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Logistics

Cumulative Outstanding Reading

o Read chapter 1 from Fujishige’s book.
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Announcements, Assignments, and Reminders

e Homework 1 out, due Monday, 4/9/2018 11:59pm electronically via our

assignment dropbox
(https://canvas.uw.edu/courses/1216339/assignments).

@ If you have any questions about anything, please ask then via our

discussion board
(https://canvas.uw.edu/courses/1216339/discussion_topics).
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Logistics

Class Road Map - EE563

@ L1(3/26): Motivation, Applications, & @ L11(4/30)
Basic Definitions, @ L12(5/2):
@ 12(3/28): Machine Learning Apps @ L13(5/7)
(diversity, complexity, parameter, learning o L14(5/9)
target, surrogate). o L15(5/14)
° L3(.4./2-): Info theory exs, more apps, o L16(5/16)
definitions, graph/combinatorial examples
@ L4(4/4): Graph and Combinatorial o L17(5/21)
Examples, Matrix Rank, Examples and @ L18(5/23)
Properties, visualizations @ L—(5/28): Memorial Day (holiday)
o L5(4/9): © L19(5/30):
o L6(4/11) @ L21(6/4): Final Presentations
o L7(4/16) maximization.
@ 13(4/18)
o L9(4/23):
@ L10(4/25):

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.
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Review
[ERNRNE

Submodular on Hypercube Vertices

@ Test submodularity via values on verticies of hypercube.
Example: with |[V| =n =2, thisis  With |V| =n = 3, a bit harder.

1
easy:
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How many inequalities?
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Subadditive Definitions

Definition 4.2.1 (subadditive)
A function f :2Y — R is subadditive if for any A, B C V, we have that:

f(A)+ f(B) =z f(AU B) (4.21)

This means that the “whole” is less than the sum of the parts.
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Superadditive Definitions

Definition 4.2.1 (superadditive)

A function f : 2" — R is superadditive if for any A, B C V, we have that:

f(A)+ f(B) < f(AU B) (4.21)

@ This means that the “whole” is greater than the sum of the parts.

@ In general, submodular and subadditive (and supermodular and
superadditive) are different properties.

o Ex: Let 0 < k < |V|, and consider f: 2" — R, where:

f(A) = {1 A<k (4.22)

0 else

@ This function is subadditive but not submodular.
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Modular Definitions

Definition 4.2.1 (modular)

A function that is both submodular and supermodular is called modular

If fis a modular function, than for any A, B C V, we have
f(A)+ f(B)=f(ANnB)+ f(AUB) (4.21)

In modular functions, elements do not interact (or cooperate, or compete, or
influence each other), and have value based only on singleton values.

Proposition 4.2.2

If f is modular, it may be written as

1) = 10) + > (F({ad) - £0) =+ 3 f(a) (4.22)

a€A a€A

which has only |V| + 1 parameters.
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Complement function

Given a function f : 2V — R, we can find a complement function
f:2V = Ras f(A) = f(V\ A) for any A.

Proposition 4.2.1

f is submodular iff f is submodular.

—

Proof.

f(A)+ f(B) = f(AUB) + f(AN B) (4.26)
follows from
fFVANA)+ f(VAB) =2 f(V\N(AUB))+ f(V\(ANB))  (427)

which is true because V'\ (AUB) = (V\ A)n(V \ B) and
VN(ANB)=(V\A) U(V\ B) (De Morgan's laws for sets). O
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Other graph functions that are submodular/supermodular

These come from Narayanan's book 1997. Let G be an undirected graph.

Let V(X)) be the vertices adjacent to some edge in X C E(G), then
|[V(X)| (the vertex function) is submodular.

Let E(S) be the edges with both vertices in S C V(G). Then |E(S)]
(the interior edge function) is supermodular.

Let I(S) be the edges with at least one vertex in S C V(G). Then
|1(.S)| (the incidence function) is submodular.

Recall |§(S)], is the set size of edges with exactly one vertex in

S C V(G) is submodular (cut size function). Thus, we have

I(S) = E(S)Ud(S) and E(S)N(S) =0, and thus that

[1(S)| = |E(S)| + |0(S5)|. So we can get a submodular function by
summing a submodular and a supermodular function. If you had to
guess, is this always the case?

Consider f(A) = |67 (A)| — [67(V '\ A)|. Guess, submodular,
supermodular, modular, or neither? Exercise: determine which one and

prove it.
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Number of connected components in a graph via edges

@ Recall, f: 2V 5 R is submodular, then so is f: 2V 5 R defined as
f(8) = F(V\S9).

@ Hence, if g : 2V — R is supermodular, then so is g : 2" — R defined as
9(8) = g(V\ 9).

e Given a graph G = (V, E), for each A C E(G), let ¢(A) denote the
number of connected components of the (spanning) subgraph
(V(G), A), with c: 2F - R .

@ ¢(A) is monotone non-increasing, ¢c(4 +a) — c¢(A4) <0 . E(¢)¢ D

@ Then ¢(A) is supermodular, i.e.,

c(A+a)—c(A) <ce(B+a)—c(B) (4.40)
with AC BC E\ {a}.

@ Intuition: an edge is “more” (no less) able to bridge separate
components (and reduce the number of conected components) when
edge is added in a smaller context than when added in a larger context.

0 ¢(A) = ¢(E \ A) is number of connected components in G when we
remove A; supermodular monotone non-decreasing but not normalized.
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Graph & Combinatorial Examples
[NRN]

Graph Strength

@ So ¢(A) =c¢(E \ A), the number of connected components in G when
we remove A, is supermodular.
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Graph & Combinatorial Examples
[NRN]

Graph Strength

@ So ¢(A) =c¢(E \ A), the number of connected components in G when
we remove A, is supermodular.

e Maximizing ¢(A) would be a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

/i\ Jon

\5,,, i
ZAVAN L

Prof. Jeff Bilmes
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Graph & Combinatorial Examples
[NRN]

Graph Strength

@ So ¢(A) =c¢(E \ A), the number of connected components in G when
we remove A, is supermodular.

e Maximizing ¢(A) would be a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

@ If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.
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Graph & Combinatorial Examples
[NRN]

Graph Strength

@ So ¢(A) =c¢(E \ A), the number of connected components in G when
we remove A, is supermodular.

e Maximizing ¢(A) would be a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

o If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.

@ An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.

F12/55 (pg.15/174)
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Graph & Combinatorial Examples
[NRN]

Graph Strength

@ So ¢(A) =c¢(E \ A), the number of connected components in G when
we remove A, is supermodular.

e Maximizing ¢(A) would be a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

o If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.

@ An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.

o Let G = (W Eyw) with w : E — R+ be a weighted graph with
non-negative weights.
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Graph & Combinator ples
[NRN]

Graph Strength

So ¢(A) = ¢(E \ A), the number of connected components in G when
we remove A, is supermodular.

e Maximizing ¢(A) would be a goal for a network attacker — many
connected components means that many points in the network have
lost connectivity to many other points (unprotected network).

o If we can remove a small set A and shatter the graph into many
connected components, then the graph is weak.

@ An attacker wishes to choose a small number of edges (since it is
cheap) to shatter the graph into as many components as possible.

o Let G = (V,E,w) with w: E — R+ be a weighted graph with
non-negative weights.

@ For (u,v) =e € E, let w(e) be a measure of the strength of the

connection between vertices u and v (strength meaning the difficulty of
cutting the edge e).
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Graph & Combinatorial Examples
(L AN}

Graph Strength

@ Then w(A) for A C E is a modular function

w(A) = Zwe (4.1)

eeA

so thatiw(E(G[S])) is the “internal strength” of the vertex set S.

Notationy S is a set of nodes, G[S] is the vertex-induced subgraph of G induced by
verticef S, E(G[S]) are the edges contained within this induced subgraph, and
w(E({7[S])) is the weight of these edges.

Z v“(45)

Prof. Jeff Bilmes
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Graph Strength

@ Then w(A) for A C E is a modular function
w(A) = Zwe (4.1)
ecA

so that w(E(G[S])) is the “internal strength” of the vertex set S.
@ Suppose removing A shatters G into a graph with ¢(A) > 1
components —
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Graph Strength

@ Then w(A) for A C E is a modular function

w(A) = Zwe (4.1)
ecA
so that w(E(G[S])) is the “internal strength” of the vertex set S.
@ Suppose removing A shatters G into a graph with ¢(A4) > 1
components — then@(A4) /@@A) — 1) is like the “effort per
achieved/additional component” for a network attacker.
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Graph ples
(L AN}

Graph Strength

@ Then w(A) for A C E is a modular function

w(A) = Zwe (4.1)
ecA
so that w(E(G[S])) is the “internal strength” of the vertex set S.
@ Suppose removing A shatters G into a graph with ¢(A4) > 1
components — then w(A)/(¢(A) — 1) is like the “effort per
achieved /additional component” for a network attacker.
@ A form of graph strength can then be defined as the following:

strength(G,w) = min w(4)

_ 4.2
ACE(G):e(A)>1 ¢(A) — 1 (4.2)
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xampl

Graph Strength

@ Then w(A) for A C E is a modular function

w(A) = Zwe (4.1)
ecA

so that w(E(G[S])) is the “internal strength” of the vertex set S.
@ Suppose removing A shatters G into a graph with ¢(A4) > 1

components — then w(A)/(¢(A) — 1) is like the “effort per

achieved /additional component” for a network attacker.
@ A form of graph strength can then be defined as the following:
w(A)

_ 4.2
AQE(ICIJI)I:IEI(A)>1 c¢(A)—1 (4.2)

strength(G, w) =
@ Graph strength is like the minimum effort per component. An attacker
would use the argument of the min to choose which edges to attack. A
network designer would maximize, over G and/or w, the graph
strength, strength(G,w).
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xampl

Graph Strength

@ Then w(A) for A C E is a modular function

w(A) = Zwe (4.1)
ecA

so that w(E(G[S])) is the “internal strength” of the vertex set S.
@ Suppose removing A shatters G into a graph with ¢(A4) > 1

components — then w(A)/(¢(A) — 1) is like the “effort per

achieved /additional component” for a network attacker.
@ A form of graph strength can then be defined as the following:
w(A)

h - o\
strength(G, w) AQE(ICIJI)I:IEI(A)>1 c(A) -1

(4.2)

@ Graph strength is like the minimum effort per component. An attacker
would use the argument of the min to choose which edges to attack. A
network designer would maximize, over G and/or w, the graph
strength, strength(G, w).

