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Cumulative Outstanding Reading

@ Read chapter 1 from Fujishige's book.
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Announcements, Assignments, and Reminders

@ Homework 1 out, due Monday, 4/9/2018 11:59pm electronically via our
assignment dropbox
(https://canvas.uw.edu/courses/1216339/assignments).

@ If you have any questions about anything, please ask then via our
discussion board
(https://canvas.uw.edu/courses/1216339/discussion_topics).
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Class Road Map - EE563

@ L1(3/26): Motivation, Applications, & @ L11(4/30)
Basic Definitions, @ L12(5/2):
@ L2(3/28): Machine Learning Apps @ L13(5/7)
(diversity, complexity, parameter, learning o L14(5/9)
target, surrogate). o L15(5/14)
° L3(.4./2_): Info theory exs, more apps, o L16(5/16)
definitions, graph/combinatorial examples
@ L4(4/4): Graph and Combinatorial - [l
Examples, Matrix Rank, Examples and @ L18(5/23):
Properties, visualizations @ L—(5/28): Memorial Day (holiday)
o L5(4/9): o L19(5/30):
@ L6(4/11): @ L21(6/4): Final Presentations
@ L7(4/16): maximization.
@ L38(4/18):
@ L9(4/23):
@ L10(4/25):

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.
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Submodular on Hypercube Vertices

@ Test submodularity via values on verticies of hypercube.
Example: with |V| =n =2, thisis  With |V| =n = 3, a bit harder,

111
easy:

10 "

'|'|0 101 011
00 01
10\‘/01

How many mequalltles?
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Subadditive Definitions

Definition 4.2.1 (subadditive)
A function f : 2" — R is subadditive if for any A, B C V, we have that:

f(A)+ f(B) > f(AUB) (4.21)

This means that the “whole” is less than the sum of the parts.
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Superadditive Definitions

Definition 4.2.1 (superadditive)
A function f : 2¥ — R is superadditive if for any A, B C V, we have that:

f(A)+f(B) < f(AUB) (4.21)

@ This means that the “whole” is greater than the sum of the parts.

@ In general, submodular and subadditive (and supermodular and
superadditive) are different properties.

o Ex: Let 0 < k < |V|, and consider f : 2V — R, where:

f(A) = {1 TlAl<k (4.22)

0 else

@ This function is subadditive but not submodular.
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Modular Definitions

Definition 4.2.1 (modular)

A function that is both submodular and supermodular is called modular

If f is a modular function, than for any A, B C V, we have
f(A) + f(B) = f(ANnB) + f(AU B) (4.21)

In modular functions, elements do not interact (or cooperate, or compete, or
influence each other), and have value based only on singleton values.

Proposition 4.2.2

If { is modular, it may be written as

F(A) = FO)+ > (F{ah) = FB) =c+ > F(a) (4.22)

acA acA

which has only |V'| + 1 parameters.

\
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Complement function

Given a function f : 2V — R, we can find a complement function
f:2V 2 Ras f(A) = f(V\A) for any A,

Proposition 4.2.1

[ is submodular iff f is submodular.

Proof.

f(A) + f(B) > f(AUB) + f(AN B) (4.26)
follows from
FVNA)+ f(VAB) = f(VN(AUB))+ f(V\(ANB))  (427)

which is true because V'\ (AUB) = (V\ A)n(V\ B) and
VN(ANB)=(V\A)U((V\ B) (De Morgan's laws for sets). O
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These come from Narayanan's book 1997. Let G be an undirected graph.

o Let V(X) be the vertices adjacent to some edge in X C E(G), then
|V (X)]| (the vertex function) is submodular.

@ Let F(S5) be the edges with both vertices in S C V(G). Then |E(S5)|
(the interior edge function) is supermodular.

o Let I(S) be the edges with at least one vertex in S C V(G). Then
|1(S)| (the incidence function) is submodular.

