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Logistics Review

Cumulative Outstanding Reading

Read chapter 1 from Fujishige’s book.
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Announcements, Assignments, and Reminders

Homework 1 out, due Monday, 4/9/2018 11:59pm electronically via our
assignment dropbox
(https://canvas.uw.edu/courses/1216339/assignments).
If you have any questions about anything, please ask then via our
discussion board
(https://canvas.uw.edu/courses/1216339/discussion_topics).
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Class Road Map - EE563
L1(3/26): Motivation, Applications, &
Basic Definitions,
L2(3/28): Machine Learning Apps
(diversity, complexity, parameter, learning
target, surrogate).
L3(4/2): Info theory exs, more apps,
definitions, graph/combinatorial examples
L4(4/4): Graph and Combinatorial
Examples, Matrix Rank, Examples and
Properties, visualizations
L5(4/9):
L6(4/11):
L7(4/16):
L8(4/18):
L9(4/23):
L10(4/25):

L11(4/30):
L12(5/2):
L13(5/7):
L14(5/9):
L15(5/14):
L16(5/16):
L17(5/21):
L18(5/23):
L–(5/28): Memorial Day (holiday)
L19(5/30):
L21(6/4): Final Presentations
maximization.

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.
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Submodular on Hypercube Vertices

Test submodularity via values on verticies of hypercube.

Example: with |V | = n = 2, this is
easy:

00 01

1110

With |V | = n = 3, a bit harder.

000

001100 010

011101110

111

How many inequalities?
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Subadditive Definitions

Definition 4.2.1 (subadditive)

A function f : 2V → R is subadditive if for any A,B ⊆ V , we have that:

f(A) + f(B) ≥ f(A ∪B) (4.21)

This means that the “whole” is less than the sum of the parts.
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Superadditive Definitions

Definition 4.2.1 (superadditive)

A function f : 2V → R is superadditive if for any A,B ⊆ V , we have that:

f(A) + f(B) ≤ f(A ∪B) (4.21)

This means that the “whole” is greater than the sum of the parts.
In general, submodular and subadditive (and supermodular and
superadditive) are different properties.
Ex: Let 0 < k < |V |, and consider f : 2V → R+ where:

f(A) =

{
1 if |A| ≤ k
0 else

(4.22)

This function is subadditive but not submodular.
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Modular Definitions

Definition 4.2.1 (modular)

A function that is both submodular and supermodular is called modular

If f is a modular function, than for any A,B ⊆ V , we have

f(A) + f(B) = f(A ∩B) + f(A ∪B) (4.21)

In modular functions, elements do not interact (or cooperate, or compete, or
influence each other), and have value based only on singleton values.

Proposition 4.2.2
If f is modular, it may be written as

f(A) = f(∅) +
∑

a∈A

(
f({a})− f(∅)

)
= c+

∑

a∈A
f ′(a) (4.22)

which has only |V |+ 1 parameters.
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Complement function

Given a function f : 2V → R, we can find a complement function
f̄ : 2V → R as f̄(A) = f(V \A) for any A.

Proposition 4.2.1

f̄ is submodular iff f is submodular.

Proof.

f̄(A) + f̄(B) ≥ f̄(A ∪B) + f̄(A ∩B) (4.26)

follows from

f(V \A) + f(V \B) ≥ f(V \ (A ∪B)) + f(V \ (A ∩B)) (4.27)

