Submodular Functions, Optimization, and Applications to Machine Learning
 - Spring Quarter, Lecture 4 -

http://www.ee.washington.edu/people/faculty/bilmes/classes/ee563_spring_2018/

Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering http://melodi.ee.washington.edu/~bilmes

April 4th, 2018

Cumulative Outstanding Reading

- Read chapter 1 from Fujishige's book.
- Homework 1 out, due Monday, 4/9/2018 11:59pm electronically via our assignment dropbox
(https://canvas.uw.edu/courses/1216339/assignments).
- If you have any questions about anything, please ask then via our discussion board (https://canvas.uw.edu/courses/1216339/discussion_topics).

Logistics

Class Road Map - EE563

- L1(3/26): Motivation, Applications, \& Basic Definitions,
- L2(3/28): Machine Learning Apps (diversity, complexity, parameter, learning target, surrogate).
- L3(4/2): Info theory exs, more apps, definitions, graph/combinatorial examples
- L4(4/4): Graph and Combinatorial Examples, Matrix Rank, Examples and Properties, visualizations
- L5(4/9):
- L6(4/11):
- L7(4/16):
- L8(4/18):
- L9(4/23):
- L10(4/25):

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.

Submodular on Hypercube Vertices

- Test submodularity via values on verticies of hypercube.

Example: with $|V|=n=2$, this is \quad With $|V|=n=3$, a bit harder. easy:

How many inequalities?

Subadditive Definitions

Definition 4.2.1 (subadditive)

A function $f: 2^{V} \rightarrow \mathbb{R}$ is subadditive if for any $A, B \subseteq V$, we have that:

$$
\begin{equation*}
f(A)+f(B) \geq f(A \cup B) \tag{4.21}
\end{equation*}
$$

This means that the "whole" is less than the sum of the parts.

Superadditive Definitions

Definition 4.2.1 (superadditive)

A function $f: 2^{V} \rightarrow \mathbb{R}$ is superadditive if for any $A, B \subseteq V$, we have that:

$$
\begin{equation*}
f(A)+f(B) \leq f(A \cup B) \tag{4.21}
\end{equation*}
$$

- This means that the "whole" is greater than the sum of the parts.
- In general, submodular and subadditive (and supermodular and superadditive) are different properties.
- Ex: Let $0<k<|V|$, and consider $f: 2^{V} \rightarrow \mathbb{R}_{+}$where:

$$
f(A)= \begin{cases}1 & \text { if }|A| \leq k \tag{4.22}\\ 0 & \text { else }\end{cases}
$$

- This function is subadditive but not submodular.

Modular Definitions

Definition 4.2.1 (modular)

A function that is both submodular and supermodular is called modular
If f is a modular function, than for any $A, B \subseteq V$, we have

$$
\begin{equation*}
f(A)+f(B)=f(A \cap B)+f(A \cup B) \tag{4.21}
\end{equation*}
$$

In modular functions, elements do not interact (or cooperate, or compete, or influence each other), and have value based only on singleton values.

Proposition 4.2.2

If f is modular, it may be written as

$$
\begin{equation*}
f(A)=f(\emptyset)+\sum_{a \in A}(f(\{a\})-f(\emptyset))=c+\sum_{a \in A} f^{\prime}(a) \tag{4.22}
\end{equation*}
$$

which has only $|V|+1$ parameters.

Complement function

Given a function $f: 2^{V} \rightarrow \mathbb{R}$, we can find a complement function $\bar{f}: 2^{V} \rightarrow \mathbb{R}$ as $\bar{f}(A)=f(V \backslash A)$ for any A.

Proposition 4.2.1

\bar{f} is submodular iff f is submodular.

Proof.

$$
\begin{equation*}
\bar{f}(A)+\bar{f}(B) \geq \bar{f}(A \cup B)+\bar{f}(A \cap B) \tag{4.26}
\end{equation*}
$$

follows from

$$
\begin{equation*}
f(V \backslash A)+f(V \backslash B) \geq f(V \backslash(A \cup B))+f(V \backslash(A \cap B)) \tag{4.27}
\end{equation*}
$$

which is true because $V \backslash(A \cup B)=(V \backslash A) \cap(V \backslash B)$ and $V \backslash(A \cap B)=(V \backslash A) \cup(V \backslash B)$ (De Morgan's laws for sets).

m

Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

- Let $V(X)$ be the vertices adjacent to some edge in $X \subseteq E(G)$, then $|V(X)|$ (the vertex function) is submodular.
- Let $E(S)$ be the edges with both vertices in $S \subseteq V(G)$. Then $|E(S)|$ (the interior edge function) is supermodular.
- Let $I(S)$ be the edges with at least one vertex in $S \subseteq V(G)$. Then $|I(S)|$ (the incidence function) is submodular.
- Recall $|\delta(S)|$, is the set size of edges with exactly one vertex in $S \subseteq V(G)$ is submodular (cut size function). Thus, we have $I(S)=E(S) \cup \delta(S)$ and $E(S) \cap \delta(S)=\emptyset$, and thus that $|I(S)|=|E(S)|+|\delta(S)|$. So we can get a submodular function by summing a submodular and a supermodular function. If you had to guess, is this always the case?
- Consider $f(A)=\left|\delta^{+}(A)\right|-\left|\delta^{+}(V \backslash A)\right|$. Guess, submodular, supermodular, modular, or neither? Exercise: determine which one and prove it.

