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Cumulative Outstanding Reading

@ Read chapter 1 from Fujishige’s book.
@ Read chapter 2 from Fujishige’s book.
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Logistics

Announcements, Assignments, and Reminders

@ If you have any questions about anything, please ask then via our
discussion board
(https://canvas.uw.edu/courses/1216339/discussion_topics).
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Logi
11

Class Road Map - EE563

L1(3/26): Motivation, Applications, &
Basic Definitions,

L2(3/28): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).

L3(4/2): Info theory exs, more apps,
definitions, graph/combinatorial examples
L4(4/4): Graph and Combinatorial
Examples, Matrix Rank, Examples and
Properties, visualizations

L5(4/9): More Examples/Properties/
Other Submodular Defs., Independence,

L6(4/11): Matroids, Matroid Examples,
Matroid Rank, Partition/Laminar
Matroids

L7(4/16):
L8(4/18):
L9(4/23):
L10(4/25):

L11(4/30):

L12(5/2):

L13(5/7):

L14(5/9):

L15(5/14):

L16(5/16):

L17(5/21):

L18(5/23):

L—(5/28): Memorial Day (holiday)
L19(5/30):

L21(6/4): Final Presentations
maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.

Prof. Jeff Bilmes
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Composition of non-decreasing submodular and
non-decreasing concave

Theorem 6.2.1

Given two functions, one defined on sets

f:2¥ >R (6.1)
and another continuous valued one:

$:R—R (6.2)

the composition formed as h = ¢ o f : 2V — R (defined as
h(S) = ¢(f(S))) is nondecreasing submodular, if ¢ is non-decreasing
concave and f is nondecreasing submodular.
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Monotone difference of two functions

Let f and g both be submodular functions on subsets of V' and let
(f — g)(-) be either monotone non-decreasing or monotone non-increasing
Then h : 2V — R defined by

h(A) = min(f(4),9(A)) (6.1)
is submodular.

Proof.
If h(A) agrees with f on both X and Y (or g on both X and Y), and since
WX) +h(Y) = F(X)+ f(Y) = F(XUY) + f(XNY) (6.2)

or
hMX) +h(Y) = g(X) +9(Y) 2 g(XUY) +g(X NY), (6.3)
the result (Equation ?? being submodular) follows since

P+ SO L |
9(X) + g(Y) >min(f(XUY),g(XUY))+min(f(XNY),g(XN z;)))
4
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Arbitrary functions: difference between submodular funcs.

Theorem 6.2.1

Given an arbitrary set function h, it can be expressed as a difference
between two submodular functions (i.e., Yh € 2V — R,
3f,g s.t. VA, h(A) = f(A) — g(A) where both f and g are submodular).

Proof.
Let h be given and arbitrary, and define:

A .
2 X)+h(Y)—h(XUY)-hXNY ) 4
a2 Lmin  (R(X)+A(Y) -h(XUY)=h(XNY))  (64)
If @ > 0 then h is submodular, so by assumption oz < 0. Now let f be an
arbitrary strict submodular function and define

B= X,Y:)grg/{ygx(f(X) FAY) - f(XUY) = f(X N Y)). (6.5)

Strict means that 5 > 0.
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Many (Equivalent) Definitions of Submodularity

f(A)+f(B) > f(AUB)+ f(ANB), VA,BCV (6.16)
fG1S) > f(GIT), VS CT CV, with j € V\T (6.17)
f(C|S) = F(CIT),NS CT CV, withC CV\T (6.18)
FG1S) = fGISU{kY), VSC V with j e V\ (SU{k})  (6.19)
f(AUB|AﬂB) < f(A|JAnB)+ f(BIJANnB), VA, BCV (6.20)
F@)<FS)+ D fGIS) = D FUISUT = {j}), ¥S,TCV
JET\S JjES\T
6.21)
FT) < FS)+ D fGlS), vScTCV (6.22)
JET\S
F@) <) = Y fGIS\GH+ D fGISnT)vS,TCV
JES\T JET\S
6.23
F) < f(S) = D fUIS\ {4}, vTcScV (6.24)

JES\T




o Let rank : 2V — Z_ be the rank function.

@ In general, rank(A) < |A|, and vectors in A are linearly independent if
and only if rank(A) = | A|.

e If A, B are such that rank(A) = |A| and rank(B) = | B|, with
|A| < |B|, then the space spanned by B is greater, and we can find a
vector in B that is linearly independent of the space spanned by vectors
in A.

@ To stress this point, note that the above condition is |A| < |B|, not
A C B which is sufficient (to be able to find an independent vector)
but not required.

@ In other words, given A, B with rank(A) = |A| & rank(B) = |B|, then
|A| < |B| < 3 an b € B such that rank(A U {b}) = |A| + 1.
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Spanning trees/forests & incidence matrices

@ A directed version of the graph
(right) and its adjacency matrix
(below).

@ Orientation can be arbitrary.

@ Note, rank of this matrix is 7.

1 3 4 ) 6
1 /-1 1 0 0 0 0
21 1 0 -1 0 1 0
310 -1 0 1 0 -1
41 0 0 1 -1 0 0
51 0 0 0 0 0 1
61 0 0 0 0 0 0
7{ O 0 0 0 -1 0
8\ 0 0 0 0 0 0
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Matroids
[ ARRRRRRARRRNRAN]

From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.
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Matroids
[ ARRRRRRARNRNRAN]

From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

@ Let Z ={I4,I5,...} be a set of all subsets of V' such that for any I € Z,
the vectors indexed by I are linearly independent.

Prof. Jeff Bilmes EES563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018 F11/47 (pg.12/169)



Matroids
[ ARRRRRRARNRNRAN]

From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

o Let Z ={I1,1o,...} be a set of all subsets of V' such that for any I € Z,
the vectors indexed by I are linearly independent.

@ Given a set B € Z of linearly independent vectors, then any subset A C B
is also linearly independent.
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Matroids
[ ARRRRRRARNRNRAN]

From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

o Let Z ={I1,1o,...} be a set of all subsets of V' such that for any I € Z,
the vectors indexed by I are linearly independent.

e Given a set B € T of linearly independent vectors, then any subset A C B
is also linearly independent. Hence, 7 is down-closed or “subclusive”,
under subsets.
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Matroids
[ ARRRRRRARNRNRAN]

From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

o Let Z ={I1,1o,...} be a set of all subsets of V' such that for any I € Z,
the vectors indexed by I are linearly independent.

e Given a set B € T of linearly independent vectors, then any subset A C B
is also linearly independent. Hence, Z is down-closed or “subclusive”,
under subsets. In other words,

ACBend@ el -@AcT (6.1)
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From Matrix Rank — Matroid

@ So V is set of column vector indices of a matrix.

o Let Z ={I1,1o,...} be a set of all subsets of V' such that for any I € Z,
the vectors indexed by I are linearly independent.

e Given a set B € T of linearly independent vectors, then any subset A C B
is also linearly independent. Hence, Z is down-closed or “subclusive”,
under subsets. In other words,

ACBand BeI=Acl (6.1)

e maxInd: Inclusionwisermaximal independent subsets (or bases) of any set
BCV.

maxind(B) £ {AC B: A € T and§Yo@BNAAU v} €2} (6.2)

LS-,_/]' ,7+ lat«JL) ot . * V(}

X
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From Matrix Rank — Matroid

So V is set of column vector indices of a matrix.

Let Z = {I1, I5,...} be a set of all subsets of V" such that for any I € Z,
the vectors indexed by I are linearly independent.

Given a set B € Z of linearly independent vectors, then any subset A C B
is also linearly independent. Hence, Z is down-closed or “subclusive”,
under subsets. In other words,

ACBand BeI=Acl (6.1)

maxInd: Inclusionwise maximal independent subsets (or bases) of any set
BCV.

maxind(B) £ {ACB:AcZandVYve B\ A, AU{v} ¢TI} (6.2)

Given any set B C V of vectors, all maximal (by set inclusion) subsets of
linearly independent vectors are the same size. That is, for all B C V,

VA1, Ay € maxInd(B), |A1| = |As| = rank(B) (6.3)
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Matroids
[ERRRRRRRRRRRRNN]

From Matrix Rank — Matroid

@ Let Z ={I4,Is,...} be the set of sets as described above.
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From Matrix Rank — Matroid

and for any B ¢ 7,

r(B) =max{|A|: AC Band A€ 7} < |B]| (6.5)

Since all maximally independent subsets of a set are the same size, the
rank function is well defined.

EES563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018 F12/47 (pg.19/169)



Matroids
[RLRRERRRRRRRRAN]

Matroid

@ Matroids abstract the notion of linear independence of a set of vectors
to general algebraic properties.
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Matroids
[RLRRRRRRRRRRRAN]

Matroid

@ Matroids abstract the notion of linear independence of a set of vectors
to general algebraic properties.

@ In a matroid, there is an underlying ground set, say(E (or), and a
collection of subset§ Z=H1, Is,...}hof E that correspond to
independent elements.
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Matroids
[RLRRERRRRRRRRAN]

Matroid

@ Matroids abstract the notion of linear independence of a set of vectors
to general algebraic properties.