which is true because V \ (A ∪B) = (V \A) ∩ (V \B) and
V \ (A ∩B) = (V \A) ∪ (V \B) (De Morgan’s laws for sets).
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Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.
Let V (X) be the vertices adjacent to some edge in X ⊆ E(G), then
|V (X)| (the vertex function) is submodular.
Let E(S) be the edges with both vertices in S ⊆ V (G). Then |E(S)|
(the interior edge function) is supermodular.
Let I(S) be the edges with at least one vertex in S ⊆ V (G). Then
|I(S)| (the incidence function) is submodular.
Recall |δ(S)|, is the set size of edges with exactly one vertex in
S ⊆ V (G) is submodular (cut size function). Thus, we have
I(S) = E(S) ∪ δ(S) and E(S) ∩ δ(S) = ∅, and thus that
|I(S)| = |E(S)|+ |δ(S)|. So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?
Consider f(A) = |δ+(A)| − |δ+(V \A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one and
prove it.
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Number of connected components in a graph via edges
Recall, f : 2V → R is submodular, then so is f̄ : 2V → R defined as
f̄(S) = f(V \ S).
Hence, if g : 2V → R is supermodular, then so is ḡ : 2V → R defined as
ḡ(S) = g(V \ S).
Given a graph G = (V,E), for each A ⊆ E(G), let c(A) denote the
number of connected components of the (spanning) subgraph
(V (G), A), with c : 2E → R+.
c(A) is monotone non-increasing, c(A+ a)− c(A) ≤ 0 .
Then c(A) is supermodular, i.e.,

c(A+ a)− c(A) ≤ c(B + a)− c(B) (4.40)
with A ⊆ B ⊆ E \ {a}.
Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of conected components) when
edge is added in a smaller context than when added in a larger context.
c̄(A) = c(E \A) is number of connected components in G when we
remove A; supermodular monotone non-decreasing but not normalized.
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Graph & Combinatorial Examples Matrix Rank Examples and Properties

Graph Strength

So c̄(A) = c(E \A), the number of connected components in G when
we remove A, is supermodular.
Maximizing c̄(A) would be a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).
If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.
An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.
Let G = (V,E,w) with w : E → R+ be a weighted graph with
non-negative weights.
For (u, v) = e ∈ E, let w(e) be a measure of the strength of the
connection between vertices u and v (strength meaning the difficulty of
cutting the edge e).
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Graph Strength

Then w(A) for A ⊆ E is a modular function

w(A) =
∑

e∈A
we (4.1)

so that w(E(G[S])) is the “internal strength” of the vertex set S.
Suppose removing A shatters G into a graph with c̄(A) > 1
components — then w(A)/(c̄(A)− 1) is like the “effort per
achieved/additional component” for a network attacker.
A form of graph strength can then be defined as the following:

strength(G,w) = min
A⊆E(G):c̄(A)>1

w(A)

c̄(A)− 1
(4.2)

Graph strength is like the minimum effort per component. An attacker
would use the argument of the min to choose which edges to attack. A
network designer would maximize, over G and/or w, the graph
strength, strength(G,w).
Since submodularity, problems have strongly-poly-time solutions.
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Submodularity, Quadratic Structures, and Cuts

Lemma 4.3.1

Let M ∈ Rn×n be a symmetric matrix and m ∈ Rn be a vector. Then
f : 2V → R defined as

f(X) = mᵀ1X +
1

2
1ᵀ
XM1X (4.3)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.
Given a complete graph G = (V,E), recall that E(X) is the edge set
with both vertices in X ⊆ V (G), and that |E(X)| is supermodular.
Non-negative modular weights w+ : E → R+, w(E(X)) is also
supermodular, so −w(E(X)) is submodular.
f is a modular function mᵀ1A = m(A) added to a weighted
submodular function, hence f is submodular. . . .
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Submodularity, Quadratic Structures, and Cuts

Proof of Lemma 4.3.1 cont.
Conversely, suppose f is submodular.
Then ∀u, v ∈ V , f({u}) + f({v}) ≥ f({u, v}) + f(∅) while f(∅) = 0.
This requires:

0 ≤ f({u}) + f({v})− f({u, v}) (4.4)

= m(u) +
1

2
Mu,u +m(v) +

1

2
Mv,v (4.5)

−
(
m(u) +m(v) +

1

2
Mu,u +Mu,v +

1

2
Mv,v

)
(4.6)

= −Mu,v (4.7)

So that ∀u, v ∈ V , Mu,v ≤ 0.
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Set Cover and Maximum Coverage
just Special cases of Submodular Optimization

We are given a finite set U of m elements and a set of subsets
U = {U1, U2, . . . , Un} of n subsets of U , so that Ui ⊆ U and⋃
i Ui = U .

The goal of minimum set cover is to choose the smallest subset
A ⊆ [n] , {1, . . . , n} such that

⋃
a∈A Ua = U .