@ Since submodularity, problems have strongly-poly-time solutions.
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Submodularity, Quadratic Structures, and Cuts

Lemma 4.3.1

Let M € R™*"™ be a symmetric matrix and m € R™ be a vector. Then
f:2V = R defined as 1 efo3"el

FX) = mT1x + %1}1\/11)( (4.3)
—

K

is submodular iff the off-diagonal elements of M are non-positive.
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Submodularity, Quadratic Structures, and Cuts

Lemma 4.3.1

Let M € R™*"™ be a symmetric matrix and m € R™ be a vector. Then
f:2Y = R defined as

1
f(X) =mTly + 51}1\/[1)( (43)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.

@ Given a complete graph G = (V| E), recall that E(X) is the edge set
with both vertices in X C V(G), and that |E(X)| is supermodular.
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Graph
11n

Submodularity, Quadratic Structures, and Cuts

f:2Y = R defined as

f(X) =

is submodular iff the off-diagonal elements of M are non-positive.

Proof.
o Given a complete graph G = (V, E), recall that E(X) is the edge set
with both vertices in X C V(G), and that |E(X)]| is supermodular.
@ Non-negative modular weights w™ : E — R, @(E(X)) is also
supermodular, so ew(E (X)) is submodular.
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Graph
11n

Submodularity, Quadratic Structures, and Cuts

Lemma 4.3.1

Let M € R™*"™ be a symmetric matrix and m € R™ be a vector. Then
f:2Y = R defined as

1
f(X) =mTly + 51}1\/[1)( (43)

is submodular iff the off-diagonal elements of M are non-positive.

Proof.

o Given a complete graph G = (V, E), recall that E(X) is the edge set
with both vertices in X C V(G), and that |E(X)]| is supermodular.

@ Non-negative modular weights w™ : E — R, w(F (X)) is also
supermodular, so —w(FE (X)) is submodular.

@ f is a modular function m™14 = m(A) added to a weighted
submodular function, hence f is submodular.

EE563/Spring 2018/Submodularity - Lecture 4 - April 4th, 2018 F14/55 (pg.27/174)




Graph & Combinatorial Examples
(RN1 ]

Submodularity, Quadratic Structures, and Cuts

Proof of Lemma 4.3.1 cont.

o Conversely, suppose f is submodular.
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Proof of Lemma 4.3.1 cont.

o Conversely, suppose f is submodular.

@ Then Vu,v € V, f({u}) + f({v}) > f({u,v}) + f(D) while f(0) = 0.
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Graph & Combinatorial Examples
(RN1 ]

Submodularity, Quadratic Structures, and Cuts

Proof of Lemma 4.3.1 cont.

@ Conversely, suppose f is submodular.
o Then Yusw&W f ({u}) + f({v}) > f({u,v}) + f(0) while f(0) = 0.
@ This requires: vEV

0 < f{u}) + f({v}) —f({u,v}) (44)
= m(u) + % u,u + m(v) + %Mv’” (45)
— (m(u) aF m(U) + %Mu,u + Mu,v + %Mv,v> (46)

= My, (4.7)

So that Vu,v € V (M < 0.
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Graph & Combinatorial Examples
(N}

Set Cover and Maximum Coverage

just Special cases of Submodular Optimization

@ We are given a finite set U of m elements and a set of subsets
U={Uy,Us,...,U,} of n subsets of U, so that'l; € U and

(CUVU\.
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Graph & Combinatorial Examples
(N}

Set Cover and Maximum Coverage

just Special cases of Submodular Optimization

@ We are given a finite set U of m elements and a set of subsets
U={Uy,Us,..., Uy} of n subsets of U, so that U; C U and
Ik 10 = 107

@ The goal of minimum set cover is to choose the smallest subset
AC[n] £ {1,...,n} such that J,c 4 Us = U.
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Graph & Combinatorial Examples
(N}

Set Cover and Maximum Coverage

just Special cases of Submodular Optimization

@ We are given a finite set U of m elements and a set of subsets
U={Uy,Us,..., Uy} of n subsets of U, so that U; C U and
U, Ui=U.

@ The goal of minimum set cover is to choose the smallest subset
AC[n]2{1,...,n} such that J,c, U, = U.

@ Maximum k cover: The goal in maximum coverage is, given an integer
k < n, select k subsets, say {a1,as,...,a;} with a; € [n] such that
|UE, Uy, | is maximized.
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Graph & Combinatorial Examples
(N}

Set Cover and Maximum Coverage

just Special cases of Submodular Optimization

@ We are given a finite set U of m elements and a set of subsets
U={Uy,Us,..., Uy} of n subsets of U, so that U; C U and
U, Ui=U.

@ The goal of minimum set cover is to choose the smallest subset
AC[n]2{1,...,n} such that J,c, U, = U.

@ Maximum k cover: The goal in maximum coverage is, given an integer
k < n, select k subsets, say {a1,a2,...,ar} with a; € [n] such that
|UE, U,,| is maximized.

o f:2[ 5 7, where for A C [n], f(A) = | Uaea Ual is the set cover
function and is submodular.
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Graph & Combinatorial Examples
(N}

Set Cover and Maximum Coverage

just Special cases of Submodular Optimization

@ We are given a finite set U of m elements and a set of subsets
U={Uy,Us,..., Uy} of n subsets of U, so that U; C U and
U, Ui=U.

@ The goal of minimum set cover is to choose the smallest subset
AC[n]2{1,...,n} such that J,c, U, = U.

@ Maximum k cover: The goal in maximum coverage is, given an integer
k < n, select k subsets, say {a1,a2,...,ar} with a; € [n] such that
|UE, U,,| is maximized.

o f:2[ 7, where for A C [n], f(A) = | Uaea Ul is the set cover
function and is submodular. VS

o Weighted set cover: f(A) = w({J,cy Ua) wherew : U — R

!
Huw. L #( U “) 5= 3”7 2l
—J 7 £l dofan
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Graph & Combinatorial Examples
(N}

Set Cover and Maximum Coverage

just Special cases of Submodular Optimization

@ We are given a finite set U of m elements and a set of subsets
U={Uy,Us,..., Uy} of n subsets of U, so that U; C U and

U, Ui=U.

The goal of minimum set cover is to choose the smallest subset
AC[n]2{1,...,n} such that J,c, U, = U.

Maximum k cover: The goal in maximum coverage is, given an integer
k < n, select k subsets, say {a1,a2,...,ar} with a; € [n] such that
|UE, U,,| is maximized.

f:2l = 7, where for A C [n], f(A) = | Uaea Ul is the set cover
function and is submodular.

Weighted set cover: f(A) = w(U,c Ua) where w : U — R,

Both Set cover and maximum coverage are well known to be NP-hard,

but have a fast greedy approximation algorithm, and hence are
instances of submodular optimization.

(]
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Graph & Combinatorial Examples
1

Vertex and Edge Covers

Also instances of submodular optimization

Definition 4.3.2 (vertex cover)

A vertex cover (a "vertex-based cover of edges”) in graph G = (V, E) is a
set S C V(G) of vertices such that every edge in G is incident to at least
one vertex in S.

o Let I(S) be the number of edges incident to vertex set S. Then we
wish'to find the smallest set S C V' subject to I(S) = | E|.

Definition 4.3.3 (edge cover)

A edge cover (an “edge-based cover of vertices”) in graph G = (V, E) is a
set F' C E(G) of edges such that every vertex in G is incident to at least
one edge in F.

o Let |V|(F) be the number of vertices incident to edge set £'. Then we
wish to find the smallest set F' C E subject to |V |(F) = |V].
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Graph & Combinatorial Examples
(N}

Graph Cut Problems

Also submodular optimization

@ Minimum cut: Given a graph G = (V, E), find a set of vertices S C V'
that minimize the cut (set of edges) between S and V' \ S.
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Graph & Combinatorial Examples
(N}

Graph Cut Problems

Also submodular optimization

@ Minimum cut: Given a graph G = (V, E), find a set of vertices S C V
that minimize the cut (set of edges between Sand V' \ S.

)
@ Maximum cut: Given a graph G = (V, E), find a set of vertices S C V/
that minimize the cut (set of edges) between Sand V' \ S.

F18/55 (pg.39/174)
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Graph Cut Problems

Also submodular optimization

@ Minimum cut: Given a graph G = (V, E), find a set of vertices S C V
that minimize the cut (set of edges) between S and V'\ S.
(

° Maximym gut: Given a graph G = (V| E), find a set of vertices S C V
that g the cut (set of edges) between S and V'\ S.

o Let 0: 2" = R, be the cut function, namely for any given set of nodes
X CV, |6(X)| measures the number of edges between nodes X and
VAX —iefd(z)= EX,V\ X).