@ In a matroid, there is an underlying ground set, say E (or V'), and a
collection of subsets Z = {I1, I»,...} of E that correspond to
independent elements.

@ There are many definitions of matroids that are mathematically
equivalent, we'll see some of them here.

F13/47 (pg.22/169)
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Matroids
[RRLRRRRRRRRRRAN]

Independence System

Definition 6.3.1 (set system)

A (finite) ground set E and a set of subsets of E, () # T C 2% is called a set
system, notated (E,7).

@ Set systems can be arbitrarily complex since, as stated, there is no
systematic method (besides exponential-cost exhaustive search) to
determine if a given set S C E has S € 7.
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Matroids
[RRLRRRRRRRRRRAN]

Independence System

Definition 6.3.1 (set system)

A (finite) ground set E and a set of subsets of E, () # T C 2% is called a set
system, notated (E,7).

@ Set systems can be arbitrarily complex since, as stated, there is no
systematic method (besides exponential-cost exhaustive search) to
determine if a given set S C E has S € 7.

@ One useful property is “heredity.” Namely, a set system is a hereditary
set system if for any A C B € Z, we have that A € 7. CJD“‘:UI
clos
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Matroids
[RERR ERRRRRRRRAN]

Independence System

Definition 6.3.2 (independence (or hereditary) system)
A set system (V,Z) is an independence system if

) €T (emptyset containing)
and

VIeZ,JCI=JeZ (subclusive)

(1)

(12)

@ Property (12) called “down monotone,” “down closed,” or “subclusive”

EES563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018

F15/47 (pg.25/169)




ids
[RERR ERRRRRRRRAN]

Independence System

Definition 6.3.2 (independence (or hereditary) system)
A set system (V,Z) is an independence system if

) € Z (emptyset containing)

and

VIeZ,JCI=JeZ (subclusive)

(1)

(12)

v

@ Property (12) called “down monotone,” “down closed,” or “subclusive”
e Example: F ={1,2,3,4}. With Z = {0, {1},{1,2},{1,2,4}}.
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ids
[RERR ERRRRRRRRAN]

Independence System

Definition 6.3.2 (independence (or hereditary) system)

A set system (V,Z) is an independence system if
) €Z (emptyset containing) (11)
and
VIeZ,JCI=JeZ (subclusive) (12)

v

@ Property (12) called “down monotone,” “down closed,” or “subclusive”
e Example: F ={1,2,3,4}. With Z = {0, {1},{1,2},{1,2,4}}.
@ Then (E,Z) is a set system, but not an independence system since it is

not down closed (¥g:, we have {1,2} € Z but not {2} € 7).
Lﬁ'-)
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ids
[RERR ERRRRRRRRAN]

Independence System

Definition 6.3.2 (independence (or hereditary) system)
A set system (V,Z) is an independence system if

) € Z (emptyset containing) (11)

and

VIeZ,JCI=JeZ (subclusive) (12)

@ Property (12) called “down monotone,” “down closed,” or “subclusive”

e Example: F ={1,2,3,4}. With Z = {0,{1},{1,2},{1,2,4}}.

@ Then (E,Z) is a set system, but not an independence system since it is
not down closed (i.e., we have {1,2} € Z but not {2} € 7).

o With Z = {0,{1},{2},{1,2}}, then (E,Z) is now an independence
(hereditary) system.
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Matroids
[RERRE ERRRRRRRAN]

Independence System

4
1
0
0

1 2 3 4 5 6 7 8
e

Ty ®y w3 w4 w5 x6 w7 a8 | (6.6)

= o O =
e == V]
= =W
S NN Ot
w o = o
= N W 3
Tl = 00
I

@ Given any set of linearly independent vectors A, any subset B C A will
also be linearly independent.
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Matroids
[RERRE ERRRRRRRAN]

Independence System

4
1
0
0

1 2 3 4 5 6 7 8
e

Ty ®y w3 w4 w5 x6 w7 a8 | (6.6)

= o O =
e == V]
= =W
S NN Ot
w o = o
= N W 3
Tl = 00
I

@ Given any set of linearly independent vectors A, any subset B C A will
also be linearly independent.

@ Given any forest Gif that is an edge-induced sub-graph of a graph G,
any sub-graph of G is also a forest.
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Matroids
[RERRE ERRRRRRRAN]

Independence System

1
L (0
0
1

1 2 3 4 5 6 7 8
e

Ty ®y w3 w4 w5 x6 w7 a8 | (6.6)

— = O N
= = = W
O O
S NN Ot
w o = O
= N W 3
G~ 0o
I

@ Given any set of linearly independent vectors A, any subset B C A will
also be linearly independent.

o Given any forest G ¢ that is an edge-induced sub-graph of a graph G,
any sub-graph of G is also a forest.

@ So these both constitute independence systems.
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Independent set definition of a matroid is perhaps most natural. Note, if
J € Z, then J is said to be an independent set.

Definition 6.3.3 (Matroid)

A set system (E,7) is a Matroid if
(1) 0ez
(12) VI €Z,J C I = J € T (down-closed or subclusive)

(13) VI,J € Z, with'|I| = |[J]| + 1, then there exists @ €1\ J'such that
JU{z} eT.

Why is (11) is not redundant given (12)7?
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Independent set definition of a matroid is perhaps most natural. Note, if
J € Z, then J is said to be an independent set.

Definition 6.3.3 (Matroid)

A set system (E,7) is a Matroid if
(1) 0ez
(12) VI €Z,J Cc I = J € T (down-closed or subclusive)

(13) VI, J € Z, with |I| = |J| + 1, then there exists € I \ J such that
Ju{z} eT.

Why is (11) is not redundant given (12)? Because without (I1) could have a
non-matroid where Z = {}.
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Matroids
[RERRENA RRRRRRAN]

On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935), but
already then found instances of objects with those properties not based
on a matrix.
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Matroids
[RERRENA RRRRRRAN]

On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935), but
already then found instances of objects with those properties not based
on a matrix.

@ Takeo Nakasawa, 1935, also early work.

Prof. Jeff Bilmes EES563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018 F18/47 (pg.35/169)



Matroids
[RERRENA RRRRRRAN]

On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935), but
already then found instances of objects with those properties not based
on a matrix.

@ Takeo Nakasawa, 1935, also early work.

@ Forgotten for 20 years until mid 1950s.
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Matroids
[RERRENA RRRRRRAN]

On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935), but
already then found instances of objects with those properties not based
on a matrix.

@ Takeo Nakasawa, 1935, also early work.
o Forgotten for 20 years until mid 1950s.
@ Matroids are powerful and flexible combinatorial objects.
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Matroids

On Matroids

Abstract properties of linear dependence (Hassler Whitney, 1935), but

already then found instances of objects with those properties not based
on a matrix.

Takeo Nakasawa, 1935, also early work.

Forgotten for 20 years until mid 1950s.

Matroids are powerful and flexible combinatorial objects.

The rank function of a matroid is already a very powerful submodular

function (perhaps all we need for many problems).
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Matroids

On Matroids

Abstract properties of linear dependence (Hassler Whitney, 1935), but

already then found instances of objects with those properties not based
on a matrix.

Takeo Nakasawa, 1935, also early work.

Forgotten for 20 years until mid 1950s.

Matroids are powerful and flexible combinatorial objects.

The rank function of a matroid is already a very powerful submodular

function (perhaps all we need for many problems).

Understanding matroids crucial for understanding submodularity.
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Matroids

On Matroids

Abstract properties of linear dependence (Hassler Whitney, 1935), but
already then found instances of objects with those properties not based
on a matrix.

Takeo Nakasawa, 1935, also early work.

Forgotten for 20 years until mid 1950s.

Matroids are powerful and flexible combinatorial objects.

The rank function of a matroid is already a very powerful submodular
function (perhaps all we need for many problems).

Understanding matroids crucial for understanding submodularity.
Matroid independent sets (i.e., A s.t. r(A) = | A|) are useful constraint
set, and fast algorithms for submodular optimization subject to one (or
more) matroid independence constraints exist.
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Matroids
[RERRENA RRRRRRAN]

On Matroids

@ Abstract properties of linear dependence (Hassler Whitney, 1935), but
already then found instances of objects with those properties not based
on a matrix.

Takeo Nakasawa, 1935, also early work.

Forgotten for 20 years until mid 1950s.

Matroids are powerful and flexible combinatorial objects.

The rank function of a matroid is already a very powerful submodular

function (perhaps all we need for many problems).

Understanding matroids crucial for understanding submodularity.

e Matroid independent sets (i.e., A s.t. r(A) = | A|) are useful constraint
set, and fast algorithms for submodular optimization subject to one (or
more) matroid independence constraints exist.

@ Crapo & Rota preferred the term “combinatorial geometry”, or more
specifically a “pregeometry” and said that pregeometries are “often
described by the ineffably cacaphonic [sic] term 'matroid’, which we
prefer to avoid in favor of the term 'pregeometry’.”
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Matroids
[RERRRRRL ERRRRAN]

Matroid

Slight modification (non unit increment) that is equivalent.