Maximum k cover: The goal in maximum coverage is, given an integer
k ≤ n, select k subsets, say {a1, a2, . . . , ak} with ai ∈ [n] such that
|⋃k

i=1 Uai | is maximized.
f : 2[n] → Z+ where for A ⊆ [n], f(A) = |⋃a∈A Ua| is the set cover
function and is submodular.
Weighted set cover: f(A) = w(

⋃
a∈A Ua) where w : U → R+.

Both Set cover and maximum coverage are well known to be NP-hard,
but have a fast greedy approximation algorithm, and hence are
instances of submodular optimization.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 4 - April 4th, 2018 F16/55 (pg.16/55)



Graph & Combinatorial Examples Matrix Rank Examples and Properties

Vertex and Edge Covers
Also instances of submodular optimization

Definition 4.3.2 (vertex cover)

A vertex cover (a “vertex-based cover of edges”) in graph G = (V,E) is a
set S ⊆ V (G) of vertices such that every edge in G is incident to at least
one vertex in S.

Let I(S) be the number of edges incident to vertex set S. Then we
wish to find the smallest set S ⊆ V subject to I(S) = |E|.

Definition 4.3.3 (edge cover)

A edge cover (an “edge-based cover of vertices”) in graph G = (V,E) is a
set F ⊆ E(G) of edges such that every vertex in G is incident to at least
one edge in F .

Let |V |(F ) be the number of vertices incident to edge set F . Then we
wish to find the smallest set F ⊆ E subject to |V |(F ) = |V |.
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Graph Cut Problems
Also submodular optimization

Minimum cut: Given a graph G = (V,E), find a set of vertices S ⊆ V
that minimize the cut (set of edges) between S and V \ S.
Maximum cut: Given a graph G = (V,E), find a set of vertices S ⊆ V
that minimize the cut (set of edges) between S and V \ S.
Let δ : 2V → R+ be the cut function, namely for any given set of nodes
X ⊆ V , |δ(X)| measures the number of edges between nodes X and
V \X — i.e., δ(x) = E(X,V \X).
Weighted versions, where rather than count, we sum the (non-negative)
weights of the edges of a cut, f(X) = w(δ(X)).
Hence, Minimum cut and Maximum cut are also special cases of
submodular optimization.
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Matrix Rank functions

Let V , with |V | = m be an index set of a set of vectors in Rn for some
n (unrelated to m).
For a given set {v, v1, v2, . . . , vk}, it might or might not be possible to
find (αi)i such that:

xv =

k∑

i=1

αixvi (4.8)

If not, then xv is linearly independent of xv1 , . . . , xvk .
Let r(S) for S ⊆ V be the rank of the set of vectors S. Then r(·) is a
submodular function, and in fact is called a matric matroid rank
function.
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Example: Rank function of a matrix

Given n×m matrix X = (x1, x2, . . . , xm) with xi ∈ Rn for all i. There
are m length-n column vectors {xi}i
Let V = {1, 2, . . . ,m} be the set of column vector indices.
For any A ⊆ V , let r(A) be the rank of the column vectors indexed by
A.
r(A) is the dimensionality of the vector space spanned by the set of
vectors {xa}a∈A.
Thus, r(V ) is the rank of the matrix X.

Skip matrix rank example
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Example: Rank function of a matrix

Consider the following 4× 8 matrix, so V = {1, 2, 3, 4, 5, 6, 7, 8}.





1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5




=





1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |





Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.
r(A ∪ C) = 3, r(B ∪ C) = 3.
r(A ∪Ar) = 3, r(B ∪Br) = 3, r(A ∪Br) = 4, r(B ∪Ar) = 4.
r(A ∪B) = 4, r(A ∩B) = 1 < r(C) = 2.