F18/55 (pg.40/174)
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Graph Cut Problems

Also submodular optimization

@ Minimum cut: Given a graph G = (V, E), find a set of vertices S C V
that minimize the cut (set of edges) between S and V'\ S.
(

e Maximum cut: Given a graph G = (V| E), find a set of vertices S C V
that minimize the cut (set of edges) between S and V'\ S.

o Let §:2Y — R, be the cut function, namely for any given set of nodes
X CV, |6(X)| measures the number of edges between nodes X and
VANX —ie, d(z)=EX,V\X).

@ Weighted versions, where rather than count, we sum the (non-negative)
weights of the edges of a cut, f(X) = w(d(X)).
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Graph Cut Problems

Also submodular optimization

@ Minimum cut: Given a graph G = (V, E), find a set of vertices S C V
that minimize the cut (set of edges) between S and V'\ S.
(

e Maximum cut: Given a graph G = (V| E), find a set of vertices S C V
that minimize the cut (set of edges) between S and V'\ S.

o Let §:2Y — R, be the cut function, namely for any given set of nodes
X CV, |6(X)| measures the number of edges between nodes X and
VANX —ie, d(z)=EX,V\X).

e Weighted versions, where rather than count, we sum the (non-negative)
weights of the edges of a cut, f(X) = w(d(X)).

@ Hence, Minimum cut and Maximum cut are also special cases of
submodular optimization.
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Matrix Rank
[ ARRRRRRNR]

Matrix Rank functions

o Let V, with |V| = m be an index set of a set of vectors in R™ for some
n (unrelated to m).
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Matrix Rank

Matrix Rank functions

o Let V, with |V| = m be an index set of a set of vectors in R™ for some

n (unrelated to m). \fveV, 7y €

e For a given set {v,v1,v9,..., v}, it might or might not be possible to
find («); such that:

£ k
23,,. /K Ty = Z QT (4.8)

i=1

If not, then x, is linearly independent of x,,,,...,zy,.

f(k,ba\): Px)- p(i)
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Matrix Rank

Matrix Rank functions

o Let V, with |V| = m be an index set of a set of vectors in R™ for some
n (unrelated to m).

e For a given set {v,v1,v9,...,v}, it might or might not be possible to
find («;); such that:

k
Ty =Y ity (4.8)
=1

If not, then x, is linearly independent of x,,,, ..., xy,.

@ Let r(S) for S C V be the rank of the set of vectors S. Then r(-) is a
submodular function, and in fact is called a matric matroid rank
function. —k(—
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Matrix Rank
(LERRRRANT]

Example: Rank function of a matrix

e Given n x m matrix X = (1, 2, ..., Ty) with x; € R™ for all 7. There
are m length-n column vectors {z;},
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Matrix Rank

Example: Rank function of a matrix

e Given n x m matrix X = (1,2, ..., Ty) with x; € R™ for all i. There
are m length-n column vectors {z;},

o Let V={1,2,...,m} be the set of column vector indices.

Prof. Jeff Bilmes EE563/Spring 2018/Submodularity - Lecture 4 - April 4th, 2018 F20/55 (pg.47/174)



Matrix Rank
(LERRRRANT]

Example: Rank function of a matrix

e Given n x m matrix X = (1,2, ..., Ty) with x; € R™ for all i. There
are m length-n column vectors {z;},

o Let V={1,2,...,m} be the set of column vector indices.

@ Forany A CV, let (A) be the rank of the column vectors indexed by
A.
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Matrix Rank
(LERRRRANT]

Example: Rank function of a matrix

Given n x m matrix X = (21,29, ..., Ty) with z; € R™ for all i. There
are m length-n column vectors {z;},

Let V ={1,2,...,m} be the set of column vector indices.

For any A C V, let r(A) be the rank of the column vectors indexed by
A.

r(A) is the dimensionality of the vector space spanned by the set of
vectors {Zq},c4-
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Matrix Rank
(LERRRRANT]

Example: Rank function of a matrix

e Given n x m matrix X = (1,2, ..., Ty) with x; € R™ for all i. There
are m length-n column vectors {z;},

o Let V={1,2,...,m} be the set of column vector indices.

@ Forany A CV, let r(A) be the rank of the column vectors indexed by
A.

@ r(A) is the dimensionality of the vector space spanned by the set of
vectors {Zq},c4-

@ Thusf{ (V) is the rank of the matrix X.
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Matrix Rank
(RLRRRRANT]

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V' = {1,2,3,4,5,6,7,8}. M:::’;

A W =

1

N ©O O O

2

S O W N

3

O O O N

4

o O P+ W

5 6 7 8

1 2 3 4
oL o
002 4|
300 5 X‘lx‘zxfx“
0 0 0 5

5
|

X5

6 7 8
o

X6 X7 X8

Let A={1,2,3}, B=1{3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BuUC)=3.

r(AUA,)=3r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C)=2.
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Matrix Rank
(RLRRRRANT]

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V' = {1,2,3,4,5,6,7,8}.

A W =

1

N ©O O O

2

S O W N

3

S O O N

4

o O P+ W

5 6 7 8
1 2 3 4
oL ]
0 0 2 4
- X X
3 0 0 5 X|1 |2 |3 X4
0 0 0 5

5
|

X5

6 7 8
o

X6 X7 X8

Let A={1,2,3}, B={3,4,5}, C={6,7}, A, = {1}, B, = {5}
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BUC)=3.

r(AUA,)=3r(BUB,) =3, rAUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<7r(C) =2.
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Matrix Rank
(RLRRRRANT]

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V' = {1,2,3,4,5,6,7,8}.

A W =

1

N ©O O O

2

S O W N

3

S O O N

4

o O P+ W

5 6 7 8
1 2 3 4
- B o
0 0 2 4
- X3 X
300 5 X‘1X‘2|3|4
0 0 0 5

5
|

X5

6 7 8
o

X6 X7 X8

Let A={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BUC)=3.

r(AUA,)=3r(BUB,) =3, rAUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<7r(C) =2.
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Matrix Rank
(RLRRRRANT]

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V' = {1,2,3,4,5,6,7,8}.

~ NN =

1

N ©O O O

2

O O W N

3

O O O N

4

o O W

5 6 7 8

1 2 3 4
' N )
002 4f
300 5 X‘lx‘zxfx“
0 0 0 5

5
|

X5

6 7 8
.

X6 X7 X8

Let A={1,2,3}, B={3,4,5}, C={6,7}, A, ={1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BUC)=3.

r(AUA,) =3, r(BUB,) =3, rAUB,) =4, r(BUA,)=4.
r(AUB)=4,r(ANB)=1<r(C) =2.
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Matrix Rank
(RLRRRRANT]

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V' = {1,2,3,4,5,6,7,8}.

A W =

1

N ©O O O

2

S O W N

3

O O O N

4

o O P+ W

5 6 7 8

1 2 3 4
oL )
002 4|
300 5 X|1X‘2X‘3X4
0 0 0 5

5
|

X5

6 7 8
o

X6 X7 X8

Let A={1,2,3}, B={3,4,5}, C ={6,7}, A, ={1}, B, ={5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BUC)=3.

r(AUA,)=3r(BUB,) =3, rAUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<7r(C) =2.
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Matrix Rank
(RLRRRRANT]

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V' = {1,2,3,4,5,6,7,8}.

A W =

1

N ©O O O

2

S O W N

3

O O O N

4

o O P+ W

5 6 7 8

1 2 3 4
- B ]
002 4f
300 5 X‘lx‘zxfx“
0 0 0 5

5
|

X5

6 7 8
o

X6 X7 X8

Let A={1,2,3}, B=1{3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BUC)=3.

r(AUA,)=3r(BUB,) =3, rAUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<7r(C) =2.
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Matrix Rank
(RLRRRRANT]

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V' = {1,2,3,4,5,6,7,8}.

A W =

1

N ©O O O

2

S O W N

3

S O O N

4

o O P+ W

5 6 7 8
1 2 3 4
oL ]
0 0 2 4
- X X
3 0 0 5 X|1 |2 |3 X4
0 0 0 5

5
|

X5

6 7 8
o

X6 X7 X8

Let A =1{1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B)=3,r(C)=2.
r(AuC) =3, r(BuUC)=3.

r(AUA,) =3 r(BUB,) =3, rAUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C)=2.
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Matrix Rank
(RLRRRRANT]

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V' = {1,2,3,4,5,6,7,8}.

A W =

1

N ©O O O

2

S O W N

3

S O O N

4

o O P+ W

5 6 7 8

1 2 3 4
- B o
002 4|
300 5 x‘1x‘2x|3x|4
0 0 0 5

5
|

X5

6 7 8
o

X6 X7 X8

Let A =1{1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, n(B) =3, r(C)=2.
r(AuC) =3, r(BuUC)=3.

r(AUA,) =3 r(BUB,) =3, rAUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C)=2.
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Matrix Rank
(RLRRRRANT]

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V' = {1,2,3,4,5,6,7,8}.

~ NN =

1

N ©O O O

2

O O W N

3

O O O N

4

o O W

5 6 7 8

1 2 3 4
' N )
002 4f
300 5 X‘lx‘zxfx“
0 0 0 5

5
|

X5

6 7 8
.

X6 X7 X8

Let A ={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BuC)=3.

r(AUA,) =3 r(BUB,) =3, 1rAUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C)=2.
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Matrix Ranl k
(RLRRRRANT]

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V' = {1,2,3,4,5,6,7,8}.

A W =

1

N ©O O O

2

S O W N

3

S O O N

4

o O P+ W

5 6 7 8

1 2 3 4
d ]
002 4f
300 5 X|1X|2X|3X4
0 0 0 5

5
|

X5

6 7 8
.

X6 X7 X8

Let A =1{1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) = 3, T’(C):Q.
r(AuC) =3, r(BUC) =

r(AUA4,) =3 r(BUB,) = 3, r(AUB,) =4, r(BUA,) =
r(AUB)=4,r(ANB)=1<r(C)=2.
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Matrix Rank
(RLRRRRANT]

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V' = {1,2,3,4,5,6,7,8}.