Definition 6.3.4 (Matroid-I1)

A set system (E,Z) is a Matroid if

(11" ez

(12"y VI €Z,J C I = JeZ (down-closed or subclusive)

(13") VI, J € Z, with' |I| > |J
Ju{z}eZ

, then there exists z € I\ J such that

Note (11)=(11"), (12)=(12"), and we get (I3)=(I3") using induction.
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Matroids
[RERRRRARE NRRRAN]

Matroids, independent sets, and bases

@ Independent sets: Given a matroid M = (E,Z), a subset AC E'is
called independent if A € 7 and otherwise A is called dependent.
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Matroids
[RERRRRARE NRRRAN]

Matroids, independent sets, and bases

@ Independent sets: Given a matroid M = (F,Z), a subset A C F is
called independent if A € 7 and otherwise A is called dependent.

@ A base of U C E: For U C E, a subset B C U is called a base of U if
B is inclusionwise maximally independent subset of U. Thatis, B € 7
and thereisno Z € Zwith BC Z CU.

E> l') ~ bupx o} v

W P € s -4 (V)

F20/47 (pg.44/169)
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Matroids
[RERRRRARE NRRRAN]

Matroids, independent sets, and bases

@ Independent sets: Given a matroid M = (F,Z), a subset A C F is
called independent if A € 7 and otherwise A is called dependent.

o A base of U C E: For U C E, a subset B C U is called a base of U if
B is inclusionwise maximally independent subset of U. Thatis, B € Z
and thereisno Z € Zwith BC Z CU.

@ A base of a matroid: If U = E, then a “base of E" is just called a base
of the matroid M (this corresponds to a basis in a linear space, or a
spanning forest in a graph, or a spanning tree in a connected graph).
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Matroids
[RERRERARRE NRRAN]

Matroids - important property

Proposition 6.3.5

In a matroid M = (E,I), for any U C E(M), any two bases of U have the
same size.
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Matroids
[RERRERARRE NRRAN]

Matroids - important property

Proposition 6.3.5

In a matroid M = (E,I), for any U C E(M), any two bases of U have the
same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.
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Matroids
[RERRERARRE NRRAN]

Matroids - important property

Proposition 6.3.5

In a matroid M = (E,I), for any U C E(M), any two bases of U have the
same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

e In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.
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Matroids
[RERRERARRE NRRAN]

Matroids - important property

Proposition 6.3.5

In a matroid M = (E,I), for any U C E(M), any two bases of U have the
same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

e In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 6.3.6 (Matroid)

A set system (V,Z) is a Matroid if
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Matroids
[RERRERARRE NRRAN]

Matroids - important property

Proposition 6.3.5

In a matroid M = (E,I), for any U C E(M), any two bases of U have the
same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

e In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 6.3.6 (Matroid)

A set system (V,Z) is a Matroid if
(I1") 0 € Z (emptyset containing)
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Matroids - important property

Proposition 6.3.5

In a matroid M = (E,I), for any U C E(M), any two bases of U have the
same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

e In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 6.3.6 (Matroid)

A set system (V,Z) is a Matroid if
(I1") @ € Z (emptyset containing)
(I12") VI €Z,J C I = J €T (down-closed or subclusive)
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[RERRERARRE NRRAN]

Matroids - important property

Proposition 6.3.5

In a matroid M = (E,I), for any U C E(M), any two bases of U have the
same size.

@ In matrix terms, given a set of vectors U, all sets of independent
vectors that span the space spanned by U have the same size.

e In fact, under (I1),(I2), this condition is equivalent to (I3). Exercise:
show the following is equivalent to the above.

Definition 6.3.6 (Matroid)

A set system (V,Z) is a Matroid if
(I1") @ € Z (emptyset containing)
(12"y VI €Z,J c I = J € T (down-closed or subclusive)

(13" VX CV, and I1,I5 € maxInd(X), we have |I;| = |I3| (all maximally
independent subsets of X have the same size).
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Matroids
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of U
have the same size.
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Matroids
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of U
have the same size.

@ The common size of all the bases of U is called the rank of U, denoted
rar(U) or just 7(U) when the matroid in equation is unambiguous.

ont [U)
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Matroids
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of U
have the same size.

@ The common size of all the bases of U is called the rank of U, denoted
rar(U) or just 7(U) when the matroid in equation is unambiguous.

® 7(E) = rgq) is the rank of the matroid, and is the common size of all
the bases of the matroid.
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Matroids
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of U
have the same size.

@ The common size of all the bases of U is called the rank of U, denoted
rar(U) or just 7(U) when the matroid in equation is unambiguous.

o 7(E) = r(p 1) is the rank of the matroid, and is the common size of all
the bases of the matroid.

@ We can a bit more formally define the rank function this way.

T= %i,, ) ‘ﬁ Ié ¢ E.
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of U
have the same size.

@ The common size of all the bases of U is called the rank of U, denoted
rar(U) or just 7(U) when the matroid in equation is unambiguous.

o 7(E) = r(p 1) is the rank of the matroid, and is the common size of all
the bases of the matroid.

@ We can a bit more formally define the rank function this way.

Definition 6.3.7 (matroid rank function)

The rank function of a matroid is a function r : 2F — Z_ defined by

T(A):rnax{]X\:XQA,XEI}:I)?&%(\AQX| (6.7)
€
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of U
have the same size.

@ The common size of all the bases of U is called the rank of U, denoted
rar(U) or just 7(U) when the matroid in equation is unambiguous.

o 7(E) = r(p 1) is the rank of the matroid, and is the common size of all
the bases of the matroid.

@ We can a bit more formally define the rank function this way.

Definition 6.3.7 (matroid rank function)

The rank function of a matroid is a function r : 2F — Z_ defined by

T(A)ZID&X{’X‘:XQA,XEI}:I)I(IE%%(‘AQX| (6.7)
€

@ From the above, we immediately see that r(A) < |A|.
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Matroids - rank

@ Thus, in any matroid M = (E,Z), YU C E(M), any two bases of U
have the same size.

@ The common size of all the bases of U is called the rank of U, denoted
rar(U) or just 7(U) when the matroid in equation is unambiguous.

o 7(E) = r(p 1) is the rank of the matroid, and is the common size of all
the bases of the matroid.

@ We can a bit more formally define the rank function this way.

Definition 6.3.7 (matroid rank function)

The rank function of a matroid is a function r : 2F — Z_ defined by

T(A)ZID&X{’X‘:XQA,XEI}:I)I(IE%%(‘AQX| (6.7)
€

@ From the above, we immediately see that r(A) < |A|.
@ Moreover, if 7(A) = |A|, then A € Z, meaning A is independent (in
this case, A is a self base).
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Matroids, other definitions using matroid rank 7 : 2V — Z_

Definition 6.3.8 {closed/flat/subspace)

A
fforallze E\A r(AU{z}) =r(A)+1.

sibset A C E is closed (equivalently, a flat or a subspace) of matroid M

—

Definition: A hyperplane is a flat of rank (M) — 1.

\394_{/( J‘rf' ¥ pry i sof ’Hﬂ"‘—

!
l/o.c)nr LAt 7oA
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Matroids
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Matroids, other definitions using matroid rank 7 : 2V — Z_

Definition 6.3.8 (closed/flat/subspace)

A subset A C E'is closed (equivalently, a flat or a subspace) of matroid M
if forallz € E\ A, r(AU{z}) =r(A) + 1.

Definition: A hyperplane is a flat of rank (M) — 1.

Definition 6.3.9 (closure)

Given A C FE, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(A4)}.
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Matroids
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Matroids, other definitions using matroid rank 7 : 2V — Z_

Definition 6.3.8 (closed/flat/subspace)

A subset A C E'is closed (equivalently, a flat or a subspace) of matroid M
if forallz € E\ A, r(AU{z}) =r(A) + 1.

Definition: A hyperplane is a flat of rank (M) — 1.

Definition 6.3.9 (closure)

Given A C FE, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(A4)}.

Therefore, a closed set A has span(A) = A.
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Matroids
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Matroids, other definitions using matroid rank 7 : 2V — Z_

Definition 6.3.8 (closed/flat/subspace)

A subset A C E'is closed (equivalently, a flat or a subspace) of matroid M
if forallz e E\ A, r(AU{z}) =r(A) + 1.

Definition: A hyperplane is a flat of rank (M) — 1.

Definition 6.3.9 (closure)

Given A C FE, the closure (or span) of A, is defined by
span(A) ={be E:r(AU{b}) =r(A4)}.

Therefore, a closed set A has span(A) = A. 12 S rla\a)zy

Definition 6.3.10 (circuit)

A subset A C FE is circuit.or a cycle if it is an inclusionwise-minimal
dependent set (i.e., if 7(A) < |A| and for any a € A, r(A\ {a}) = |A| —1).
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Matroids by bases

In general, besides independent sets and rank functions, there are other
equivalent ways to characterize matroids.

Theorem 6.3.11 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then the
following are equivalent.

@ B is the collection of bases of a matroid;
@ ifB,B € B,andx € B'\ B, then B'—x+y € B for somey € B\ B'.
© IfB,B' ' €B,andx € B'\ B, then B—y+x € B for somey € B\ B'.