6 = r(A) + r(B) = r(A ∪B) + r(C) > r(A ∪B) + r(A ∩B) = 5
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Rank function of a matrix

Let A,B ⊆ V be two subsets of column indices.
The rank of the two sets unioned together A ∪B is no more than the
sum of the two individual ranks.
In a Venn diagram, let area correspond to dimensions spanned by
vectors indexed by a set. Hence, r(A) can be viewed as an area.

r(A) + r(B) ≥ r(A ∪ B)

If some of the dimensions spanned by A overlap some of the
dimensions spanned by B (i.e., if ∃ common span), then that area is
counted twice in r(A) + r(B), so the inequality will be strict.
Any function where the above inequality is true for all A,B ⊆ V is
called subadditive.
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Rank functions of a matrix

Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.
Let C index vectors spanning all dimensions common to A and B. We
call C the common span and call A ∩B the common index.
Let Ar index vectors spanning dimensions spanned by A but not B.
Let Br index vectors spanning dimensions spanned by B but not A.
Then, r(A) = r(C) + r(Ar)

Similarly, r(B) = r(C) + r(Br).
Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar) + 2r(C) + r(Br). (4.9)

But r(A ∪B) counts the dimensions spanned by C only once.

r(A ∪B) = r(Ar) + r(C) + r(Br) (4.10)
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Rank functions of a matrix
Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar ) + 2r(C ) + r(Br )

But r(A ∪B) counts the dimensions spanned by C only once.

r(A ∪ B) = r(Ar ) +r(C ) + r(Br )

Thus, we have subadditivity: r(A) + r(B) ≥ r(A ∪B). Can we add
more to the r.h.s. and still have an inequality? Yes.
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Rank function of a matrix

Note, r(A ∩B) ≤ r(C). Why? Vectors indexed by A ∩B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C).

r(A ∩ B)≥r(C )

In short:
Common span (blue) is “more” (no less) than span of common index
(magenta).
More generally, common information (blue) is “more” (no less) than
information within common index (magenta).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 4 - April 4th, 2018 F25/55 (pg.25/55)

Graph & Combinatorial Examples Matrix Rank Examples and Properties

The Venn and Art of Submodularity

+r(A) + r(B) r(A ∪ B)

= r(Ar ) +r(C ) + r(Br )

≥
= r(A ∩ B)

r(A ∩ B)

= r(Ar ) + 2r(C ) + r(Br )

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
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Polymatroid rank function

Let S be a set of subspaces of a linear space (i.e., each s ∈ S is a
subspace of dimension ≥ 1).
For each X ⊆ S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.
We can think of S as a set of sets of vectors from the matrix rank
example, and for each s ∈ S, let Xs being a set of vector indices.
Then, defining f : 2S → R+ as follows,

f(X) = r(∪s∈SXs) (4.11)

we have that f is submodular, and is known to be a polymatroid rank
function.
In general (as we will see) polymatroid rank functions are submodular,
normalized f(∅) = 0, and monotone non-decreasing (f(A) ≤ f(B)
whenever A ⊆ B).
We use the term non-decreasing rather than increasing, the latter of
which is strict (also so that a constant function isn’t “increasing”).
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Spanning trees

Let E be a set of edges of some graph G = (V,E), and let r(S) for
S ⊆ E be the maximum size (in terms of number of edges) spanning
forest in the vertex-induced graph, induced by vertices incident to edges
S.
Example: Given G = (V,E), V = {1, 2, 3, 4, 5, 6, 7, 8},
E = {1, 2, . . . , 12}. S = {1, 2, 3, 4, 5, 8, 9} ⊂ E. Two spanning trees
have the same edge count (the rank of S).

2

1

3

4

7

6

5

8
1

2

3

4

6

7

8

5

9
12

10

11

2

1

3

4

7

6

1

2

3

4

8

5

9

2

1

3

4

7

6

2

3

4

8

52

1

3

4

7

6

1

2
4

8
9

Then r(S) is submodular, and is another matrix rank function
corresponding to the incidence matrix of the graph.
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Submodular Polyhedra

Submodular functions have associated polyhedra with nice properties:
when a set of constraints in a linear program is a submodular
polyhedron, a simple greedy algorithm can find the optimal solution
even though the polyhedron is formed via an exponential number of
constraints.