Number of connected components in a graph via edges

- Recall, $f: 2^{V} \rightarrow \mathbb{R}$ is submodular, then so is $\bar{f}: 2^{V} \rightarrow \mathbb{R}$ defined as $\bar{f}(S)=f(V \backslash S)$.
- Hence, if $g: 2^{V} \rightarrow \mathbb{R}$ is supermodular, then so is $\bar{g}: 2^{V} \rightarrow \mathbb{R}$ defined as $\bar{g}(S)=g(V \backslash S)$.
- Given a graph $G=(V, E)$, for each $A \subseteq E(G)$, let $c(A)$ denote the number of connected components of the (spanning) subgraph $(V(G), A)$, with $c: 2^{E} \rightarrow \mathbb{R}_{+}$.
- $c(A)$ is monotone non-increasing, $c(A+a)-c(A) \leq 0$.
- Then $c(A)$ is supermodular, i.e.,

$$
\begin{equation*}
c(A+a)-c(A) \leq c(B+a)-c(B) \tag{4.40}
\end{equation*}
$$

with $A \subseteq B \subseteq E \backslash\{a\}$.

- Intuition: an edge is "more" (no less) able to bridge separate components (and reduce the number of conected components) when edge is added in a smaller context than when added in a larger context.
- $\bar{c}(A)=c(E \backslash A)$ is number of connected components in G when we remove A; supermodular monotone non-decreasing but not normalized.

Graph Strength

- So $\bar{c}(A)=c(E \backslash A)$, the number of connected components in G when we remove A, is supermodular.
- Maximizing $\bar{c}(A)$ would be a goal for a network attacker - many connected components means that many points in the network have lost connectivity to many other points (unprotected network).
- If we can remove a small set A and shatter the graph into many connected components, then the graph is weak.
- An attacker wishes to choose a small number of edges (since it is cheap) to shatter the graph into as many components as possible.
- Let $G=(V, E, w)$ with $w: E \rightarrow \mathbb{R}+$ be a weighted graph with non-negative weights.
- For $(u, v)=e \in E$, let $w(e)$ be a measure of the strength of the connection between vertices u and v (strength meaning the difficulty of cutting the edge e).

Graph Strength

- Then $w(A)$ for $A \subseteq E$ is a modular function

$$
\begin{equation*}
w(A)=\sum_{e \in A} w_{e} \tag{4.1}
\end{equation*}
$$

so that $w(E(G[S]))$ is the "internal strength" of the vertex set S.

- Suppose removing A shatters G into a graph with $\bar{c}(A)>1$ components - then $w(A) /(\bar{c}(A)-1)$ is like the "effort per achieved/additional component" for a network attacker.
- A form of graph strength can then be defined as the following:

$$
\begin{equation*}
\operatorname{strength}(G, w)=\min _{A \subseteq E(G): \bar{c}(A)>1} \frac{w(A)}{\bar{c}(A)-1} \tag{4.2}
\end{equation*}
$$

- Graph strength is like the minimum effort per component. An attacker would use the argument of the min to choose which edges to attack. A network designer would maximize, over G and/or w, the graph strength, strength (G, w).
- Since submodularity, problems have strongly-poly-time solutions.

Submodularity, Quadratic Structures, and Cuts

Lemma 4.3.1

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$ be a symmetric matrix and $m \in \mathbb{R}^{n}$ be a vector. Then $f: 2^{V} \rightarrow \mathbb{R}$ defined as

$$
\begin{equation*}
f(X)=m^{\top} \mathbf{1}_{X}+\frac{1}{2} \mathbf{1}_{X}^{\top} \mathbf{M} \mathbf{1}_{X} \tag{4.3}
\end{equation*}
$$

is submodular iff the off-diagonal elements of M are non-positive.

Proof.

- Given a complete graph $G=(V, E)$, recall that $E(X)$ is the edge set with both vertices in $X \subseteq V(G)$, and that $|E(X)|$ is supermodular.
- Non-negative modular weights $w^{+}: E \rightarrow \mathbb{R}_{+}, w(E(X))$ is also supermodular, so $-w(E(X))$ is submodular.
- f is a modular function $m^{\top} \mathbf{1}_{A}=m(A)$ added to a weighted submodular function, hence f is submodular.

Submodularity, Quadratic Structures, and Cuts

Proof of Lemma 4.3.1 cont.

- Conversely, suppose f is submodular.
- Then $\forall u, v \in V, f(\{u\})+f(\{v\}) \geq f(\{u, v\})+f(\emptyset)$ while $f(\emptyset)=0$.
- This requires:

$$
\begin{align*}
0 \leq & f(\{u\})+f(\{v\})-f(\{u, v\}) \tag{4.4}\\
= & m(u)+\frac{1}{2} M_{u, u}+m(v)+\frac{1}{2} M_{v, v} \tag{4.5}\\
& -\left(m(u)+m(v)+\frac{1}{2} M_{u, u}+M_{u, v}+\frac{1}{2} M_{v, v}\right) \tag{4.6}\\
= & -M_{u, v} \tag{4.7}
\end{align*}
$$

So that $\forall u, v \in V, M_{u, v} \leq 0$.

- We are given a finite set U of m elements and a set of subsets $\mathcal{U}=\left\{U_{1}, U_{2}, \ldots, U_{n}\right\}$ of n subsets of U, so that $U_{i} \subseteq U$ and $\bigcup_{i} U_{i}=U$.
- The goal of minimum set cover is to choose the smallest subset $A \subseteq[n] \triangleq\{1, \ldots, n\}$ such that $\bigcup_{a \in A} U_{a}=U$.
- Maximum k cover: The goal in maximum coverage is, given an integer $k \leq n$, select k subsets, say $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ with $a_{i} \in[n]$ such that $\left|\bigcup_{i=1}^{k} U_{a_{i}}\right|$ is maximized.
- $f: 2^{[n]} \rightarrow \mathbb{Z}_{+}$where for $A \subseteq[n], f(A)=\left|\bigcup_{a \in A} U_{a}\right|$ is the set cover function and is submodular.
- Weighted set cover: $f(A)=w\left(\bigcup_{a \in A} U_{a}\right)$ where $w: U \rightarrow \mathbb{R}_{+}$.
- Both Set cover and maximum coverage are well known to be NP-hard, but have a fast greedy approximation algorithm, and hence are instances of submodular optimization.