Properties 2 and 3 are called “exchange properties.”
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Matroids
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Matroids by bases

Qr'f'uv\ o] A& l~\¢-4"é"/4/—]—

In general, besides in ad-Fank functions, there are other
equivalent ways to characterize matr0|ds

Theorem 6.3.11 (Matroid (by bases))

Let E be a set and B be a nonempty collection of subsets of E. Then the
following are equivalent.

@ B is the collection of bases of a matroid:
@ ifB,B € B,andx € B'\ B, then B'—xz+y € B for somey € B\ B'.
© IfB,B' ' €B,andx € B'\ B, then B—y+x € B for somey € B\ B'.

Properties 2 and 3 are called “exchange properties.”
Proof here is omitted but think about this for a moment in terms of linear
spaces and matrices, and (alternatively) spanning trees.
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Matroids by circuits

A set is independent if and only if it contains no circuit. Therefore, it is not
surprising that circuits can also characterize a matroid.
Theorem 6.3.12 (Matroid by circuits)

Let E be a set and C be a collection of subsets of E that satisfy the
following three properties:

Q@ (C1):v¢cC
Q (C2) ifC’l,C'g € C and C; C Cy, then C1 = Cs.

@ (C3): if C1,Cq € C with Cy # Cy, and e € C1 N Cy, then there exists a
Cs € C such that C3 C (Cl U 02) \ {6}
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Matroids by circuits

Several circuit definitions for matroids.

Theorem 6.3.13 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such that
no two sets in C are contained in each other. Then the following are
equivalent.

@ C is the collection of circuits of a matroid;
Q@ ifC,C"eC,andx € CNC', then (CUC")\ {z} contains a set in C;

Q@ ifC,C"eC,andx e CNC’', andy € C\ ', then (CUC")\ {z}
contains a set in C containing y;
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Matroids by circuits

Several circuit definitions for matroids.

Theorem 6.3.13 (Matroid by circuits)

Let E be a set and C be a collection of nonempty subsets of E, such that
no two sets in C are contained in each other. Then the following are
equivalent.

@ C is the collection of circuits of a matroid;
Q@ ifC,C"eC,andx € CNC', then (CUC")\ {z} contains a set in C;

Q@ ifC,C"eC,andx e CNC’', andy € C\ ', then (CUC")\ {z}
contains a set in C containing y;

Again, think about this for a moment in terms of linear spaces and matrices,
and spanning trees.
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Uniform Matroid

@ Given E, consider Z to be all subsets of E/ that are at most size k.
ThatisZ={AC E: |A| <k}.
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Uniform Matroid

@ Given E, consider Z to be all subsets of E that are at most size k.
Thatis Z ={A C E: |A| < k}.
@ Then (F,Z) is a matroid called a k-uniform matroid.
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Uniform Matroid

@ Given E, consider Z to be all subsets of E that are at most size k.
Thatis Z ={A C E: |A| < k}.

@ Then (FE,Z) is a matroid called a k-uniform matroid.

@ Note, if I,J €Z, and |I| < |J| <k, and j € J such that j & I, then j
is such that [ +j| <k andso I +je€T.
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Matroid Exampl les
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Uniform Matroid

@ Given E, consider Z to be all subsets of E that are at most size k.
Thatis Z ={A C E: |A| < k}.

@ Then (FE,Z) is a matroid called a k-uniform matroid.

e Note, if I,J €Z, and |I| < |J| <k, and j € J such that j & I, then j
is such that [/ + j| < kandso I +j € T.

@ Rank function
Al i |A <k
r(a) = AT TIATS (65)
k if |[A| >k
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Uniform Matroid

@ Given E, consider Z to be all subsets of E that are at most size k.
Thatis Z ={A C E: |A| < k}.

@ Then (FE,Z) is a matroid called a k-uniform matroid.

e Note, if I,J €Z, and |I| < |J| <k, and j € J such that j & I, then j
is such that [/ + j| < kandso I +j € T.

@ Rank function
Al if A <k
r(A) = 14 | 4] < (6.8)
k if |A| >k
@ Note, this function is submodular. Not surprising since

r(A) = min(|A|, k) which is a non-decreasing concave function applied
to a modular function.
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Matroid Exampl les
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Uniform Matroid

@ Given E, consider Z to be all subsets of E that are at most size k.
Thatis Z ={A C E: |A| < k}.

@ Then (FE,Z) is a matroid called a k-uniform matroid.

e Note, if I,J €Z, and |I| < |J| <k, and j € J such that j & I, then j
is such that [/ + j| < kandso I +j € T.

@ Rank function
Al WAL E
r(A) = 14 | 4] < (6.8)
k if |A| >k
@ Note, this function is submodular. Not surprising since
r(A) = min(]A|, k) which is a non-decreasing concave function applied

to a modular function.
@ Closure function

(6.9)

A if|Al <k
span(A) —{ A<k,

E if |Al >k,
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Matroid Exampl les
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Uniform Matroid

@ Given E, consider Z to be all subsets of E that are at most size k.
Thatis Z ={A C E: |A| < k}.

@ Then (FE,Z) is a matroid called a k-uniform matroid.

e Note, if I,J €Z, and |I| < |J| <k, and j € J such that j & I, then j
is such that [/ + j| < kandso I +j € T.

@ Rank function
Al if|Al <k
r(A) = 14 | 4] < (6.8)
k if |A| >k
@ Note, this function is submodular. Not surprising since
r(A) = min(]A|, k) which is a non-decreasing concave function applied
to a modular function.
@ Closure function
A if JA| < E,

. (6.9)
E if |Al >k,

span(A) = {

e A “free” matroid sets k = |E|, so everything is independent.
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Linear (or Matric) Matroid

o Let X be an n x m matrix and E = {1,...,m}

@ Let 7 consists of subsets of E such that if A € Z, and
A ={a1,ag,...,ax} then the vectors z,,,Zq,, ..., Zq, are linearly
independent.

@ the rank function is just the rank of the space spanned by the
corresponding set of vectors.

@ rank is submodular, it is intuitive that it satisfies the diminishing
returns property (a given vector can only become linearly dependent in
a greater context, thereby no longer contributing to rank).

@ Called both linear matroids and matric matroids.
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Cycle Matroid of a graph: Graphic Matroids

e Let G = (V,E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V, A) by A does not contain any cycle.

EES563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018 F29/47 (pg.77/169)



Cycle Matroid of a graph: Graphic Matroids

o Let G = (V, E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V, A) by A does not contain any cycle.

@ Then M = (E,Z) is a matroid.
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Cycle Matroid of a graph: Graphic Matroids

o Let G = (V, E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V, A) by A does not contain any cycle.

@ Then M = (E,Z) is a matroid.

@ 7 contains all forests.

F29/47 (pg.79/169)
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Cycle Matroid of a graph: Graphic Matroids

o Let G = (V, E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V, A) by A does not contain any cycle.

e Then M = (E,Z) is a matroid.

@ 7 contains all forests.

@ Bases are spanning forests (spanning trees if G is connected).
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Cycle Matroid of a graph: Graphic Matroids

o Let G = (V, E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V, A) by A does not contain any cycle.

@ Then M = (E,Z) is a matroid.
@ 7 contains all forests.
@ Bases are spanning forests (spanning trees if G is connected).

@ Rank function r(A) is the size of the largest spanning forest contained
in G(V, A).
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Matroid Exampl les
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Cycle Matroid of a graph: Graphic Matroids

Let G = (V, E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V, A) by A does not contain any cycle.

Then M = (E,Z) is a matroid.

T contains all forests.

Bases are spanning forests (spanning trees if G is connected).

Rank function r(A) is the size of the largest spanning forest contained
in G(V, A).

Recall from earlier, r(A) = |V(G)| — kg(A), where for A C E(G), we
define kg (A) as the number of connected components of the
edge-induced spanning subgraph (V(G), A), and that kg(A) is
supermodular, so |V (G)| — kg(A) is submodular.

R, (4) = [W(8)] — o (4)
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Matroid Exampl les
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Cycle Matroid of a graph: Graphic Matroids

Let G = (V, E) be a graph. Consider (E,Z) where the edges of the
graph E are the ground set and A € 7 if the edge-induced graph
G(V, A) by A does not contain any cycle.

Then M = (E,Z) is a matroid.

T contains all forests.

Bases are spanning forests (spanning trees if G is connected).

Rank function r(A) is the size of the largest spanning forest contained
in G(V, A).

Recall from earlier, r(A) = |[V(G)| — ka(A), where for A C E(G), we
define kg (A) as the number of connected components of the
edge-induced spanning subgraph (V(G), A), and that kg(A) is
supermodular, so |V (G)| — kg(A) is submodular.