Pf =
{
x ∈ RE : x(S) ≤ f(S),∀S ⊆ E

}
(4.12)

P+
f = Pf ∩

{
x ∈ RE : x ≥ 0

}
(4.13)

Bf = Pf ∩
{
x ∈ RE : x(E) = f(E)

}
(4.14)

The linear programming problem is to, given c ∈ RE , compute:

f̃(c) , max
{
cTx : x ∈ Pf

}
(4.15)

This can be solved using the greedy algorithm! Moreover, f̃(c)
computed using greedy is convex if and only of f is submodular (we
will go into this in some detail this quarter).
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Summing Submodular Functions

Given E, let f1, f2 : 2E → R be two submodular functions. Then

f : 2E → R with f(A) = f1(A) + f2(A) (4.16)

is submodular.This follows easily since

f(A) + f(B) = f1(A) + f2(A) + f1(B) + f2(B) (4.17)
≥ f1(A ∪B) + f2(A ∪B) + f1(A ∩B) + f2(A ∩B) (4.18)
= f(A ∪B) + f(A ∩B). (4.19)

I.e., it holds for each component of f in each term in the inequality. In fact,
any conic combination (i.e., non-negative linear combination) of submodular
functions is submodular, as in f(A) = α1f1(A) + α2f2(A) for α1, α2 ≥ 0.
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Summing Submodular and Modular Functions

Given E, let f1,m : 2E → R be a submodular and a modular function. Then

f : 2E → R with f(A) = f1(A)−m(A) (4.20)

is submodular (as is f(A) = f1(A) +m(A)). This follows easily since

f(A) + f(B) = f1(A)−m(A) + f1(B)−m(B) (4.21)
≥ f1(A ∪B)−m(A ∪B) + f1(A ∩B)−m(A ∩B) (4.22)
= f(A ∪B) + f(A ∩B). (4.23)

That is, the modular component with
m(A) +m(B) = m(A ∪B) +m(A ∩B) never destroys the inequality.
Note of course that if m is modular than so is −m.
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Restricting Submodular functions

Given E, let f : 2E → R be a submodular functions. And let S ⊆ E be an
arbitrary fixed set. Then

f ′ : 2E → R with f ′(A) , f(A ∩ S) (4.24)

is submodular.

Proof.
Given A ⊆ B ⊆ E \ v, consider

f((A+ v) ∩ S)− f(A ∩ S) ≥ f((B + v) ∩ S)− f(B ∩ S) (4.25)

If v /∈ S, then both differences on each size are zero. If v ∈ S, then we can
consider this

f(A′ + v)− f(A′) ≥ f(B′ + v)− f(B′) (4.26)

with A′ = A ∩ S and B′ = B ∩ S. Since A′ ⊆ B′, this holds due to
submodularity of f .
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Summing Restricted Submodular Functions

Given V , let f1, f2 : 2V → R be two submodular functions and let S1, S2 be
two arbitrary fixed sets. Then

f : 2V → R with f(A) = f1(A ∩ S1) + f2(A ∩ S2) (4.27)

is submodular. This follows easily from the preceding two results.
Given V , let C = {C1, C2, . . . , Ck} be a set of subsets of V , and for each
C ∈ C, let fC : 2V → R be a submodular function. Then

f : 2V → R with f(A) =
∑

C∈C
fC(A ∩ C) (4.28)

is submodular. This property is critical for image processing and graphical
models. For example, let C be all pairs of the form {{u, v} : u, v ∈ V }, or
let it be all pairs corresponding to the edges of some undirected graphical
model. We plan to revisit this topic later in the term.
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Max - normalized

Given V , let c ∈ RV+ be a given fixed vector. Then f : 2V → R+, where

f(A) = max
j∈A

cj (4.29)

is submodular and normalized (we take f(∅) = 0).

Proof.
Consider

max
j∈A

cj + max
j∈B

cj ≥ max
j∈A∪B

cj + max
j∈A∩B

cj (4.30)

which follows since we have that

max(max
j∈A

cj ,max
j∈B

cj) = max
j∈A∪B

cj (4.31)

and

min(max
j∈A

cj ,max
j∈B

cj) ≥ max
j∈A∩B

cj (4.32)
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Max

Given V , let c ∈ RV be a given fixed vector (not necessarily non-negative).
Then f : 2V → R, where

f(A) = max
j∈A

cj (4.33)

is submodular, where we take f(∅) ≤ minj cj (so the function is not
normalized).