@ Recall |0(S)], is the set size of edges with exactly one vertex in
S C V(G) is submodular (cut size function). Thus, we have
I(S) = E(S)Ud(S) and E(S)Nd(S) =0, and thus that
|1I(S)| = |E(S)| + |6(S)|. So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?

o Consider f(A) = |6T(A)| —[67(V \ A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one and
prove it.
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Number of connected components in a graph via edges

@ Recall, f:2" — R is submodular, then so is f : 2 — R defined as
f(8) = F(V\S).

@ Hence, if g : 2 — R is supermodular, then so is g : 2" — R defined as
g(S) = g(V\ 5).

e Given a graph G = (V, FE), for each A C E(G), let ¢c(A) denote the
number of connected components of the (spanning) subgraph
(V(G),A), with ¢: 2F - R,

@ ¢(A) is monotone non-increasing, c(A+a) —c(A) < 0.

@ Then ¢(A) is supermodular, i.e.,

c(A+a)—c(A) <¢(B+a)—cB) (4.40)
with AC B C E\ {a}.

@ Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of conected components) when
edge is added in a smaller context than when added in a larger context.

@ ¢(A) =c(E\ A) is number of connected components in G when we
remove A; supermodular monotone non-decreasing but not normalized.
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Graph Strength

@ So ¢(A) =c¢(F \ A), the number of connected components in G when
we remove A, is supermodular.

@ Maximizing ¢(A) would be a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

@ If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.

@ An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.

o Let G = (V, E,w) with w : E — R+ be a weighted graph with
non-negative weights.

@ For (u,v) =e € E, let w(e) be a measure of the strength of the
connection between vertices u and v (strength meaning the difficulty of
cutting the edge e).
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Graph & Combinatorial Examples
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Graph Strength

@ Then w(A) for A C E is a modular function

w(A) = " w, (4.1)
ecA
so that w(FE(G[S])) is the “internal strength” of the vertex set S.

@ Suppose removing A shatters GG into a graph with ¢(A) > 1
components — then w(A)/(¢(A) — 1) is like the “effort per
achieved/additional component” for a network attacker.

@ A form of graph strength can then be defined as the following:

strength(G,w) = min wid)

— 4.2
ACE(G):¢(A)>1 ¢(A) — 1 (4.2)

@ Graph strength is like the minimum effort per component. An attacker
would use the argument of the min to choose which edges to attack. A
network designer would maximize, over G and/or w, the graph
strength, strength(G, w).

@ Since submodularity, problems have strongly-poly-time solutions.
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Submodularity, Quadratic Structures, and Cuts

Lemma 4.3.1

Let M € R™*"™ be a symmetric matrix and m € R™ be a vector. Then
f:2V = R defined as

1
f(X) =mT1x + ;15 Mlx (4.3)

is submodular iff the off-diagonal elements of M are non-positive.

| A\

Proof.

@ Given a complete graph G = (V, E), recall that E(X) is the edge set
with both vertices in X C V(G), and that |E(X)| is supermodular.

@ Non-negative modular weights w™ : E — R, w(E(X)) is also
supermodular, so —w(E(X)) is submodular.

e f is a modular function m™14 = m(A) added to a weighted
submodular function, hence f is submodular.
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Submodularity, Quadratic Structures, and Cuts

Proof of Lemma 4.3.1 cont.

@ Conversely, suppose f is submodular.

e Then Vu,v € V, f({u}) + f({v}) > f({u,v}) + f(0) while f(0) = 0.

@ This requires:

0 < f({u}) + f({v}) = F({w, v}) (4.4)

1 1
=m(u) + §Mu,u +m(v) + §Mv7v (4.5)
1 1
— (m(u) + m(v) + 5 uu T Mu,v + EMv,v) (46)
= — My (4.7)

So that Vu,v € V, M,,, <0.
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Set Cover and Maximum Coverage

just Special cases of Submodular Optimization

@ We are given a finite set U of m elements and a set of subsets
U={Uy,Us,...,U,} of n subsets of U, so that U; C U and
U, U =U.