Closure function adds all edges between the vertices adjacent to any
edge in A. Closure of a spanning forest is G.
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@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Matroid Examples
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Matroid Examples
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Matroid Examples
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Matroid Examples
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Matroid Examples
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Example: graphic matroid

@ A graph defines a matroid on edge sets, independent sets are those
without a cycle.
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Matroid Examples
[RRRL NI

Partition Matroid

@ Let V be our ground set.
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Partition Matroid

@ Let V be our ground set. U Y 1%

o let V=ViUWU---UV, bea Sartition of V into ¢ blocks (i.e.,
disjoint sets). Define a set of subsets of V" as

IT={XCV: XNV <kjforalli=1,... ¢} (6.10)
where ki, ..., kg are fixed “limit" parameters, k; > 0. Then M = (V, 1)
is a matroid.
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Partition Matroid

o Let V be our ground set.

o Llet V=ViUVU---UV, be a partition of V into ¢ blocks (i.e.,
disjoint sets). Define a set of subsets of V" as

I={XCV:|XNV]|<kforalli=1,..., 0} (6.10)

where k1, ..., kg are fixed “limit" parameters, k; > 0. Then M = (V,I)
is a matroid.

@ Note that a k-uniform matroid is a trivial example of a partition
matroid with ¢ =1, V4 =V, and k1 = k.
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Partition Matroid

o Let V be our ground set.
o Llet V=ViUVU---UV, be a partition of V into ¢ blocks (i.e.,
disjoint sets). Define a set of subsets of V" as

I={XCV:|XNV|<kforalli=1,....0}. (6.10)
where k1, ..., kg are fixed “limit" parameters, k; > 0. Then M = (V,I)
is a matroid.

@ Note that a k-uniform matroid is a trivial example of a partition
matroid with £ =1, V4 =V, and k1 = k.

@ Parameters associated with a partition matroid: £ and ki, ks, ..., ke
although often the k;'s are all the same.
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Partition Matroid

o Let V be our ground set.
o Llet V=ViUVU---UV, be a partition of V into ¢ blocks (i.e.,
disjoint sets). Define a set of subsets of V" as

I={XCV:|XNV|<kforalli=1,....0}. (6.10)
where k1, ..., kg are fixed “limit" parameters, k; > 0. Then M = (V,I)
is a matroid.

@ Note that a k-uniform matroid is a trivial example of a partition
matroid with £ =1, V4 =V, and k1 = k.

@ Parameters associated with a partition matroid: ¢ and ki, ks, ..., ky
although often the k;'s are all the same.

e We'll show that property (13") in Def 6.3.4 holds. First note, for any
X CV,|X| =Xt |X NV since {V1,Va,...,V,} is a partition.
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Partition Matroid

o Let V be our ground set.
o Llet V=ViUVU---UV, be a partition of V into ¢ blocks (i.e.,
disjoint sets). Define a set of subsets of V" as

I={XCV:|XNV|<kforalli=1,....0}. (6.10)
where k1, ..., kg are fixed “limit" parameters, k; > 0. Then M = (V,I)
is a matroid.

@ Note that a k-uniform matroid is a trivial example of a partition
matroid with £ =1, V4 =V, and k1 = k.

@ Parameters associated with a partition matroid: ¢ and ki, ks, ..., ky
although often the k;'s are all the same.

o We'll show that property (13') in Def 6.3.4 holds. First note, for any
X CV,|X| =Xt |X NV since {V1,Va,...,V,} is a partition.

o If X,Y €7 with |Y| > |X]|, then there must be at least one ¢ with
Y N V;| > | X NV;|. Therefore, adding one element e € V; N (Y \ X)
to X won't break independence.
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Matroid Exampl les
[NRRAL ]

Partition Matroid
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Matroid Examples
[NRRAL ]

Partition Matroid

Independent subset but not maximally independent.
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Matroid Examples
[NRRAL ]

Partition Matroid

Maximally independent subset, what is called a base.
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Matroid Examples
[NRRAL ]

Partition Matroid

Not independent since over limit in set six.
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Matroid Rank
[ARRRRRNT

Matroids - rank function is submodular

The rank function r : 2¥ — 7. of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)
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nk
[ARRRRRNT

Matroids - rank function is submodular

Lemma 6.5.1

The rank function r : 2¥ — 7. of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

@ Let X € 7 be an inclusionwise maximal set with X C AN B

pw/k):)k) , e (AnO\X

X+ & T
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Matroid Rank
[ARRRRRNT]

Matroids - rank function is submodular

Lemma 6.5.1

The rank function r : 2¥ — 7. of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

Proof.
@ Let X € 7 be an inclusionwise maximal set with X C AN B
@ Let Y € 7 be inclusionwise maximal set with X T Y C AUB. We
can find such a Y O X because the following. Let Y' € T be any inclusionwise
maximal set with Y’ C AU B, which might not have X C Y'. Starting from

Y <+ X C AU B, since |Y'| > | X|, there existsay € Y'\ X C AU B such that
X +vy €Z butsinceye AUB, also X +y € AUB — we then add y to Y. We
can keep doing this while |Y'| > | X| since this is a matroid. We end up with an

inclusionwise maximal set’ Y withY € Z and X C Y.

P XSY Vre(ﬁub)\'f
ccon(y)= 1] Ve ¢ X

Prof. Jeff Bilmes EES563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018 F33/47 (pg.104/169)




Matroid Rank
[ARRRRRNT

Matroids - rank function is submodular

Lemma 6.5.1

The rank function r : 2¥ — 7. of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

Proof.

@ Let X € 7 be an inclusionwise maximal set with X C AN B
@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

© Since M is a matroid, we know that r(AN B) = r(X) = |X]|, and
r(AUB)=r(Y)=|Y|. Also, forany U € Z, r(A) > |[ANU|.

|

Av €L
~UeT
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Matroid Rank
[ARRRRRNT]

Matroids - rank function is submodular

Lemma 6.5.1

The rank function r : 2¥ — 7. of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

Proof.

@ Let X € 7 be an inclusionwise maximal set with X C AN B
@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

© Since M is a matroid, we know that 7(AN B) = r(X) = | X|, and
r(AUuB)=r(Y)=|Y|. Also, forany U € Z, r(A) > |[ANU|.
© Then we have (since X CANB, X CY,and¥Y C AU B),

r(A) +r(B) (6.11)
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Matroid Rank
[ARRRRRNT]

Matroids - rank function is submodular

Lemma 6.5.1

The rank function r : 2¥ — 7. of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

Proof.

@ Let X € 7 be an inclusionwise maximal set with X C AN B

@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

© Since M is a matroid, we know that r(AN B) = r(X) = | X]|, and
r(AUB)=r(Y)=|Y|. Also, forany U € Z, r(A) > |[ANU|.

© Then we have (since X CANB, X CY,and Y C AU B),

r(A)+r(B) > |Y NA|+|Y N B| (6.11)
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Matroid Rank
[ARRRRRNT

Matroids - rank function is submodular

Lemma 6.5.1

The rank function r : 2¥ — 7. of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

@ Let X € 7 be an inclusionwise maximal set with X C AN B

@ Let Y € 7 be inclusionwise maximal set with X CY C AU B.

© Since M is a matroid, we know that r(AN B) = r(X) = |X]|, and
r(AUB)=r(Y)=|Y|. Also, forany U € Z, r(A) > |[ANU|.

© Then we have (since X CANB, X CY,and Y C AU B),

mA) £ M
r(A)+r(B) > Y NA|l+|Y NB| (6.11)
=|YN(ANB)|+|YN(AUB)| (6.12)

—  mlAn0) + m (4 V8
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Matroid Rank
[ARRRRRNT]

Matroids - rank function is submodular

Lemma 6.5.1

The rank function r : 2F — Z4 of a matroid is submodular, that is
r(A)+r(B)>r(AUB)+r(ANB)

@ Let X € 7 be an inclusionwise maximal set withiX C AN B

@ Let Y € 7 be inclusionwise maximal set with X Cf¥ € AU B.

© Since M is a matroid, we know that r(AN B) = r(X) = | X]|, and
r(AUuB)=r(Y)=|Y|. Also, forany U € Z, r(A) > |[ANU|.

© Then we have (since X CANB, X CY,and Y C AU B),

r(A) +r(B) > |Y NA|l+|Y NB| (6.11)
=YN(AnNB)|+|Y Nn(AUB)| (6.12)
> |X|+|Y]|=r(ANnB)+r(AUB) (6.13)

[]

EES563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018 F33/47 (pg.109/169)



Matroid Rank
(LERRRNAN

A matroid is defined from its rank function

Theorem 6.5.2 (Matroid from rank)

Let E be a set and let v : 2¥ — Z, be a function. Then r(-) defines a
matroid with v being its rank function if and only if for all A,B C E:
(R1) VACE 0<r(A) <|A| (non-negative cardinality bounded)
(R2) r(A) < r(B) whenever A C B C E (monotone non-decreasing)
(R3) r(AUB)+7r(ANB) <r(A)+r(B) for all A, B C E (submodular)

b
e From above, r(0) = 0. Let v ¢ A,AZKe% b{ monotonicity and
submodularity, 7(A) < r(AU {v}) < r(A) 4+ r({v}) which gives only
two possible values to (A U {v}).
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Matroid Rank
(LERRRNAN

A matroid is defined from its rank function

Theorem 6.5.2 (Matroid from rank)

Let E be a set and let v : 2¥ — Z, be a function. Then r(-) defines a
matroid with v being its rank function if and only if for all A,B C E:
(R1) VACE 0<r(A) <|A| (non-negative cardinality bounded)

(R2) r(A) < r(B) whenever A C B C E (monotone non-decreasing)

(R3) r(AUB)+7r(ANB) <r(A)+r(B) for all A, B C E (submodular)

e From above, () = 0. Let v ¢ A, then by monotonicity and
submodularity, r(A) < r(AU{v}) < r(A) + r({v}) which gives only
two possible values to (A U {v}).