Proof.
The proof is identical to the normalized case.
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Facility/Plant Location (uncapacitated) w. plant benefits

Let F = {1, . . . , f} be a set of possible factory/plant locations for
facilities to be built.
S = {1, . . . , s} is a set of sites (e.g., cities, clients) needing service.
Let cij be the “benefit” (e.g., 1/cij is the cost) of servicing site i with
facility location j.
Let mj be the benefit (e.g., either 1/mj is the cost or −mj is the cost)
to build a plant at location j.
Each site should be serviced by only one plant but no less than one.
Define f(A) as the “delivery benefit” plus “construction benefit” when
the locations A ⊆ F are to be constructed.
We can define the (uncapacitated) facility location function

f(A) =
∑

j∈A
mj +

∑

i∈S
max
j∈A

cij . (4.34)

Goal is to find a set A that maximizes f(A) (the benefit) placing a
bound on the number of plants A (e.g., |A| ≤ k).
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Facility/Plant Location (uncapacitated)

Core problem in operations research, early motivation for submodularity.
Goal: as efficiently as possible, place “facilities” (factories) at certain
locations to satisfy sites (at all locations) having various demands.

facility locations sites

...

...

1

2

3

4

5

f

1

2

3

4

s

c24m3

Bene�t of having
site 2 serviced by
facility 4.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 4 - April 4th, 2018 F37/55 (pg.37/55)

Graph & Combinatorial Examples Matrix Rank Examples and Properties

Facility Location

Given V,E, let c ∈ RV×E be a given |V | × |E| matrix. Then

f : 2E → R, where f(A) =
∑

i∈V
max
j∈A

cij (4.35)

is submodular.

Proof.
We can write f(A) as f(A) =

∑
i∈V fi(A) where fi(A) = maxj∈A cij is

submodular (max of a ith row vector), so f can be written as a sum of
submodular functions.

Thus, the facility location function (which only adds a modular function to
the above) is submodular.
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Log Determinant

Let Σ be an n×n positive definite matrix. Let V = {1, 2, . . . , n} ≡ [n]
be an index set, and for A ⊆ V , let ΣA be the (square) submatrix of Σ
obtained by including only entries in the rows/columns given by A.
We have that:

f(A) = log det(ΣA) is submodular. (4.36)

The submodularity of the log determinant is crucial for determinantal
point processes (DPPs) (defined later in the class).

Proof of submodularity of the logdet function.
Suppose X ∈ Rn is multivariate Gaussian random variable, that is

x ∈ p(x) =
1√
|2πΣ|

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(4.37)

. . .
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Log Determinant

...cont.
Then the (differential) entropy of the r.v. X is given by

h(X) = log
√
|2πeΣ| = log

√
(2πe)n|Σ| (4.38)

and in particular, for a variable subset A,

f(A) = h(XA) = log
√

(2πe)|A||ΣA| (4.39)

Entropy is submodular (further conditioning reduces entropy), and moreover

f(A) = h(XA) = m(A) +
1

2
log |ΣA| (4.40)

where m(A) is a modular function.

Note: still submodular in the semi-definite case as well.
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Summary so far

Summing: if αi ≥ 0 and fi : 2V → R is submodular, then so is
∑

i αifi.
Restrictions: f ′(A) = f(A ∩ S)

max: f(A) = maxj∈A cj and facility location.
Log determinant f(A) = log det(ΣA)
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Concave over non-negative modular

Let m ∈ RE+ be a non-negative modular function, and g a concave function
over R. Define f : 2E → R as

f(A) = g(m(A)) (4.41)

then f is submodular.

Proof.
Given A ⊆ B ⊆ E \ v, we have 0 ≤ a = m(A) ≤ b = m(B), and
0 ≤ c = m(v). For g concave, we have g(a+ c)− g(a) ≥ g(b+ c)− g(b),
and thus

g(m(A) +m(v))− g(m(A)) ≥ g(m(B) +m(v))− g(m(B)) (4.42)

A form of converse is true as well.
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Concave composed with non-negative modular

Theorem 4.5.1
Given a ground set V . The following two are equivalent:

1 For all modular functions m : 2V → R+, then f : 2V → R defined as
f(A) = g(m(A)) is submodular

2 g : R+ → R is concave.