Vertex and Edge Covers

Also instances of submodular optimization

Definition 4.3.2 (vertex cover)

A vertex cover (a "vertex-based cover of edges") in graph $G=(V, E)$ is a set $S \subseteq V(G)$ of vertices such that every edge in G is incident to at least one vertex in S.

- Let $I(S)$ be the number of edges incident to vertex set S. Then we wish to find the smallest set $S \subseteq V$ subject to $I(S)=|E|$.

Definition 4.3.3 (edge cover)

A edge cover (an "edge-based cover of vertices") in graph $G=(V, E)$ is a set $F \subseteq E(G)$ of edges such that every vertex in G is incident to at least one edge in F.

- Let $|V|(F)$ be the number of vertices incident to edge set F. Then we wish to find the smallest set $F \subseteq E$ subject to $|V|(F)=|V|$.
- Minimum cut: Given a graph $G=(V, E)$, find a set of vertices $S \subseteq V$ that minimize the cut (set of edges) between S and $V \backslash S$.
- Maximum cut: Given a graph $G=(V, E)$, find a set of vertices $S \subseteq V$ that minimize the cut (set of edges) between S and $V \backslash S$.
- Let $\delta: 2^{V} \rightarrow \mathbb{R}_{+}$be the cut function, namely for any given set of nodes $X \subseteq V,|\delta(X)|$ measures the number of edges between nodes X and $V \backslash X$ - i.e., $\delta(x)=E(X, V \backslash X)$.
- Weighted versions, where rather than count, we sum the (non-negative) weights of the edges of a cut, $f(X)=w(\delta(X))$.
- Hence, Minimum cut and Maximum cut are also special cases of submodular optimization.

Matrix Rank functions

- Let V, with $|V|=m$ be an index set of a set of vectors in \mathbb{R}^{n} for some n (unrelated to m).
- For a given set $\left\{v, v_{1}, v_{2}, \ldots, v_{k}\right\}$, it might or might not be possible to find $\left(\alpha_{i}\right)_{i}$ such that:

$$
\begin{equation*}
x_{v}=\sum_{i=1}^{k} \alpha_{i} x_{v_{i}} \tag{4.8}
\end{equation*}
$$

If not, then x_{v} is linearly independent of $x_{v_{1}}, \ldots, x_{v_{k}}$.

- Let $r(S)$ for $S \subseteq V$ be the rank of the set of vectors S. Then $r(\cdot)$ is a submodular function, and in fact is called a matric matroid rank function.

 Example: Rank function of a matrix

- Given $n \times m$ matrix $\mathbf{X}=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ with $x_{i} \in \mathbb{R}^{n}$ for all i. There are m length n column vectors $\left\{x_{i}\right\}_{i}$
- Let $V=\{1,2, \ldots, m\}$ be the set of column vector indices.
- For any $A \subseteq V$, let $r(A)$ be the rank of the column vectors indexed by A.
- $r(A)$ is the dimensionality of the vector space spanned by the set of vectors $\left\{x_{a}\right\}_{a \in A}$.
- Thus, $r(V)$ is the rank of the matrix \mathbf{X}.

Graph \& Combinatorial Examples
 Example: Rank function of a matrix

Consider the following 4×8 matrix, so $V=\{1,2,3,4,5,6,7,8\}$.

$$
\begin{aligned}
& 1 \\
& 2 \\
& 2 \\
& 3 \\
& 4
\end{aligned}\left(\begin{array}{llllllll}
0 & 2 & 2 & 4 & 5 & 6 & 7 & 8 \\
0 & 3 & 0 & 4 & 0 & 0 & 2 & 4 \\
0 & 0 & 0 & 0 & 3 & 0 & 0 & 5 \\
2 & 0 & 0 & 0 & 0 & 0 & 0 & 5
\end{array}\right)=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\mid & \mid \\
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} \\
\mid & \mid
\end{array}\right)
$$

- Let $A=\{1,2,3\}, B=\{3,4,5\}, C=\{6,7\}, A_{r}=\{1\}, B_{r}=\{5\}$.
- Then $r(A)=3, r(B)=3, r(C)=2$.
- $r(A \cup C)=3, r(B \cup C)=3$.
- $r\left(A \cup A_{r}\right)=3, r\left(B \cup B_{r}\right)=3, r\left(A \cup B_{r}\right)=4, r\left(B \cup A_{r}\right)=4$.
- $r(A \cup B)=4, \quad r(A \cap B)=1<r(C)=2$.
- $6=r(A)+r(B)=r(A \cup B)+r(C)>r(A \cup B)+r(A \cap B)=5$

Rank function of a matrix

- Let $A, B \subseteq V$ be two subsets of column indices.
- The rank of the two sets unioned together $A \cup B$ is no more than the sum of the two individual ranks.
- In a Venn diagram, let area correspond to dimensions spanned by vectors indexed by a set. Hence, $r(A)$ can be viewed as an area.

- If some of the dimensions spanned by A overlap some of the dimensions spanned by B (i.e., if \exists common span), then that area is counted twice in $r(A)+r(B)$, so the inequality will be strict.
- Any function where the above inequality is true for all $A, B \subseteq V$ is called subadditive.