@ Hence, unit increment (if r(A) = k, then either r(AU {v}) =k or
r(AuU{v}) =k + 1) holds.
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Matroid Rank
(LERRRNAN

A matroid is defined from its rank function

Theorem 6.5.2 (Matroid from rank)

Let E be a set and let v : 2¥ — Z, be a function. Then r(-) defines a
matroid with v being its rank function if and only if for all A,B C E:
(R1) VACE 0<r(A) <|A| (non-negative cardinality bounded)

(R2) r(A) < r(B) whenever A C B C E (monotone non-decreasing)

(R3) r(AUB)+7r(ANB) <r(A)+r(B) for all A, B C E (submodular)

e From above, () = 0. Let v ¢ A, then by monotonicity and
submodularity, r(A) < r(AU{v}) < r(A) + r({v}) which gives only
two possible values to (A U {v}).

@ Hence, unit increment (if (A) = k, then either r(AU {v}) =k or
r(AuU{v}) =k + 1) holds.

@ Thus, submodularity, non-negative monotone non-decreasing, and unit
increment of rank is necessary and sufficient to define a matroid.
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Matroid Rank
(LERRRNAN

A matroid is defined from its rank function M=(# x)<(¢, ~

Theorem 6.5.2 (Matroid from rank)

Let E be a set and let v : 2¥ — Z, be a function. Then r(-) defines a
matroid with v being its rank function if and only if for all A,B C E:
(R1) VACE 0<r(A) <|A| (non-negative cardinality bounded)

(R2) r(A) < r(B) whenever A C B C E (monotone non-decreasing)

(R3) r(AUB)+7r(ANB) <r(A)+r(B) for all A, B C E (submodular)

e From above, () = 0. Let v ¢ A, then by monotonicity and
submodularity, r(A) < r(AU{v}) < r(A) + r({v}) which gives only
two possible values to (A U {v}).

@ Hence, unit increment (if (A) = k, then either r(AU {v}) =k or
r(AuU{v}) =k + 1) holds.

@ Thus, submodularity, non-negative monotone non-decreasing, and unit
increment of rank is necessary and sufficient to define a matroid.

e Can refer to matroid as (E,r), E is ground set, r is rank function.
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M, k
(RLRRRNAN

Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank).

@ Given a matroid M = (E,T), we see its rank function as defined in
Eq. 6.7 satisfies (R1), (R2), and, as we saw in Lemma 6.5.1, (R3) too.

~(4) = o /M?)
TeL
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Matroid Rank
(RLRRRNAN

Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 6.7 satisfies (R1), (R2), and, as we saw in Lemma 6.5.1, (R3) too.
@ Next, assume we have (R1), (R2), and (R3). Define
Z={X CE:r(X)=|X|} We will show that (F,Z) is a matroid.
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Matroid Rank
(RLRRRNAN

Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 6.7 satisfies (R1), (R2), and, as we saw in Lemma 6.5.1, (R3) too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCFE:r(X)=|X|}. We will show that (E,Z) is a matroid.

o First, ) € 7.
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Matroid Rank
(RLRRRNAN

Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 6.7 satisfies (R1), (R2), and, as we saw in Lemma 6.5.1, (R3) too.

o Next, assume we have (R1), (R2), and (R3). Define
I={XCFE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € 7.

@ Also, if Y € Z and X C Y then by submodularity,
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Matroid Rank
(RLRRRNAN

Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 6.7 satisfies (R1), (R2), and, as we saw in Lemma 6.5.1, (R3) too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCFE:r(X)=|X|}. We will show that (E,Z) is a matroid.

o First, 0 € Z.

@ Also, if Y € 7 and X C Y then by submodularity,
r(X)>rY)—r(Y \ X) (6.14)
Cxl +o(fix] Z c(xviR) «(xacyin)

u u z (Y] O
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Matroid Rank
(RLRRRNAN

Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 6.7 satisfies (R1), (R2), and, as we saw in Lemma 6.5.1, (R3) too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCFE:r(X)=|X|}. We will show that (E,Z) is a matroid.

o First, 0 € Z.

@ Also, if Y € 7 and X C Y then by submodularity,

r(X) > r(Y) = r(Y \ X) + (D) (6.14)
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Matroid Rank
(RLRRRNAN

Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 6.7 satisfies (R1), (R2), and, as we saw in Lemma 6.5.1, (R3) too.

@ Next, assume we have (R1), (R2), and (R3). Define

IT={X CFE:r(X)=|X|}. We will show that (E,Z) is a matroid.
o First, ) € 7.
@ Also, if Y € Z and X C Y then by submodularity,

r(X) >#(Y) — f(¥\X) +r(0) (6.14)
> ¥ =Y\ X (6.15)

A (1) £ (O
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Matroid Rank
(RLRRRNAN

Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank)

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 6.7 satisfies (R1), (R2), and, as we saw in Lemma 6.5.1, (R3) too.

o Next, assume we have (R1), (R2), and (R3). Define
I={XCFE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € 7.

@ Also, if Y € 7 and X C Y then by submodularity,

r(X)>rY)—r(Y \ X)+r() (6.14)
= Y=Y\ X| (6.15)
= |X]| (6.16)
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Matroid Rank
(RLRRRNAN

Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank).

e Given a matroid M = (E,Z), we see its rank function as defined in
Eq. 6.7 satisfies (R1), (R2), and, as we saw in Lemma 6.5.1, (R3) too.

@ Next, assume we have (R1), (R2), and (R3). Define
I={XCFE:r(X)=|X|}. We will show that (E,Z) is a matroid.

e First, ) € Z.
@ Also, if Y € 7 and X C Y then by submodularity,

r(X)>rY)—rY \ X)+r0) (6.14)
> Y] =Y\ X]| (6.15)
(L) Lk = |X| (6.16)
implyir(ﬁ)()(—@-xd thus X € 7.
N
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Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank) cont.

o Let@, B €T) with(A| KB, so #(4)=[4) < @(B)=[B] Let
BN A = {by, bo00mbEh(note 1 < k < |B|).
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Matroid Rank
(RRLRRNAN

Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank) cont.

o Let A, B €Z, with |A| < |B|, sor(A) = |A| < r(B) = |B]|. Let
B\ A={by,ba,...,b;} (note 1 < k < |B]J).

@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means for
all such b, 7(A+b) =r(A) =|A| < |A|+ 1. Then

J £A A@ 6 é(j
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Matroid Rank
(RRLRRNAN

Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank) cont.

o Let A, B €Z, with |A| < |B|, sor(A) = |A| < r(B) = |B]|. Let
B\ A={by,ba,...,br} (note 1 <k <|B|).
@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means for
all such b, r(A+0b) =r(A) = |A| < |A]+ 1. Then
r(B) <r(AUB) (6.17)
L]
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Mat, ank
(RRLRRNAN

Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank) cont.
o Let A, B €Z, with |A| < |B|, sor(A) = |A| < r(B) = |B]|. Let
B\ A={by,ba,...,b;} (note 1 < k < |B]J).
@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means for
all such b, r(A+0b) =r(A) = |A| < |A]+ 1. Then
r(B) <r(AUB) (6.17)
<r(AU(B\{b1})) +r(AUu{b}) —r(A4) (6.18)

;
c(Fol o) + o Fv)
> rCXW) £ r(xat)

(o
i d pt

F36/47 (pg.126/169)
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Matroid Rank
(RRLRRNAN

Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank) cont.

o Let A, B €Z, with |A| < |B|, sor(A) = |A| < r(B) = |B]|. Let
B\ A={by,ba,...,br} (note 1 <k <|B|).
@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means for
all such b, r(A+0b) =r(A) = |A| < |A]+ 1. Then
r(B) <r(AUB) (6.17)
<r(AU(B\{}))+r(Au{b}) —r(4) (6.18)
=r(AU(B\{b1}) (6.19)
Iy~
&
[]
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Mat, ank
(RRLRRNAN

Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank) cont.

o Let A, B €Z, with |A| < |B|, sor(A) = |A| < r(B) = |B]|. Let
B\ A={by,ba,...,br} (note 1 <k <|B|).
@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means for
all such b, r(A+0b) =r(A) = |A| < |A]+ 1. Then
r(B) <r(AUB) (6.17)
< 1(AUB\ {b1)) + (AU {br}) - r(4) (6.18)
=r(AU(B\{b1}) (6.19)
<r(AU(B\{b1,b2})) + 7(AU {b2}) — r(4) (6.20)
=
L]
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Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank) cont.

o Let A, B €Z, with |A| < |B|, so r(A) = |A| < r(B) = |B]|. Let
B\ A={by,ba,...,b;} (note 1 < k < |B]J).
@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means for
all such b, r(A+0b) =r(A) = |A| < |A]+ 1. Then
r(B) <r(AUB) (6.17)
<r(AU(B\{b1})) +r(Au{bi}) —r(4) (6.18)
=r(AU(B\{bi}) (6.19)
<r(AU(B\ {b1,b2})) + (AU {b2}) — r(A) (6.20)
=r(AU(B\{b1,b2})) (6.21)
L]
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Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank) cont.

o Let'A, B € Z, with [A] <|BJ, so r(A4) = |A| < r(B) = |B|. Let
B\ A={by,ba,...,b;} (note 1 <k < |B]J).