A W =

1

N ©O O O

2

S O W N

3

S O O N

4

o O P+ W

5 6 7 8

1 2 3 4
1 N
002 4|
300 5 x‘1x‘2x|3x|4
0 0 0 5

5
|

X5

6 7 8
.

X6 X7 X8

Let A =1{1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BUC)=3.

r(AUA,) =3 r(BUB,) =3, rAUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C)=2.

EE563/Spring 2018/Submodularity - Lecture 4 - April 4th, 2018

F21/55 (pg.61/174)



Matrix Rank
(RLRRRRANT]

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V' = {1,2,3,4,5,6,7,8}.

A W =

1

N ©O O O

2

S O W N

3

S O O N

4

o O P+ W

5 6 7 8
1 2 3 4
oL ]
0 0 2 4
- X X
3 0 0 5 X|1 |2 |3 X4
0 0 0 5

5
|

X5

6 7 8
o

X6 X7 X8

Let A={1,2,3}, B=1{3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BuUC)=3.

r(AUA,) =3, "(BUB,)=3,r(AUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C)=2.
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Matrix Rank
(RLRRRRANT]

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V' = {1,2,3,4,5,6,7,8}.

A W =

1

N ©O O O

2

S O W N

3

S O O N

4

o O P+ W

5 6 7 8

1 2 3 4
- B o
002 4|
300 5 x‘1x‘2x|3x|4
0 0 0 5

5
|

X5

6 7 8
o

X6 X7 X8

Let A={1,2,3}, B=1{3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BuUC)=3.

r(AUA,) =3, rn(BUB,)=3, "(AUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C)=2.
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Matrix Rank
(RLRRRRANT]

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V' = {1,2,3,4,5,6,7,8}.

~ NN =

1

N ©O O O

2

S O W N

3

S O O N

4

o O W

5 6 7 8
1 2 3 4
y ]
0 0 2 4
- X X
300 5 X|1|2|3X4
0 0 0 5

5
|

X5

6 7 8
o

X6 X7 X8

Let A={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BuUC)=3.

r(AUA,)=3r(BUB,) =3, r(AUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C)=2.
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Matrix Rank
(RLRRRRANT]

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V' = {1,2,3,4,5,6,7,8}.

~ NN =

1

N ©O O O

2

O O W N

3

S O O N

4

o O B+ W

5 6 7 8
1 2 3 4
y o
0 0 2 4
- X3 X
300 5 X|1X‘2|3|4
0 0 0 5

5
|

X5

6 7 8
o

X6 X7 X8

Let A={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BuUC)=3.

r(AUA,) =3, r(BUB,) =3, rAUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1<r(C)=2.
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Matrix Rank
(RLRRRRANT]

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V' = {1,2,3,4,5,6,7,8}.

A W =

1

N ©O O O

2

S O W N

3

S O O N

4

o O P+ W

5 6 7 8
1 2 3 4
N ]
0 0 2 4
- X> X3 X
300 5 X|1|2|3|4
0 0 0 5

5
|

X5

6 7 8
o

X6 X7 X8

Let A =1{1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BuUC)=3.

r(AUA,)=3,r(BUB,) =3, 1(AUB,) =4, r(BUA,) =4.
r(AUB) =4, r(ANB)=1<r(C)=2.
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Matrix Rank
(RLRRRRANT]

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V' = {1,2,3,4,5,6,7,8}.

A W =

1

N ©O O O

2

S O W N

3

S O O N

4

o O P+ W

5 6 7 8

1 2 3 4
oL L
002 4|
300 5 X‘1X‘2X|3X4
0 0 0 5

5
|

X5

6 7 8
o

X6 X7 X8

Let A =1{1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BuUC)=3.

r(AUA,)=3,r(BUB,) =3, 1(AUB,) =4, r(BUA,) =4.
r(AUB) =4, r(ANB)=1 <r(C)=2.
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Matrix Rank
(RLRRRRANT]

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V' = {1,2,3,4,5,6,7,8}.

~ NN =

1

N ©O O O

2

O O W N

3

O O O N

4

o O W

5 6 7 8

1 2 3 4
' N )
002 4f
300 5 X‘lx‘zxfx“
0 0 0 5

5
|

X5

6 7 8
.

X6 X7 X8

Let A ={1,2,3}, B={3,4,5}, C ={6,7}, A, = {1}, B, = {5}.
Then r(A) =3, r(B) =3, r(C) = 2.
r(AuC) =3, r(BuUC)=3.

r(AUA,)=3,r(BUB,) =3, 1(AUB,) =4, r(BUA,) =4.
r(AUB)=4,r(ANB)=1 <r(C)=2.
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Matrix Ranl k
(RLRRRRANT]

Example: Rank function of a matrix

Consider the following 4 x 8 matrix, so V' = {1,2,3,4,5,6,7,8}.

1 23456 7 8

1 2 3 4 5 6 7 8
1/0 2 2 3 0 1 3
20 3 0 4 0 0 2 4| | | | | | | | |
300003005 |°07Ees e
4\2 0 0 0 0 0 0 5 | | | | | | | |
o Let A=1{1,2,3}, B={3,4,5}, C = {6,7}, A, = {1}, B, = {5}.
@ Then r(4) =3, r(B) =3, r(C) = 2.
e r(AUC)=3, r(BUC)=
° MUA)—SMBUB (BUA,)
o r(AUB) =
° )

6:w_r( T7(C) > (AUB) + (AN B), =5
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Matrix Rank
(RRLRRRANT]

Rank function of a matrix

@ Let A, B C V be two subsets of column indices.
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Matrix Rank

Rank function of a matrix

o Let A, B C V be two subsets of column indices.
@ The rank of the two sets unioned together A U B is no more than the
sum of the two individual ranks.
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Matrix Rank
(RRLRRRANT]

Rank function of a matrix

o Let A, B C V be two subsets of column indices.
@ The rank of the two sets unioned together A U B is no more than the

sum of the two individual ranks.
@ In a Venn diagram, let area correspond to dimensions spanned by

vectors indexed by a set. Hence, 7(A) can be viewed as an area.

F22/55 (pg.72/174)
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Matrix Rank
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Rank function of a matrix

@ Let A, B C V be two subsets of column indices.

@ The rank of the two sets unioned together A U B is no more than the
sum of the two individual ranks.

@ In a Venn diagram, let area correspond to dimensions spanned by
vectors indexed by a set. Hence, 7(A) can be viewed as an area.

r(A) + r(B) >  r(AUB)
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Matrix Rank
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Rank function of a matrix

@ Let A, B C V be two subsets of column indices.

@ The rank of the two sets unioned together A U B is no more than the
sum of the two individual ranks.

@ In a Venn diagram, let area correspond to dimensions spanned by
vectors indexed by a set. Hence r(A) can be viewed as an area.

r(A >  r(AUB)
@ If some of the dimensions spanned by A overlap some of the
dimensions spanned by B (i.e., if 3 common span), then that area is

counted twice in r(A) + 7(B), so the inequality will be strict.
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Matrix Rank

Rank function of a matrix

@ Let A, B C V be two subsets of column indices.

@ The rank of the two sets unioned together A U B is no more than the
sum of the two individual ranks.

@ In a Venn diagram, let area correspond to dimensions spanned by
vectors indexed by a set. Hence, 7(A) can be viewed as an area.

r(A) + r(B) > r(AUB) 7

@ If some of the dimensions spanned by A overlap some of the
dimensions spanned by B (i.e., if 3 common span), then that area is
counted twice in r(A) + r(B), so the inequality will be strict.

@ Any function where the above inequality is true for all A, B C V' is

called subadditive.
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Matrix Rank

Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.
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Matrix Rank

Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

@ Let C index vectors spanning all dimensions common to A and B. We
call C the common span and call AN B the common index.
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Matrix Rank

Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

@ Let C index vectors spanning all dimensions common to A and B. We
call C the common span and call AN B the common rEx. e,

@ Let A, index vectors spanning dimensions spanned by A but not B.
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Matrix Rank

Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

@ Let C index vectors spanning all dimensions common to A and B. We
call C the common span and call AN B the common index.

@ Let A, index vectors spanning dimensions spanned by A but not B.

@ Let B, index vectors spanning dimensions spanned by B but not A.
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Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

@ Let C index vectors spanning all dimensions common to A and B. We
call C the common span and call AN B the common index.

Let A, index vectors spanning dimensions spanned by A but not B.

Let B, index vectors spanning dimensions spanned by B but not A.
Then, r(A4) =r(C) + r(A,)
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Matrix Rank

Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning all dimensions common to A and B. We
call C the common span and call AN B the common index.

Let A, index vectors spanning dimensions spanned by A but not B.
Let B, index vectors spanning dimensions spanned by B but not A.
Then, r(A) =r(C) +r(Ay)

Similarly, 7(B) = r(C) + r(B;).
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Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

@ Let C index vectors spanning all dimensions common to A and B. We
call C the common span and call AN B the common index.

Let A, index vectors spanning dimensions spanned by A but not B.
Let B, index vectors spanning dimensions spanned by B but not A.
Then, r(A) =r(C) +r(Ay)

Similarly, 7(B) = r(C) + r(By).

Then r(A) + r(B) counts the dimensions spanned by C' twice, i.e.,

r(A) +r(B) = r(A,) + 2r(C) + r(B,). (4.9)
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Matrix Rank
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Rank functions of a matrix

@ Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning all dimensions common to A and B. We
call C the common span and call AN B the common index.

Let A, index vectors spanning dimensions spanned by A but not B.
Let B, index vectors spanning dimensions spanned by B but not A.
Then, r(A) =r(C) +r(Ay)

Similarly, 7(B) = r(C) + r(By).