Rank functions of a matrix

- Vectors A and B have a (possibly empty) common span and two (possibly empty) non-common residual spans.
- Let C index vectors spanning all dimensions common to A and B. We call C the common span and call $A \cap B$ the common index.
- Let A_{r} index vectors spanning dimensions spanned by A but not B.
- Let B_{r} index vectors spanning dimensions spanned by B but not A.
- Then, $r(A)=r(C)+r\left(A_{r}\right)$
- Similarly, $r(B)=r(C)+r\left(B_{r}\right)$.
- Then $r(A)+r(B)$ counts the dimensions spanned by C twice, i.e.,

$$
\begin{equation*}
r(A)+r(B)=r\left(A_{r}\right)+2 r(C)+r\left(B_{r}\right) \tag{4.9}
\end{equation*}
$$

- But $r(A \cup B)$ counts the dimensions spanned by C only once.

$$
\begin{equation*}
r(A \cup B)=r\left(A_{r}\right)+r(C)+r\left(B_{r}\right) \tag{4.10}
\end{equation*}
$$

Rank functions of a matrix

- Then $r(A)+r(B)$ counts the dimensions spanned by C twice, i.e.,

$$
r(A)+r(B)=r\left(A_{r}\right)+2 r(C)+r\left(B_{r}\right)
$$

- But $r(A \cup B)$ counts the dimensions spanned by C only once.

$$
r(A \cup B)=r\left(A_{r}\right)+r(C)+r\left(B_{r}\right)
$$

- Thus, we have subadditivity: $r(A)+r(B) \geq r(A \cup B)$. Can we add more to the r.h.s. and still have an inequality? Yes.

Rank function of a matrix

- Note, $r(A \cap B) \leq r(C)$. Why? Vectors indexed by $A \cap B$ (i.e., the common index set) span no more than the dimensions commonly spanned by A and B (namely, those spanned by the professed C).

$$
r(C) \geq r(A \cap B)
$$

In short:

- Common span (blue) is "more" (no less) than span of common index (magenta).
- More generally, common information (blue) is "more" (no less) than information within common index (magenta).

Graph \& Combinatorial Examples Matrix Rank

The Venn and Art of Submodularity

$$
\begin{aligned}
& =r\left(A_{r}\right)+2 r(C)+r\left(B_{r}\right) \\
& r(A)+r(B)
\end{aligned} \underbrace{r(A \cup B)}_{=r\left(A_{r}\right)+r(C)+r\left(B_{r}\right)}+\underbrace{r(A \cap B)}_{=r(A \cap B)}
$$

- Let S be a set of subspaces of a linear space (i.e., each $s \in S$ is a subspace of dimension ≥ 1).
- For each $X \subseteq S$, let $f(X)$ denote the dimensionality of the linear subspace spanned by the subspaces in X.
- We can think of S as a set of sets of vectors from the matrix rank example, and for each $s \in S$, let X_{s} being a set of vector indices.
- Then, defining $f: 2^{S} \rightarrow \mathbb{R}_{+}$as follows,

$$
\begin{equation*}
f(X)=r\left(\cup_{s \in S} X_{s}\right) \tag{4.11}
\end{equation*}
$$

we have that f is submodular, and is known to be a polymatroid rank function.

- In general (as we will see) polymatroid rank functions are submodular, normalized $f(\emptyset)=0$, and monotone non-decreasing $(f(A) \leq f(B)$ whenever $A \subseteq B$).
- We use the term non-decreasing rather than increasing, the latter of which is strict (also so that a constant function isn't "increasing").
- Let E be a set of edges of some graph $G=(V, E)$, and let $r(S)$ for $S \subseteq E$ be the maximum size (in terms of number of edges) spanning forest in the vertex-induced graph, induced by vertices incident to edges S.
- Example: Given $G=(V, E), V=\{1,2,3,4,5,6,7,8\}$, $E=\{1,2, \ldots, 12\} . S=\{1,2,3,4,5,8,9\} \subset E$. Two spanning trees have the same edge count (the rank of S).

- Then $r(S)$ is submodular, and is another matrix rank function corresponding to the incidence matrix of the graph.

Submodular Polyhedra

- Submodular functions have associated polyhedra with nice properties: when a set of constraints in a linear program is a submodular polyhedron, a simple greedy algorithm can find the optimal solution even though the polyhedron is formed via an exponential number of constraints.

$$
\begin{align*}
P_{f} & =\left\{x \in \mathbb{R}^{E}: x(S) \leq f(S), \forall S \subseteq E\right\} \tag{4.12}\\
P_{f}^{+} & =P_{f} \cap\left\{x \in \mathbb{R}^{E}: x \geq 0\right\} \tag{4.13}\\
B_{f} & =P_{f} \cap\left\{x \in \mathbb{R}^{E}: x(E)=f(E)\right\} \tag{4.14}
\end{align*}
$$

- The linear programming problem is to, given $c \in \mathbb{R}^{E}$, compute:

$$
\begin{equation*}
\tilde{f}(c) \triangleq \max \left\{c^{T} x: x \in P_{f}\right\} \tag{4.15}
\end{equation*}
$$

- This can be solved using the greedy algorithm! Moreover, $\tilde{f}(c)$ computed using greedy is convex if and only of f is submodular (we will go into this in some detail this quarter).