@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means for
all such b, r(A+0b) =r(A) = |A| < |A]+ 1. Then

7(B) <r(AUB) (6.17)
<r(AU(B\{b1}) +r(Au{b}) — r(4) (6.18)
=r(AU(B\{b:}) (6.19)
<r(AU(B\ {b1,b2})) + (AU {b2}) — r(4) (6.20)

= (AU (B\ {b1,b2})) (6.21)
<...<r(A)=14] < |B| (6.22)
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Matroids from rank

Proof of Theorem 6.5.2 (matroid from rank) cont.

o Let A, B €Z, with |A| < |B|, sor(A) = |A| < r(B) = |B]|. Let
B\ A={by,ba,...,b;} (note 1 < k < |B]J).

@ Suppose, to the contrary, that Vb € B\ A, A+ b ¢ Z, which means for
all such b, r(A+0b) =r(A) = |A| < |A]+ 1. Then

r(B )<r(AUB) (6.17)
<r(AU(B\{b1}) +r(Au{b1}) — r(4) (6.18)
=r(AU(B\{b}) (6.19)
<r(AU(B\ {b1,b2})) + (AU {b2}) — 7(4) (6.20)

= (AU (B\ {b1,b2})) (6.21)
<...<r(A) =14 < |B| (6.22)

giving a contradiction since B € 7.
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Matroid Rank
(RERLENAN

Matroids from rank I

Another way of using function r to define a matroid.

Theorem 6.5.3 (Matroid from rank II)

Let E be a finite set and let r : 2F — 7., be a function. Then r(-) defines a
matroid with r being its rank function if and only if for all X C E, and
x,y € b:

(R1) r(@) =0;
(R2) (X) < r(XU{y}) <r(X)+1;
(R3") Ifr(X U{z}) =r(X U{y}) =r(X), then r(X U{z,y}) = r(X).
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Matroid Rank
(RERRRNAN

Matroids by submodular functions

e

Theorem 6.5.4 (Matroid by submodular functions)

Let f :2F — 7 be a integer valued monotone non-decreasing submodular
function. Define a set of sets as follows:

C(f) = {C’ C E : C (is non-empty,
is inclusionwise-minimal,

and has f(C) < |C] } (6.23)

Then C(f) is the collection of circuits of a matroid on E.

Inclusionwise-minimal in this case means that if (C € C(f), then there exists
no C" € C with(C” € C(f) (i.e., C' C C would either be empty or have
f(C") = |C")). Also, recall inclusionwise-minimal in Definition 6.3.10, the
definition of a circuit.
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Matroid Rank
(RERARE AN

Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to uniquely
define a matroid based on any of:

@ Independence (define the independent sets).
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Matroid Rank
(RERARE AN

Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to uniquely
define a matroid based on any of:

o Independence (define the independent sets).

@ Base axioms (exchangeability)
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Matroid Rank
(RERARE AN

Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to uniquely
define a matroid based on any of:

o Independence (define the independent sets).

@ Base axioms (exchangeability)

@ Circuit axioms
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Matroid Rank
(RERARE AN

Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to uniquely
define a matroid based on any of:
o Independence (define the independent sets).
@ Base axioms (exchangeability)
@ Circuit axioms
°

Closure axioms (we didn't see this, but it is possible)
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Matroid Rank
(RERARE AN

Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to uniquely
define a matroid based on any of:

Independence (define the independent sets).

Base axioms (exchangeability)

o
o
@ Circuit axioms
@ Closure axioms (we didn't see this, but it is possible)
o

Rank axioms (normalized, monotone, cardinality bounded, non-negative
integral, submodular)
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Summarizing: Many ways to define a Matroid

Summarizing what we've so far seen, we saw that it is possible to uniquely
define a matroid based on any of:

o Independence (define the independent sets).

@ Base axioms (exchangeability)

o Circuit axioms

@ Closure axioms (we didn't see this, but it is possible)

@ Rank axioms (normalized, monotone, cardinality bounded, non-negative
integral, submodular)

@ Matroids by integral submodular functions.
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Maximization problems for matroids

v&l""
e Given a matroid M = (F,Z) and a modular ggst function ¢: £ — R,
the task is to find an X € 7 such that ¢(X) = >y ¢(x) is maximum.

@ This seems remarkably similar to the max spanning tree problem.

CDw\f'/'l’L mmeXx” C(.I—)
Tex
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Matroid Rank
[RRRRRNAL ]

Minimization problems for matroids

e Given a matroid M = (F,Z) and a modular cost function ¢: E — R,
the task is to find a basis B € B such that ¢(B) is minimized.

@ This sounds like a set cover problem (find the minimum cost covering

set of sets).
m:\q a(/l’) S>. U VE\ — u

a €A
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Partition Matroid

@ What is the partition matroid’s rank function?
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Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

MN

r(A) =) min(|[ANV],k (6.24)

i=1

which we also immediately see is submodular using properties we spoke
about last week. That is:

v R

(x|
1=
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Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

¢
r(A) = min(|ANV;| k) (6.24)
i=1
which we also immediately see is submodular using properties we spoke

about last week. That is:
@ |ANV;|is submodular (in fact modular) in A
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Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

¢
r(A) = min(|ANV;| k) (6.24)
i=1
which we also immediately see is submodular using properties we spoke
about last week. That is:

@ |ANV;| is submodular (in fact modular) in A
@ min(submodular(A4), k;) is submodular in A since |A N V;| is monotone.
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Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

l
r(A) = min(|ANV;| k) (6.24)

=1

which we also immediately see is submodular using properties we spoke
about last week. That is:

@ |ANV;| is submodular (in fact modular) in A
@ min(submodular(A), k;) is submodular in A since |A N V;| is monotone.
© sums of submodular functions are submodular.
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Partition Matroid

@ What is the partition matroid’s rank function?

@ A partition matroids rank function:

l
r(A) = min(|ANV;| k) (6.24)

=1

which we also immediately see is submodular using properties we spoke
about last week. That is:

@ |ANV;| is submodular (in fact modular) in A
@ min(submodular(A), k;) is submodular in A since |A N V;| is monotone.
© sums of submodular functions are submodular.

@ r(A) is also non-negative integral monotone non-decreasing, so it
defines a matroid (the partition matroid).
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More on Partition Matroi
[RRRN

From 2-partition matroid rank to truncated matroid rank

@ Example: 2-partition matroid rank function: Given natural numbers
aybeZywith'a < b, and any set R C V with(|R| = b
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titio
[RRRN

From 2-partition matroid rank to truncated matroid rank

e Example: 2-partition matroid rank function: Given natural numbers
a,b € Z4 with a < b, and any set(R C V with (|R| = b.

e Create two-block partition V = (R, R), where R =V \ R so
|R| = |V| — b. Gives 2-partition matroid rank function as follows:

r(A) = min(]AﬂRLa) +min(|A N R|, |R|) (6.25)
min(|AN R|,a) + [AQ R (6.26)

= mln(]AﬂR| +|ANR|,|JANR|+a) (6.27)

= min(JA[|JANR| + a) (6.28)

W&
&
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From 2-partition matroid rank to truncated matroid rank

e Example: 2-partition matroid rank function: Given natural numbers
a,b € Z4 with a < b, and any set R C V with |R| = b.

e Create two-block partition V = (R, R), where R =V \ R so
|R| = |V| — b. Gives 2-partition matroid rank function as follows:

r(A) = min(|]A N R|,a) + min(|A N R|, |R|) (6.25)
=min(|ANR|,a) + |[ANR| (6.26)
=min(|[ANR|+ |[ANR|,|ANR|+ a) (6.27)
= min(|A],|AN R| + a) (6.28)
o Figure showing partition blocks and partition matroid limits.

Since |R| = |V|—b

the limit on R is vacuous.

a<|R| =0
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From 2-partition matroid rank to truncated matroid rank

e Example: 2-partition matroid rank function: Given natural numbers
a,b € Zy with a < b, and any set R C V with |R| = b.

e Create two-block partition V = (R, R), where R =V \ R so
|R| = |V| — b. Gives 2-partition matroid rank function as follows:

r(A) = min(|]A N R|,a) + min(|A N R|, |R|) (6.25)
=min(|ANR|,a) + |[ANR| (6.26)
=min(|[ANR|+ |[ANR|,|ANR|+ a) (6.27)
= min(|A],|AN R| + a) (6.28)
@ Figure showing partition blocks and partition matroid limits.