If g is non-decreasing concave w. g(0) = 0, then f is polymatroidal.
Sums of concave over modular functions are submodular

f(A) =

K∑

i=1

gi(mi(A)) (4.43)

Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause 2011), and “feature-based
submodular functions” (Wei, Iyer, & Bilmes 2014).
However, Vondrak showed that a graphic matroid rank function over
K4 (we’ll define this after we define matroids) are not members.
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Monotonicity

Definition 4.5.2

A function f : 2V → R is monotone nondecreasing (resp. monotone
increasing) if for all A ⊂ B, we have f(A) ≤ f(B) (resp. f(A) < f(B)).

Definition 4.5.3

A function f : 2V → R is monotone nonincreasing (resp. monotone
decreasing) if for all A ⊂ B, we have f(A) ≥ f(B) (resp. f(A) > f(B)).
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Composition of non-decreasing submodular and
non-decreasing concave

Theorem 4.5.4

Given two functions, one defined on sets

f : 2V → R (4.44)

and another continuous valued one:

g : R→ R (4.45)

the composition formed as h = g ◦ f : 2V → R (defined as h(S) = g(f(S)))
is nondecreasing submodular, if g is non-decreasing concave and f is
nondecreasing submodular.
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Monotone difference of two functions

Let f and g both be submodular functions on subsets of V and let
(f − g)(·) be either monotone non-decreasing or monotone non-increasing
Then h : 2V → R defined by

h(A) = min(f(A), g(A)) (4.46)

is submodular.

Proof.
If h(A) agrees with f on both X and Y (or g on both X and Y ), and since

h(X) + h(Y ) = f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) (4.47)
or

h(X) + h(Y ) = g(X) + g(Y ) ≥ g(X ∪ Y ) + g(X ∩ Y ), (4.48)
the result (Equation 4.46 being submodular) follows since
f(X) + f(Y )

g(X) + g(Y )
≥ min(f(X ∪ Y ), g(X ∪ Y )) + min(f(X ∩ Y ), g(X ∩ Y ))

(4.49)
. . .
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Monotone difference of two functions

...cont.
Otherwise, w.l.o.g., h(X) = f(X) and h(Y ) = g(Y ), giving

h(X) + h(Y ) = f(X) + g(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) + g(Y )− f(Y )
(4.50)

Assume the case where f − g is monotone non-decreasing Hence,
f(X ∪ Y ) + g(Y )− f(Y ) ≥ g(X ∪ Y ) giving

h(X) + h(Y ) ≥ g(X ∪ Y ) + f(X ∩ Y ) ≥ h(X ∪ Y ) + h(X ∩ Y ) (4.51)

What is an easy way to prove the case where f − g is monotone
non-increasing?
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Saturation via the min(·) function

Let f : 2V → R be a monotone increasing or decreasing submodular
function and let α be a constant. Then the function h : 2V → R defined by

h(A) = min(α, f(A)) (4.52)

is submodular.

Proof.
For constant k, we have that (f − k) is non-decreasing (or non-increasing)
so this follows from the previous result.

Note also, g(a) = min(k, a) for constant k is a non-decreasing concave
function, so when f is monotone nondecreasing submodular, we can use the
earlier result about composing a monotone concave function with a
monotone submodular function to get a version of this.
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More on Min - the saturate trick

In general, the minimum of two submodular functions is not
submodular (unlike concave functions, closed under min).
However, when wishing to maximize two monotone non-decreasing
submodular functions f, g, we can define function hα : 2V → R as

hα(A) =
1

2

(
min(α, f(A)) + min(α, g(A))

)
(4.53)

then hα is submodular, and hα(A) ≥ α if and only if both f(A) ≥ α
and g(A) ≥ α, for constant α ∈ R.
This can be useful in many applications. An instance of a submodular
surrogate (where we take a non-submodular problem and find a
submodular one that can tell us something about it).
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Arbitrary functions: difference between submodular funcs.