Summing Submodular Functions

Given E, let $f_{1}, f_{2}: 2^{E} \rightarrow \mathbb{R}$ be two submodular functions. Then

$$
\begin{equation*}
f: 2^{E} \rightarrow \mathbb{R} \text { with } f(A)=f_{1}(A)+f_{2}(A) \tag{4.16}
\end{equation*}
$$

is submodular. This follows easily since

$$
\begin{align*}
f(A)+f(B) & =f_{1}(A)+f_{2}(A)+f_{1}(B)+f_{2}(B) \tag{4.17}\\
& \geq f_{1}(A \cup B)+f_{2}(A \cup B)+f_{1}(A \cap B)+f_{2}(A \cap B) \tag{4.18}\\
& =f(A \cup B)+f(A \cap B) . \tag{4.19}
\end{align*}
$$

I.e., it holds for each component of f in each term in the inequality. In fact, any conic combination (i.e., non-negative linear combination) of submodular functions is submodular, as in $f(A)=\alpha_{1} f_{1}(A)+\alpha_{2} f_{2}(A)$ for $\alpha_{1}, \alpha_{2} \geq 0$.

Summing Submodular and Modular Functions

Given E, let $f_{1}, m: 2^{E} \rightarrow \mathbb{R}$ be a submodular and a modular function. Then

$$
\begin{equation*}
f: 2^{E} \rightarrow \mathbb{R} \text { with } f(A)=f_{1}(A)-m(A) \tag{4.20}
\end{equation*}
$$

is submodular (as is $f(A)=f_{1}(A)+m(A)$). This follows easily since

$$
\begin{align*}
f(A)+f(B) & =f_{1}(A)-m(A)+f_{1}(B)-m(B) \tag{4.21}\\
& \geq f_{1}(A \cup B)-m(A \cup B)+f_{1}(A \cap B)-m(A \cap B) \tag{4.22}\\
& =f(A \cup B)+f(A \cap B) . \tag{4.23}
\end{align*}
$$

That is, the modular component with $m(A)+m(B)=m(A \cup B)+m(A \cap B)$ never destroys the inequality. Note of course that if m is modular than so is $-m$.

Restricting Submodular functions

Given E, let $f: 2^{E} \rightarrow \mathbb{R}$ be a submodular functions. And let $S \subseteq E$ be an arbitrary fixed set. Then

$$
\begin{equation*}
f^{\prime}: 2^{E} \rightarrow \mathbb{R} \text { with } f^{\prime}(A) \triangleq f(A \cap S) \tag{4.24}
\end{equation*}
$$

is submodular.

Proof.

Given $A \subseteq B \subseteq E \backslash v$, consider

$$
\begin{equation*}
f((A+v) \cap S)-f(A \cap S) \geq f((B+v) \cap S)-f(B \cap S) \tag{4.25}
\end{equation*}
$$

If $v \notin S$, then both differences on each size are zero. If $v \in S$, then we can consider this

$$
\begin{equation*}
f\left(A^{\prime}+v\right)-f\left(A^{\prime}\right) \geq f\left(B^{\prime}+v\right)-f\left(B^{\prime}\right) \tag{4.26}
\end{equation*}
$$

with $A^{\prime}=A \cap S$ and $B^{\prime}=B \cap S$. Since $A^{\prime} \subseteq B^{\prime}$, this holds due to submodularity of f.

Summing Restricted Submodular Functions

Given V, let $f_{1}, f_{2}: 2^{V} \rightarrow \mathbb{R}$ be two submodular functions and let S_{1}, S_{2} be two arbitrary fixed sets. Then

$$
\begin{equation*}
f: 2^{V} \rightarrow \mathbb{R} \text { with } f(A)=f_{1}\left(A \cap S_{1}\right)+f_{2}\left(A \cap S_{2}\right) \tag{4.27}
\end{equation*}
$$

is submodular. This follows easily from the preceding two results.
Given V, let $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ be a set of subsets of V, and for each $C \in \mathcal{C}$, let $f_{C}: 2^{V} \rightarrow \mathbb{R}$ be a submodular function. Then

$$
\begin{equation*}
f: 2^{V} \rightarrow \mathbb{R} \text { with } f(A)=\sum_{C \in \mathcal{C}} f_{C}(A \cap C) \tag{4.28}
\end{equation*}
$$

is submodular. This property is critical for image processing and graphical models. For example, let \mathcal{C} be all pairs of the form $\{\{u, v\}: u, v \in V\}$, or let it be all pairs corresponding to the edges of some undirected graphical model. We plan to revisit this topic later in the term.

Given V, let $c \in \mathbb{R}_{+}^{V}$ be a given fixed vector. Then $f: 2^{V} \rightarrow \mathbb{R}_{+}$, where

$$
\begin{equation*}
f(A)=\max _{j \in A} c_{j} \tag{4.29}
\end{equation*}
$$

is submodular and normalized (we take $f(\emptyset)=0$).

Proof.

Consider

$$
\begin{equation*}
\max _{j \in A} c_{j}+\max _{j \in B} c_{j} \geq \max _{j \in A \cup B} c_{j}+\max _{j \in A \cap B} c_{j} \tag{4.30}
\end{equation*}
$$

which follows since we have that

$$
\begin{equation*}
\max \left(\max _{j \in A} c_{j}, \max _{j \in B} c_{j}\right)=\max _{j \in A \cup B} c_{j} \tag{4.31}
\end{equation*}
$$

and

$$
\begin{equation*}
\min \left(\max _{j \in A} c_{j}, \max _{j \in B} c_{j}\right) \geq \max _{j \in A \cap B} c_{j} \tag{4.32}
\end{equation*}
$$

Max

Given V, let $c \in \mathbb{R}^{V}$ be a given fixed vector (not necessarily non-negative). Then $f: 2^{V} \rightarrow \mathbb{R}$, where

$$
\begin{equation*}
f(A)=\max _{j \in A} c_{j} \tag{4.33}
\end{equation*}
$$

is submodular, where we take $f(\emptyset) \leq \min _{j} c_{j}$ (so the function is not normalized).

