � r(Y )� r(Y \X)

+ r(;)

(6.14)
� |Y |� |Y \X| (6.15)
= |X| (6.16)

implying r(X) = |X|, and thus X 2 I.

. . .
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Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank).
Given a matroid M = (E, I), we see its rank function as defined in
Eq. 6.7 satisfies (R1), (R2), and, as we saw in Lemma 6.5.1, (R3) too.
Next, assume we have (R1), (R2), and (R3). Define
I = {X ✓ E : r(X) = |X|}. We will show that (E, I) is a matroid.

First, ; 2 I.
Also, if Y 2 I and X ✓ Y then by submodularity,

r(X) � r(Y )� r(Y \X)

+ r(;)

(6.14)
� |Y |� |Y \X| (6.15)
= |X| (6.16)

implying r(X) = |X|, and thus X 2 I.

. . .
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Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank).
Given a matroid M = (E, I), we see its rank function as defined in
Eq. 6.7 satisfies (R1), (R2), and, as we saw in Lemma 6.5.1, (R3) too.
Next, assume we have (R1), (R2), and (R3). Define
I = {X ✓ E : r(X) = |X|}. We will show that (E, I) is a matroid.
First, ; 2 I.

Also, if Y 2 I and X ✓ Y then by submodularity,

r(X) � r(Y )� r(Y \X)

+ r(;)

(6.14)
� |Y |� |Y \X| (6.15)
= |X| (6.16)

implying r(X) = |X|, and thus X 2 I.

. . .
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Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank).
Given a matroid M = (E, I), we see its rank function as defined in
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Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank) cont.
Let A,B 2 I, with |A| < |B|, so r(A) = |A| < r(B) = |B|. Let
B \A = {b1, b2, . . . , bk} (note 1  k  |B|).

Suppose, to the contrary, that 8b 2 B \A, A+ b /2 I, which means for
all such b, r(A+ b) = r(A) = |A| < |A|+ 1. Then

r(B)  r(A [B) (6.17)
 r(A [ (B \ {b1})) + r(A [ {b1})� r(A) (6.18)
= r(A [ (B \ {b1}) (6.19)
 r(A [ (B \ {b1, b2})) + r(A [ {b2})� r(A) (6.20)
= r(A [ (B \ {b1, b2})) (6.21)
 . . .  r(A) = |A| < |B| (6.22)

giving a contradiction since B 2 I.
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Matroids from rank II

Another way of using function r to define a matroid.

Theorem 6.5.3 (Matroid from rank II)

Let E be a finite set and let r : 2E ! Z+ be a function. Then r(·) defines a
matroid with r being its rank function if and only if for all X ✓ E, and
x, y 2 E:

(R1’) r(;) = 0;
(R2’) r(X)  r(X [ {y})  r(X) + 1;
(R3’) If r(X [ {x}) = r(X [ {y}) = r(X), then r(X [ {x, y}) = r(X).
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Matroids by submodular functions

Theorem 6.5.4 (Matroid by submodular functions)

Let f : 2E ! Z be a integer valued monotone non-decreasing submodular
function. Define a set of sets as follows:

C(f) =
n
C ✓ E : C is non-empty,

is inclusionwise-minimal,

and has f(C) < |C|
o

(6.23)

Then C(f) is the collection of circuits of a matroid on E.

Inclusionwise-minimal in this case means that if C 2 C(f), then there exists
no C 0 ⇢ C with C 0 2 C(f) (i.e., C 0 ⇢ C would either be empty or have
f(C 0) � |C 0|). Also, recall inclusionwise-minimal in Definition 6.3.10, the
definition of a circuit.
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Summarizing: Many ways to define a Matroid

Summarizing what we’ve so far seen, we saw that it is possible to uniquely
define a matroid based on any of:

Independence (define the independent sets).

Base axioms (exchangeability)
Circuit axioms
Closure axioms (we didn’t see this, but it is possible)
Rank axioms (normalized, monotone, cardinality bounded, non-negative
integral, submodular)
Matroids by integral submodular functions.
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Maximization problems for matroids

Given a matroid M = (E, I) and a modular cost function c : E ! R,
the task is to find an X 2 I such that c(X) =

P
x2X c(x) is maximum.

This seems remarkably similar to the max spanning tree problem.
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Minimization problems for matroids

Given a matroid M = (E, I) and a modular cost function c : E ! R,
the task is to find a basis B 2 B such that c(B) is minimized.
This sounds like a set cover problem (find the minimum cost covering
set of sets).
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Partition Matroid

What is the partition matroid’s rank function?