Then r(A) + r(B) counts the dimensions spanned by C' twice, i.e.,

r(A) +r(B) =r(A4;) +2r(C) + r(B;). (4.9)
@ But (A U B) counts the dimensions spanned by C' only once.

r(AUB) =r(A,) +7r(C)+r(B,) (4.10)
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Matrix Rank
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Rank functions of a matrix
@ Then r(A) + r(B) counts the dimensions spanned by C' twice, i.e.,

r(A)+r(B) = r(A)+2r(C) +
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Rank functions of a matrix

@ Then r(A) + r(B) counts the dimensions spanned by C' twice, i.e.,

r(A)+r(B) =r(A,) +2r(C)+ r(B,)

e But 7(A U B) counts the dimensions spanned by C' only once.

r(AUB) =r(A,)+r(C)+r(B,)




Rank functions of a matrix

@ Then r(A) + r(B) counts the dimensions spanned by C' twice, i.e.,

r(A)+ r(B) =r(A,) +2r(C)+ r(B,)

e But 7(A U B) counts the dimensions spanned by C' only once.

r(AUB) =r(A,)+r(C)+r(B,)

e Thus, we have subadditivity: 7(A) +r(B) > r(AU B). Can we add
more to the r.h.s. and still have an inequality? Yes.
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Matrix Rank

Rank function of a matrix

e Note, 7(AN B) < r(C). Why? Vectors indexed by AN B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C').

r(C) > r(AN B)

In short:
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Matrix Rank

Rank function of a matrix

e Note, 7(AN B) < r(C). Why? Vectors indexed by AN B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C').

r(C) > r(AN B)

In short:
e Common span (blue) is “more” (no less) than span of common index
(magenta).
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Matrix Rank

Rank function of a matrix

e Note, 7(AN B) < r(C). Why? Vectors indexed by AN B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C').

r(C) > r(AN B)

In short:
e Common span (blue) is “more” (no less) than span of common index
(magenta).
@ More generally, common information (blue) is “more” (no less) than
information within common index (magenta).
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The Venn and Art of Submodulanty

i o 0 o ) O 0] ]
r(A)+r(B) 2 r(AUB) —|— r(AﬁB)J

—|—2r r(AN B)
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Matrix Rank
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Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S is a
subspace of dimension > 1).
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Matrix Rank

Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S is a

subspace of dimension > 1).
@ For each X C S, let f(X) denote the dimensionality of the linear

subspace spanned by the subspaces in X.
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Matrix Rank

Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S is a
subspace of dimension > 1).

@ For each X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.

@ We can think of S as a set of sets of vectors from the matrix rank
example, and for each s € S, let X, being a set of vector indices.
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Matrix Rank

Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S is a
subspace of dimension > 1).

@ For each X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.

@ We can think of S as a set of sets of vectors from the matrix rank
example, and for each s € S, let X, being a set of vector indices.

@ Then, defining [ : 25 R as follows,

J(X) = r(Uses Xs) (4.11)

we have that f is submodular, and is known to be a polymatroid rank
function.
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Matrix Rank

Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S is a
subspace of dimension > 1).

@ For each X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.

@ We can think of S as a set of sets of vectors from the matrix rank
example, and for each s € S, let X, being a set of vector indices.

@ Then, defining [ : 25 R as follows,

F(X) = 1(UsesXs) (4.11)

we have that f is submodular, and is known to be a polymatroid rank
function.

@ In general (as we will see) polymatroid rank functions are submodular,
normalized f(()) = 0, and monotone non-decreasing (f(4) < f(B)
whenever A C B).

EE563/Spring 2018/Submodularity - Lecture 4 - April 4th, 2018 F27/55 (pg.95/174)



Matrix Rank

Polymatroid rank function

@ Let S be a set of subspaces of a linear space (i.e., each s € S is a
subspace of dimension > 1).

@ For each X C S, let f(X) denote the dimensionality of the linear
subspace spanned by the subspaces in X.

@ We can think of S as a set of sets of vectors from the matrix rank
example, and for each s € S, let X, being a set of vector indices.

@ Then, defining [ : 25 R as follows,

f(X) = T(USG.XS) (4'11)

we have that f is submodular, and is known to be a polymatroid rank
function.

@ In general (as we will see) polymatroid rank functions are submodular,
normalized f(0)) = 0, and monotone non-decreasing (f(A) < f(B)
whenever A C B).

@ We use the term non-decreasing rather than increasing, the latter of
which is strict (also so that a constant function isn't “increasing”).
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Matrix Rank

Spanning trees

@ Let E be a set of edges of some graph G = (V, E), and let r(S5) for
S C E be the maximum size (in terms of number of edges) spanning
forest in the vertex-induced graph, induced by vertices incident to edges

S.
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Matrix Rank
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Spanning trees

@ Let E be a set of edges of some graph G = (V, E), and let r(S) for
S C E be the maximum size (in terms of number of edges) spanning
forest in the vertex-induced graph, induced by vertices incident to edges

S.

e Example: Given G = (V, E), V ={1,2,3,4,5,6,7,8},
E=1{1,2,...,12}. §={1,2,3,4,5,8,9} C E. Two spanning trees
have the same edge count (the rank of .S).
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Matrix Rank
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Spanning trees

VL,JM A VX fon vena slide,

@ Let E be a set of edges of some graph G = (V, E), and let r(S) for
S C E be the maximum size (in terms of number of edges) spanning
forest in the vertex-induced graph, induced by vertices incident to edges

S.

e Example: Given G = (V,E), V ={1,2,3,4,5,6,7,8},
E=1{1,2,...,12}. S = {182,3,4,5,8,9} C E. Two spanning trees
have the same edge count (the rank of .S).

@ Then r(S) is submodular, and is another matrix rank function
corresponding to the incidence matrix of the graph.

EES563/Spring 2018/Submodularity - Lecture 4 - April 4th, 2018 F28/55 (pg.99/174)



Examples and Properties

Summing Submodular Functions

Given E, let fi, f> : 2 — R be two submodular functions. Then
f:2F 5 Rwith f(A) = fi(A) + f2(A) (4.16)

is submodular.
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Summing Submodular Functions

Given E, let f1, fo : 2 — R be two submodular functions. Then
f:28 5 Rwith f(A) = fi(A) + f2(A) (4.16)

is submodular. This follows easily since

f(A) + f(B) = fi(A) + f2(A) + f1(B) + f2(B) (4.17)
> F(AUB) + fo(AUB) + fi(AN B) + fo(AN B) (4.18)
= f(AUB)+ f(ANDB). (4.19)

l.e., it holds for each component of f in each term in the inequality.
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Summing Submodular Functions

Given E, let f1, fo : 2 — R be two submodular functions. Then
f:28 5 Rwith f(A) = fi(A) + f2(A) (4.16)

is submodular.This follows easily since

f(A) + f(B) = fi(A) + f2(A) + f(B) + f2(B) (4.17)
> fi(AUB) + fa(AUB) + fi(AN B) + f2(AN B) (4.18)
= f(AuB)+ f(ANB). (4.19)

l.e., it holds for each component of f in each term in the inequality. In fact,
any conic combination (i.e., non-negative linear combination) of submodular
functions is submodular, as in f(A) = a1 fi1(A) + aafa(A) for ay, s > 0.
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Summing Submodular and Modular Functions

Given E, let f1,m : 2 — R be a submodular and a modular function.
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Summing Submodular and Modular Functions

Given FE, let fi,m : 2P — R be a submodular and a modular function. Then
f:2F 5 Rwith f(A) = fi(A) —m(A) (4.20)

is submodular (as is f(A) = f1(A) + m(A)).
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Summing Submodular and Modular Functions

Given FE, let fi,m : 2¥ — R be a submodular and a modular function. Then
f:2F 5 Rwith f(A) = fi(A) —m(A) (4.20)

is submodular (as is f(A) = fi(A) +m(A)). This follows easily since

f(A) + f(B) = f1(A) = m(A) + f1(B) — m(B) (4.21)
> fi(AUB) —m(AUB)+ fi(ANB) —m(ANB) (4.22)
= f(AuB)+ f(ANB). (4.23)
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Summing Submodular and Modular Functions

Given FE, let fi,m : 2¥ — R be a submodular and a modular function. Then
f:2F 5 Rwith f(A) = fi(A) —m(A) (4.20)

is submodular (as is f(A) = fi(A) +m(A)). This follows easily since

f(A) + f(B) = fi(A) —m(A) + f1(B) — m(B) (4.21)
> fi(AUB) —=m(AUB) + fi(ANB) —m(AN B) (4.22)
= f(AuB)+ f(ANB). (4.23)

That is, the modular component with
(A Fm(B) = m(AU B) + m(A N B) never destroys the inequality.
Note of course that if m is modular than so is —m.
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Examples and Properties

Restricting Submodular functions

Given E, let f: 2F — R be a submodular functions. And let S C E be an
arbitrary fixed set. Then

2P 5 Rwith f/(A) 2 f(ANS) (4.24)

is submodular.
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Examples and Properties

Restricting Submodular functions

Given E, let f: 2F — R be a submodular functions. And let S C E be an
arbitrary fixed set. Then

f 28 = Rwith f/(A) 2 f(ANS) (4.24)
is submodular.
Proof.