@ The goal of minimum set cover is to choose the smallest subset
AC[n]2{1,...,n} such that J,. 4, Us = U.

@ Maximum k cover: The goal in maximum coverage is, given an integer
k < n, select k subsets, say {ai,aq,...,ar} with a; € [n] such that
| Ule Us,| is maximized.

o f:2" - Z, where for A C [n], f(A) = | Upea Ual is the set cover
function and is submodular.

o Weighted set cover: f(A) = w({J,cyq Ua) where w: U — R,

@ Both Set cover and maximum coverage are well known to be NP-hard,
but have a fast greedy approximation algorithm, and hence are
instances of submodular optimization.
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Vertex and Edge Covers

Also instances of submodular optimization

Definition 4.3.2 (vertex cover)

A vertex cover (a “vertex-based cover of edges”) in graph G = (V, E) is a
set S C V(@) of vertices such that every edge in G is incident to at least
one vertex in S.

@ Let /(S) be the number of edges incident to vertex set S. Then we
wish to find the smallest set S C V subject to I(S) = |E].

Definition 4.3.3 (edge cover)

A edge cover (an “edge-based cover of vertices”) in graph G = (V, E) is a
set F' C E(G) of edges such that every vertex in G is incident to at least
one edge in F.

@ Let |V|(F') be the number of vertices incident to edge set F'. Then we
wish to find the smallest set ' C E subject to |V|(F) = |V].
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Graph Cut Problems

Also submodular optimization

@ Minimum cut: Given a graph G = (V, E), find a set of vertices S C V
that minimize the cut (set of edges) between S and V' \ S.

@ Maximum cut: Given a graph G = (V, E), find a set of vertices S C V
that minimize the cut (set of edges) between S and V' \ S.

o Let 6 : 2" — R, be the cut function, namely for any given set of nodes
X CV, |6(X)| measures the number of edges between nodes X and
VAX —ie, d(x)=EX,V\X).

@ Weighted versions, where rather than count, we sum the (non-negative)
weights of the edges of a cut, f(X) = w(d(X)).

@ Hence, Minimum cut and Maximum cut are also special cases of
submodular optimization.
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Matrix Rank functions

o Let V, with |V| = m be an index set of a set of vectors in R" for some
n (unrelated to m).

e For a given set {v,v1,v9,...,v}, it might or might not be possible to
find (a;); such that:

k
Ty = D @ (4.8)
=1

If not, then x,, is linearly independent of z,,, ..., z,,.
@ Let #(S) for S C V be the rank of the set of vectors S. Then r(-) is a
submodular function, and in fact is called a matric matroid rank

function.
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Example: Rank function of a matrix

e Given n x m matrix X = (z1,x2,...,%y) with z; € R™ for all . There
are m length-n column vectors {z;},

@ Let V ={1,2,...,m} be the set of column vector indices.

@ For any A CV, let r(A) be the rank of the column vectors indexed by
A.

@ r(A) is the dimensionality of the vector space spanned by the set of

vectors {Zq},c4-

@ Thus, r(V) is the rank of the matrix X.
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Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V' = {1,2,3,4,5,6,7,8}.

1 2 3 45 6 7 8
1 2 3 4 5 6 7 8
1/0 2 230131 o
210 3 0 4 0 0 2 4
— X X X X Xi X X X
3o 0003005 ‘1‘2|3‘4|5‘6‘7|8
4\2 0 0 0 0 0 O 5
o Let A={1,2,3}, B={3,4,5}, C = {6,7}, A, = {1}, B, = {5}.
@ Then r(A) =3, r(B) =3, r(C) = 2.
o r(AUC) =3, r(BUC)=
or(AuA)_B r(BUB,)=3,1(AUB,) =4, r(BUA,) =
o "(AUB)=4, r(AnB)=1<r(C)=2.
e 6= r(4)+ ( )=r(AUB)+r(C)>r(AUB)+r(ANDB) =5
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Rank function of a matrix

o Let A, B C V be two subsets of column indices.