Theorem 4.5.5
Given an arbitrary set function h, it can be expressed as a difference
between two submodular functions (i.e., ∀h ∈ 2V → R,
∃f, g s.t. ∀A, h(A) = f(A)− g(A) where both f and g are submodular).

Proof.
Let h be given and arbitrary, and define:

α
∆
= min

X,Y :X 6⊆Y,Y 6⊆X

(
h(X) + h(Y )− h(X ∪ Y )− h(X ∩ Y )

)
(4.54)

If α ≥ 0 then h is submodular, so by assumption α < 0. Now let f be an
arbitrary strict submodular function and define

β
∆
= min

X,Y :X 6⊆Y,Y 6⊆X

(
f(X) + f(Y )− f(X ∪ Y )− f(X ∩ Y )

)
. (4.55)

Strict means that β > 0. . . .
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Arbitrary functions as difference between submodular funcs.

...cont.

Define h′ : 2V → R as

h′(A) = h(A) +
|α|
β
f(A) (4.56)

Then h′ is submodular (why?), and h = h′(A)− |α|β f(A), a difference
between two submodular functions as desired.
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Gain

We often wish to express the gain of an item j ∈ V in context A,
namely f(A ∪ {j})− f(A).
This is called the gain and is used so often, there are equally as many
ways to notate this. I.e., you might see:

f(A ∪ {j})− f(A)
∆
= ρj(A) (4.57)
∆
= ρA(j) (4.58)
∆
= ∇jf(A) (4.59)
∆
= f({j}|A) (4.60)
∆
= f(j|A) (4.61)

We’ll use f(j|A).
Submodularity’s diminishing returns definition can be stated as saying
that f(j|A) is a monotone non-increasing function of A, since
f(j|A) ≥ f(j|B) whenever A ⊆ B (conditioning reduces valuation).
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Gain Notation

It will also be useful to extend this to sets.
Let A,B be any two sets. Then

f(A|B) , f(A ∪B)− f(B) (4.62)

So when j is any singleton

f(j|B) = f({j}|B) = f({j} ∪B)− f(B) (4.63)

Inspired from information theory notation and the notation used for
conditional entropy H(XA|XB) = H(XA, XB)−H(XB).
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Totally normalized functions

Any normalized submodular function g (even non-monotone) can be
represented as a sum of a polymatroid (normalized monotone
non-decreasing submodular) function ḡ and a modular function mg.
Given arbitrary normalized submodular g : 2V → R, construct a
function ḡ : 2V → R as follows:

ḡ(A) = g(A)−
∑

a∈A
g(a|V \ {a}) = g(A)−mg(A) (4.64)

where mg(A) ,
∑

a∈A g(a|V \ {a}) is a modular function.
ḡ is normalized since ḡ(∅) = 0.
ḡ is monotone non-decreasing since for v /∈ A ⊆ V :

ḡ(v|A) = g(v|A)− g(v|V \ {v}) ≥ 0 (4.65)

ḡ is called the totally normalized version of g.
Then g(A) = ḡ(A) +mg(A).
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Arbitrary function as difference between two polymatroids

Any normalized function h (i.e., h(∅) = 0) can be represented as a
difference not only between submodular, but between polymatroid
(normalized monotone non-decreasing submodular) functions.
Given submodular f and g, let f̄ and ḡ be them totally normalized.
Given arbitrary h = f − g where f and g are normalized submodular,

h = f − g = f̄ +mf − (ḡ +mg) (4.66)
= f̄ − ḡ + (mf −mg) (4.67)
= f̄ − ḡ +mf−h (4.68)
= f̄ +m+

f−g − (ḡ + (−mf−g)
+) (4.69)

where m+ is the positive part of modular function m. That is,
m+(A) =

∑
a∈Am(a)1(m(a) > 0).

Both f̄ +m+
f−g and ḡ + (−mf−g)

+ are polymatroid functions!
Thus, any function can be expressed as a difference between two, not only
submodular (DS), but polymatroid functions.
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