D |
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Examples and Properties

Restricting Submodular functions

Given E, let f: 2F — R be a submodular functions. And let S C E be an
arbitrary fixed set. Then

f 28 = Rwith f/(A) 2 f(ANS) (4.24)
is submodular.
Proof.
Given A C B C E'\ v, consider

f((A+v)NnS)—f(ANS)> f(B+v)NS)—f(BNS) (4.25)
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Examples and Properties

Restricting Submodular functions

Given E, let f: 2F — R be a submodular functions. And let S C E be an
arbitrary fixed set. Then

f 28 = Rwith f/(A) 2 f(ANS) (4.24)
is submodular.
Proof.
Given A C B C E \ v, consider

f((A+v)NS)—f(ANS)> f(B+v)NS)—f(BNS) (4.25)

If v ¢ S, then both differences on each size are zero.
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Restricting Submodular functions

Given E, let f: 2F — R be a submodular functions. And let S C E be an
arbitrary fixed set. Then

f 28 = Rwith f/(A) 2 f(ANS) (4.24)
is submodular.

Proof.
Given A C B C E \ v, consider

f((A+v)NS)—f(ANS)> f(B+v)NS)—f(BNS) (4.25)

If v ¢ S, then both differences on each size are zero. If v € S, then we can
consider this

FA" +v) = f(A) > f(B"+v) — f(B) (4.26)

with A’ = ANS and B’ =BNS. Since A’ C B’, this holds due to
submodularity of f. OJ
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Examples and Properties

Summing Restricted Submodular Functions

Given V, let fi, fo : 2 — R be two submodular functions and let S;, S5 be

two arbitrary fixed sets. (hen S, 5. V.,

f:2V 5 Rwith f(A) = fi(ANS)) + fa(AN Sy) (4.27)

is submodular. This follows easily from the preceding two results.

£ Ry £, o> 2R
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Examples and Properties
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Summing Restricted Submodular Functions

Given V, let f1, f2 : 2V — R be two submodular functions and let Sy, Sy be
two arbitrary fixed sets. Then

f:2V = Rwith f(A) = fi(ANSL) + fo(ANSy) (4.27)

is submodular. This follows easily from the preceding two results.
Given V, let C = {C1,Cy,...,Cy} be a set of subsets of V', and for each
Cel, let fo: 2V 5 R be a submodular function. Then

f:2V s Rwith f(A) = fo(ANC) (4.28)
ceC

is submodular.
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Summing Restricted Submodular Functions

Given V, let f1, f2 : 2V — R be two submodular functions and let Sy, Sy be
two arbitrary fixed sets. Then

f:2V = Rwith f(A) = fi(ANSL) + fo(ANSy) (4.27)

is submodular. This follows easily from the preceding two results.
Given V, let C = {C1,Cy,...,Ck} be a set of subsets of V, and for each
C €C, let fc : 2V — R be a submodular function. Then

f:2V s Rwith f(A) = fo(ANC) (4.28)
ceC

is submodular. This property is critical for image processing and graphical
models. For example, let C be all pairs of the form {{u,v} : u,v € V'}, or
let it be all pairs corresponding to the edges of some undirected graphical

model. We plan to revisit this topic later in the term.
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Examples and Properties

Max - normalized

Given V, letc € RK be a given fixed vector. Then f: 2" — R, , where

f(A) = max c; (4.29)

is submodular and normalized (we take f(0)) = 0).

Consider m
maxc; + maxe; > max ¢j + max c¢; (4.30)
jeA jEB jEAUB jEANB
which follows since we have thatk - /
max(maxc¢,;, maxc¢,) = max c; 4.31
(jeA 7 G 2 jeAUB Y ( )
and
min(maxc;, maxc;) > max C; 4.32
(jeA 1 5eB ])_jeAmBJ ( )
L]
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Examples and Properties

Given V, let ¢ ¢ RY be a given fixed vector (not necessarily non-negative).
Then f : 2V 5 R, where

f(A) = maxc; (4.33)
JEA J /D{QI fué
vi¢ 1
is submodular, where we take () < min; ¢; (so the function joast
normalized).

The proof is identical to the normalized case. Ol
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Facility/Plant Location (uncapacitated) w. plant benefits

o Let = {1,..., f} be a set of possible factory/plant locations for
facilities to be built.
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Facility/Plant Location (uncapacitated) w. plant benefits

o Let FF ={1,..., f} be a set of possible factory/plant locations for
facilities to be built.
e S={1,...,s} is a set of sites (e.g., cities, clients) needing service.
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Facility/Plant Location (uncapacitated) w. plant benefits

o Let FF ={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

o S={1,...,s} is a set of sites (e.g., cities, clients) needing service.

o Let ¢ be the beneflt (e.g., 1/cij is the cost) of servicing site 7 with
facility location j. wha
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Facility/Plant Location (uncapacitated) w. plant benefits

o Let FF ={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

o S={1,...,s} is a set of sites (e.g., cities, clients) needing service.

o Let ¢;; be the "benefit” (e.g., 1/c;; is the cost) of servicing site ¢ with
facility location j.

@ Let m; be the benefit (e.g., either 1/m; is the cost or —m; is the cost)
to build a plant at location j.
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Facility/Plant Location (uncapacitated) w. plant benefits

o Let FF ={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

o S={1,...,s} is a set of sites (e.g., cities, clients) needing service.

o Let ¢;; be the "benefit” (e.g., 1/c;; is the cost) of servicing site ¢ with
facility location j.

o Let m; be the benefit (e.g., either 1/m; is the cost or —m; is the cost)
to build a plant at location j.

@ Each site should be serviced by only one plant but no less than one.
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Facility/Plant Location (uncapacitated) w. plant benefits

o Let FF ={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

o S={1,...,s} is a set of sites (e.g., cities, clients) needing service.

o Let ¢;; be the "benefit” (e.g., 1/c;; is the cost) of servicing site ¢ with
facility location j.

o Let m; be the benefit (e.g., either 1/m; is the cost or —m; is the cost)
to build a plant at location j.

@ Each site should be serviced by only one plant but no less than one.

@ Define f(A) as the “delivery benefit” plus “construction benefit” when
the locations A C F are to be constructed.
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Facility/Plant Location (uncapacitated) w. plant benefits

o Let FF ={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

o S={1,...,s} is a set of sites (e.g., cities, clients) needing service.

o Let ¢;; be the "benefit” (e.g., 1/c;; is the cost) of servicing site ¢ with
facility location j.

o Let m; be the benefit (e.g., either 1/m; is the cost or —m; is the cost)
to build a plant at location j.

@ Each site should be serviced by only one plant but no less than one.

@ Define f(A) as the “delivery benefit" plus‘construction benefit” when
the locations A C F are to be constructed.

@ We can define the (uncapacitated) facility location function

f(A) = ij + ZI]I,leaj(Cij. (4.34)

JjEA €S
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Facility/Plant Location (uncapacitated) w. plant benefits

o Let FF ={1,..., f} be a set of possible factory/plant locations for
facilities to be built.

o S={1,...,s} is a set of sites (e.g., cities, clients) needing service.

o Let ¢;; be the "benefit” (e.g., 1/c;; is the cost) of servicing site ¢ with
facility location j.

o Let m; be the benefit (e.g., either 1/m; is the cost or —m; is the cost)

to build a plant at location j.

Each site should be serviced by only one plant but no less than one.

Define f(A) as the “delivery benefit” plus “construction benefit” when

the locations A C F are to be constructed.

We can define the (uncapacitated) facility location function

f(A) = Z m; + Z IJI'leaji{ Cij- (4.34)

jEA ieS

@ Goal is to find a set A that maximizes f(A) (the benefit) placing a
bound on the number of plants A (e.g., |A| < k).
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Examples and Properties

Facility/Plant Location (uncapacitated)

o Core problem in operations research, early motivation for submodularity.

@ Goal: as efficiently as possible, place “facilities” (factories) at certain
locations to satisfy sites (at all locations) having various demands.
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Examples and Properties
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Facility/Plant Location (uncapacitat

o Core problem in operations research, early motivation for submodularity.

@ Goal: as efficiently as possible, place “facilities” (factories) at certain
locations to satisfy sites (at all locations) having various demands.
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Facility/Plant Location (uncapacitated)

o Core problem in operations research, early motivation for submodularity.

@ Goal: as efficiently as possible, place “facilities” (factories) at certain

locations to satisfy sites (at all locations) having various demands.
facility locations sites

@ We can model this with a weighted
bipartite graph G = (F, S, E, ¢) '
where F' is set of possible
factory/plant locations, S is set of
sites needing service, E are edges
indicating (factory,site) service
possiblity pairs, and ¢: E— R is
the benefit of a given pair.

Benefit of having
site 2 serviced by

o Facility location function has form:

f<A)_iEZSr§l£i(c”' (4.35) o o
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Facility Location

Given V, E, let c € RV*E be a given |V| x |E| matrix. Then

f:2F 5 R, where f(A) = ngne%i( Cij (4.36)

is submodular.

We can write f(A) as f(A) = > ;cy fi(A) where fi(A) = max;ca cij is
submodular (max of a it" row vector), so f can be written as a sum of
submodular functions. O

Thus, the facility location function (which only adds a modular function to
the above) is submodular.
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Examples an i
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Log Determinant

@ Let X be an n x n positive definite matrix. Let V ={1,2,...,n} = [n]
be an index set, and for A C V, let X4 be the (square) submatrix of
obtained by including only entries in the rows/columns given by A.

ACZ'H’?B

nxn

En
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Log Determinant

o Let X be an n x n positive definite matrix. Let V ={1,2,...,n} = [n]
be an index set, and for A C V, let X4 be the (square) submatrix of

obtained by including only entries in the rows/columns given by A.
@ We have that:

f(A) =logdet(X4) is submodular. (4.37)
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Examples an i
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Log Determinant

o Let X be an n x n positive definite matrix. Let V ={1,2,...,n} = [n]
be an index set, and for A C V, let X4 be the (square) submatrix of
obtained by including only entries in the rows/columns given by A.