@ The rank of the two sets unioned together A U B is no more than the
sum of the two individual ranks.

@ In a Venn diagram, let area correspond to dimensions spanned by
vectors indexed by a set. Hence, r(A) can be viewed as an area.

r(A) + r(B) >  r(AUB)

@ If some of the dimensions spanned by A overlap some of the
dimensions spanned by B (i.e., if 3 common span), then that area is
counted twice in 7(A) + r(B), so the inequality will be strict.

@ Any function where the above inequality is true for all A, B C V is
called subadditive.
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Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C' index vectors spanning all dimensions common to A and B. We
call C' the common span and call AN B the common index.

Let A, index vectors spanning dimensions spanned by A but not B.
Let B, index vectors spanning dimensions spanned by B but not A.
Then, 7(A) =r(C) + r(A,)

Similarly, 7(B) = r(C) + r(B;).

Then r(A) + r(B) counts the dimensions spanned by C' twice, i.e.,

r(A) +r(B) =r(Ay) + 2r(C) + r(By). (4.9)

But (A U B) counts the dimensions spanned by C' only once.

r(AUB) = r(4,) + r(C) + r(B,) (4.10)
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Rank functions of a matrix

@ Then r(A) + r(B) counts the dimensions spanned by C' twice, i.e.,

r(A)+ r(B) = r(A;) +2r(C) + r(By)

@ But (A U B) counts the dimensions spanned by C' only once.

r(AUB) =r(A,) +r(C)+ r(B,)

@ Thus, we have subadditivity: r(A) +r(B) > r(AU B). Can we add
more to the r.h.s. and still have an inequality? Yes.
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Rank function of a matrix

e Note, 7(AN B) < r(C). Why? Vectors indexed by AN B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C).

r(C) > r(AN B)

In short:
@ Common span (blue) is “more” (no less) than span of common index
(magenta).
@ More generally, common information (blue) is “more” (no less) than
information within common index (magenta).
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The Venn and Art of Submodularity

r(A) + r(B) > ¥r(A U B)J -+ ¥r(A nB)

=r(A —|—2r = )+ r(Br) r(AN B)

00 ® ®
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Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S is a
subspace of dimension > 1).

@ For each X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.

@ We can think of S as a set of sets of vectors from the matrix rank
example, and for each s € S, let X, being a set of vector indices.

@ Then, defining f : 25 R as follows,

fF(X) = r(Uses Xs) (4.11)

we have that f is submodular, and is known to be a polymatroid rank
function.

@ In general (as we will see) polymatroid rank functions are submodular,
normalized f(()) = 0, and monotone non-decreasing (f(A4) < f(B)
whenever A C B).

@ We use the term non-decreasing rather than increasing, the latter of
which is strict (also so that a constant function isn't “increasing’).
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Spanning trees

o Let £ be a set of edges of some graph G = (V, E), and let r(S) for
S C E be the maximum size (in terms of number of edges) spanning
forest in the vertex-induced graph, induced by vertices incident to edges
S.

@ Example: Given G = (V, E), V =1{1,2,3,4,5,6,7,8},
E={1,2,...,12}. S ={1,2,3,4,5,8,9} C E. Two spanning trees
have the same edge count (the rank of 5).

@ Then r(S) is submodular, and is another matrix rank function
corresponding to the incidence matrix of the graph.
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Submodular Polyhedra

@ Submodular functions have associated polyhedra with nice properties:
when a set of constraints in a linear program is a submodular
polyhedron, a simple greedy algorithm can find the optimal solution
even though the polyhedron is formed via an exponential number of
constraints.