Proof.

The proof is identical to the normalized case.

mitatuckem
 Facility/Plant Location (uncapacitated) w. plant benefits

- Let $F=\{1, \ldots, f\}$ be a set of possible factory/plant locations for facilities to be built.
- $S=\{1, \ldots, s\}$ is a set of sites (e.g., cities, clients) needing service.
- Let $c_{i j}$ be the "benefit" (e.g., $1 / c_{i j}$ is the cost) of servicing site i with facility location j.
- Let m_{j} be the benefit (e.g., either $1 / m_{j}$ is the cost or $-m_{j}$ is the cost) to build a plant at location j.
- Each site should be serviced by only one plant but no less than one.
- Define $f(A)$ as the "delivery benefit" plus "construction benefit" when the locations $A \subseteq F$ are to be constructed.
- We can define the (uncapacitated) facility location function

$$
\begin{equation*}
f(A)=\sum_{j \in A} m_{j}+\sum_{i \in S} \max _{j \in A} c_{i j} . \tag{4.34}
\end{equation*}
$$

- Goal is to find a set A that maximizes $f(A)$ (the benefit) placing a bound on the number of plants A (e.g., $|A| \leq k$).

Facility/Plant Location (uncapacitated)

- Core problem in operations research, early motivation for submodularity.
- Goal: as efficiently as possible, place "facilities" (factories) at certain locations to satisfy sites (at all locations) having various demands.

Graph \& Combinatorial Examples

Matrix Rank
Examples and Propertie

Facility Location

Given V, E, let $c \in \mathbb{R}^{V \times E}$ be a given $|V| \times|E|$ matrix. Then

$$
\begin{equation*}
f: 2^{E} \rightarrow \mathbb{R} \text {, where } f(A)=\sum_{i \in V} \max _{j \in A} c_{i j} \tag{4.35}
\end{equation*}
$$

is submodular.

Proof.

We can write $f(A)$ as $f(A)=\sum_{i \in V} f_{i}(A)$ where $f_{i}(A)=\max _{j \in A} c_{i j}$ is submodular (max of a $i^{\text {th }}$ row vector), so f can be written as a sum of submodular functions.

Thus, the facility location function (which only adds a modular function to the above) is submodular.

Log Determinant

- Let $\boldsymbol{\Sigma}$ be an $n \times n$ positive definite matrix. Let $V=\{1,2, \ldots, n\} \equiv[n]$ be an index set, and for $A \subseteq V$, let $\boldsymbol{\Sigma}_{A}$ be the (square) submatrix of $\boldsymbol{\Sigma}$ obtained by including only entries in the rows/columns given by A.
- We have that:

$$
\begin{equation*}
f(A)=\log \operatorname{det}\left(\boldsymbol{\Sigma}_{A}\right) \text { is submodular. } \tag{4.36}
\end{equation*}
$$

- The submodularity of the log determinant is crucial for determinantal point processes (DPPs) (defined later in the class).

Proof of submodularity of the logdet function.

Suppose $X \in \mathbf{R}^{n}$ is multivariate Gaussian random variable, that is

$$
\begin{equation*}
x \in p(x)=\frac{1}{\sqrt{|2 \pi \boldsymbol{\Sigma}|}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \boldsymbol{\Sigma}^{-1}(x-\mu)\right) \tag{4.37}
\end{equation*}
$$

Log Determinant

..cont.

Then the (differential) entropy of the r.v. X is given by

$$
\begin{equation*}
h(X)=\log \sqrt{|2 \pi e \boldsymbol{\Sigma}|}=\log \sqrt{(2 \pi e)^{n}|\boldsymbol{\Sigma}|} \tag{4.38}
\end{equation*}
$$

and in particular, for a variable subset A,

$$
\begin{equation*}
f(A)=h\left(X_{A}\right)=\log \sqrt{(2 \pi e)^{|A|}\left|\boldsymbol{\Sigma}_{A}\right|} \tag{4.39}
\end{equation*}
$$

Entropy is submodular (further conditioning reduces entropy), and moreover

$$
\begin{equation*}
f(A)=h\left(X_{A}\right)=m(A)+\frac{1}{2} \log \left|\boldsymbol{\Sigma}_{A}\right| \tag{4.40}
\end{equation*}
$$

where $m(A)$ is a modular function.
Note: still submodular in the semi-definite case as well.

- Summing: if $\alpha_{i} \geq 0$ and $f_{i}: 2^{V} \rightarrow \mathbb{R}$ is submodular, then so is $\sum_{i} \alpha_{i} f_{i}$.
- Restrictions: $f^{\prime}(A)=f(A \cap S)$
- max: $f(A)=\max _{j \in A} c_{j}$ and facility location.
- Log determinant $f(A)=\log \operatorname{det}\left(\boldsymbol{\Sigma}_{A}\right)$

Concave over non-negative modular

Let $m \in \mathbb{R}_{+}^{E}$ be a non-negative modular function, and g a concave function over \mathbb{R}. Define $f: 2^{E} \rightarrow \mathbb{R}$ as

$$
\begin{equation*}
f(A)=g(m(A)) \tag{4.41}
\end{equation*}
$$

then f is submodular.

Proof.

Given $A \subseteq B \subseteq E \backslash v$, we have $0 \leq a=m(A) \leq b=m(B)$, and $0 \leq c=m(v)$. For g concave, we have $g(a+c)-g(a) \geq g(b+c)-g(b)$, and thus

$$
\begin{equation*}
g(m(A)+m(v))-g(m(A)) \geq g(m(B)+m(v))-g(m(B)) \tag{4.42}
\end{equation*}
$$

A form of converse is true as well.