@ We have that:

f(A) = logdet(X4) is submodular. (4.37)

@ The submodularity of the log determinant is crucial for determinantal
point processes (DPPs) (defined later in the class).
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Log Determinant

o Let X be an n x n positive definite matrix. Let V ={1,2,...,n} = [n]
be an index set, and for A C V, let X4 be the (square) submatrix of
obtained by including only entries in the rows/columns given by A.

o We have that:

f(A) = logdet(X4) is submodular. (4.37)

@ The submodularity of the log determinant is crucial for determinantal
point processes (DPPs) (defined later in the class).

Proof of submodularity of the logdet function.

Suppose X € R" is multivariate Gaussian random variable, that is

Lo el — m) (4.38)

1
T EPT) = —ex =
p(x) TS| p( 5
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Examy

Log Determinant

...cont.

Then the (differential) entropy of the r.v. X is given by

h(X) =log+/|2meX| = log /(2me)" | X| (4.39)
and in particular, for a variable subset A,
f(A) = h(Xa) = log 1/ (2me)l A3 4] (4.40)

Entropy is submodular (further conditioning reduces entropy), and moreover

F(A) = h(X.4) = m(A) + %log IS4 (4.41)

where m(A) is a modular function. O

Note: still submodular in the semi-definite case as well.
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Examples and Properties

Summary so far

@ Summing: if a; > 0 and f; : 2V — R is submodular, then so is > aifi
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Examples an ies
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Summary so far

e Summing: if ; > 0 and f; : 2V — R is submodular, then so is >_, a; f;.
@ Restrictions: f/(A) = f(ANS)
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Examples and Properties

Summary so far

e Summing: if ; > 0 and f; : 2V — R is submodular, then so is >_, a; f;.
@ Restrictions: f/(A) = f(ANS)

@ max: f(A) =max;ca c¢; and facility location.
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[RRRRAN] (LA RN

Summary so far

Summing: if a; > 0 and f; : 2" — R is submodular, then so is 3, a; f;.
Restrictions: f'(A) = f(ANS)

max: f(A) = max;ca c¢; and facility location.

Log determinant f(A) = logdet(X4)
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Concave over non-negative modular

Letm € Rf be a non-negative modular function, and g a concave function
over R. Define f:2¥ - R as

f(A) = g(m(A)) (4.42)

then f is submodular.

Given AC BC E\ v, we have 0 <a=m(A) <b=m(B), and
0 < c¢=m(v). For g concave, we have g(a+c) — g(a) > g(b+c) — g(b),
and thus

g9(m(A) + m(v)) — g(m(A)) = g(m(B) +m(v)) — g(m(B))  (4.43)

Ol

A form of converse is true as well.
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Examples and Properties

Concave composed with non-negative modular

Theorem 4.5.1
Given a ground set V. The following two are equivalent:

@ For all modular functions m : 2V — R, then f : 2V 5 R defined as
f(A) = g(m(A)) is submodular

@ g:R_ — R s concave.

@ If g is non-decreasing concave w. g(0) = 0, then f is polymatroidal.
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Examples and Properties

Concave composed with non-negative modular

Theorem 4.5.1
Given a ground set V. The following two are equivalent:

@ For all modular functions m : 2V — R, then f : 2V 5 R defined as
f(A) = g(m(A)) is submodular

@ g:R_ — R s concave.

e If g is non-decreasing concave w. g(0) = 0, then f is polymatroidal.
@ Sums of concave over modular functions are submodular

K
f(A) = Zgi(mi(A)) (4.44)
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Concave composed with non-negative modular

Theorem 4.5.1
Given a ground set V. The following two are equivalent:

@ For all modular functions m : 2V — R, then f : 2V 5 R defined as
f(A) = g(m(A)) is submodular

@ g:R_ — R s concave.

e If g is non-decreasing concave w. g(0) = 0, then f is polymatroidal.
@ Sums of concave over modular functions are submodular

K
F(A) = gi(ma(A)) (4.44)
i=1

o Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause 2011), and “feature-based
submodular functions” (Wei, lyer, & Bilmes 2014).
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Concave composed with non-negative modular

Theorem 4.5.1
Given a ground set V. The following two are equivalent:

@ For all modular functions m : 2V — R, then f : 2V 5 R defined as
f(A) = g(m(A)) is submodular

@ g:R_ — R s concave.

e If g is non-decreasing concave w. g(0) = 0, then f is polymatroidal.
@ Sums of concave over modular functions are submodular

K
F(A) = gi(ma(A)) (4.44)
i=1

o Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause 2011), and “feature-based
submodular functions” (Wei, lyer, & Bilmes 2014).

@ However, Vondrak showed that a graphic matroid rank function over
K, (we'll define this after we define matroids) are not members.
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Examples and Properties

Monotonicity

Definition 4.5.2

A function f: 2" — R is monotone nondecreasing (resp. monotone
increasing) if for all A C B, we have f(A) < f(B) (resp. f(A4) < f(B)).
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Monotonicity

Definition 4.5.2

A function f: 2" — R is monotone nondecreasing (resp. monotone
increasing) if for all A C B, we have f(A) < f(B) (resp. f(A4) < f(B)).

Definition 4.5.3

A function f : 2 — R is monotone nonincreasing (resp. monotone
decreasing) if for all A C B, we have f(A) > f(B) (resp. f(A) > f(B)).
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Examples and Properties

Composition of non-decreasing submodular and
non-decreasing concave

Theorem 4.5.4

Given two functions, one defined on sets

f:2¥ >R (4.45)
and another continuous valued one:

g:R—R (4.46)

the composition formed as h = go f : 2" — R (defined as h(S) = g(f(S)))
is nondecreasing submodular, if g is non-decreasing concave and f is
nondecreasing submodular.
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(RRRRARANARNRRENY AR

Monotone difference of two functions

Let f and g both be submodular functions on subsets of V' and let
(f — g)(-) be either monotone non-decreasing or monotone non-increasing
Then h : 2V — R defined by

h(A) = min(f(4),9(A)) (4.47)
is submodular.

Proof.
If h(A) agrees with f on both X and Y (or g on both X and Y), and since
MX)+h(Y)=f(X)+ f(Y)> f(XUY)+ f(XNY) (4.48)

or
MX) +h(Y) = g(X) +9(Y) 2 g(X UY) +g(X NY), (4.49)
the result (Equation 4.47 being submodular) follows since

O+ YY) L .
9(X) + g(Y) > min(f(XUY),g(XUY))+min(f(XNY),g(X m(y’)()))
4.5
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Examples and Properties
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Monotone difference of two functions

Otherwise, w.l.o.g., h(X) = f(X) and h(Y') = g(Y), giving

MX)+h(Y) = f(X)+9(Y) = F(XUY)+ f(XNY) +g(Y) —f(Y) :
4.51
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Examples and Properties
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Monotone difference of two functions

Otherwise, w.l.o.g., h(X) = f(X) and h(Y') = g(Y), giving

MX)+h(Y) = f(X)+9(Y) = F(XUY)+ f(XNY) +g(Y) —f(Y) :
4.51

Assume the case where f — g is monotone non-decreasing Hence,
FXUY)+g(Y) - f(Y) =2 g(X UY) giving

hX)+h(Y)>g(XUY)+ f(XNY)>h(XUY)+h(XNY) (452)

Ol

What is an easy way to prove the case where f — g is monotone
non-increasing?

EE563/Spring 2018/Submodularity - Lecture 4 - April 4th, 2018 F47/55 (pg.148/174)



Examples and Properties

Saturation via the min(-) function

Let f:2" — R be a monotone increasing or decreasing submodular
function and let a be a constant. Then the function & : 2V — R defined by

h(A) = min(a, f(A)) (4.53)

is submodular.
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Examples and Properties

Saturation via the min(-) function

Let f:2" — R be a monotone increasing or decreasing submodular
function and let a be a constant. Then the function & : 2V — R defined by

h(A) = min(a, f(A)) (4.53)

is submodular.

For constant k, we have that (f — k) is non-decreasing (or non-increasing)
so this follows from the previous result. Ol
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Examples and Properties

Saturation via the min(-) function

Let f:2" — R be a monotone increasing or decreasing submodular
function and let a be a constant. Then the function & : 2V — R defined by

h(A) = min(a, f(A)) (4.53)

is submodular.

For constant k, we have that (f — k) is non-decreasing (or non-increasing)
so this follows from the previous result. Ol

Note also, g(a) = min(k, a) for constant k is a non-decreasing concave
function, so when f is monotone nondecreasing submodular, we can use the
earlier result about composing a monotone concave function with a
monotone submodular function to get a version of this.
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More on Min - the saturate trick

@ In general, the minimum of two submodular functions is not
submodular (unlike concave functions, closed under min).
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Examples and Properties

More on Min - the saturate trick

@ In general, the minimum of two submodular functions is not
submodular (unlike concave functions, closed under min).

@ However, when wishing to maximize two monotone non-decreasing
submodular functions f, g, we can define function hy : 2V — R as

ho(A) = %(min(a, 7(A4)) + min(a, g(A))) (4.54)

then h,, is submodular, and h,(A) > « if and only if both f(A) > «
and g(A) > «, for constant a € R.
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Examples and Properties
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More on Min - the saturate trick

@ In general, the minimum of two submodular functions is not
submodular (unlike concave functions, closed under min).

@ However, when wishing to maximize two monotone non-decreasing
submodular functions f, g, we can define function hy : 2V — R as

1
ha(4) = 5 (min(a, £(4)) + min(a, g(4))) (4.54)
then h,, is submodular, and h,(A) > « if and only if both f(A) > «

and g(A) > «, for constant a € R.

@ This can be useful in many applications. An instance of a submodular
surrogate (where we take a non-submodular problem and find a
submodular one that can tell us something about it).
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Arbitrary functions: difference between submodular funcs.