Py ={z e R": 2(S) < f(5),VS C E} (4.12)
Pf=Pin{zeR’:2>0} (4.13)
By =Pin{z eR? :z(E) = f(E)} (4.14)

@ The linear programming problem is to, given ¢ € R, compute:
f(c) £ max {c"z:z € Py} (4.15)

e This can be solved using the greedy algorithm! Moreover, f(c)
computed using greedy is convex if and only of f is submodular (we
will go into this in some detail this quarter).
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Summing Submodular Functions

Given E, let f1, fo : 2 = R be two submodular functions. Then
f:2% 5 Rwith f(A) = fi(A) + f2(A) (4.16)

is submodular. This follows easily since

f(A) + f(B) = fi(A) + fo(A) + f1(B) + f2(B) (4.17)
> fi(AUB) + fo(AU B) + fi(AN B) + fa(AN B) (4.18)
= f(AUB)+ f(AN B). (4.19)

l.e., it holds for each component of f in each term in the inequality. In fact,
any conic combination (i.e., non-negative linear combination) of submodular
functions is submodular, as in f(A) = a1 fi(A) + asf2(A) for az, s > 0.
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Summing Submodular and Modular Functions

Given E, let fi,m : 2F — R be a submodular and a modular function. Then
f:2% 5 Rwith f(A) = fi(A) — m(A) (4.20)

is submodular (as is f(A) = f1(A) +m(A)). This follows easily since

f(A) + f(B) = f1(4) —m(A) + f1(B) — m(B) (4.21)
> fi(AUB)—m(AUB)+ fi(ANB) —m(AN B) (4.22)
= f(AUB) + f(AN B). (4.23)

That is, the modular component with
m(A) +m(B) = m(AU B) + m(A N B) never destroys the inequality.
Note of course that if m is modular than so is —m.
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Restricting Submodular functions

Given E, let f : 2¥ — R be a submodular functions. And let S C E be an
arbitrary fixed set. Then

f2F S Rwith f/(A) £ f(ANS) (4.24)
is submodular.

Proof.
Given A C B C F \ v, consider

f((A+v)NS)— f(ANS) > f((B4+v)NnS)— f(BNS) (4.25)

If v ¢ S, then both differences on each size are zero. If v € S, then we can
consider this

fA +0) = f(A) = f(B' +v) - f(B) (4.26)

with A’ = AN S and B’ = BN S. Since A’ C B’, this holds due to
submodularity of f. u
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Summing Restricted Submodular Functions

Given V, let f1, f2: 2 — R be two submodular functions and let S;, Sy be
two arbitrary fixed sets. Then

f:2V 5 Rwith f(A) = f1(ANS)) + fo(AN S) (4.27)

is submodular. This follows easily from the preceding two results.
Given V, let C = {C1,Cs,...,C}} be a set of subsets of V', and for each
C e€C, let fo: 2V — R be a submodular function. Then

f:2V > Rwith f(A) =D fe(ANC) (4.28)
ceC

is submodular. This property is critical for image processing and graphical
models. For example, let C be all pairs of the form {{u,v} : u,v € V}, or
let it be all pairs corresponding to the edges of some undirected graphical

model. We plan to revisit this topic later in the term.
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Examples and Properti ies
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Max - normalized

Given V, let ¢ € RY be a given fixed vector. Then f:2V — R, where

£(4) = maxe; (4.29)

is submodular and normalized (we take f(()) = 0).

Consider
max ¢; + maxc; > max ¢; + max c; (4.30)
JEA jEB jEAUB JEANB

which follows since we have that

max(max ¢j, maxc;) = max c; (4.31)
JEA JjEB JjEAUB
and
min(max c;, maxc;) > max c; (4.32)
jeA jeB jEANB
[
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Examples and Properti ies

Given V, let ¢ € RV be a given fixed vector (not necessarily non-negative).
Then f: 2V — R, where

f(A) = S (4.33)

is submodular, where we take f(f)) < min;c; (so the function is not
normalized).

The proof is identical to the normalized case. H
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Examples and Properti ies
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Facility/Plant Location (uncapacitated) w. plant benefits

@ Let F={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

e S={1,...,s} is a set of sites (e.g., cities, clients) needing service.

@ Let ¢;; be the "benefit” (e.g., 1/c;; is the cost) of servicing site ¢ with
facility location j.