Since |R| = |V|—b

the limit on R is vacuous.
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More on
[RE RN

Truncated Matroid Rank Function

@ Define truncated matroid rank function. Start with 2-partition matroid
rank r(A) = min(|A N R|,a) + min(|A N R|,|R|), a < b. Define:

fr(A) = Inin{ r(A) ,b} (6.29)
= min{ min(|A|,|AN R| + a) ,b} (6.30)
=min {|A|,a+|ANR|,b} (6.31)
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Truncated Matroid Rank Function

@ Define truncated matroid rank function. Start with 2-partition matroid
rank r(A) = min(|A N R|,a) + min(|A N R|,|R|), a < b. Define:

fr(A) = min { r(A) ,b} (6.29)
= min{ min(|A|,|AN R| + a) ,b} (6.30)
=min {|A|,a +|AN R|,b} (6.31)
@ Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
T={ICV:|[I<band|INE|<al, (6.32)
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Truncated Matroid Rank Function

@ Define truncated matroid rank function. Start with 2-partition matroid
rank r(A) = min(|A N R|,a) + min(|A N R|,|R|), a < b. Define:

fr(A) = min { r(A) ,b} (6.29)
= min{ min(|A|,|AN R| + a) ,b} (6.30)
=min {|A|,a +|AN R|,b} (6.31)
@ Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
IT={ICV:|I|<band [INR|<al}, (6.32)

Useful for showing hardness of constrained submodular minimization.
Consider sets B C V with |B| =b. !l R 4xd) [R]=b.
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Truncated Matroid Rank Function

@ Define truncated matroid rank function. Start with 2-partition matroid
rank r(A) = min(|A N R|,a) + min(|A N R|,|R|), a < b. Define:

fr(A) = min { r(A) ,b} (6.29)
= min{ min(|A|,|AN R| + a) ,b} (6.30)
=min {|A|,a +|AN R|,b} (6.31)
@ Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
IT={ICV:|I|<band [INR|<al}, (6.32)

Useful for showing hardness of constrained submodular minimization.
Consider sets B C V with |B| = b.
e For R, we have fr(R) = min(b,a,b) =a < b.

EES563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018 F44/47 (pg.155/169)



titio
[RE RN

Truncated Matroid Rank Function

@ Define truncated matroid rank function. Start with 2-partition matroid
rank r(A) = min(|A N R|,a) + min(|A N R|,|R|), a < b. Define:

fr(A) = min { r(A) ,b} (6.29)
= min{ min(|A|,|]AN R| + a) ,b} (6.30)
=min {|A|,a +|AN R|,b} (6.31)
@ Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
IT={ICV:|I|<band [INR|<al}, (6.32)
Useful for showing hardness of constrained submodular minimization.
Consider sets B C V' with |B| = b. )

e For R, we have fr(R) = min(b,a,b) =a < b. lc |patl

e For any B with |[BN R| < a, fr(B) = b. vlpat
i (18] & 100 7, L) &menfc)
7
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Truncated Matroid Rank Function

@ Define truncated matroid rank function. Start with 2-partition matroid
rank r(A) = min(|A N R|,a) + min(|A N R|,|R|), a < b. Define:

fr(A) = min { r(A) ,b} (6.29)
= min{ min(|A|,|]AN R| + a) ,b} (6.30)
=min {|A|,a +|AN R|,b} (6.31)
@ Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
IT={ICV:|I|<band [INR|<al}, (6.32)

Useful for showing hardness of constrained submodular minimization.
Consider sets B C V with |B| = b.

e For R, we have fr(R) = min(b,a,b) =a < b.

e For any B with [BN R| < a, fr(B)="b.

e For any B with|[BAR| = ¢, with a << b, fr(B)=a+b— L.

EES563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018 F44/47 (pg.157/169)



Truncated Matroid Rank Function

@ Define truncated matroid rank function. Start with 2-partition matroid
rank r(A) = min(|A N R|,a) + min(|A N R|,|R|), a < b. Define:

fr(A) = min { r(A) ,b} (6.29)
= min{ min(|A|,|AN R| + a) ,b} (6.30)
=min {|A|,a +|AN R|,b} (6.31)
@ Defines a matroid M = (V, fr) = (V,Z) (Goemans et. al.) with
IT={ICV:|I|<band [INR|<al}, (6.32)

Useful for showing hardness of constrained submodular minimization.
Consider sets B C V with |B| = b.

For R, we have fr(R) = min(b,a,b) = a < b.

For any B with |[BN R| <a, fr(B) =10.

For any B with |[BNR| =/, witha < /¢ <b, fr(B)=a+b— (.
R, the set with minimum valuation amongst size-b sets, is hidden
within an exponentially larger set of size-b sets with larger valuation.
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Partition Matroid, rank as matching

@ A partition matroid can be viewed using a bipartite graph.

o Letting V denote the ground set, and V1, V4, ... the partition, the
bipartite graph is G = (V, I, E)) where V is the ground set, [ is a set of
“indices”, and E is the set of edges.

o [ =(I1,I,...,1;) is asetof k = Zle k; nodes, grouped into £
clusters, where there are k; nodes in the it group I;, and |I;| = k.

o (v,i) € E(G) iffveVjandiec .
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Partition Matroid, rank as matching

@ Example where ¢ =5,
(k17k27k37k47k5) =
(2,2,1,1,3).

vV |
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Partition Matroid, rank as matching

@ Example where ¢ =5,
(K1, ko, k3, ka, ks) =
(2,2,1,1,3). @ Recall, ' : 2V — R as the neighbor
V | function in a bipartite graph, the
neighbors of X is defined as I'(X) =
h {veV(G)\ X : E(X,{v}) # 0}, and
recall that |I'(X)| is submodular.
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Partition Matroid, rank as matching

@ Example where ¢ =5,
(K1, ko, ks, ka, ks) =

(2,2,1,1,3).
Vv I
Il
I2
I3
l4
I5

@ Recall, I": 2V — R as the neighbor
function in a bipartite graph, the
neighbors of X is defined as I'(X) =
{veV(G)\ X : E(X,{v}) # 0}, and
recall that |I'(X)| is submodular.

@ Here, for X C V, we have I'(X) =
{iel:(v,i) € E(G) and v € X}.

EES563/Spring 2018/Submodularity - Lecture 6 - April 11th, 2018 F46/47 (pg.162/169)



Partition Matroid, rank as matching

@ Example where ¢ =5,
(K1, ko, ks, ka, ks) =

(2,2,1,1,3).
Vv I
Il
I2
I3
l4
I5

@ Recall, I": 2V — R as the neighbor

function in a bipartite graph, the
neighbors of X is defined as I'(X) =
{veV(G)\ X : E(X,{v}) # 0}, and
recall that |I'(X)| is submodular.

@ Here, for X C V, we have I'(X) =

{iel:(v,i) € E(G) and v € X}.

@ For such a constructed bipartite graph,

the rank function of a partition matroid
is (X)) = 3¢ min(| X N Vi, k;) = the
maximum matching involving X.
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Laminar Family and Laminar Matroid

@ We can define a matroid with structures richer than just partitions.
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More on Partition Matroi id
INERRN |

Laminar Family and Laminar Matroid

@ We can define a matroid with structures richer than just partitions.
@ A set system (V, F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets AN B, A\ B, or B\ A is empty.

A B B
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Laminar Family and Laminar Matroid

@ We can define a matroid with structures richer than just partitions.
@ A set system (V, F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets AN B, A\ B, or B\ A is empty.

A B B

@ Family is laminar 3 no two properly intersecting members: VA, B € F,
either A, B disjoint (AN B = ()) or comparable (A C B or B C A).
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Laminar Family and Laminar Matroid

@ We can define a matroid with structures richer than just partitions.
@ A set system (V, F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets AN B, A\ B, or B\ A is empty.

A B B

e Family is laminar 3 no two properly intersecting members: VA, B € F,
either A, B disjoint (AN B = )) or comparable (A C B or B C A).

@ Suppose we have a laminar family F of subsets of V' and an integer k4 for
every set A € F.
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Laminar Family and Laminar Matroid

@ We can define a matroid with structures richer than just partitions.
@ A set system (V, F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets AN B, A\ B, or B\ A is empty.

A B B

e Family is laminar 3 no two properly intersecting members: VA, B € F,
either A, B disjoint (AN B = )) or comparable (A C B or B C A).

@ Suppose we have a laminar family F of subsets of V' and an integer k4 for
every set A € F. Then (V,Z) defines a matroid where

I={ICE:|[INA|<kyforall Ac F} (6.33)
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Laminar Family and Laminar Matroid

@ We can define a matroid with structures richer than just partitions.
@ A set system (V, F) is called a laminar family if for any two sets
A, B € F, at least one of the three sets AN B, A\ B, or B\ A is empty.

A B B

e Family is laminar 3 no two properly intersecting members: VA, B € F,
either A, B disjoint (AN B = )) or comparable (A C B or B C A).

@ Suppose we have a laminar family F of subsets of V' and an integer k4 for
every set A € F. Then (V,Z) defines a matroid where

I={ICE:|INA|<kyforall Ac F} (6.33)

@ Exercise: what is the rank function here?
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