Concave composed with non-negative modular

Theorem 4.5.1

Given a ground set V. The following two are equivalent:
(1) For all modular functions $m: 2^{V} \rightarrow \mathbb{R}_{+}$, then $f: 2^{V} \rightarrow \mathbb{R}$ defined as $f(A)=g(m(A))$ is submodular
(2) $g: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is concave.

- If g is non-decreasing concave w. $g(0)=0$, then f is polymatroidal.
- Sums of concave over modular functions are submodular

$$
\begin{equation*}
f(A)=\sum_{i=1}^{K} g_{i}\left(m_{i}(A)\right) \tag{4.43}
\end{equation*}
$$

- Very large class of functions, including graph cut, bipartite neighborhoods, set cover (Stobbe \& Krause 2011), and "feature-based submodular functions" (Wei, lyer, \& Bilmes 2014).
- However, Vondrak showed that a graphic matroid rank function over K_{4} (we'll define this after we define matroids) are not members.

Definition 4.5.2

A function $f: 2^{V} \rightarrow \mathbb{R}$ is monotone nondecreasing (resp. monotone increasing) if for all $A \subset B$, we have $f(A) \leq f(B)$ (resp. $f(A)<f(B)$).

Definition 4.5.3

A function $f: 2^{V} \rightarrow \mathbb{R}$ is monotone nonincreasing (resp. monotone decreasing) if for all $A \subset B$, we have $f(A) \geq f(B)$ (resp. $f(A)>f(B)$).

Composition of non-decreasing submodular and non-decreasing concave

Theorem 4.5.4

Given two functions, one defined on sets

$$
\begin{equation*}
f: 2^{V} \rightarrow \mathbb{R} \tag{4.44}
\end{equation*}
$$

and another continuous valued one:

$$
\begin{equation*}
g: \mathbb{R} \rightarrow \mathbb{R} \tag{4.45}
\end{equation*}
$$

the composition formed as $h=g \circ f: 2^{V} \rightarrow \mathbb{R}$ (defined as $h(S)=g(f(S))$) is nondecreasing submodular, if g is non-decreasing concave and f is nondecreasing submodular.

Monotone difference of two functions

Let f and g both be submodular functions on subsets of V and let $(f-g)(\cdot)$ be either monotone non-decreasing or monotone non-increasing Then $h: 2^{V} \rightarrow R$ defined by

$$
\begin{equation*}
h(A)=\min (f(A), g(A)) \tag{4.46}
\end{equation*}
$$

is submodular.

Proof.

If $h(A)$ agrees with f on both X and Y (or g on both X and Y), and since

$$
\begin{equation*}
h(X)+h(Y)=f(X)+f(Y) \geq f(X \cup Y)+f(X \cap Y) \tag{4.47}
\end{equation*}
$$

or

$$
\begin{equation*}
h(X)+h(Y)=g(X)+g(Y) \geq g(X \cup Y)+g(X \cap Y), \tag{4.48}
\end{equation*}
$$

the result (Equation 4.46 being submodular) follows since

$$
\begin{align*}
& f(X)+f(Y) \tag{4.49}\\
& g(X)+g(Y)
\end{align*} \min (f(X \cup Y), g(X \cup Y))+\min (f(X \cap Y), g(X \cap Y))
$$

cont.
Otherwise, w.l.o.g., $h(X)=f(X)$ and $h(Y)=g(Y)$, giving

$$
\begin{equation*}
h(X)+h(Y)=f(X)+g(Y) \geq f(X \cup Y)+f(X \cap Y)+g(Y)-f(Y) \tag{4.50}
\end{equation*}
$$

Assume the case where $f-g$ is monotone non-decreasing Hence, $f(X \cup Y)+g(Y)-f(Y) \geq g(X \cup Y)$ giving

$$
\begin{equation*}
h(X)+h(Y) \geq g(X \cup Y)+f(X \cap Y) \geq h(X \cup Y)+h(X \cap Y) \tag{4.51}
\end{equation*}
$$

What is an easy way to prove the case where $f-g$ is monotone non-increasing?

Saturation via the $\min (\cdot)$ function

Let $f: 2^{V} \rightarrow \mathbb{R}$ be a monotone increasing or decreasing submodular function and let α be a constant. Then the function $h: 2^{V} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
h(A)=\min (\alpha, f(A)) \tag{4.52}
\end{equation*}
$$

is submodular.

Proof.

For constant k, we have that ($f-k$) is non-decreasing (or non-increasing) so this follows from the previous result.

Note also, $g(a)=\min (k, a)$ for constant k is a non-decreasing concave function, so when f is monotone nondecreasing submodular, we can use the earlier result about composing a monotone concave function with a monotone submodular function to get a version of this.

More on Min - the saturate trick

- In general, the minimum of two submodular functions is not submodular (unlike concave functions, closed under min).
- However, when wishing to maximize two monotone non-decreasing submodular functions f, g, we can define function $h_{\alpha}: 2^{V} \rightarrow \mathbb{R}$ as

$$
\begin{equation*}
h_{\alpha}(A)=\frac{1}{2}(\min (\alpha, f(A))+\min (\alpha, g(A))) \tag{4.53}
\end{equation*}
$$

then h_{α} is submodular, and $h_{\alpha}(A) \geq \alpha$ if and only if both $f(A) \geq \alpha$ and $g(A) \geq \alpha$, for constant $\alpha \in \mathbb{R}$.

- This can be useful in many applications. An instance of a submodular surrogate (where we take a non-submodular problem and find a submodular one that can tell us something about it).