@ Let m; be the benefit (e.g., either 1/m; is the cost or —m; is the cost)
to build a plant at location j.

@ Each site should be serviced by only one plant but no less than one.

@ Define f(A) as the “delivery benefit” plus “construction benefit” when
the locations A C F' are to be constructed.

@ We can define the (uncapacitated) facility location function

f(A) = ij + Zmaj( o (4.34)
jeA ies 7°
@ Goal is to find a set A that maximizes f(A) (the benefit) placing a
bound on the number of plants A (e.g., |A| < k).
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Examples and Properties

Facility/Plant Location (uncapacitated)

@ Core problem in operations research, early motivation for submodularity.

@ Goal: as efficiently as possible, place “facilities” (factories) at certain
locations to satisfy sites (at all locations) having various demands.

facility locations sites

Benefit of having
site 2 serviced by
facility 4.
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Examples and Properties

Facility Location

Given V, E, let c € RV*F be a given |V| x |E| matrix. Then

f:2F 5 R, where f(A) = Zmaxcij (4.35)
J

is submodular.

We can write f(A) as f(A) =) oy fi(A) where f;(A) = max;jea c;j is
submodular (max of a it row vector), so f can be written as a sum of
submodular functions. ]

Thus, the facility location function (which only adds a modular function to
the above) is submodular.
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Exampl les and Properti ies
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Log Determinant

@ Let X be an n x n positive definite matrix. Let V = {1,2,...,n} = [n]
be an index set, and for A C V, let 3 4 be the (square) submatrix of X
obtained by including only entries in the rows/columns given by A.

@ We have that:
f(A) =logdet(X 4) is submodular. (4.36)

@ The submodularity of the log determinant is crucial for determinantal
point processes (DPPs) (defined later in the class).

Proof of submodularity of the logdet function.

Suppose X € R" is multivariate Gaussian random variable, that is

—;ex —1:19— M e —
ver) = o p( (& — TS m) (4.37)
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Exampl les and Properti ies
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Log Determinant

...cont.

Then the (differential) entropy of the r.v. X is given by

h(X) =log+/|2meX| = log v/ (2me)"| X| (4.38)

and in particular, for a variable subset A,

F(A) = h(X4) = log \/ (2me)lAI[S4] (4.39)

Entropy is submodular (further conditioning reduces entropy), and moreover

£(4) = h(Xa) = m(4) + 5 o8[S (4.40)

where m(A) is a modular function. O

v

Note: still submodular in the semi-definite case as well.
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Exampl les and Properti ies
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Summary so far

e Summing: if a; > 0 and f; : 2¥ — R is submodular, then so is > aifi
@ Restrictions: f'(A) = f(ANS)

e max: f(A)=maxjca c; and facility location.

@ Log determinant f(A) = logdet(X4)
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Exampl les and Properti ies
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Concave over non-negative modular

Let m € RY be a non-negative modular function, and g a concave function
over R. Define f:2¥ = R as

f(A) = g(m(A)) (4.41)
then f is submodular.

Proof.

Given AC B C E\ v, we have 0 < a=m(A4) <b=m(B), and

0 < c=m(v). For g concave, we have g(a + ¢) — g(a) > g(b+ ¢) — g(b),
and thus

g(m(A) +m(v)) — g(m(A)) = g(m(B) + m(v)) —g(m(B))  (4.42)

A form of converse is true as well.
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Exampl les and Properti ies
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Concave composed with non-negative modular

Theorem 4.5.1
Given a ground set V. The following two are equivalent:

@ For all modular functions m : 2V — R, then f : 2V — R defined as
f(A) = g(m(A)) is submodular

Q@ g: R, — R is concave.

@ If g is non-decreasing concave w. g(0) = 0, then f is polymatroidal.
@ Sums of concave over modular functions are submodular

K
f(4) = ngmi(A» (4.43)

@ Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause 2011), and “feature-based
submodular functions” (Wei, lyer, & Bilmes 2014).