A partition matroids rank function:

r(A) =
X̀

i=1

min(|A \ Vi|, ki) (6.24)

which we also immediately see is submodular using properties we spoke
about last week. That is:

1 |A \ Vi| is submodular (in fact modular) in A
2 min(submodular(A), ki) is submodular in A since |A \ Vi| is monotone.
3 sums of submodular functions are submodular.

r(A) is also non-negative integral monotone non-decreasing, so it
defines a matroid (the partition matroid).
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Partition Matroid

What is the partition matroid’s rank function?
A partition matroids rank function:

r(A) =
X̀

i=1

min(|A \ Vi|, ki) (6.24)

which we also immediately see is submodular using properties we spoke
about last week. That is:

1 |A \ Vi| is submodular (in fact modular) in A
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3 sums of submodular functions are submodular.

r(A) is also non-negative integral monotone non-decreasing, so it
defines a matroid (the partition matroid).
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From 2-partition matroid rank to truncated matroid rank

Example: 2-partition matroid rank function: Given natural numbers
a, b 2 Z+ with a < b, and any set R ✓ V with |R| = b.

Create two-block partition V = (R, R̄), where R̄ = V \R so
|R̄| = |V |� b. Gives 2-partition matroid rank function as follows:

r(A) = min(|A \R|, a) + min(|A \ R̄|, |R̄|) (6.25)
= min(|A \R|, a) + |A \ R̄| (6.26)
= min(|A \ R̄|+ |A \R|, |A \ R̄|+ a) (6.27)
= min(|A|, |A \ R̄|+ a) (6.28)

Figure showing partition blocks and partition matroid limits.
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V

R̄

R a < |R| = b
a

|V | b�
Since |R̄| = |V |� b

the limit on R̄ is vacuous.
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Truncated Matroid Rank Function

Define truncated matroid rank function. Start with 2-partition matroid
rank r(A) = min(|A \R|, a) + min(|A \ R̄|, |R̄|), a < b. Define:

fR(A) = min
n
r(A) , b

o
(6.29)

= min
n
min(|A|, |A \ R̄|+ a) , b

o
(6.30)

= min
�
|A|, a+ |A \ R̄|, b

 
(6.31)

Defines a matroid M = (V, fR) = (V, I) (Goemans et. al.) with
I = {I ✓ V : |I|  b and |I \R|  a}, (6.32)

Useful for showing hardness of constrained submodular minimization.
Consider sets B ✓ V with |B| = b.

For R, we have fR(R) = min(b, a, b) = a < b.
For any B with |B \R|  a, fR(B) = b.
For any B with |B \R| = `, with a  `  b, fR(B) = a+ b� `.
R, the set with minimum valuation amongst size-b sets, is hidden
within an exponentially larger set of size-b sets with larger valuation.
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Partition Matroid, rank as matching

A partition matroid can be viewed using a bipartite graph.
Letting V denote the ground set, and V1, V2, . . . the partition, the
bipartite graph is G = (V, I, E) where V is the ground set, I is a set of
“indices”, and E is the set of edges.
I = (I1, I2, . . . , I`) is a set of k =

P`
i=1 ki nodes, grouped into `

clusters, where there are ki nodes in the ith group Ii, and |Ii| = ki.
(v, i) 2 E(G) if‌f v 2 Vj and i 2 Ij .
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Partition Matroid, rank as matching

Example where ` = 5,
(k1, k2, k3, k4, k5) =
(2, 2, 1, 1, 3).

I1

I2

I3

I4

I5

V1

V2

V3

V4

V5

V I

Recall, � : 2V ! R as the neighbor
function in a bipartite graph, the
neighbors of X is defined as �(X) =
{v 2 V (G) \X : E(X, {v}) 6= ;}, and
recall that |�(X)| is submodular.
Here, for X ✓ V , we have �(X) =
{i 2 I : (v, i) 2 E(G) and v 2 X}.
For such a constructed bipartite graph,
the rank function of a partition matroid
is r(X) =

P`
i=1min(|X \ Vi|, ki) = the

maximum matching involving X.
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Laminar Family and Laminar Matroid

We can define a matroid with structures richer than just partitions.

A set system (V,F) is called a laminar family if for any two sets
A,B 2 F , at least one of the three sets A \B, A \B, or B \A is empty.

Family is laminar 9 no two properly intersecting members: 8A,B 2 F ,
either A,B disjoint (A \B = ;) or comparable (A ✓ B or B ✓ A).
Suppose we have a laminar family F of subsets of V and an integer kA for
every set A 2 F .

Then (V, I) defines a matroid where

I = {I ✓ E : |I \A|  kA for all A 2 F} (6.33)

Exercise: what is the rank function here?
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