Theorem 4.5.5

Given an arbitrary set function h, it can be expressed as a difference between two submodular functions (i.e., $\forall h \in 2^{V} \rightarrow \mathbb{R}$, $\exists f, g$ s.t. $\forall A, h(A)=f(A)-g(A)$ where both f and g are submodular).

Proof.

Let h be given and arbitrary, and define:

$$
\begin{equation*}
\alpha \triangleq \min _{X, Y: X \nsubseteq Y, Y \nsubseteq X}(h(X)+h(Y)-h(X \cup Y)-h(X \cap Y)) \tag{4.54}
\end{equation*}
$$

If $\alpha \geq 0$ then h is submodular, so by assumption $\alpha<0$. Now let f be an arbitrary strict submodular function and define

$$
\begin{equation*}
\beta \triangleq \min _{X, Y: X \nsubseteq Y, Y \nsubseteq X}(f(X)+f(Y)-f(X \cup Y)-f(X \cap Y)) . \tag{4.55}
\end{equation*}
$$

Strict means that $\beta>0$.

..cont.

Define $h^{\prime}: 2^{V} \rightarrow \mathbb{R}$ as

$$
\begin{equation*}
h^{\prime}(A)=h(A)+\frac{|\alpha|}{\beta} f(A) \tag{4.56}
\end{equation*}
$$

Then h^{\prime} is submodular (why?), and $h=h^{\prime}(A)-\frac{|\alpha|}{\beta} f(A)$, a difference between two submodular functions as desired.

Gain

- We often wish to express the gain of an item $j \in V$ in context A, namely $f(A \cup\{j\})-f(A)$.
- This is called the gain and is used so often, there are equally as many ways to notate this. I.e., you might see:

$$
\begin{align*}
f(A \cup\{j\})-f(A) & \triangleq \rho_{j}(A) \tag{4.57}\\
& \triangleq \rho_{A}(j) \tag{4.58}\\
& \triangleq \nabla_{j} f(A) \tag{4.59}\\
& \triangleq f(\{j\} \mid A) \tag{4.60}\\
& \triangleq f(j \mid A) \tag{4.61}
\end{align*}
$$

- We'll use $f(j \mid A)$.
- Submodularity's diminishing returns definition can be stated as saying that $f(j \mid A)$ is a monotone non-increasing function of A, since $f(j \mid A) \geq f(j \mid B)$ whenever $A \subseteq B$ (conditioning reduces valuation).

Gain Notation

It will also be useful to extend this to sets.
Let A, B be any two sets. Then

$$
\begin{equation*}
f(A \mid B) \triangleq f(A \cup B)-f(B) \tag{4.62}
\end{equation*}
$$

So when j is any singleton

$$
\begin{equation*}
f(j \mid B)=f(\{j\} \mid B)=f(\{j\} \cup B)-f(B) \tag{4.63}
\end{equation*}
$$

Inspired from information theory notation and the notation used for conditional entropy $H\left(X_{A} \mid X_{B}\right)=H\left(X_{A}, X_{B}\right)-H\left(X_{B}\right)$.

Totally normalized functions

- Any normalized submodular function g (even non-monotone) can be represented as a sum of a polymatroid (normalized monotone non-decreasing submodular) function \bar{g} and a modular function m_{g}.
- Given arbitrary normalized submodular $g: 2^{V} \rightarrow \mathbb{R}$, construct a function $\bar{g}: 2^{V} \rightarrow \mathbb{R}$ as follows:

$$
\begin{equation*}
\bar{g}(A)=g(A)-\sum_{a \in A} g(a \mid V \backslash\{a\})=g(A)-m_{g}(A) \tag{4.64}
\end{equation*}
$$

where $m_{g}(A) \triangleq \sum_{a \in A} g(a \mid V \backslash\{a\})$ is a modular function.

- \bar{g} is normalized since $\bar{g}(\emptyset)=0$.
- \bar{g} is monotone non-decreasing since for $v \notin A \subseteq V$:

$$
\begin{equation*}
\bar{g}(v \mid A)=g(v \mid A)-g(v \mid V \backslash\{v\}) \geq 0 \tag{4.65}
\end{equation*}
$$

- \bar{g} is called the totally normalized version of g.
- Then $g(A)=\bar{g}(A)+m_{g}(A)$.

aph \& Combinatorial Examples
 Arbitrary function as difference between two polymatroids

- Any normalized function h (i.e., $h(\emptyset)=0$) can be represented as a difference not only between submodular, but between polymatroid (normalized monotone non-decreasing submodular) functions.
- Given submodular f and g, let \bar{f} and \bar{g} be them totally normalized.
- Given arbitrary $h=f-g$ where f and g are normalized submodular,

$$
\begin{align*}
h & =f-g=\bar{f}+m_{f}-\left(\bar{g}+m_{g}\right) \tag{4.66}\\
& =\bar{f}-\bar{g}+\left(m_{f}-m_{g}\right) \tag{4.67}\\
& =\bar{f}-\bar{g}+m_{f-h} \tag{4.68}\\
& =\bar{f}+m_{f-g}^{+}-\left(\bar{g}+\left(-m_{f-g}\right)^{+}\right) \tag{4.69}
\end{align*}
$$

where m^{+}is the positive part of modular function m. That is, $m^{+}(A)=\sum_{a \in A} m(a) \mathbf{1}(m(a)>0)$.

- Both $\bar{f}+m_{f-g}^{+}$and $\bar{g}+\left(-m_{f-g}\right)^{+}$are polymatroid functions!
- Thus, any function can be expressed as a difference between two, not only submodular (DS), but polymatroid functions.