@ However, Vondrak showed that a graphic matroid rank function over
Ky (we'll define this after we define matroids) are not members.
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Exampl les and Properti ies
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Monotonicity

Definition 4.5.2

A function f : 2V — R is monotone nondecreasing (resp. monotone
increasing) if for all A C B, we have f(A) < f(B) (resp. f(A) < f(B)).

Definition 4.5.3

A function f : 2V — R is monotone nonincreasing (resp. monotone
decreasing) if for all A C B, we have f(A) > f(B) (resp. f(A) > f(B)).
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Exampl les and Properti ies
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Composition of non-decreasing submodular and

non-decreasing concave

Theorem 4.5.4

Given two functions, one defined on sets

f:2¥ >R (4.44)
and another continuous valued one:

g:R—=>R (4.45)

the composition formed as h = go f : 2V — R (defined as h(S) = g(f(S)))
is nondecreasing submodular, if g is non-decreasing concave and f is
nondecreasing submodular.
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Exampl les and Properti ies
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Monotone difference of two functions

Let f and g both be submodular functions on subsets of V' and let
(f — g)(+) be either monotone non-decreasing or monotone non-increasing
Then h : 2¥ — R defined by

h(A) = min(f(A),g(A)) (4.46)
is submodular.
Proof.

If h(A) agrees with f on both X and Y (or g on both X and Y'), and since
M(X)+hY)=f(X)+fY)> f(XUY)+ f(XNY) (4.47)

or
MX) +h(Y) =g(X)+9(Y) 2 g(XUY) +g(XNY), (4.48)
the result (Equation 4.46 being submodular) follows since

X))+ &) o . :
4(X) + () > min(f(XUY),g(XUY))+min(f(XNY),g(X ﬂ(:/:;)

v

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 4 - April 4th, 2018 F46/55 (pg.46/55)




Exampl les and Properti ies
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Monotone difference of two functions

...cont.

Otherwise, w.l.o.g., h(X) = f(X) and h(Y) = g(Y), giving

hMX)+h(Y) = f(X)+9(Y) > f(XUY)+ f(XNY)+g(Y) - f((Y) :
4.50

Assume the case where f — g is monotone non-decreasing Hence,
F(XUY)+g(Y) — f(Y) = g(X UY) giving

R(X)+h(Y)>g(XUY)+ f(XNY)>hA(XUY)+h(XNY) (4.51)

[

v

What is an easy way to prove the case where f — g is monotone
non-increasing?
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Saturation via the min(-) function

Let f:2Y — R be a monotone increasing or decreasing submodular
function and let a be a constant. Then the function h : 2V — R defined by

h(A) = min(«, f(A)) (4.52)

is submodular.

For constant k, we have that (f — k) is non-decreasing (or non-increasing)
so this follows from the previous result. o

Note also, g(a) = min(k, a) for constant k is a non-decreasing concave
function, so when f is monotone nondecreasing submodular, we can use the
earlier result about composing a monotone concave function with a
monotone submodular function to get a version of this.
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More on Min - the saturate trick

@ In general, the minimum of two submodular functions is not
submodular (unlike concave functions, closed under min).

@ However, when wishing to maximize two monotone non-decreasing
submodular functions f, g, we can define function h, : 2 — R as

ho(A) = %(min(a, £(A)) + min(ar g(4)) (4.53)

then h,, is submodular, and h,(A) > « if and only if both f(A4) > «
and g(A) > «, for constant a € R.

@ This can be useful in many applications. An instance of a submodular
surrogate (where we take a non-submodular problem and find a
submodular one that can tell us something about it).
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Exampl les and Properti ies
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Arbitrary functions: difference between submodular funcs.

Theorem 4.5.5

Given an arbitrary set function h, it can be expressed as a difference
between two submodular functions (i.e., Yh € 2V — R,
df,g s.t. VA, h(A) = f(A) — g(A) where both f and g are submodular).