Theorem 4.5.5

Given an arbitrary set function h, it can be expressed as a difference
between two submodular functions (i.e., Yh € 2V — R,
3f,g s.t. VA, h(A) = f(A) — g(A) where both f and g are submodular).

Proof.
Let h be given and arbitrary, and define:

o’ ey (h(X) FR(Y) - (X UY) - h(X N Y)) (4.55)

If & > 0 then h is submodular, so by assumption a < 0.
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Examples and Properties
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Arbitrary functions: difference between submodular funcs.

Theorem 4.5.5

Given an arbitrary set function h, it can be expressed as a difference
between two submodular functions (i.e., Yh € 2V — R,
3f,g s.t. VA, h(A) = f(A) — g(A) where both f and g are submodular).

Proof.
Let h be given and arbitrary, and define:

A .
2 X)+h(Y) = (X UY) - (X NY ) 4,
oS Lmin (h( )+ h(Y) —h(XUY)—R(XNY))  (4.55)
If & > 0 then h is submodular, so by assumption a < 0. Now let f be an
arbitrary strict submodular function and define

g2 wmin (£ + F(0) = FXUY) = f(X 1Y), (456)

Strict means that 5 > 0.
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Arbitrary functions as difference between submodular funcs.

Define b’ : 2V — R as
—f(A) (4.57)

Then 1/ is submodular (why?), and h = h/(A) — %f(A), a difference
between two submodular functions as desired.
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@ We often wish to express the gain of an item j € V in context A,

namely f(AU {j}) — f(A).
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o We often wish to express the gain of an item j € V in context A,
namely f(AU {j}) — f(A).

@ This is called the gain and is used so often, there are equally as many
ways to notate this. l.e., you might see:

FAU{GY) — F(A) 2 pi(4) (4.58)
2 paly) (4.59)
2 V;if(A) (4.60)
2 F({5H4) (4.61)
2 1(jl4) (4.62)
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Examples and Properties
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o We often wish to express the gain of an item j € V in context A,
namely f(AU{j}) — f(A).

@ This is called the gain and is used so often, there are equally as many
ways to notate this. l.e., you might see:

FIAU{Y) = F(A) £ pi(A) (4.58)
2 palj (4.59)
2V, f(A) (4.60)
2 F({5}14) (4.61)
2 1(j14) (4.62)

o We'll use f(j|A).
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o We often wish to express the gain of an item j € V in context A,
namely f(AU{j}) — f(A).

@ This is called the gain and is used so often, there are equally as many
ways to notate this. l.e., you might see:

FIAU{Y) = F(A) £ pi(A) (4.58)
2 palj (4.59)
2V, f(A) (4.60)
2 F({5}14) (4.61)
2 1(j14) (4.62)

o We'll use f(j|A).

@ Submodularity's diminishing returns definition can be stated as saying
that f(j|A) is a monotone non-increasing function of A, since
f(43]A) > f(j|B) whenever A C B (conditioning reduces valuation).
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Examples and Properties
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Gain Notation

It will also be useful to extend this to sets.
Let A, B be any two sets. Then

f(A|B) £ f(AUB) - f(B) (4.63)
So when j is any singleton

fGIB) = f({5}B) = f{i} U B) — f(B) (4.64)

EE563/Spring 2018/Submodularity - Lecture 4 - April 4th, 2018 F53/55 (pg.162/174)



Examy

Gain Notation

It will also be useful to extend this to sets.
Let A, B be any two sets. Then

f(A|B) £ f(AUB) — f(B) (4.63)
So when j is any singleton
fG1B) = f({i}|B) = f({j} U B) — f(B) (4.64)

Inspired from information theory notation and the notation used for
conditional entropy H(X4|Xp) = H(X4,Xp) — H(XB).
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Totally normalized functions

@ Any normalized submodular function g (even non-monotone) can be
represented as a sum of a polymatroid (normalized monotone
non-decreasing submodular) function g and a modular function m,.
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Examples and Properties

Totally normalized functions

@ Any normalized submodular function g (even non-monotone) can be
represented as a sum of a polymatroid (normalized monotone
non-decreasing submodular) function g and a modular function m,.

e Given arbitrary normalized submodular ¢ : 2 — R, construct a
function g : 2" — R as follows:

9(4) = g(4) = > g(alV \ {a}) = g(A) — my(A) (4.65)

acA

where mgy(A) £ 3 -4 g(a|V '\ {a}) is a modular function.
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Examples and Properties

Totally normalized functions

@ Any normalized submodular function g (even non-monotone) can be
represented as a sum of a polymatroid (normalized monotone
non-decreasing submodular) function g and a modular function m,.

o Given arbitrary normalized submodular ¢ : 2V — R, construct a
function g : 2" — R as follows:

9(4) = g(4) = > g(alV \ {a}) = g(A) — my(A) (4.65)

acA

A

where my(A) = 3" -4 9(alV \ {a}) is a modular function.
@ 7 is normalized since g(()) = 0.
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Totally normalized functions

@ Any normalized submodular function g (even non-monotone) can be
represented as a sum of a polymatroid (normalized monotone
non-decreasing submodular) function g and a modular function m,.

o Given arbitrary normalized submodular ¢ : 2V — R, construct a
function g : 2" — R as follows:

g(A) = g(A) = > g(alV \ {a}) = g(A) — my(A) (4.65)
acA

A

where my(A) = 3" -4 9(alV \ {a}) is a modular function.
@ g is normalized since g(()) = 0.
@ g is monotone non-decreasing since for v ¢ A C V:

g(wlA) = g(v]A) —g(w[V\{v}) 2 0 (4.66)
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Totally normalized functions

@ Any normalized submodular function g (even non-monotone) can be
represented as a sum of a polymatroid (normalized monotone
non-decreasing submodular) function g and a modular function m,.

o Given arbitrary normalized submodular ¢ : 2V — R, construct a
function g : 2" — R as follows:

g(A) = g(A) = > g(alV \ {a}) = g(A) — my(A) (4.65)
acA

A

where my(A) = 3" -4 9(alV \ {a}) is a modular function.
@ g is normalized since g(()) = 0.
@ g is monotone non-decreasing since for v ¢ A C V:

g(v|A) = g(v[A) — g(v[V'\ {v}) = 0 (4.66)

@ g is called the totally normalized version of g.
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Totally normalized functions

@ Any normalized submodular function g (even non-monotone) can be
represented as a sum of a polymatroid (normalized monotone
non-decreasing submodular) function g and a modular function m,.

o Given arbitrary normalized submodular ¢ : 2V — R, construct a
function g : 2" — R as follows:

g(A) = g(A) = > g(alV \ {a}) = g(A) — my(A) (4.65)
acA

A

where my(A) = 3" -4 9(alV \ {a}) is a modular function.
@ g is normalized since g(()) = 0.
@ g is monotone non-decreasing since for v ¢ A C V:

g(v|A) = g(v[A) — g(v[V'\ {v}) = 0 (4.66)

@ g is called the totally normalized version of g.
@ Then g(A) = g(A) + mgy(A).
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Examples and Properties

Arbitrary function as difference between two polymatroids

@ Any normalized function h (i.e., h(0)) = 0) can be represented as a
difference not only between submodular, but between polymatroid
(normalized monotone non-decreasing submodular) functions.
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Examples and Properties

Arbitrary function as difference between two polymatroids

@ Any normalized function h (i.e., h() = 0) can be represented as a
difference not only between submodular, but between polymatroid
(normalized monotone non-decreasing submodular) functions.

@ Given submodular f and g, let f and § be them totally normalized.
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Arbitrary function as difference between two polymatroids

@ Any normalized function h (i.e., h() = 0) can be represented as a
difference not only between submodular, but between polymatroid
(normalized monotone non-decreasing submodular) functions.

@ Given submodular f and g, let f and § be them totally normalized.

@ Given arbitrary h = f — g where f and g are normalized submodular,

h=f—-g=f+ms—(g+my) (4.67)
= =g+ (ms—my) (4.68)
=f—g+msp (4.69)
=f+mi, —(g+ (=ms)") (4.70)

where m™ is the positive part of modular function m. That is,
mt(A) =3 ,cam(a)l(m(a) > 0).
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Examy

Arbitrary function as difference between two polymatroids

@ Any normalized function h (i.e., h() = 0) can be represented as a
difference not only between submodular, but between polymatroid
(normalized monotone non-decreasing submodular) functions.

@ Given submodular f and g, let f and § be them totally normalized.

@ Given arbitrary h = f — g where f and g are normalized submodular,

h=[f-g=[f+ms—(g+my) (4.67)
=f =g+ (ms—my) (4.68)
=f—g+msy (4.69)
=f+mi_,—(g+ (=msg)") (4.70)

where m™ is the positive part of modular function m. That is,
m*(A) = 3 qeam(a)l(m(a) > 0).
e Both f+ m]f_g and g+ (—mjs_,4)" are polymatroid functions!
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Arbitrary function as difference between two polymatroids

@ Any normalized function h (i.e., h() = 0) can be represented as a
difference not only between submodular, but between polymatroid
(normalized monotone non-decreasing submodular) functions.

@ Given submodular f and g, let f and § be them totally normalized.

@ Given arbitrary h = f — g where f and g are normalized submodular,

h=f—-g=f+ms—(3+my) (4.67)
=f =g+ (ms—my) (4.68)
=f—g+msy (4.69)
=f+mi_,—(g+ (=msg)") (4.70)

where m™ is the positive part of modular function m. That is,
m*(A) =3 ,c4m(a)1(m(a) > 0).

e Both f + m;{_g and g+ (—mjs_,4)" are polymatroid functions!

@ Thus, any function can be expressed as a difference between two, not only
submodular (DS), but polymatroid functions.
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