Proof.
Let h be given and arbitrary, and define:

A :
= X Y)-h(XUY)—-h(XNY 4.54
a X’Y:)%ngx(h( )+ R(Y) —h(XUY) - h(X N )) (4.54)
If « > 0 then h is submodular, so by assumption o < 0. Now let f be an
arbitrary strict submodular function and define

2 i (OO + () - f(XUY) - f(XNY)).  (455)

Strict means that 5 > 0.
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Arbitrary functions as difference between submodular funcs.

Define #' : 2V — R as
]

?f(A) (4.56)

Then A/ is submodular (why?), and h = h/(A) — %f(A), a difference
between two submodular functions as desired.

h'(A) = h(A) +

EE563/Spring 2018/Submodularity - Lecture 4 - April 4th, 2018 F51/55 (pg.51/55)

Exampl les and Properti ies
Lerrrrrrerrrrrrrrrrrrrmrn

@ We often wish to express the gain of an item j € V in context A,

namely f(AU {j}) — f(A).
@ This is called the gain and is used so often, there are equally as many
ways to notate this. l.e., you might see:

FAU{G}) — F(A) £ p;(A) (4.57)
2 pa(j) (4.58)
2 v, f(4) (4.59)
2 F({5}14) (4.60)
2 £(jl4) (4.61)

o We'll use f(j|A).

@ Submodularity’'s diminishing returns definition can be stated as saying
that f(j]A) is a monotone non-increasing function of A, since
f(3]A) > f(j|B) whenever A C B (conditioning reduces valuation).
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Gain Notation

It will also be useful to extend this to sets.
Let A, B be any two sets. Then

f(A|B) £ f(AU B) - f(B) (4.62)
So when j is any singleton
f1B) = f({7}IB) = f{i} U B) - f(B) (4.63)

Inspired from information theory notation and the notation used for
conditional entropy H(X4|Xp) = H(X4,Xp) — H(XB).
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Totally normalized functions

@ Any normalized submodular function g (even non-monotone) can be
represented as a sum of a polymatroid (normalized monotone
non-decreasing submodular) function g and a modular function m.

o Given arbitrary normalized submodular g : 2V — R, construct a
function g : 2" — R as follows:

g(4) = g(A) = Y g(alV \ {a}) = g(4) —my(4) (4.64)

acA

A

where my(A) = >, .4 9(a|lV \ {a}) is a modular function.
@ g is normalized since g()) = 0.
@ g is monotone non-decreasing since for v ¢ A C V:

g(wlA) = g(v|4) — g(v[V \ {v}) = 0 (4.65)

@ g is called the totally normalized version of g.
@ Then g(A) = g(A) + my(A).

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 4 - April 4th, 2018 F54/55 (pg.54/55)




Exampl les and Properti ies
Lrrrerrrerrerrrrrrrrerrrnn

Arbitrary function as difference between two polymatroids

@ Any normalized function h (i.e., h()) = 0) can be represented as a
difference not only between submodular, but between polymatroid
(normalized monotone non-decreasing submodular) functions.

e Given submodular f and g, let f and g be them totally normalized.

@ Given arbitrary h = f — g where f and g are normalized submodular,

h=f-g=f+my—(g+mg) (4.66)
=f—g+ (my—my) (4.67)
=f-g+ mg_p (4.68)
=f+mi_, —(§+ (=msg)") (4.69)

where m™ is the positive part of modular function m. That is,
m*(A) =3 ,cam(a)L(m(a) > 0).

e Both f + m}r_g and g+ (—my_,)" are polymatroid functions!

@ Thus, any function can be expressed as a difference between two, not only
submodular (DS), but polymatroid functions.

EE563/Spring 2018/Submodularity - Lecture 4 - April 4th, 2018 F55/55 (pg.55/55)




	Logistics & Review
	Logistics
	

	Review  
	


	Current Lecture Part
	Current Lecture
	Graph & Combinatorial Examples
	Graphs
	Combinatorial Structures

	Matrix Rank
	

	Examples and Properties
	



